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Chapter 32 
Optical Images 
 
Conceptual Problems 
 
1 •  
Determine the Concept Yes. Note that a virtual image is ″seen″ because the eye focuses 
the diverging rays to form a real image on the retina. Similarly, the camera lens can focus 
the diverging rays onto the film. 
 
2 •  
Determine the Concept Yes; the mirror image is a left-handed coordinate system. 
 
3 ••  
(a) False. The virtual image formed by a concave mirror when the object is between the 
focal point and the vertex of the mirror depends on the distance of the object from the 
vertex. 
 
(b) False. When the object is outside the focal point, the image is real. 
 
(c) True. 
 
(d) False. When the object is between the center of curvature and the focal point, the 
image is enlarged and real. 
 
*4 ••  
Determine the Concept Let s be the object distance and f the focal length of the mirror.  
 
(a) If  s < f, the image is virtual, upright, and larger than the object. 
 
(b) If  s < f, the image is virtual, upright, and larger than the object. 
 
(c) If  s > 2f, the image is real, inverted, and smaller than the object. 
 
(d) If f < s < 2f, the image is real, inverted, and larger than the object. 
 
5 ••  
Determine the Concept A convex mirror always produces a virtual, upright image that is s
than the object. It never produces an enlarged image. 
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6 ••  
Determine the Concept They appear more distant because the images are smaller than 
they would be in a flat mirror. 
 
7 ••  
Picture the Problem The ray diagram shows three object positions 1, 2, and 3 as the 
object is moved from a great distance toward the focal point F of a concave mirror. The 
real images corresponding to each of these object positions are labeled with the same 
numeral. correct. is )(b  

 
 
8 •  
Picture the Problem The diagram shows 
two rays (from the bundle of rays) of light 
refracted at the air-water interface. Because 
the index of refraction of water is greater 
than that of air, the rays are bent toward the 
normal. The diver will, therefore, think that 
the rays are diverging from a point above 
the bird and so the bird appears to be 
farther from the surface than it actually is.   
 
*9 •  
Determine the Concept  
 
(a) The lens will be positive if its index of refraction is greater than that of the 
surrounding medium and the lens is thicker in the middle than at the edges. Conversely, if 
the index of refraction of the lens is less than that of the surrounding medium, the lens 
will be positive if it is thinner at its center than at the edges. 
 
(b) The lens will be negative if its index of refraction is greater than that of the 
surrounding medium and the lens is thinner at the center than at the edges. Conversely, if 
the index of refraction of the lens is less than that of the surrounding medium, the lens 
will be negative if it is thicker at the center than at the edges. 



Optical Images 
 

 

931

10 •  
Determine the Concept The focal length depends on the index of refraction, and n is a 
function of wavelength. 
 
11 ••  
Picture the Problem We can use a ray diagram to determine the general features of the 
image. In the diagram shown, the parallel ray and central ray have been used to locate the 
image. 

 
From the diagram, we see that the image is virtual (only one of the rays from the head of 
the object actually pass through the head of the image), upright, and diminished. 

correct. is )(d  

 
12 ••  
Picture the Problem We can use a ray diagram to determine the general features of the 
image. In the diagram shown, the ray parallel to the principle axis and the central ray 
have been used to locate the image. 

 
From the diagram, we see that the image is virtual (neither ray from the head of the object 
passes through the head of the image), upright, and enlarged. correct. is )(c  

 
13 •  
Determine the Concept The muscles in the eye change the thickness of the lens and 
thereby change the focal length of the lens to accommodate objects at different distances. 
A camera, on the other hand, has a fixed focal length so that focusing is accomplished by 
varying the distance between the lens and the film. 
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*14 •  
Determine the Concept The eye muscles of a farsighted person lack the ability to 
shorten the focal length of the lens in the eye sufficiently to form an image on the retina 
of the eye. A convex lens (a lens that is thicker in the middle than at the circumference) 
will bring the image forward onto the retina. correct. is )(a  

 
15 ••  
Determine the Concept Refraction of light at the water-cornea interface is less than at 
the air-cornea interface and so an image that would normally (that is, without a corrective 
lens) be in front of the retina, is formed on the retina.  correct. is )(b  

 
16 ••  
Determine the Concept A nearsighted person’s lenses form sharp images (unless the 
person is also astigmatic) of nearby object’s on the retinas of her eyes. The corrective 
lenses (convex) give a reduced image of the object and, therefore, should be removed. 

correct. is )(b  

 
*17 •  
Determine the Concept Referring to the ray diagram show below we note that the image 
is always virtual and diminished. correct. is )(d  

 
 
18 •  
Determine the Concept Converging lenses can form real or virtual images that can be 
enlarged or reduced. correct. is )(c  

 
19 •  
Picture the Problem We can apply the lens maker’s equation to the air-glass lens and to 
the water-glass lens to find the ratio of their focal lengths. 
 
Apply the lens maker’s equation to 
the air-glass interface: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21air

11)16.1(1
rrf
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Apply the lens maker’s equation to 
the water-glass interface: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21water

11)33.16.1(1
rrf

 

Divide the first of these equations by 
the second to obtain: 
 22.2

11)33.16.1(

11)16.1(

21

21

air

water =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

rr

rr
f

f
 

or airwater 22.2 ff = and correct. is )(a  

 
20 ••  
(a) True. 
 
(b) True. 
 
(c) False. Where the rays intersect the axis of a spherical mirror depends on how far from 
the axis they are reflected from the mirror. 
 
(d) True. 
 
(e) False. The image distance for a virtual image is negative. 
 
*21 •  
Determine the Concept Microscopes ordinarily produce images (either the intermediate 
one produced by the objective or the one viewed through the eyepiece) that are larger 
than the object being viewed.  A telescope, on the other hand, ordinarily produces images 
that are much reduced compared to the object. The object is normally viewed from a 
great distance and the telescope magnifies the angle subtended by the object. 
 
Estimation and Approximation 
 
22 ••  
Picture the Problem We can use the lens-maker’s equation to obtain a relationship 
between the two radii of curvature of the lenses we are to design.  
 
For a thin lens of focal length 27 cm 
and index of refraction of 1.6: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1116.1
cm27
1

rr
 

or 

cm2.16
111

21

=−
rr
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One solution is a plano-convex lens 
(one with a flat surface and a convex 
surface). Let r2 = ∞. Then 

cm2.161 =r and ∞=2r . 

  

 
 

Another design is a double convex 
lens (one with both surfaces convex 
and radii of curvature that are equal 
in magnitude) obtained by letting  
r2 = −r1. Then cm4.321 =r  and  

cm4.322 −=r . 

 

 

 

A third possibility is a double 
convex lens with unequal curvature, 
e.g., let r2 = 12 cm. Then 

cm89.61 =r  and 

cm0.122 =r . 

 
 

 
23 ••  
Picture the Problem We can use the lens-maker’s equation to obtain a relationship 
between the two radii of curvature of the lenses we are to design.  
 
For a thin lens of focal length −27 
cm and index of refraction of 1.6: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

− 21

1116.1
cm27

1
rr

 

or 

cm2.16
111

21 −
=−

rr
 

 
One solution is a plano-concave lens 
(one with a flat surface and a 
concave surface), Let r2 = ∞. Then 

cm2.161 −=r  and ∞=2r . 

  
 

Another design is a biconcave lens  
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(one with both surfaces concave) by 
letting r2 = −r1. Then 

cm4.321 −=r  and 

cm4.322 =r . 

 
 

A third possibility is a lens with r2 = 
8.1 cm. Then cm40.51 =r  

and cm2.162 =r . 

 
 
*24 ••  
Picture the Problem Because the focal length of a spherical lens depends on its radii of 
curvature and the magnification depends on the focal length, there is a practical upper 
limit to the magnification. 
 
Use equation 32-20 to relate the 
magnification M of a simple 
magnifier to its focal length f: 
 

f
x

M np=  

Use the lens-maker’s equation to 
relate the focal length of a lens to its 
radii of curvature and the index of 
refraction of the material from 
which it is constructed: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

 

For a plano-convex lens, r2 = ∞. 
Hence: 1

11
r

n
f

−
=  ⇒ 

1
1

−
=

n
rf  

 
Substitute in the expression for M  
and simplify to obtain: 
 

( )
1

np1
r

xn
M

−
=  

Note that the smallest reasonable value for 
r1 will maximize M. 
 

A reasonable smallest value for the 
radius of a magnifier is 1 cm. Use 
this value and n = 1.5 to estimate 
Mmax: 

( )( ) 5.12
cm1

cm2515.1
max =

−
=M  
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Plane Mirrors 
 
25 •  
Determine the Concept Rays from the source and reflected by the mirror are shown. 
The reflected rays appear to diverge from the image. The eye can see the image if it is in 
the region between rays 1 and 2. 

 

 
 

26 •  
Determine the Concept The mirror must 
be half the height of the person, i.e., 81 cm. 
The top of the mirror must be 7.5 cm below 
the top of the head, or 154.5 cm above the 
floor. The bottom of the mirror must be 
73.5 cm above the floor. A ray diagram 
showing rays from the person’s feet and 
the top of her head reaching her eyes is 
shown to the right. 

 
 
*27 •  
Determine the Concept Draw rays of light 
from the object that satisfy the law of 
reflection at the two mirror surfaces. Three 
virtual images are formed, as shown in the 
adjacent figure.  The eye should be to the 
right and above the mirrors in order to see 
these images. 

 
 
28 •  
Determine the Concept Draw rays of light from the object that satisfy the law of 
reflection at the two mirror surfaces. The images are located at the intersection of the 
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dashed lines (extensions of the reflected rays). 
 
(a) The diagram to the right shows 
selected rays emanating from a point 
object (P) that form the two virtual 
images directly below the horizontal 
mirror: 

 

 
The diagram to the right shows 
selected rays emanating from the 
point object (P) that form the image 
that lies on the bisector of the angle. 
There are two additional virtual 
images to the left of the mirror that 
is at 60° with the horizontal. Hence, 
the total number of images formed 
when a point object is on the 
bisector of the 60° angle is five. 
 

 

 

(b) The diagram to the right shows 
selected rays emanating from a point 
object (P) that form the two virtual 
images at the intersection of the 
dashed lines (extensions of the 
reflected rays): 
 

 
 
29 ••  
Determine the Concept 
 
(a) The first image in the mirror on the left is 10 cm behind the mirror. The mirror on the 
right forms an image 20 cm behind that mirror or 50 cm from the left mirror. This image 
will result in a second image 50 cm behind the left mirror. The first image in the left 
mirror is 40 cm from the right mirror and forms an image  
40 cm behind the right mirror or 70 cm from the left mirror. That image gives an image 
70 cm behind the left mirror. The fourth image behind the left mirror is  
110 cm behind that mirror. 
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(b) Proceeding as in Part (a) for the mirror on the right, one finds the location of the 
images to be 20 cm, 40 cm, 80 cm, and 100 cm behind the right-hand mirror. 
 
Spherical Mirrors 
 
*30 ••  
Picture the Problem The easiest rays to use in locating the image are 1) the ray parallel 
to the principal axis and passes through the focal point of the mirror, the ray that passes 
through the center of curvature of the spherical mirror and is reflected back on itself, and 
2) the ray that passes through the focal point of the spherical mirror and is reflected 
parallel to the principal axis. We can use any two of these rays emanating from the top of 
the object to locate the image of the object. 
 
(a) The ray diagram is shown to the 
right. The image is real, inverted, 
and reduced. 
   

 

reduced.
and inverted, real, is image The

 

(b) The ray diagram is shown to the 
right.  

 

object.  theas size same the
and inverted, real, is image The
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(c) The ray diagram is shown to the 
right. The object is at the focal point 
of the mirror. 

 

 

image.an  formnot  do
and parallel are rays emerging The

 

(d) The ray diagram is shown to the 
right.  

 

enlarged.
 and erect,  virtual,is image The

 

 
31 •  
Picture the Problem In describing the images, we must indicate where they are located, 
how large they are in relationship to the object, whether they are real or virtual, and 
whether they are upright or inverted. The object distance s, the image distance s′, and the 

focal length of a mirror are related according to ,111
fs's

=+  where rf 2
1= and r is the 

radius of curvature of the mirror. In this problem, f = 20 cm because r is positive for a 
concave mirror. 
 
Solve the mirror equation for s′: 

fs
fss
−

='  

 
(a) When s = 50 cm: ( )( ) cm8.15

cm12cm50
cm50cm12

=
−

=s'  

 
The lateral magnification of the 
image is: 

316.0
cm05
cm8.15

−=−=−=
s
s'm  

 



Chapter 32    
 

 

940 

reduced.
and inverted, real, image  that theconcludecan   wenegative, and onethan 
less ision magnificat lateral  theand positive is distance image  theBecause

 

 
(b) When s = 24 cm: ( )( ) cm0.24

cm12cm24
cm24cm12

=
−

=s'  

 
The lateral magnification of the 
image is: 

1
cm42
cm24

−=−=−=
s
s'm  

 

object.  theas size same the
and inverted, real, image  that theconcludecan   wenegative, and one

  ision magnificat lateral  theand positive is distance image  theBecause
 

 
(c) When s = 12 cm: ( )( )

∞=
−

=
cm12cm12
cm12cm12's  

and image. no is there  

 
(d) When s = 8 cm: ( )( ) cm0.24

cm12cm8
cm8cm12' −=

−
=s  

 
The lateral magnification of the 
image is: 

3
cm8

cm24'
=

−
−=−=

s
sm  

 

object.  theof size  the timesthree
and erect,  virtual,image  that theconcludecan   wepositive, and three

  ision magnificat lateral  theand negative is distance image  theBecause
 

 
32 ••  
Picture the Problem The easiest rays to use in locating the image are 1) the ray parallel 
to the principal axis and passes through the focal point of the mirror, the ray that passes 
through the center of curvature of the spherical mirror and is reflected back on itself, and 
2) the ray that passes through the focal point of the spherical mirror and is reflected 
parallel to the principal axis. We can use any two of these rays emanating from the top of 
the object to locate the image of the object. 
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(a) The ray diagram is shown to the 
right.  

