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Chapter 33 
Interference and Diffraction 
 
Conceptual Problems 
 
*1 •  
Determine the Concept The energy is distributed nonuniformly in space; in some regions 
the energy is below average (destructive interference), in others it is higher than average 
(constructive interference). 

  
2 •  
Determine the Concept Coherent sources have a constant phase difference. The pairs of 
light sources that satisfy this criterion are (b), (c), and (e). 

  
3 •  
Determine the Concept The thickness of the air space between the flat glass and the lens 
is approximately proportional to the square of d, the diameter of the ring. Consequently, 
the separation between adjacent rings is proportional to 1/d. 
 
4 ••  
Determine the Concept The distance between adjacent fringes is so small that the 
fringes are not resolved by the eye. 
  
5 ••  
Determine the Concept If the film is thick, the various colors (i.e., different 
wavelengths) will give constructive and destructive interference at that thickness. 
Consequently, what one observes is the reflected intensity of white light. 
  
*6 •  
(a) The phase change on reflection from the front surface of the film is 180°; the phase 
change on reflection from  the back surface of the film is 0°. As the film thins toward 
the top, the phase change associated with the film’s thickness becomes negligible and the 
two reflected waves interfere destructively. 
 
(b) The first constructive interference will arise when t = λ/4. Therefore, the first band 
will be violet (shortest visible wavelength). 
 
(c) When viewed in transmitted light, the top of the film is white, since no light is 
reflected. The colors of the bands are those complementary to the colors seen in reflected 
light; i.e., the top band will be red. 
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7 •  
Determine the Concept The first zeroes in the intensity occur at angles given by 

.sin aλθ =  Hence, decreasing a increases θ and the diffraction pattern becomes wider. 

 
8 •  
Determine the Concept Equation 33-2 expresses the condition for an intensity maximum i
slit interference. Here d is the slit separation, λ the wavelength of the light, m an integer, a
the angle at which the interference maximum appears. 
 
Equation 33-11 expresses the condition for the first minimum in single-slit diffraction. 
Here a is the width of the slit, λ  the wavelength of the light, and θ  the angle at which the 
first minimum appears, assuming m = 1. 
 
9 •  
Picture the Problem We can solve λθ md =sin for θ with m = 1 to express the location 
of the first-order maximum as a function of the wavelength of the light. 
 
The interference maxima in a 
diffraction pattern are at angles θ 
given by: 

λθ md =sin  
where d is the separation of the slits and  
m = 0, 1, 2, … 
 

Solve for the angular location θ1 of 
the first-order maximum : 

⎟
⎠
⎞

⎜
⎝
⎛= −

d
λθ 1

1 sin  

 
Because λgreen light < λred light: light redlightgreen θθ < and correct. is )(a  

 
*10 •  
Determine the Concept The distance on the screen to mth bright fringe is given by 

,
d
Lmym

λ
= where L is the distance from the slits to the screen and d is the separation of 

the slits. Because the index of refraction of air is slightly larger than the index of 
refraction of a vacuum, the introduction of air reduces λ to λ/n and decreases ym. Because 
the separation of the fringes is ym − ym−1, the separation of the fringes decreases 
and correct. is )(b  

 
11 •  
(a) False. When destructive interference of light waves occurs, the energy is no longer 
distributed evenly.  For example, light from a two-slit device forms a pattern with very 
bright and very dark parts.  There is practically no energy at the dark fringes and a great 
deal of energy at the bright fringe.  The total energy over the entire pattern equals the 
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energy from one slit plus the energy from the second slit.  Interference re-distributes the 
energy. 
 
(b) True 
 
(c) True 
 
(d) True 
 
(e) True 
 
Estimation and Approximation 
 
*12 •  
Picture the Problem We’ll assume that the diameter of the pupil of the eye is  
5 mm and that the wavelength of light is 600 nm. Then we can use the expression for the 
minimum angular separation of two objects than can be resolved by the eye and the 
relationship between this angle and the width of an object and the distance from which it 
is viewed to support the claim. 
 
Relate the width w of an object that 
can be seen at a height h to the 
critical angular separation αc: 
 

h
w

=ctanα  

Solve for w:  
ctanαhw =  

 
The minimum angular separation αc 