 

reduced.
 and upright,  virtual,is image The

 

(b) The ray diagram is shown to the 
right.  

 

reduced.
 and upright,  virtual,is image The

 

(c) The ray diagram is shown to the 
right.  

 

reduced.
 and upright,  virtual,is image The

 

(d) The ray diagram is shown to the 
right.  

 

reduced.
 and upright,  virtual,is image The

 

 
33 •  
Picture the Problem In describing the images, we must indicate where they are located, 
how large they are in relationship to the object, whether they are real or virtual, and 
whether they are upright or inverted. The object distance s, the image distance s′, and the 

focal length of a mirror are related according to ,111
fs's

=+  where rf 2
1= and r is the 

radius of curvature of the mirror. In this problem, f = −20 cm because r is negative for a 
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convex mirror. 
 
Solve the mirror equation for s′: 

fs
fss'
−

=  

 
(a) When s = 55 cm: ( )( )

( ) cm85.9
cm12cm55
cm55cm12

−=
−−

−
=s'  

 
The lateral magnification of the 
image is: 

179.0
cm55

cm85.9
=

−
−=−=

s
s'm  

 

reduced. and upright,
  virtual,is image  that theconcludecan   wepositive, and magnitudein  onethan 

less ision magnificat lateral  theand negative is distance image  theBecause
 

 
(b) When s = 24 cm: ( )( )

( ) cm00.8
cm12cm24
cm24cm12

−=
−−

−
=s'  

 
The lateral magnification of the 
image is: 

333.0
cm42
cm8

=
−

−=−=
s
s'm  

 

reduced. and upright,
  virtual,is image  that theconcludecan   wepositive, and magnitudein  onethan 

less ision magnificat lateral  theand negative is distance image  theBecause
 

 
(c) When s = 12 cm: ( )( )

( ) cm00.6
cm12cm12
cm12cm12

−=
−−

−
=s'  

 
The lateral magnification of the 
image is: 2

1
cm21
cm6

=
−

−=−=
s
s'm  

 

object.  theof size  thehalf and upright, virtual,
 image  that theconcludecan   wepositive, and magnitudein  halfone
  ision magnificat lateral  theand negative is distance image  theBecause

−  

 
(d) When s = 8 cm: ( )( )

( ) cm80.4
cm12cm8
cm8cm12

−=
−−

−
=s'  
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The lateral magnification of the 
image is: 

600.0
cm8

cm80.4
=

−
−=−=

s
s'm  

 

reduced. and
 upright,  virtual,is image  that theconcludecan   wepositive, and one than less

  ision magnificat lateral  theand negative is distance image  theBecause
 

 
34 •  
Picture the Problem We can solve the mirror equation for 1/s′ and then examine the 
implications of f  < 0 and s > 0. 
 
Solve the mirror equation for 1/s′: 
 sf

fs
sfs'

−
=−=

111
 

 
For a convex mirror: 
 

0<f  

With s > 0, the numerator is positive 
and the denominator negative. 
Consequently: 

0 01
<⇒< s'

s'
 

 
*35 •  
Picture the Problem We can use the mirror equation and the definition of the lateral 
magnification to find the radius of curvature of the mirror. 
 
(a) Express the mirror equation: 
 rfs's

2111
==+  

 
Solve for r: 

ss
ss'r
+

=
'

2
                           (1) 

 
The lateral magnification of the 
mirror is given by: s

s'm −=  

 
Solve for s′: 
 

mss' −=  

Substitute for s′ in equation (1) to 
obtain: 
 

m
msr

−
−

=
1

2
 

Substitute numerical values and 
evaluate r: 
 

( )( ) cm13.5
5.51

cm1.25.52
=

−
−

=r  
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(b)
image.  virtualdiminished

 a produces alwaysmirror convex A  concave. bemust mirror  The
 

 
36 ••  
Picture the Problem We can use the mirror equation and the relationship between the 
focal length of a mirror and its radius of curvature to find the location of the image. We 
can then use the definition of the lateral magnification of the mirror to find the height of 
the image formed in the mirror.  
 
(a) and (b) Solve the mirror equation 
for for s′: fs

fss'
−

=  

 
Relate the focal length of the mirror 
to its radius of curvature: 
 

rf 2
1=  

Substitute to obtain: 
rs

rs
rs

rss'
−

=
−

=
22

1
2
1

 

 
Substitute numerical values and 
evaluate s′: 
 
 
 

( )( )
( ) ( ) m566.0

m2.1m102
m10m2.1

−=
−−

−
=s'  

and  
mirror.  thebehind cm56.6 is image the

(c) Express the lateral magnification 
of the mirror: 
 

s
s'

y
y'm −==  

Solve for y′: y
s
s'y' −=  

 
Substitute numerical values and 
evaluate y′: 

( ) cm3.11m2
m10

m566.0
=

−
−=y'  

 
37 ••  
Picture the Problem We can use the mirror equation to locate the image formed in this 
mirror and the expression for the lateral magnification of the mirror to find the diameter 
of the image. 
 
Solve the mirror equation for the 
location of the image of the moon: 
 

sf
fss'
−

=  
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Because rf 2
1= : 

sr
rs

sr
rss'

22
1

2
1

−
=

−
=  

 
Substitute numerical values and 
evaluate s′: 

( )( )
( ) m00.4

m108.32m8
m108.3m8

8

8

−=
×−
×

=s'  

 
Express the lateral magnification of 
the mirror: 
 

s
s'

y
y'm −==  

Solve for y′: y
s
s'y' −=  

 
Substitute numerical values and 
evaluate y′: 

( )

cm68.3

m105.3
m108.3

m4 6
8

=

×
×
−

−=y'
 

 
38 ••  
Picture the Problem The rays from the 
point object are shown in the diagram to 
the right. Note that the rays that reflect 
from the mirror far from the axis do not 
converge at the same point as those that 
reflect from the mirror close to the mirror 
axis. For the small-angle rays, the point of 
convergence is 4.5 cm from the mirror. 
The 60° ray crosses the axis at 3 cm from 
the mirror. Consequently, the image 
extends from 4.5 cm to 3.0 cm, or about 
1.5 cm along the axis. 
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*39 ••  
Picture the Problem 
 

 

(a) The figure to the right shows the 
mirror and the four rays drawn to scale. 
Using a calibrated ruler, the spread of 
the crossing points is δx ≈ 1.0 cm. Note 
that the triangles formed by the center of 
curvature, the point of reflection on the 
mirror, and the point of  intersection of 
the reflected ray and the mirror axis are 
isosceles triangles.  
 

 

 

Express the equal angles of the 
isosceles triangles: 
 

⎟
⎠
⎞

⎜
⎝
⎛= −

R
y1

r sinθ   

where y is the distance of the incoming ray 
from the mirror axis and R is the radius of 
curvature of the mirror. 
 

Using the law of  cosines, the 
distance between the point of 
intersection and the  mirror is given 
by: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−

−

1
1sincos21

R
yRd  

Evaluate d for y/R = 2/3: 
 ( )

cm975.1

3
2sincos21cm6

1
1

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−

−d
 

 
Evaluate d for y/R = 1/12: 
 ( )

cm990.2

12
1sincos21cm6

1
1

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−

−d
 

 
Express the spread δx: 
 

cm1.01cm1.975cm990.2 =−=xδ  

in good agreement with the result obtained 
above. 
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(b) Evaluate d for y/R = 1/3: 
 ( )

cm818.2

3
1sincos21cm6

1
1

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−

−d
 

 

Express the new spread δx′: 
 

cm172.0cm818.2cm990.2 =−=x'δ  

 
Express the ratio of  δx′ to δx:  
 

%0.17
cm1.01
cm172.0

==
x
x'
δ
δ

 

 

83.0%.by  reduced is spread  thereflected, are axismirror   theof
cm 2 within rays paraxialonly  that somirror   theof edges  theoff blockingBy 

 

 
40 ••  
Picture the Problem We can use the mirror equation to find the focal length of the 
mirror and then apply it a second time to find the object position after the mirror has been 
moved. 
 
Solve the mirror equation for f: 
  ss'

ss'f
+

=  

 
Substitute numerical values and 
evaluate f: 
 

( )( ) cm86.42
cm100cm75
cm75cm100

=
+

=f  

Solve the mirror equation for s: 
fs'

fs's
−

=  

 
Find s for f = −42.86 cm and  
s′ = − 35 cm: 

( )( )
( ) cm9.190

cm86.42cm35
cm35cm86.42

=
−−−

−−
=s  

 
The distance d the mirror moved is: cm9.90cm100 cm9.190 =−=d  

 
41 ••  
Picture the Problem We can use the mirror equation, with s = ∞, to find the image 
distance in the large mirror. Because this image serves as a virtual object for the small 
mirror, we can use the mirror equation a second time to find the focal length and, hence, 
the radius of curvature of the small mirror. 
 
(a) Express the mirror equation: 

rs's
211

=+  
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Because s = ∞: 

rs'
21

=  and rs' 2
1=  

 
Substitute numerical values and 
evaluate s′: 
 

( ) m5.2m52
1 ==s'  

This image serves as a virtual object 
for the small mirror at  
s = −0.5 m. Solve the mirror 
equation for the focal length of the 
small mirror: 
 

ss
ss'f
+

=
'small  

Substitute numerical values and 
evaluate fsmall: 
 

( )( )
( ) m667.0

m5.0m2
m2m5.0

small −=
−+

−
=f  

The radius of curvature is twice the 
focal length: 
 

( )
m33.1

m667.022 smallsmall

−=

−== fr
 

(b) convex. ismirror  small  the0,   Because small <f  

 
Images Formed by Refraction 
 
42 •  
Picture the Problem The diagram shows 
two rays (from the bundle of rays) of light 
refracted at the glass-air interface. Because 
the index of refraction of air is less than 
that of water, the rays are bent away from 
the normal. The writing on the paper will, 
therefore, appear to be closer than it 
actually is. We can use the equation for 
refraction at a single surface to find the 
distance s′. 

 

 

 
Use the equation for refraction at a 
single surface to relate the image and 
object distances: 
 

r
nn

s'
n

s
n 1221 −

=+  

Here we have n1 = n, n2 = 1, and  
r = ∞. Therefore: 

01
=+

s's
n
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Solve for s′: 
 n

ss' −=  

 
Substitute numerical values and 
evaluate s′: 

cm33.1
5.1

cm2
−=−=s'  

where the minus sign tells us that the image 
is 1.33 cm below the glass surface. 

 
43 •  
Picture the Problem The diagram shows 
two rays (from the bundle of rays) of light 
refracted at the water-air interface. Because 
the index of refraction of air is less than 
that of water, the rays are bent away from 
the normal. The fish will, therefore, appear 
to be closer than it actually is. We can use 
the equation for refraction at a single 
surface to find the distance s′. We’ll 
assume that the glass bowl is thin enough 
that we can ignore the refraction of the 
light passing through it. 

 

 
 
(a) Use the equation for refraction at 
a single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+  

Here we have n1 = n and n2 = 1. 
Therefore: 
 

r
n

s's
n −

=+
11

 

Solve for s′: 
 ( ) nrns

rss'
−−

=
1

 

 
Substitute numerical values and 
evaluate s′: 

( )( )
( )( ) ( )( )

cm54.8

cm2033.133.11cm10
cm10cm20

−=

−−−
−

=s'
 

where the minus sign tells us that the image 
is 8.54 cm from the front surface of the 
bowl. 
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(b) Repeat (a) with s = 30 cm: ( )( )
( )( ) ( )( )

cm9.35

cm2033.133.11cm30
cm30cm20

−=

−−−
−

=s'
 

where the minus sign tells us that the image 
is 35.9 cm from the front surface of the 
bowl. 

 
*44 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images corresponding to these three object positions. The signs of the image distances 
will tell us whether the images are real or virtual and the ray diagrams will confirm the 
correctness of our analytical solutions. 
 
Use the equation for refraction at a 
single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Here we have n1 = 1 and  
n2 = n = 1.5. Therefore: 
 

r
n

s'
n

s
11 −

=+  

Solve for s′: 
 ( ) rns

nrss'
−−

=
1

 

 
(a) Substitute numerical values  
(s = 35 cm and r = 7.2 cm) and 
evaluate s′: 

( )( )( )
( )( ) ( )

cm7.36

cm2.715.1cm35
cm35cm2.75.1

=

−−
=s'

 

where the positive distance tells us that the 
image is 36.7 cm in back of the surface and 
is real.  

 
 

 
 

(b) Substitute numerical values  
(s = 6.5 cm and r = 7.2 cm) and 
evaluate s′: 

( )( )( )
( )( ) ( )

cm8.17

cm2.715.1cm5.6
cm5.6cm2.75.1

−=

−−
=s'

 

where the minus sign tells us that the image 



Optical Images 
 

 

951

is 17.8 cm in front of the surface and  is 
virtual.  

 
 

 
 

(c) When s = ∞, equation (1) 
becomes: r

n
s'
n 1−
=  

 
Solve for s′: 

1−
=

n
nrs'  

 
Substitute numerical values and 
evaluate s′: 

( ) ( ) cm6.21
15.1
cm2.75.1

=
−

=s'  

i.e., the image is at the focal point, is 
real,  and of zero size. 

 
 

 
 
45 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
image distance that corresponds to parallel light rays in the rod. 
 
Use the equation for refraction at a 
single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Parallel rays imply that s′ = ∞. 
Therefore: 
 

r
n

s
11 −

=  

Solve for s: 
 1−

=
n

rs  

 
Substitute numerical values and cm4.14

15.1
cm2.7

=
−

=s  
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evaluate s: 
 

 

The ray diagram is shown below: 
 

 

 
 
46 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images corresponding to these three object positions. The signs of the image distances 
will tell us whether the images are real or virtual and the ray diagrams will confirm the 
correctness of our analytical solutions. 
 
Use the equation for refraction at a 
single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Here we have n1 = 1 and  
n2 = n = 1.5. Therefore: 
 

r
n

s'
n

s
11 −

=+  

Solve for s′: 
 ( ) rns

nrss'
−−

=
1

 

 
(a) Substitute numerical values  
(s = 35 cm and r = −7.2 cm) and 
evaluate s′: 

( )( )( )
( )( ) ( )

cm3.15

cm2.715.1cm35
cm35cm2.75.1

−=

−−−
−

=s'
 

where the minus sign tells us that the image 
is 15.3 cm in front of the surface of the rod 
and is virtual.   
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(b) Substitute numerical values  
(s = 6.5 cm and r = −7.2 cm) and 
evaluate s′: 

( )( )( )
( )( ) ( )

cm72.6

cm2.715.1cm5.6
cm5.6cm2.75.1

−=

−−−
−

=s'
 

where the minus sign tells us that the image 
is 6.72 cm in front of the  surface of the rod 
(located at the object) and is virtual.  

 

 
(c) When s = ∞, equation (1) 
becomes: r

n
s'
n 1−
=  

 
Solve for s′: 

1−
=

n
nrs'  

 
Substitute numerical values and 
evaluate s′: 

( ) ( )

cm6.21
15.1

cm2.75.1

−=
−

−
=s'

 

where the minus sign tells us that the image 
is 21.6 cm in front of the  surface of the rod 
and is virtual.  
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47 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images corresponding to these three object positions. The signs of the image distances 
will tell us whether the images are real or virtual and the ray diagrams will confirm the 
correctness of our analytical solutions. 
 
Use the equation for refraction at a 
single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Solve for s′: 
 ( ) rnnns

rsns'
112

2

−−
=  

 
(a) Substitute numerical values  
(s = 35 cm, n1 = 1.33, n2 = 1.5, and 
r = 7.2 cm) and evaluate s′: 

( )( )( )
( )( ) ( )( )

cm104

cm2.733.133.15.1cm35
cm35cm2.75.1

−=

−−
=s'

 

where the negative distance tells us that the 
image is 104 cm in front of the surface and 
is virtual.  

 

 
(b) Substitute numerical values  
(s = 6.5 cm) and evaluate s′: 

( )( )( )
( )( ) ( )( )

cm29.8

cm2.733.133.15.1cm5.6
cm5.6cm2.75.1

−=

−−
=s'

 

where the minus sign tells us that the image 
is 8.29 cm in front of the surface and  is 

virtual.  
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(c) When s = ∞, equation (1) 
becomes: r

nn
s'
n 122 −

=  

 
Solve for s′: r

nn
ns'

12

2

−
−=  

 
Substitute numerical values and 
evaluate s′: 

( ) cm5.63cm2.7
33.15.1

5.1
=

−
=s'  

i.e., the image is 63.5 cm to the right of the 
surface (at the focal point) and is real.   

 

 
 
48 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images corresponding to these three object positions. The signs of the image distances 
will tell us whether the images are real or virtual and the ray diagrams will confirm the 
correctness of our analytical solutions. 
 
Use the equation for refraction at a 
single surface to  relate the image 
and object distances: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Solve for s′: 
 ( ) rnnns

rsns'
112

2

−−
=  

 
(a) Substitute numerical values  
(s = 35 cm) and evaluate s′: 

( )( )( )
( )( ) ( )( )

cm7.24

cm5.733.133.15.1cm35
cm35cm5.75.1

−=

−−−
−

=s'

where the minus sign tells us that the image 
is 24.7 cm in front of the surface and is 

virtual.  
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(b) Substitute numerical values  
(s = 6.5 cm) and evaluate s′: 

( )( )( )
( )( ) ( )( )

cm60.6

cm5.733.133.15.1cm5.6
cm5.6cm5.75.1

−=

−−−
−

=s'

where the minus sign tells us that the image 
is 6.60 cm in front of the surface and  is 

virtual.  

 

 
(c) When s = ∞, equation (1) 
becomes: 

 

r
nn

s'
n 122 −

=
 

 
Solve for s′: 

12

2

nn
rns'
−

=  

 
Substitute numerical values and 
evaluate s′: 

( ) ( ) cm2.66
33.15.1

cm5.75.1
−=

−
−

=s'  

i.e., the image is at the focal point, is 
virtual,  and of zero size. 
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*49 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images due to refraction at the ends of the glass rod. The image formed by the refraction 
at the first surface will serve as the object for the second surface. The sign of the final 
image distance will tell us whether the image is real or virtual.  
 
(a) Use the equation for refraction at 
a single surface to  relate the image 
and object distances at the first 
surface: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Solve for s′: 
 ( ) rnnns

rsns'
112

2

−−
=  

 
Substitute numerical values  
and evaluate s′: 

( )( )( )
( )( ) ( )

cm0.64

cm816.1cm20
cm20cm86.1

=

−−
=s'

 

 
(b) The object for the second surface 
is 96 cm − 64 cm = 32 cm from the 
surface whose radius is 16 cm. 
Substitute numerical values and 
evaluate s′: 
 

( )( )( )
( )( ) ( )( )

cm0.80

cm166.16.11cm32
cm32cm161

−=

−−−
−

=s'
 

(c) 
 virtual.is and cm 8 is

radius  whosesurface  thefrom cm 16  cm 80 cm 96 is image final The =−
 

 
50 ••  
Picture the Problem We can use the equation for refraction at a single surface to find the 
images due to refraction at the ends of the glass rod. The image formed by the refraction 
at the first surface will serve as the object for the second surface. The sign of the final 
image distance will tell us whether the image is real or virtual.  
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(a) Use the equation for refraction at 
a single surface to  relate the image 
and object distances at the first 
surface: 
 

r
nn

s'
n

s
n 1221 −

=+                    (1) 

Solve for s′: 
 ( ) rnnns

rsns'
112

2

−−
=  

 
Substitute numerical values  
and evaluate s′: 

( )( )( )
( )( ) ( )

cm128

cm1616.1cm20
cm20cm166.1

−=

−−
=s'

 

 
(b) The object for the second surface 
is 96 cm + 128 cm = 224 cm from 
the surface whose radius is 8 cm. 
Substitute numerical values and 
evaluate s′: 
 

( )( )( )
( )( ) ( )( )

cm7.14

cm86.16.11cm224
cm224cm81

=

−−−
−

=s'
 

(c) real. is and rod  theof endfar   thefrom cm 4.71 is image final The  

 
Thin Lenses 
 
51 •  
Picture the Problem We can use the lens-maker’s equation to find the focal length of 
each of the lenses. 
 
The lens-maker’s equation is: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

where the numerals 1 and 2 denote the first 
and second surfaces, respectively. 
 

(a) For r1 = 15 cm and r2 = −26 cm: ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−=
cm26

1
cm15
115.11

f
 

and  
cm0.19=f  
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A double convex lens is shown to 
the right: 

 
 

(b) For r1 = ∞ and r2 = −15 cm: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
∞

−=
cm15

1115.11
f

 

and  
cm0.30=f  

 
A plano-convex lens is shown to the 
right: 

 
 

(c) For r1 = −15 cm and  
r2 = +15 cm: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

cm15
1

cm15
115.11

f
 

and  
cm0.15−=f  

 
A double concave lens is shown to 
the right: 

 
 

(d) For r1 = ∞ and r2 = +26 cm: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∞
−=

cm26
1115.11

f
 

and  
cm0.52−=f  

 
A plano-concave lens is shown to 
the right: 
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52 •  
Picture the Problem We can use the lens-maker’s equation to find the focal length of the 
lens. 
 
The lens-maker’s equation is: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

where the numerals 1 and 2 denote the first 
and second surfaces, respectively. 
 

Substitute numerical values to 
obtain: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−=
cm40

1
cm100

1162.11
f

 

 
Solve for f: cm108=f  

 
*53 •  
Picture the Problem We can use the lens-maker’s equation to find the focal length of the 

lens and the thin-lens equation to locate the image. We can use 
s
s'm −= to find the 

lateral magnification of the image. 
 
(a) The lens-maker’s equation is: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

where the numerals 1 and 2 denote the first 
and second surfaces, respectively. 
 

Substitute numerical values to 
obtain: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

cm25
1

cm30
1145.11

f
 

 
Solve for f: cm3.30−=f  

 
(b) Use the thin-lens equation to 
relate the image and object 
distances: 
 

fs's
111

=+  

Solve for s′: 
 fs

fss'
−

=  

 
Substitute numerical values and 
evaluate s′: 

( )( )
( ) cm0.22

cm3.30cm80
cm80cm3.30

−=
−−

−
=s'  
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(c) The lateral magnification of the 
image is given by: 
 

s
s'm −=  

Substitute numerical values and 
evaluate m: 
 

0.275
cm80
cm22

=
−

−=m  

(d) upright. and virtual is image  the0,   and 0   Because >< ms'  

 
54 •  
Picture the Problem We can use the lens-maker’s equation to find the focal length of 
each of the lenses described in the problem statement. 
 
The lens-maker’s equation is: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

where the numerals 1 and 2 denote the first 
and second surfaces, respectively. 
 

(a) For r1 = 20 cm, r2 = 10 cm: ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

cm10
1

cm20
116.11

f
 

and  
cm3.33−=f  

 
A sketch of the lens is shown to the 
right: 

 
(b) For r1 = 10 cm, r2 = 20 cm: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

cm20
1

cm10
116.11

f
 

and  
cm3.33=f  

 
A sketch of the lens is shown to the 
right: 
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(c) For r1 = −10 cm, r2 = −20 cm: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−=
cm20

1
cm10

116.11
f

 

and  
cm3.33−=f  

 
A sketch of the lens is shown to the 
right: 

 
Remarks: Note that the lenses that are thicker on their axis than on their 
circumferences are positive (converging) lenses and those that are thinner on their 
axis are negative (diverging) lenses. 
 
*55 •  
Picture the Problem The parallel and central rays were used to locate the image in the 
diagram shown below. The power P of the lens, in diopters, can be found from  P = 1/f 

and the size of the image from 
s
s'

y
y'm −== . 

 
The image is real, inverted, and diminished. 

 
The thin-lens equation is: 
 fs's

111
=+  

 
Solve for s′: 
 fs

fss'
−

=  

 
Use the definition of the power of 
the lens to find its focal length: 
 

cm 10  m1.0
m10
11

1 ==== −P
f  

Substitute numerical values and 
evaluate s′: 
 

( )( ) cm7.16
cm10cm25
cm25cm10

=
−

=s'  



Optical Images 
 

 

963

Use the lateral magnification 
equation to relate the height of the 
image y′ to the height y of the object 
and the image and object distances: 
 

s
s'

y
y'm −==  

Solve for y′: 
 

y
s
s'y' −=  

 
Substitute numerical values and 
evaluate y′: 

( ) cm00.2cm3
cm25
cm7.16

−=−=y'  

 

diagram.ray  with theagreement in  
diminished and inverted, real, is image  thecm,00.2 and 0  Because −=> y' s'

 

 
56 •  
Picture the Problem The parallel and central rays were used to locate the image in the 
diagram shown below. The power P of the lens, in diopters, can be found from  P = 1/f 

and the size of the image from 
s
s'

y
y'm −== . 

 
 

The image is real and inverted and appears to be the same size as the object. 
 

The thin-lens equation is: 
 fs's

111
=+  

 
Solve for s′: 
 fs

fss'
−

=  

 
Use the definition of the power of 
the lens to find its focal length: 
 

cm 10  m1.0
m10
11

1 ==== −P
f  

Substitute numerical values and 
evaluate s′: 
 

( )( ) cm0.20
cm10cm20
cm20cm10

=
−

=s'  
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Use the lateral magnification 
equation to relate the height of the 
image y′ to the height y of the object 
and the image and object distances: 
 

s
s'

y
y'm −==  

Solve for y′: 
 

y
s
s'y' −=  

 
Substitute numerical values and 
evaluate y′: 

( ) cm00.1cm1
cm20
cm20

−=−=y'  

 

diagram.ray  with theagreement in object   theas
 size same  theand inverted, real, is image  thecm, 1 and 0  Because −=> y' s'

 

 
57 •  
Picture the Problem The parallel and central rays were used to locate the image in the 
diagram shown below. The power P of the lens, in diopters, can be found from  P = 1/f 

and the size of the image from 
s
s'

y
y'm −== . 

 
The image is virtual, upright, and diminished. 

 
The thin-lens equation is: 
 fs's

111
=+  

 
Solve for s′: 
 fs

fss'
−

=  

 
Use the definition of the power of 
the lens to find its focal length: 
 

cm 01  m1.0
m10

11
1 −=−=

−
== −P

f  

Substitute numerical values and 
evaluate s′: 
 

( )( )
( ) cm67.6

cm10cm20
cm20cm10

−=
−−

−
=s'  
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Use the lateral magnification 
equation to relate the height of the 
image y′ to the height y of the object 
and the image and object distances: 
 

s
s'

y
y'm −==  

Solve for y′: 
 

y
s
s'y' −=  

 
Substitute numerical values and 
evaluate y′: 

( ) cm500.0cm5.1
cm20

cm67.6
=

−
−=y'  

 

diagram.ray  with theagreement in object   theof size  thethird-oneabout 
 and  erect,  virtual,is image  thecm, 500.0 and 0  Because =< y' s'

 

 
58 ••  
Picture the Problem The parallel and central rays were used to locate the image in the 
diagram shown below. The power P of the lens, in diopters, can be found from P = 1/f 

and the size of the image from 
s
s'm −= . 

 
(a) A negative object distance implies that the object is a virtual object, i.e., that light rays 
converge on the object rather than diverge from the object. A virtual object can occur in a 
two-lens system when the first lens forms an image that is at a distance s− from the 

second lens. 
 
(b) The thin-lens equation is: 
 fs's

111
=+  

 
Solve for s′: 
 fs

fss'
−

=  

 
Substitute numerical values and 
evaluate s′: 
 

( )( )
( ) cm0.10

cm20cm20
cm20cm20

=
−−
−

=s'  

The lateral magnification is: 
 

500.0
cm20

cm10
=

−
−=−=

s
s'm  

The parallel and central rays were used to locate the image in the ray diagram shown 
below: 
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 object.  virtual theof
 size  thehalf-one and  erect, real, is image  the0,  and 0  Because >> m s'

 

 
(c) Proceed as in (b) with  
s = −10 cm and f = −30 cm: 
 

( )( )
( ) cm0.15

cm30cm10
cm10cm30

=
−−−
−−

=s'  

and 

500.1
cm01

cm15
=

−
−=−=

s
s'm  

 
The parallel and central rays were used to locate the image in the ray diagram shown 
below: 

 
 

 object.  virtual theof size  thetimes
 half-one and one and  erect, real, is image  the,5.1 and 0  Because => m s'

 

 
*59 ••  
Picture the Problem We can apply the thin-lens equation to find the image formed in the 
first lens and then use this image as the object for the second lens. 
 
(a) The parallel, central, and focal rays were used to locate the image formed by the first 
lens and the parallel and central rays to locate the image formed by the second lens. 
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Apply the thin-lens equation to 
express the location of the image 
formed by the first lens: 
 

11

11
1 fs

sf's
−

=                            (1) 

Substitute numerical values and 
evaluate 's1 : 

( )( ) cm20
cm10cm20
cm20cm10

1 =
−

='s
 

 
Find the lateral magnification of the 
first image: 
 

1
cm20
cm201

1 −=−=−=
s
'sm  

Because the lenses are separated by 
35 cm, the object distance for the 
second lens is  
35 cm − 20 cm = 15 cm. Equation 
(1) applied to the second lens is: 
 

22

22
2 fs

sf's
−

=  

Substitute numerical values and 
evaluate 's2 : 

( )( ) cm30
cm10cm15
cm15cm10

2 =
−

='s  

and the final image is cm0.85 from the 

object. 
 

Find the lateral magnification of the 
second image: 
 

2
cm51
cm302

2 −=−=−=
s
'sm  

 object.  theof size
  the twiceand  erect, real, is image  the,2 and 0  Because 212 ==>  mmms'

 

 
The overall lateral magnification of 
the image is the product of the 
magnifications of each image: 

( )( ) 00.22121 =−−== mmm  

 
60 ••  
Picture the Problem We can apply the thin-lens equation to find the image formed in the 
first lens and then use this image as the object for the second lens. 
 
(a) The parallel, central, and focal rays were used to locate the image formed by the first 
lens and the parallel and central rays to locate the image formed by the second lens. 
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Apply the thin-lens equation to 
express the location of the image 
formed by the first lens: 
 

11

11
1 fs

sf's
−

=                            (1) 

Substitute numerical values and 
evaluate 's1 : 

( )( ) cm20
cm10cm20
cm20cm10

1 =
−

='s
 

 
Find the lateral magnification of the 
first image: 
 

1
cm20
cm201

1 −=−=−=
s

s'm  

Because the lenses are separated by 
35 cm, the object distance for the 
second lens is  
35 cm − 20 cm = 15 cm. Equation 
(1) applied to the second lens is: 
 

22

22
2 fs

sf's
−

=  

Substitute numerical values and 
evaluate 's2 : 

( )( )
( ) cm5.7

cm15cm15
cm15cm15

2 −=
−−

−
='s  

and the final image is cm5.47 from the 

object. 
 

Find the lateral magnification of the 
second image: 
 

5.0
cm51

cm5.72
2 =

−
−=−=

s
'sm  

object.  theas large as half
and inverted,  virtual,is image  the,5.0 and 0  Because 212 −==<  mmms'

 

 
The overall lateral magnification of 
the image is the product of the 
magnifications of each image: 

( )( ) 500.05.0121 −=−== mmm  

 
61 ••  
Picture the Problem We can use the thin-lens equation and the definition of the lateral 
magnification to show that s = (m − 1)f/m. 
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(a) Express the thin-lens equation: 

fs's
111

=+                   

 
Express the lateral magnification of 
the image and solve for s′: 
 

s
s'm −= ⇒ mss' −=  

Substitute to obtain: 
fmss
111

=
−

+  

 
Solve for s: ( )

m
fms 1−

=  

 
(b) The magnification m is: 0137.0

m75.1
mm24

−=−=−=
y
y'm  

 
Substitute numerical values and 
evaluate s: 

( )( ) m70.3
0137.0

mm5010137.0
=

−
−−

=s  

 
62 ••  
Picture the Problem We can plot the first graph by solving the thin-lens equation for the 
image distance s′ and the second graph by using the definition of the magnification of the 
image. 
 
(a) and (b) Solve the thin-lens 
equation for s′ to obtain: fs

fss'
−

=  

 
The magnification of the image is 
given by: 
 

s
s'm −=  

A spreadsheet program to calculate s′as a function of s  is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
B1 12 f 
A4 13.2 s 
A5 A4 + 1 s + ∆s 
B4 $B$1*A4/(A4 − $B$1) 

fs
fs
−

 

C5 −B4/A4 
s
s'

−  
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 A B C 
1 f= 12 cm 
2    
3 s s' m 
4 13.2 132.00 −10.00 
5 14.2 77.45 −5.45 
6 15.2 57.00 −3.75 
7 16.2 46.29 −2.86 
8 17.2 39.69 −2.31 
9 18.2 35.23 −1.94 
    

108 117.2 13.37 −0.11 
109 118.2 13.36 −0.11 
110 119.2 13.34 −0.11 
111 120.2 13.33 −0.11  

 
A graph of s′ as a function of s follows. 

-20

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

s  (cm)

s' (cm)
m

 
(c) distances.object  of range for this inverted and real are images The  

 

(d) 

zero. approaches
size its andpoint  focalfar   theapproaches lens by the formed image

  thelens,  thefromaway  movesobject   theas fact that,  theindicates 
 versus ofgraph   theof asymptote horizontal The lens.  theoflength 

focal  the tocorrespond   versus ofgraph   theof asymptotes The

s
m

ss'
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63 ••  
Picture the Problem We can plot the first graph by solving the thin-lens equation for the 
image distance s′ and the second graph by using the definition of the magnification of the 
image. 
 
(a) and (b) Solve the thin-lens 
equation for s′ to obtain: fs

fss'
−

=  

 
The magnification of the image is 
given by: 
 

s
s'm −=  

A spreadsheet program to calculate s′as a function of s is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
B1 12 f 
A4 0.12 s 
A5 A4 + 0.1 s + ∆s 
B4 $B$1*A4/(A4 − $B$1) 

fs
fs
−

 

C5 −B4/A4 
s
s'

−  
 

 A B C 
1 f= 12 cm 
2    
3 s s' m 
4 0.12 −0.12 1.01 
5 0.22 −0.22 1.02 
6 0.32 −0.33 1.03 
7 0.42 −0.44 1.04 
8 0.52 −0.54 1.05 
9 0.62 −0.65 1.05 
    

108 10.52 −85.30 8.11 
109 10.62 −92.35 8.70 
110 10.72 −100.50 9.37 
111 10.82 −110.03 10.17  
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A graph of s′ as a function of s follows. 
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m

 
(c) distances.object  of range for thiserect  and  virtualare images The  

 

(d) 

object.  theofheight   theapproaches lens by the formed image
 theofheight   thelens,  the towardmovesobject   theas  that,indicates 

 versus ofgraph   theof asymptote horizontal The  lens.  theoflength 
 focal  theapproaches distanceobject   theasinfinity  gapproachin

image  the toscorrespond   versus' ofgraph   theof asymptote The

s
m

ss

 

 
*64 ••  
Picture the Problem We can apply the thin-lens equation to find the image formed in the 
first lens and then use this image as the object for the second lens. 
 
Apply the thin-lens equation to 
express the location of the image 
formed by the first lens: 
 

11

11
1 fs

sf's
−

=                            (1) 

Substitute numerical values and 
evaluate 's1 : 

( )( )
∞=

−
=

cm15cm15
cm15cm15

1's  

 
With 's1 = ∞, the thin-lens equation 

applied to the second lens becomes: 
 

22

11
f's

=  ⇒ cm0.1522 == f's  
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A ray diagram is shown below: 

 

 
 

 object.  theas size
 same  theand  inverted, real, object,  thefrom cm 50 is image final The

 

 
65 ••  
Picture the Problem We can apply the thin-lens equation to find the image formed in the 
first lens and then use this image as the object for the second lens. 
 
Apply the thin-lens equation to 
express the location of the image 
formed by the first lens: 
 

11

11
1 fs

sf's
−

=                            (1) 

Substitute numerical values and 
evaluate 's1 : 

( )( )
∞=

−
=

cm15cm15
cm15cm15

1's  

 
With 1s' = ∞, the thin-lens equation 

applied to the second lens becomes: 
 

22

11
f's

=  ⇒ cm0.1522 == f's  

A ray diagram is shown below: 
 

 

 object.  theas size
 same  theand  inverted, real, object,  thefrom cm 50 is image final The

 

 
66 •••  
Picture the Problem We can substitute x = s − f and x′ = s′ − f in the thin-lens equation 
and the equation for the lateral magnification of an image to obtain Newton’s equations.  
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Express the thin-lens equation: 
fs's
111

=+  

 
If x = s − f and x′ = s′ − f: 

ffx'fx
111

=
+

+
+

 

 
Expand this expression to obtain: ( ) ( )( )

2

2
fx'fxfxx'

fx'fxfxx'f
+++=

++=++
 

or, simplifying, 2fxx' =          (1) 

 
The lateral magnification is: 
 s

s'm −=  

or, because x = s − f and x′ = s′ − f, 

fx
fx'm

+
+

−=  

 
Solve equation (1) for x: 

x'
fx

2

=  

 
Substitute for x and simplify to 
obtain: ( )

f
x'

x'
x'ff
fx'

f
x'
f

fx'm

−=

+
+

−=
+

+
−= 2

 

 
The lateral magnification is also 
given by: 
 

fx
fxm

+
+

−=
'

 

From equation (1) we have: 
 x

fx
2

'=  

 
Substitute to obtain: 
 

x
f

x
fx

x
ff

fx

f
x
f

m −=
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

−=
+

+
−=

1

1
2
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The variables x, f, s,and s′ are shown in the sketch below: 

 
 
67 •••  
Picture the Problem The ray diagram shows the two lens positions and the 
corresponding image and object distances (denoted by the numerals 1 and 2). We can use 
the thin-lens equation relate the two sets of image and object distances to the focal length 
of the lens and then use the hint to express the relationships between these distances and 
the distances D and L to eliminate s1, s1′, s2, and s2′ and obtain an expression relating f, D, 
and L. 
 
Relate the image and object 
distances for the two lens positions 
to the focal length of the lens: 
 

f'ss
111

11

=+  and 
f'ss
111

22

=+  

 

Solve for f to obtain: 
 'ss

'ss
'ss

'ssf
22

22

11

11

+
=

+
=              (1) 

 
The distances D and L can be 
expressed in terms of the image and 
object distances: 
 

'ss'ssD 2211 +=+=       

and 
's'sssL 2112 −=−=                

Substitute for the sums of the image 
and object distances in equation (1) 
to obtain: 
 

D
'ss

D
'ssf 2211 ==  

 

From the hint: 
 

'ss 21 =  and 21 s's =  

Hence D = s1 + s2 and: 12sLD =− and 22sLD =+  

 
Take the product of D − L and  
D + L to obtain: 
 

( )( )
'ssss

LDLDLD

1121

22

44 ==
−=+−

 

From the thin-lens equation: 
 

fD'srsss 44 1121 ==  

Substitute to obtain: 224 LDfD −=  
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Solve for f: 

D
LDf

4

22 −
=  

 
68 ••  
Picture the Problem We can use results obtained in Problem 67 to find the focal length 
of the lens and the two locations of the lens with respect to the object. 
 
(a) From Problem 77 we have: 
 D

LDf
4

22 −
=  

 
Substitute numerical values and 
evaluate f: 

( ) ( )
( ) cm9.34

m7.14
m72.0m7.1 22

=
−

=f  

 
(b) Solve the thin-lens equation for 
the image distance to obtain: 
 

sf
fss
−

='              (1) 

In Problem 77 it was established 
that: 
 

12sLD =− and 22sLD =+  

 

Solve for s1 and s2: 
21

LDs −
=  and 

22
LDs +

=  

 
Substitute numerical values and 
evaluate s1 and s2: 
 

cm0.49
2

cm72cm170
1 =

−
=s  

and 

cm121
2

cm72cm170
2 =

+
=s  

 
69 •••  
Picture the Problem The ray diagram shows four rays from the head of the object that 
locate images I1 and I2. We can use the thin-lens equation to find the location of the 
image formed in the positive lens and then, knowing the separation of the two lenses, 
determine the object distance for the second lens and apply the thin lens a second time to 
find the location of the final image. 
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(a) Express the object-to-image 
distance d: 
 

'ssd 21 cm5 ++=                (1) 

Apply the thin-lens equation to the 
positive lens: 111

111
f'ss

=+  

 
Solve for 's1 : 

11

11
1 fs

sf's
−

=  

 
Substitute numerical values and 
evaluate 's1 : 

( )( ) cm53.16
cm5.8cm5.17
cm5.17cm5.8

1 =
−

='s  

 
Find the object distance for the 
negative lens: 
 

cm11.53
cm16.53cm5cm5 12

−=
−=−= 'ss

 

The image distance s2′ is given by: 

22

22
2 fs

sf's
−

=  

 
Substitute numerical values and 
evaluate s2′: 

( )( )
( ) cm7.18

cm30cm53.11
cm53.11cm30

2 =
−−−

−−
='s  

 
Substitute numerical values in 
equation (1) and evaluate d: cm2.41

cm7.18cm5cm5.17

=

++=d
 

 
(b) The overall lateral magnification 
is given by: 
 

21mmm =  

Express m1 and m2: 

1

1
1 s

'sm −=  and 
2

2
2 s

'sm −=  

 
Substitute to obtain: 
 

21

21

2

2

1

1

ss
''ss

s
's

s
'sm =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

 
Substitute numerical values and 
evaluate m: 
 

( )( )
( )( ) 53.1

cm53.11cm5.17
cm7.18cm53.16

−=
−

=m  

real. is image  the0,   Because inverted. is image  the0,   Because 2 >< 'sm  
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Aberrations  
 
*70 •  
Determine the Concept Chromatic aberrations are a consequence of the differential 
refraction of light of differing wavelengths by lenses. correct. is )(a  

 
71 •  
(a) False. Aberrations are a consequence of imperfections in lenses. 
 
(b) True. 
 
72 •  
Picture the Problem We can use the lens-maker’s equation to find the focal length the 
this lens for the two colors of light.  
 
The lens-maker’s equation relates 
the radii of curvature and the index 
of refraction to the focal length of 
the lens: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

(a) For red light: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−=
cm10

1
cm10
1147.11

redf
 

and 
cm6.10red =f  

 
(b) For blue light: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−=
cm10

1
cm10
1153.11

bluef
 

and 
cm43.9blue =f  

 
The Eye  
 
*73 ••  
Picture the Problem The thin-lens equation relates the image and object distances to the 
power of a lens.  
 
(a) Use the thin-lens equation to 
relate the image and object distances 
to the power of the lens: 

P
fs's
==+

111
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Because s′ = d and, for a distance 
object, s = ∞: ds'

P 11
min ==  

 
(b) If npx  is the closest distance an 

object could be and still remain in 
clear focus on the screen, equation 
(1) becomes: 
 

dx
P 11

np
max +=  

(c) Use our result in (a) to obtain: 
 D0.40

cm5.2
1

min ==P  

Use the results of (a) and (b) to 
express the accommodation of the 
model eye: 
 

npnp
minmax

1111
xddx

PPA =−+=−=  

Substitute numerical values and 
evaluate A: D00.4

cm25
1

==A  

 
74 ••  
Picture the Problem The thin-lens equation relates the image and object distances to the 
power of a lens. 
 
(a) Use the thin-lens equation to 
relate the image and object distances 
to the power of the lens: 
 

P
fs's
==+

111
                

Because s′ = d and s = xfp: 
dx

P 11

fp
min +=  

 
(b) To correct for the 
nearsightedness of this eye, we need 
a lens that will form an image 25 cm 
in front of the eye of an object at the 
eye’s far point:  

D00.2
cm25

1
cm50
1

min −=
−

+=P  

 
75 ••  
Picture the Problem The thin-lens equation relates the image and object distances to the 
power of a lens. 
 
(a) Use the thin-lens equation to 
relate the image and object distances 
to the power of the lens: 

P
fs's
==+

111
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Because s′ = d and s = x′np: 
dx

P 1
'
1'
np

max +=                (1) 

 
(b) For a normal eye: 
 dx

P 11

np
max +=                       (2) 

 
The amount by which the power of 
the lens is too small is the difference 
between equations (2) and (1): 

npnp

npnp
maxmax

11

1111

x'x

dx'dx
P'P

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+=−

 

 
(c) For xnp = 15 cm and  
x′np = 150 cm: 

D00.6

cm150
1

cm15
1

maxmax

=

−=− P'P
 

 
76 •  
Picture the Problem We can use the thin-lens equation to find the distance from the lens 
to the image and then take their difference to find the distance the lens would have to be 
moved. 
 
Express the distance d that the lens 
would have to move: 
 

fs'd −=  

Solve the thin-lens equation for s′: 
fs

fss'
−

=  

 
Substitute to obtain:  f

fs
fsd −
−

=  

 
Substitute numerical values and 
evaluate d: 

( )( )

cm278.0

cm5.2
cm5.2cm25
cm25cm5.2

=

−
−

=d
 

That is, the lens would have to move 0.278 
cm toward the object. 

 
77 •  
Picture the Problem We can apply the thin-lens equation for the two values of s to find 
∆f. 
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Express the change ∆f in the focal 
length: 
 

m3.0m3 == −=∆ ss fff  

Solve the thin-lens equation for s: 
 ss'

ss'f
+

=  

Substitute to obtain: 
 

m3.0m3.0

m3.0m3.0

m3m3

m3m3

ss'
s's

ss'
s's

f
+

−
+

=∆  

or, because s′3 m = s′0.3 m, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
=∆

m3.0m3.0

m3.0

m3m3

m3
m3 ss'

s
ss'

s
s'f  

 
Substitute numerical values and evaluate ∆f: 
 

( ) mm1.72cm172.0
cm30cm5.2

cm30
cm300cm5.2

cm300cm5.2 ==⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

=∆f  

 
78 •  
Picture the Problem We can use the thin-lens equation and the definition of the power 
of a lens to express the near point distance as a function of P and s. 
 
From the thin-lens equation we 
have:  

P
fs's
==+

111
 

 
Solve for s′: 
 1−

=
Ps

ss'  

 
Substitute numerical values and 
evaluate s′: ( )( ) cm4.44

1m25.0m75.1
cm25

1 −=
−

= −s'  

 
cm. 44.4 is lenses point withnear  sperson' The  

 
*79 •  
Picture the Problem We can use the relationship between a distance measured along the 
arc of a circle and the angle subtended at its center to approximate the smallest angle the 
two points can subtend and the separation of the two points  
20 m from the eye. 
 
(a) Relate θmin to the diameter of the 
eye and the distance between the 
activated cones: 

m2mineye µθ ≈d  
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Solve for θmin: 

eye
min

m2
d
µθ =  

 
Substitute numerical values and 
evaluate θmin: 

rad0.80
cm5.2
m2

min µµθ ==  

 
(b) Let D represent the separation of 
the points R = 20 m from the eye to 
obtain: 

( )( )
mm60.1

rad80m20min

=

== µθRD
 

 
80 ••  
Picture the Problem We can use the thin-lens equation to find f and the definition of the 
power of a lens to find P. 
 
(a) Solve the thin-lens equation for 
f: ss'

ss'f
+

=  

 
Noting that s′ < 0, substitute 
numerical values and evaluate f: 
 

( )( ) cm103
cm45cm80
cm80cm45

=
+−
−

=f  

(b) Use the definition of the power 
of a lens to obtain: 

diopters971.0
m03.1

11
===

f
P  

 
81 ••  
Picture the Problem We can use the thin-lens equation to find f and the definition of the 
power of a lens to find P. 
 
Express the required power of the 
lens: 
 

f
P 1
=  

The thin-lens equation is: 
fs's
111

=+  

 
For s = ∞: 
 fs'

11
=  ⇒ s'f =  

 
Substitute for f to obtain: 

s'
P 1
=  

 
Substitute for s′ and evaluate P: diopters444.0

m25.2
1

==P  
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82 ••  
Picture the Problem We can use the lens-maker’s equation with s = ∞ to find the radius 
of the cornea modeled as a homogeneous sphere with an index of refraction of 1.4. 
 
Use the lens-maker’s equation to 
relate the radius of the cornea to its 
index of refraction and that of air: 
 

r
nn

s'
n

s
n 1221 −

=+  

Because n2 = n, n1 = 1, and s = ∞: 
r

n
s'
n 1−
=  

 
Solve for r: ( ) s'

nn
ns'r ⎟

⎠
⎞

⎜
⎝
⎛ −=

−
=

111
 

 
Substitute numerical values and 
evaluate r: 

( ) cm714.0cm5.2
4.1

11 =⎟
⎠
⎞

⎜
⎝
⎛ −=r  

 

small. too
 is above calculated as  then 1.4,   If humor.  vitreous theof refraction

 ofindex   theis   where1.4,   iffarther  and 1.4   if surface scornea'
 nearer the image  theofformation  in theresult  l which wilcornea  theof

 surfaceinner  at the refraction is  there1.4, from differs refraction ofindex 
 that If known.not  is that refraction ofindex an  has which humor) (vitreous

 liquidnt  transparea with filled isIt  sphere. shomogeneou anot  is eye The

rn
nnn

<
<>

 

 
83 ••  
Picture the Problem We can use the definition of the power of a lens and the thin-lens 
equation to find the power of the lens that should be used in the glasses.  
 
Express the power of the lens that 
should be used in the glasses: 
 

glasseseye
lenseye

11
ff

PPP +=+=      (1) 

 
Because the glasses are 2 cm from 
the eye: 

cm78cm2cm80 −=+−=s'  

and 
cm23cm2cm25 =−=s  

 
Apply the thin-lens equation to the 
eye with s′ = ∞: 
 

eye

11
fs

=  ⇒ sf =eye  
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Apply the thin-lens equation to the 
glasses with s = ∞: 
 

glasses

11
fs'

=  ⇒ s'f =glasses  

Substitute for feye and fglasses in 
equation (1) to obtain: 
 

s's
P 11

+=  

Substitute numerical values and 
evaluate P: 

D07.3
m78.0

1
m23.0

1
=

−
+=P  

 
84 •••  
Picture the Problem We can use the thin-lens equation and the distance from her eyes to 
her glasses to derive an expression for the location of her near point. 
 
(a) Express her near point, xnp,  at 
age 45 in terms of the location of her 
glasses: 
 

cm2.2np += s'x                    (1) 

 

Because the glasses are 2.2 cm from 
her eye: 
 

cm22.8cm2.2cm25 =−=s  

 

Apply the thin-lens equation to the 
glasses: 
 

P
fs's

==+
glasses

111
  

Solve for s′: 

s
PPs

ss' 1
1

1 −
=

−
=  

 
Substitute in equation (1) to obtain: 

cm2.21
1

np +
−

=

s
P

x              (2)       

 
Substitute numerical values and 
evaluate xnp: 

cm9.45

cm2.2

m228.0
1m1.2

1
1

np

=

+
−

=
−

x
 

 
(b) At age 55: cm.873cm2.2cm40 =−=s  
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Substitute numerical values in 
equation (2) and evaluate s′: 

cm185

cm2.2

m378.0
1m1.2

1
1

np

=

+
−

=
−

x
 

 
(c) Solve the thin-lens equation for f: 
 ss'

ss'f
+

=   

From the definition of P: 
s's

ss'
f

P +
==

1
 

 
For s = 22.8 cm and  
s′ = 183.3 cm: ( )( ) D93.4

cm8.22cm3.183
cm8.22cm3.183

=
+

=P  

 
The Simple Magnifier  
 
*85 •  
Picture the Problem We can use the definitions of the magnifying power of a lens 
( fxM np= ) and of the power of a lens ( fP 1= ) to find the magnifying power of the 

given lens. 
 
The magnifying power of the lens is 
given by: np

np Px
f

x
M ==  

where P is the power of the lens. 
 

Substitute numerical values and 
evaluate M: 

( )( ) 00.6m3.0m20 1 == −M  

 
86 •  
Picture the Problem We can use the definition of the magnifying power of a lens to find 
the required focal length so that this person’s lens will have magnification power of 5. 
 
The magnifying power of the lens is 
given by: f

x
M np=  

 
Solve for f: 

M
x

f np=  

 
Substitute numerical values and 
evaluate f: 

cm00.5
5
cm25

==f  
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87 •  
Picture the Problem We can use the definition of the magnifying power of a lens to find 
the magnifying power of this lens. 
 
The magnifying power of the lens is 
given by: f

x
M np=  

 
Substitute numerical values and 
evaluate M: 

00.5
cm7
cm35

==M  

 
88 ••  
Picture the Problem Let the numerals 1 and 2 denote the 1st and 2nd persons, 
respectively. We can use the definition of magnifying power to find the effective 
magnifying power of the lens for each person. The relative height of the images on the 
retinas of the two persons is given by the ratio of the effective magnifying powers. 
 
The magnifying power of the lens is 
given by: 
 

f
x

M np=  

Substitute numerical values and 
evaluate M1 and M2: 

17.4
cm6
cm25

1 ==M  

and 

67.6
cm6
cm40

2 ==M  

 
From the definition of magnifying 
power we have: 

2

1

2

1

2

1

y
y

f
y
f
y

M
M

==  

 
Substitute for M1 and M2 and 
evaluate the ratio of y1 to y2: 

625.0
67.6
17.4

2

1 ==
y
y

 

 
89 ••  
Picture the Problem We can use the definition of angular magnification to find the 
expected angular magnification if the final image is at infinity and the thin-lens equation 
and the expression for the magnification of a thin lens to find the angular magnification 
when the final image is at 25 cm. 
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(a) Express the angular 
magnification when the final image 
is at infinity: 

Px
f

x
M np

np ==  

where P is the power of the lens. 
 

Substitute numerical values and 
evaluate M: 
 

( )( ) 00.3m12cm25 1 == −M  

(b) Express the magnification of the 
lens when the final image is at 25 
cm: 
 

s
s'm −=  

Solve the thin-lens equation for s: 
fs'

fs's
−

=  

 
Substitute to obtain: 
 

s'P

f
s'

f
fs'

fs'
fs'
s'm

−=

+−=
−

−=

−

−=

1

1
 

 
Substitute numerical values and 
evaluate m: 

( )( ) 4m12m25.01 1 =−−= −m  

 
*90 ••  
Picture the Problem We can use the definition of the angular magnification of a lens 

and the thin-lens equation to show that 1np +=
f

x
M . 

 
(a) Express the angular 
magnification of the simple 
magnifier in terms of the angles 
subtended by the object and the 
image: 
 

0θ
θ

=M                              (1) 

Solve the thin-lens equation for s: 
 fs'

fs's
−

=  

Because the image is virtual: 
 

npxs' −=  

Substitute to obtain: ( )
fx

fx
fx

xf
s

+
=

−−

−
=

np

np

np

np  
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Express the angle subtended by the 
object: np

0 x
y

=θ  

where y is the height of the object. 
 

Express the angle subtended by the 
image: s

y
=θ  

 
Substitute for s to obtain: ( )

np

np

np

np fx
fxy

fx
fx
y +

=

+

=θ  

 
Substitute in equation (1) and 
simplify: 
 

( )
1npnp

np

np

np

+=
+

=

+

=
f

x
f

fx

x
y

fx
fxy

M  

 
(b) In terms of the power of the 
magnifying lens: 
 

1np += PxM  

The magnification of a 20-D lens for 
a person with a near point of 30 cm 
and the final image at the near point 
is: 
 

( )( ) 00.71m20m3.0 1 =+= −M  

A ray diagram for this situation is 
shown to the right: 

 
 
91 ••  
Picture the Problem We can use the definitions of lateral and angular magnification and 
the result given in Problem 82 to show that, when the image of a simple magnifier is 
viewed at the near point, the lateral and angular magnifications are equal. 
 
Express the lateral magnification of 
the lens: f

x
M np=  
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Because the image is viewed at the 
near point, f = s and: s

x
M np=  

 
From Problem 32-82: 1np +=

f
x

M  

and 

1npnp +=
f

x
s

x
 or angularlateral MM =  

 
The Microscope  
 
92 ••  
Picture the Problem We can use the thin-lens equation to find the location of the object 
and the expression for the magnifying power of a microscope to find the magnifying 
power of the given microscope for a person whose near point is at 25 cm. 
 
(a) Using the thin-lens equation, 
relate the object distance s to the 
focal length of the objective lens f0: 
 

0

111
fs's

=+  

Solve for s to obtain: 
 0

0

fs'
s'fs
−

=  

 
From Figure 32-48, the image 
distance for the image formed by the 
objective lens is: 
 

cm17.7cm16cm7.10 =+=+= Lfs'  

Substitute numerical values and 
evaluate s: 
 

( )( ) cm88.1
cm7.1cm7.17
cm7.17cm7.1

=
−

=s  

(b) Express the magnifying power of 
a microscope: 

e

np

0 f
x

f
LM −=  

 
Substitute numerical values and 
evaluate M: 

1.46
cm1.5
cm25

cm1.7
cm16

−=−=M  

 
*93 ••  
Picture the Problem The lateral magnification of the objective is oo fLm −= and the 
magnifying power of the microscope is .eoMmM =  
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(a) The lateral magnification of the 
objective is given by: 
 

o
o f

Lm −=  

Substitute numerical values and 
evaluate mo: 

88.1
mm5.8
cm16

o −=−=m  

 
(b) The magnifying power of the 
microscope is given by: 

eoMmM =  

where Me is the angular magnification of 
the lens. 
 

Substitute numerical values and 
evaluate M: 

( )( ) 8.181088.1 −=−=M  

 
94 ••  
Picture the Problem We can find the tube length from the length of the tube to which 
the lenses are fastened and the focal lengths of the objective and eyepiece. We can use 
their definitions to find the lateral magnification of the objective and the magnifying 
power of the microscope. The distance of the object from the objective can be found 
using the thin-lens equation. 
 
(a) The tube length L is given by: 
 

cm0.20
m20
2m30.0 1

eo

=−=

−−=

−

ffDL
 

 
(b) The lateral magnification of the 
objective mo is given by: 

00.4
cm5
cm20

o
o −=−=−=

f
Lm  

 
(c) The magnifying power of the 
microscope is given by: 

e

np
oeo f

x
mMmM ==  

 
Substitute numerical values and 
evaluate M: 
 

( ) 0.20
cm5
cm254 −=−=M  

(d) From the thin-lens equation we 
have: 
 

oo

111
f'ss o

=+  

where Lf's += oo  

 
Substitute to obtain: 

ooo

111
fLfs

=
+

+  
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Solve for so: 
 

( )
L

Lff
s

+
= oo

o  

 
Substitute numerical values and 
evaluate so: 

( )( ) cm25.6
cm20

cm20cm5cm5
o =

+
=s  

 
*95 ••  
Picture the Problem The magnifying power of a compound microscope is the product of 
the magnifying powers of the objective and the eyepiece.  
 
Express the magnifying power of 
the microscope in terms of the 
magnifying powers of the objective 
and eyepiece: 
 

eommM =                        (1) 

From Problem 82, the magnification 
of the eyepiece is given by: 
 

11 npe
e

np
e +=+= xP

f
x

m
 

 
The magnification of the objective 
is given by: 
 

o
o f

Lm −=  

where eo ffDL −−=  

 
Substitute to obtain: 
 o

eo
o f

ffDm −−
−=  

 
Substitute for me and mo in equation 
(1) to obtain: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−+=

o

eo
npe 1

f
ffDxPM  

Substitute numerical values and evaluate M: 
 

( )( )[ ] 232
cm22.2

cm25.1cm22.2cm281m25.0D80 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−+=M  

 
96 •••  
Picture the Problem We can find the focal length of the eyepiece from its angular 
magnification and the near point of a normal eye. The location of the object such that it is 
in focus for a normal relaxed eye can be found from the lateral magnification of the 
eyepiece and the magnifying power of the microscope. Finally, we can use the thin-lens 
equation to find the focal length of the objective lens. 
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(a) Relate the focal length of the 
eyepiece to its angular magnifying 
power: 
 

e

np
e f

x
M =  ⇒ 

e

np
e M

x
f =  

Substitute numerical values and 
evaluate fe: 

cm67.1
15
cm25

e ==f  

 
(b) Relate s to s′ through the lateral 
magnification of the objective: 
 

s
s'm −=o  ⇒ 

om
s's −=  

Relate the magnifying power of the 
microscope M to the lateral 
magnification of its objective m0 
and the angular magnification of its 
eyepiece Me: 
 

eoMmM =  

Solve for mo: 

e
o M

Mm =  

 
Substitute to obtain: 

M
s'Ms e−=  

 
Evaluate s′: 

cm20.33cm1.67cm22
cm22 e

=−=
−= fs'

 

 
Substitute numerical values and 
evaluate s: 
 

( )( ) cm508.0
600

15cm33.20
=

−
−=s  

(c) Solve the thin-lens equation for 
fo: ss'

ss'f
+

=o  

 
Substitute numerical values and 
evaluate fo: 

( )( )

cm496.0

cm508.0cm33.20
cm33.20cm508.0

o

=

+
=f

 

 
The Telescope  
 
97 •  
Picture the Problem Because of the great distance to the moon, its image formed by the 
objective lens is at the focal point of the objective lens and we can use θofD = to find 
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the diameter D of the image of the moon. Because angle subtended by the final image at 
infinity is given by ,MM θθθ == oe  we can solve (b) and (c) together by first using  

M = −fo/fe to find the magnifying power of the telescope. 
 
(a) Relate the diameter D of the 
image of the moon to the image 
distance and the angle subtended by 
the moon: 
 

θ'sD o=  

Because the image of the moon is at 
the focal point of the objective lens: 
 

oo f's =  

and  
θofD =  

Substitute numerical values and 
evaluate D: 
 

( )( ) mm00.9rad009.0cm100 ==D  

(b) and (c) Relate the angle 
subtended by the final image at 
infinity to the magnification of the 
telescope and the angle subtended at 
the objective: 
 

θθθ MM == oe  

Express the magnifying power of the 
telescope: 
 

e

o

f
fM −=  

Substitute numerical values and 
evaluate M and θe: 

0.20
cm5
cm100

−=−=M  

and 
( )( ) rad180.0rad009.020e −=−=θ  

 
98 •  
Picture the Problem Because of the great distance to the moon, its image formed by the 
objective lens is at the focal point of the objective lens and we can use θofD = to find 

the diameter D of the image of the moon. 
 
Relate the diameter D of the image 
of the moon to the image distance 
and the angle subtended by the 
moon: 
 

θ'sD o=  

Because the image of the moon is at oo f's =  
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the focal point of the objective lens: 
 

and  
θofD =  

Substitute numerical values and 
evaluate D: 

( )( ) cm7.61rad009.0m5.19 ==D  

 
*99 ••   
Picture the Problem Because the light-gathering power of a mirror is proportional to its 
area, we can compare the light-gathering powers of these mirrors by finding the ratio of 
their areas. We can use the ratio of the focal lengths of the objective and eyepiece lenses 
to find the magnifying power of the Palomar telescope. 
 
(a) Express the ratio of the light-
gathering powers of the Palomar and 
Yerkes mirrors: 
 

2
mirror Yerkes

2
mirrorPalomar 

2
mirror Yerkes

2
mirrorPalomar 

mirror Yerkes

mirrorPalomar 

Yerkes

Palomar

4

4

d
d

d

d

A
A

P
P

=

== π

π

 

 
Substitute numerical values and 
evaluate PPalomar/PYerkes: 

( )
( )

0.25
in40
in200

2

2

Yerkes

Palomar ==
P
P

 

or 
( ) YerkesPalomar 0.25 PP =  

 
(b) Express the magnifying power of 
the Palomar telescope: 
 

e

o

f
fM −=  

Substitute numerical values and 
evaluate M: 

134
cm25.1
m68.1

−=−=M  

 
100 ••  
Picture the Problem We can use the expression for the magnifying power of a telescope 
and the fact that the length of a telescope is the sum of focal lengths of its objective and 
eyepiece lenses to obtain simultaneous equations in fo and fe. 
 
The magnifying power of the 
telescope is given by: 
 

7
e

o =−=
f
fM  

The length of the telescope is the 
sum of the focal lengths of the 
objective and eyepiece lenses: 

cm32eo =+= ffL  
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Solve these equations 
simultaneously to obtain: 

cm0.28o =f  and cm00.4e =f  

 
101 ••  
Picture the Problem The magnification of a telescope is the ratio of the angle subtended 
at the eyepiece lens to the angle subtended at the objective lens. We can use the geometry 
of the ray diagram to express both θe and θo. 
 
(b) The ray diagram is shown below: 
 

 
(a) Express the magnifying power 
M of the telescope: o

e

θ
θ

=M  

 
Because the image formed by the 
objective lens is at the focal point,  
F ′1: 
 

o
o f

h
=θ  

where we have assumed that θo << 1 so 
that tan θo ≈ θo. 
 

Express the angle subtended by the 
eyepiece: 
 

e
e f

h
=θ  where fe is negative. 

Substitute to obtain: 

e

o

o

e

f
f

f
h
f
h

M ==  

and 
e

o

f
fM −= is positive. 

 
Remarks: Because the object for the eyepiece is at its focal point, the image is at 
infinity. As is also evident from the ray diagram, the image is virtual and upright. 
 
102 ••  
Picture the Problem We can use the thin-lens equation to find the image distance for the 
objective lens and the object distance for the eyepiece lens. The separation of the lenses is 
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the sum of these distances. We can use the definition of the angular magnification and the 
angles subtended at the objective and eyepiece lenses to find the height of the final 
image. 
 
(a) Solve the thin-lens equation for 

'so : 

 
oo

oo
o fs

sf's
−

=  

Substitute numerical values and 
evaluate 'so : 

 

( )( ) cm45.103
m1m30
m30m1

o =
−

='s  

where we have kept more than three 
significant figures in the answer for use in 
(c) and (d). 
 

(b) Solve the thin-lens equation for 
se: ee

ee
e f's

'sfs
−

=  

 
Noting that se′ = −25 cm, substitute 
numerical values and evaluate se: 

( )( )
( ) cm25.6

cm5cm25
cm25cm5

e
e −=

−−−
−−

=s  

where the minus sign tells us that the object 
of the eyepiece is virtual. 
 

(c) Express the separation D of the 
lenses: 
 

eo s'sD +=  

Substitute numerical values and 
evaluate D: 
 

cm2.97cm6.25cm45.103 =−=D  

(d) Express the height h′ of the final 
image in terms of the magnification 
M of the telescope: 
 

Mhh' =  

The magnification of the telescope 
is the product of the magnifications 
of the objective and eyepiece lenses: 
 

e

e

o

o
eo s

's
s

'smmM ==  

Substitute to obtain: h
s

's
s

'sh'
e

e

o

o=  
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Substitute numerical values and 
evaluate h′: ( )

cm7.20

m5.1
cm25.6

cm25
cm3000
cm45.103

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=h'

 

 
Express the angular magnification 
of the telescope: o

e

θ
θ

=M  

 
The angle subtended by the object 
is: 
 

o
o s

h
=θ  

The angle subtended by the image 
is: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

e

1
e tan

s
h'θ  

 
Substitute to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= −

−

e

1o

o

e

1

tan
tan

s
h'

h
s

s
h

s
h'

M  

 
Substitute numerical values and 
evaluate M: 6.25

cm25.6
cm7.20tan

m5.1
m30 1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −M  

 
103 •••  
Picture the Problem The roles of the objective and eyepiece lenses are reversed. 
 
Express the magnifying power of the 
″wrong end″ telescope: 
 

o

e

f
fM −=  

Substitute numerical values and 
evaluate M: 

150/1

1067.6
m25.2

cm5.1 3

−=

×−=−= −M
 

 
General Problems 
 
104 •  
Picture the Problem We can solve the thin-lens equation for s′ and then argue that the 
signs of the numerator and denominator are such that their quotient is always negative. 
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Solve the thin-lens equation for s′: 
fs

fss'
−

=  

 
For a diverging lens: 0<f and 0>s  for a real object. 

 

negative. be alwaysmust   so  negative,
 isnumerator   theand positive isr denominato  thely,Consequent

s'
 

 
*105 •  
Picture the Problem We can express the distance ∆s that the lens must move as the 
difference between the image distances when the object is at 30 m and when it is at 
infinity and then express these image distances using the thin-lens equation. 
 
Express the distance ∆s that the lens 
must move to change from focusing 
on an object at infinity to one at a 
distance of 30 m: 
 

∞−=∆ s's's 30  

Solve the thin-lens equation for s′: 
 fs

fss'
−

=  

Substitute and simplify to obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−
−

−
=

−
−

−
=∆

∞

∞

∞

1

1

30

30

30

30

30

30

fs
sf

sf
f

fs
fs

fs
fs

fs
fss

 

 
Substitute numerical values and 
evaluate ∆s: ( )

mm34.1

1
m2.0m30

m30mm200

=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=∆s

 

 
106 •  
Picture the Problem We can express the distance ∆s that the lens must move as the 
difference between the image distances when the object is at 30 m and when it is at 
infinity and then express these image distances using the thin-lens equation. 
 
Express the distance ∆s that the lens 
must move to change from focusing 
on an object at infinity to one at a 

∞−=∆ s's's 5  
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distance of 5 m: 
 
Solve the thin-lens equation for s′: 
 fs

fss'
−

=  

 
Substitute and simplify to obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−
−

−
=

−
−

−
=∆

∞

∞

∞

1

1

5

5

5

5

5

5

fs
sf

sf
f

fs
fs

fs
fs

fs
fss

 

 
Substitute numerical values and 
evaluate ∆s: ( )

mm158.0

1
m028.0m5

m5mm28

=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=∆s

 

 
107 •  
Picture the Problem We can use the thin-lens and magnification equations to obtain 
simultaneous equations that we can solve to find the image and object distances for the 
two situations described in the problem statement. 
 
(a) Use the thin-lens equation to 
relate the image and object 
distances to the focal length of 
the lens: 
 

fs's
111

=+  

Because the image is twice as 
large as the object: 
 

s
s'm −=  ⇒ ss' 2−=  

Substitute to obtain: 
 fss

1
2
11

=
−

+  

 
Solve for s: fs 2

1=  

 
Substitute numerical values and 
evaluate s and s′: 

( ) cm00.5cm102
1 ==s  

and 
( ) cm0.10cm52 −=−=s'  
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(b) If the image is inverted, then: ss' 2=  and 
fss
1

2
11
=+  

 
Solve for s: 
 

fs 2
3=  

Substitute numerical values and 
evaluate s and s′: 

( ) cm0.15cm1032
1 ==s  

and 
( ) cm0.30cm152 ==s'  

 
The ray diagrams for (a) (left) and (b) (right) are shown below: 
 

  
 
108 ••  
(a) In an astronomical telescope the eyepiece (short focal length) and objective (long 
focal length) lenses are separated by the sum of their focal lengths. Given these two 
lenses, we’ll use the 25 mm lens as the eyepiece lens and the 75 mm lens as the objective 
lens and mount them 100 mm apart. The angular magnification is 

then 3
mm25
mm75

e

0 ===
f
fM . 

 
(b) A ray diagram showing how rays from a distant object are magnified by an 
astronomical telescope follows. A real and inverted image of the distant object is formed 
by the objective lens near its second focal point. The eyepiece lens forms an enlarged and 
inverted image of the image formed by the objective lens. 
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109 ••  
Determine the Concept  
 
(a) Because the focal lengths appear in the magnification formula as a product, it would 
appear that it does not matter in which order we use them. The usual arrangement would 
be to use the shorter focal length lens as the objective but we get the same magnification 
in the reverse order.  What difference does it make then?  None in this problem. 
However, it is generally true that the smaller the focal length of a lens, the smaller its 
diameter. This condition makes it harder to use the shorter focal length lens, with its 
smaller diameter, as the eyepiece lens. If we separate the objective and eyepiece lenses by 
L + fe + fo = 16 cm + 7.5 cm + 2.5 cm = cm,0.26 the overall magnification will be 

21.3
cm2.5
cm25

cm7.5
cm16

e

np

0
e0 −=−=−==

f
x

f
LMmM . 

 
In a compound microscope, the 
lenses are separated by: 
 

0e ffL ++=δ  

Substitute numerical values and 
evaluate δ: 
 

cm0.26cm2.5cm7.5cm16 =++=δ  

The overall magnification of a 
compound microscope is given by: 
 

e

np

0
e0 f

x
f
LMmM −==  

Substitute numerical values and 
evaluate M: 
 

21.3
cm2.5
cm25

cm7.5
cm16

−=−=M  

(b) A ray diagram showing how rays from a near-by object are magnified by a compound 
microscope follows. A real and inverted image of the near-by object is formed by the 
objective lens at the first focal point of the eyepiece lens. The eyepiece lens forms an 
inverted and virtual image of this image at infinity. 
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*110 ••  
Picture the Problem We can use the equation for refraction at a single surface to locate 
the image of the fish and the expression for the magnification due to refraction at a 
spherical surface to find the magnification of the image. 
 
(a) Use the equation describing 
refraction at a single surface to 
relate the image and object 
distances: 
 

r
nn

s'
n

s
n 1221 −

=+  

Solve for s′: 
 ( ) rnsnn

rsns'
112

2

−−
=  

 
Substitute numerical values and 
evaluate s′: 

( )( )( )
( )( ) ( )( )

m839.0

m5.033.1m5.233.11
m5.2m5.01

−=

−−
=s'

 

Note that the fish appears to be much 
closer to the diver than it actually is. 
 

(b) Express the magnification due to 
refraction at a spherical surface: 
 

sn
s'nm

2

1−=  

Substitute numerical values and 
evaluate m: 

( )( )
( )( ) 446.0

m5.21
m839.033.1

=
−

−=m  

Note that the fish appears to be smaller 
than it actually is. 

 
111 ••  
Picture the Problem We can use the thin-lens equation and the definition of the 
magnification of an image to determine where the person should stand.  
 
Use the thin-lens equation to relate s 
and s′: 
 

fs's
111

=+  

The magnification of the image is 
given by: 

21037.1
cm175
cm4.2 −×−=−=−=

s
s'm  

and 
mss' −=  
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Substitute to obtain: 
fmss
111

=−  

 
Solve for s: f

m
s ⎟

⎠
⎞

⎜
⎝
⎛ −=

11  

 
Substitute numerical values and 
evaluate s: 

( )

m70.3

mm50
1037.1

11 2

=

⎟
⎠
⎞

⎜
⎝
⎛

×−
−= −s

 

 
112 ••  
Picture the Problem We can use the thin-lens equation and the definition of the 
magnification of an image to determine the ideal focal length of the lens. 
 
Use the thin-lens equation to relate s 
and s′: 
 

fs's
111

=+  

The magnification of the image is 
given by: 

21080.1
cm002
cm6.3 −×−=−=−=

s
s'm  

and 
mss' −=  

 
Substitute to obtain: 

fmss
111

=−  

 
Solve for f: 

m

sf 11−
=  

 
Substitute numerical values and 
evaluate f: 

m530.0

1080.1
11

m30

2

=

×−
−

=

−

f  

 
113 ••  
Picture the Problem Let the numeral 1 refer to the first lens and the numeral 2 to the 
second lens. We apply the thin-lens equation twice; once to locate the image formed by 
the first lens and a second time to find the image formed by the second lens. The 
magnification of the image is the product of the magnifications produced by the two 
lenses.  
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(a) Solve the thin-lens equation for 
the location of the image formed by 
the first lens: 
 

11

11
1 fs

sf's
−

=  

Substitute numerical values and 
evaluate 's1 : 

( )( ) cm0.60
cm10cm12
cm12cm10

1 =
−

='s  

 
Because the second lens is 20 cm to 
the right of the first lens: 
 

cm40cm60cm202 −=−=s  

Solve the thin-lens equation for the 
location of the image formed by the 
second lens: 
 

22

22
2 fs

sf's
−

=  

Substitute numerical values and 
evaluate 's2 : 

( )( ) cm52.9
cm5.12cm40
cm40cm5.12

2 =
−−
−

='s  

i.e., the final image is 9.52 cm to the right 
of the second lens. 
 

(b) Express the magnification of the 
final image: 
 

21

21

2

2

1

1
21 ss

''ss
s

's
s
'smmm =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−==  

Substitute numerical values and 
evaluate m: 
 

( )( )
( )( ) 19.1

cm40cm12
cm52.9cm60

−=
−

=m  

i.e., the final image is about 20% larger 
than the object and is inverted. 
 

(c) The ray diagram is shown in the figure. The enlarged, inverted image formed by the 
first lens serves as a virtual object for the second lens. The image formed from this virtual 
object is  the real, inverted image shown in the ray diagram. 
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114 ••  
Picture the Problem We can apply the equation for refraction at a surface to both 
surfaces of the lens and add the resulting equations to obtain an equation relating the 
image and object distances to the indices of refraction. We can then use the lens maker’s 
equation to complete the derivation of the given relationship between f ′ and f. 
 
(a) Relate s and s′ at the water-lens 
interface: 
 

1

w

1

w

r
nn

's
n

s
n −

=+  

Relate s and s′ at the lens-water 
interface: 
 

2

w

1 r
nn

s'
n

's
n −

=+
−

 

Add these equations to obtain: ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=⎟

⎠
⎞

⎜
⎝
⎛ +

21
ww

1111
rr

nn
s's

n  

 

Let 
s'sf'
111

+= to obtain: 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21
w

w 11
rr

nn
'f

n
 

 
The lens-maker’s equation is: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
rr

n
f

 

and 

( ) fnrr 1
111

21 −
=−  

 
Substitute to obtain: ( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
fn

nn
'f

n
1

1
w

w  

 
Solve for f ′: ( ) f

nn
nn'f

w

w 1
−
−

=  

 
(b) Use the lens-maker’s equation to 
find the focal length of the lens in 
air: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

cm35
1

cm30
115.11

f
 

and  
cm3.32−=f  

 
Use the result derived in (a) to find  
f ′: 

( )( ) ( )

cm126

cm3.32
33.15.1

15.133.1'

−=

−
−

−
=f
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*115 ••  
Picture the Problem Here we must consider refraction at each surface separately. To 
find the focal length we imagine the object at s = ∞, and find the image from the first 
refracting surface at s′1. That image serves as the object for the second refracting surface. 
We’ll find that this is a virtual image for the second refracting surface, i.e., s2 is negative.  
Using the equation for refraction at a single surface a second time, we can locate the 
image formed by the second refracting surface by the virtual object at s2. The location of 
that image is then the focal point of the thick lens. We’ll let the numeral 1 denote the first 
surface and the numeral 2 the second surface. In part (b) we can proceed as in part (a) 
(except that now n1 = 1.33 for the first refraction and n2 = 1.33 for the second refraction) 
to determine the focal length in water, which we denote by fw. 
 
(a) Use the equation for refraction 
at a single surface to relate s1 and 
s1′: 
 

1

12

1

2

1

1

r
nn

's
n

s
n −

=+  

 

For s1 = ∞: 
 1

12

1

2

r
nn

's
n −

=  

 
Solve for s1′: 
 12

12
1 nn

rn's
−

=                                 (1) 

 
Substitute numerical values and 
evaluate 's1 : 

 

( )( ) cm0.60
15.1
cm205.1

1 =
−

='s  

The object distance s2 for the 
second lens is: 

( ) ( )
cm56

cm4cm60cm412

−=
−−=−−= 'ss

 

 
Solve the equation for refraction at 
a single surface for 's2 : ( ) 21212

222
2 rnsnn

srn's
−−

=                   (2) 

 
Substitute numerical values and 
evaluate 's2 : 

( )( )( )
( )( ) ( )( )

cm3.19
cm205.1cm565.11

cm56cm201
2

=
−−−−

−−
='s

 

 
Because f is measured from the 
center of the lens: cm3.21

cm2cm19.3cm22

=

+=+= 'sf
 

 
(b) Substitute numerical values in 
equation (1) and evaluate 's1 : 

( )( ) cm176
33.15.1
cm205.1

1 =
−

='s  
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The object distance s2 for the 
second lens is: 

( ) ( )
cm172

cm4cm176cm412

−=
−−=−−= 'ss

 

 
Substitute numerical values in equation (2) and evaluate s′2: 
 

( )( )( )
( )( ) ( )( ) cm2.77

cm205.1cm1725.133.1
cm172cm2033.1

2 =
−−−−

−−
='s  

 
Because fw is measured from the 
center of the lens: cm2.79

cm2cm2.77cm22w

=

+=+= 'sf
 

 
Remarks: Note that if we use the expression given in Problem 114 we obtain fw = 
83.3 cm, in only moderate agreement with the exact result given above. 
 
116 ••  
Picture the Problem Let the numeral 1 
denote the CCl4-H2O interface and the 
numeral 2 the H2O-air interface. We can 
locate the final image by applying the 
equation for refraction at a single surface to 
both interfaces. The ray diagram shown 
below shows a spot at the bottom of the 
tank and the rays of light emanating from it 
that form the intermediate and final 
images.  
 
Use the equation for refraction at a 
single surface to relate s and s′ at the 
CCl4-H2O interface: 
 

r
nn

's
n

s
n

4224 CClOH

1

OH

1

CCl −
=+  

or, because r = ∞, 

0
1

OH

1

CCl 24 =+
's

n
s

n
 

 
Solve for s1′: 

4

2

CCl

1OH
1 n

sn
's −=                       (1) 

 
Substitute numerical values and 
evaluate s1′: 

( )( ) cm64.3
46.1

cm433.1
1 −=−='s  
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The depth of this image, as viewed 
from the H2O-air interface is: 
 

( )
cm64.5

cm3.64cm2cm2 12

=
−−=−= 'ss

 

At the H2O-air interface equation 
(1) becomes: O2H

2air
2 n

sn's −=  

 
Substitute numerical values and 
evaluate s2′: 

( )( ) cm24.4
33.1

cm64.51
2 −=−='s  

cm.4.24 isdepth apparent  The  

 
117 ••  
Picture the Problem The speed of the jogger as seen in the mirror is .dtds'v' = We can 

use the mirror equation to derive an expression for v′ in terms of f and ds/dt. 
 
Solve the mirror equation for s′: 
 

1
11

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

sf
s'                       (1) 

 
Differentiate s′ with respect to time 
to obtain: 
 

dt
ds

ssf

sfdt
d

dt
ds'v'

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

−

−

2

2

1

111

11

 

 
Simplify this result to obtain: 

v
s
s'v'

2

⎟
⎠
⎞

⎜
⎝
⎛−=                          (2) 

 
Rewrite equation (1) in terms of r: 
 

112 −

⎟
⎠
⎞

⎜
⎝
⎛ −=

sr
s'  

Find s′ when s = 5 m: 
m833.0

m5
1

m2
2

1

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

−

s'  

 
Use equation (2) to find v' when 

v = 3.5 m/s: 
( )

m/s0971.0

m/s5.3
m5

m833.0
2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=v'

 

 
118 ••  
Picture the Problem Let the numerals 1 and 2 denote to the first and second refracting 
surfaces of the spherical lens, respectively, and follow the steps given in the hint. 
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Use the equation for refraction at a 
single surface to relate s1 and s1′: 
 

1

12

1

2

1

1

r
nn

's
n

s
n −

=+  

When s1 = ∞: 

1

12

1

2

r
nn

's
n −

=  

 
Solve for s1′: 
 12

12
1 nn

rn's
−

=  

 
Substitute numerical values and 
evaluate s1′: 
 

( )( ) mm00.6
15.1

mm25.1
1 =

−
='s  

Because the thickness of the glass 
sphere is 4 mm: 
 

mm2mm6mm4mm4 12 −=−=−= 'ss

Use the equation for refraction at a 
single surface to relate s2 and s2′: 
 

2

21

2

1

2

2

r
nn

's
n

s
n −

=+  

Solve for s2′: 
( ) 22221

221
2 rnsnn

srn's
−−

=  

 
Substitute numerical values and 
evaluate s2′: 

( )( )( )
( )( ) [ ]( )

mm00.1
mm25.1mm25.11

mm2mm21
2

=
−−−−

−−
='s

 

 
mm. 1.00   /2,  mm 1.00   Because 2 === fr's  

 
119 •••  
Picture the Problem We can use the thin-lens equation to locate the first image formed 
by the lens, the mirror equation to locate the image formed in the mirror, and the thin-lens 
equation a second time to locate the final image formed by the lens as the rays pass back 
through it. 

 
(b) and (c) The ray diagram is shown below. The numeral 1 represents the object. The 
parallel and central rays from 1 are shown; one passes through the center of the lens, the 
other is paraxial and then passes through the focal point F′. The two rays intersect behind 
the mirror, and the image formed there, identified by the numeral 2, serves as a virtual 
object for the mirror. Two rays are shown emanating from this virtual image, one through 
the center of the mirror, the other passing through its focal point (halfway between C and 
the mirror surface) and then continuing as a paraxial ray. These two rays intersect in front 
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of the mirror, forming a real image, identified by the numeral 3. Finally, the image 3 
serves as a real object for the lens; again we show two rays, a paraxial ray that then 
passes through the focal point F and a ray through the center of the lens. These two rays 
intersect to form the final real, upright, and diminished image, identified as 4. To see this 
image the eye must be to the left of the image 4. 

 
(a) Solve the thin-lens equation for 
s1′: fs

fs's
−

=
1

1
1  

 
Substitute numerical values and 
evaluate s1′: 
 

( )( ) cm30
cm10cm15
cm15cm10

1 =
−

='s  

Because the image formed by the 
lens is behind the mirror: 
 

cm5cm30cm252 −=−=s  

Solve the mirror equation for s2′: 
fs

fs's
−

=
2

2
2  

 
Substitute numerical values and 
evaluate s2′: 
 

( )( ) cm50.2
cm5cm5
cm5cm5

2 =
−−
−

='s  and the 

image is 22.5 cm from the lens; i.e., 
s3 = 22.5 cm. 
 

Solve the thin-lens equation for s3′: 
fs

fs's
−

=
3

3
3  

 
Substitute numerical values and 
evaluate s3′: 

( )( ) cm0.18
cm10cm5.22
cm5.22cm10

3 =
−

='s  

 
*120 •••  
Picture the Problem The mirror surfaces must be concave to create inverted images on 
reflection. Therefore, the lens is a diverging lens. Let the numeral 1 denote the lens in its 
initial orientation and the numeral 2 the lens in its second orientation. We can use the 
mirror equation to find the magnitudes of the radii of the lens’ surfaces, the thin-lens 
equation to find its focal length, and the lens maker’s equation to find its index of 
refraction. 
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Solve the mirror equation for 1r : 

11

11
1

2
s's
'ssr

+
=  

 
Substitute numerical values and 
evaluate 1r : 

 

( )( ) cm0.10
cm30cm6
cm6cm302

1 =
+

=r  

Solve the mirror equation for 2r : 

22

22
2

2
s's
'ssr

+
=  

 
Substitute numerical values and 
evaluate 2r : 

 

( )( ) cm0.15
cm30cm10
cm10cm302

2 =
+

=r  

Solve the thin-lens equation for f: 
ss'

ss'f
+

=  

 
Substitute numerical values and 
evaluate f: 
 

( )( ) cm0.10
cm30cm5.7
cm5.7cm30

−=
+−
−

=f  

Solve the lens-maker’s equation for 
n to obtain: 

1
11

1

21

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

rr
f

n  

 
Because the lens is a diverging lens, 
r1 = −10 cm and r2 = 15 cm. 
Substitute numerical values and 
evaluate n: 

( )

60.1

1

cm15
1

cm10
1cm10

1

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=n

 

 
121 •••  
Picture the Problem Assume that the object is very small compared to r so that all 
incident and reflected rays traverse 1 cm of water. The problem involves two refractions 
at the air−water interface and one reflection at the mirror. Let the numeral 1 refer to the 
first refraction at the air−water interface, the numeral 2 to the reflection in the mirror 
surface, and the numeral 3 to the second refraction at the water−air interface. 
 
Use the equation for refraction at a 
single surface to relate s1 and s1′: r

nn
's

n
s
n 12

1

2

1

1 −
=+  

or, because r = ∞, 

0
1

2

1

1 =+
's

n
s
n
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Solve for s1′: 
 1

12
1 n

sn's −=  

 
Let n2 = n. Because n1 = 1: 11 ns's −=  

 
Find the object distance for the 
mirror: 
 

112 1s1 ns's +=−=  

where 1 has units of cm. 

Solve the mirror equation for s2′: 1

2
2

12
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

sr
's  

 
Substitute for s2: 1

1
2 1

12
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
nsr

's  

 
Find the object distance s3 for the 
water−air interface: 

1

1
23 1

1211
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−=−=
nsr

'ss  

 
Use the equation for refraction at a 
single surface to relate s3 and s3′: r

nn
's

n
s
n 12

3

2

3

1 −
=+  

or, because r = ∞, 

0
3

2

3

1 =+
's

n
s
n

 

 
Solve for s3′: 
 1

32
3 n

sn's −=  

 
Because n2 = 1 and n1 = n: 

n
nsr

n
s's

1

13
3

1
121

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−
−=−=  

 
Equate s3′ and s1:  

n
nsr

s

1

1
1

1
121

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−
−=  

 
Simplify to obtain: 
 

012
21

2
1 =

−
+

−
+

n
rs

n
rs  
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Substitute numerical values and 
simplify: 
 

( )
0

33.1
cm50cm1

33.1
cm50cm2

21
2
1 =

−
+

−
+ ss  

or 
070.2709.36 1

2
1 =−− ss  

where s1 is in cm. 
 

Solve for the positive value of s1: cm8.361 =s  

 
122 •••  
Picture the Problem We can use the lens maker’s equation, in conjunction with the 
result given in Problem 114, to find the index of refraction of the liquid. 
 
Solve the lens-maker’s equation for 
n: 

1
11

1

21

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

rr
f

n  

 
Substitute numerical values and 
evaluate n: 
 

( )

55.1

1

cm8
1

cm17
1cm5.27

1

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=n
 

 
From Problem 114, the focal length 
of the lens in the liquid, fL, is related 
to the focal length of the lens in air, 
f, according to: 
 

( ) f
nn

nnf
L

L
L

1
−
−

=  

Solve for nL: 
( ) L

L
L 1 ffn

nfn
+−

=  

 
Substitute numerical values and 
evaluate nL: 

( )( )
( )( )

36.1

cm109cm5.27155.1
cm10955.1

L

=

+−
=n

 

 
123 •••  
Picture the Problem The problem involves two refractions and one reflection. We can 
use the refraction at spherical surface equation and the mirror equation to find the images 
formed in the two refractions and one reflection. Let the numeral 1 refer to the first 
refraction at the air-glass interface, the numeral 2 to the reflection from the silvered 
surface, and the numeral 3 refer to the refraction at the glass-air interface.  



Chapter 32    
 

 

1014 

(a) The image and object distances 
for the first refraction are related 
according to: 
 

r
nn

's
n

s
n 12

1

2

1

1 −
=+  

 

Solve for s1′ to obtain: 
( ) rnsnn

rsn's
1112

12
1 −−
=  

 
Substitute numerical values and 
evaluate s1′: 

( )( )( )
( )( ) ( )( )

cm0.90
cm101cm3015.1

cm30cm105.1
1

=
−−

='s
 

 
The object for the mirror surface is 
behind the mirror and its distance 
from the surface of the mirror is: 
 

cm70cm90cm202 −=−=s  

Use the mirror equation to relate s2 
and s2′: r'ss

211

22

=+  

 
Solve for s2′: 

rs
rs's
−

=
2

2
2 2

 

 
Substitute numerical values and 
evaluate s2′: 

( )( )
( ) cm67.4

cm10cm702
cm70cm10

2 =
−−

−
='s  

 
The object for the second refraction 
at the glass-air interface is in front 
of the mirrored surface and its 
distance from the glass-air interface 
is: 
 

cm15.3cm4.67cm203 =−=s  

The image and object distances for 
the second refraction are related 
according to: 
 

r
nn

's
n

s
n 12

3

2

3

1 −
=+  

 

Solve for s3′ to obtain: 
( ) rnsnn

rsn's
1312

32
3 −−
=  

 
Noting that r = −10 cm, substitute 
numerical values and evaluate s3′: 

( )( )( )
( )( ) ( )( )

cm8.20
cm105.1cm3.155.11

cm3.15cm101
3

−=
−−−

−
='s
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surface.mirror   thebehind cm 0.8  cm 20 cm 20.8 is image final The =+−  

 

(b) 
surface.mirror  at the be to

image final  theand cm 20  obtain   tocm 20   with )(in  as Proceed 31 −== ssa
 

 
124 •••  
Picture the Problem We can solve the lens maker’s equation for f and then differentiate 
with respect to n and simplify to obtain df/f = −dn/(n − 1). 
 
(a) The lens maker’s equation is: 
 ( ) ( )111111

21

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= n

Crr
n

f
 

where 
21

111
rrC

−=  

 
Solve for f: 
 

( ) 11 −−= nCf  

Differentiate f with respect to n and simplify: 
 

( )[ ] ( ) ( )
( ) 11

111 1

2
21

−
−=

−
−

−=−−=−= −

−
−−

n
f

n
nfnCnC

dn
d

dn
df

 

 
Solve for df/f : 

1−
−=

n
dn

f
df

 

 
(b) Express the focal length for blue 
light in terms of the focal length for 
red light: 
 

fff ∆+= redblue                 (1) 

Approximate df/f by ∆f/f and dn by 
∆n to obtain: 
 

1−
∆

−≈
∆

n
n

f
f

 

Solve for ∆f : 
1−

∆
−=∆

n
nff  

 
Substitute for ∆f in equation (1) to 
obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
−=

−
∆

−=
1

1
1 red

red
red

redblue n
nf

n
nfff  
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Substitute numerical values and 
evaluate fblue: 
 

( )

cm4.17

147.1
47.153.11cm20blue

=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−=f
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Picture the Problem We examine the amount by which the image distance s′ changes 
due to a change in s. 
 
Solve the thin-lens equation for s′: 1

11
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

sf
s'  

 
Differentiate s′ with respect to s: 
 

2
2

2

22

1
1

11
111 m

s
s'

s
sf

sfds
d

ds
ds'

−=−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

 

.length  a have  willlength  ofobject an  of image The 2 sms ∆−∆  

 
 
 
 
 


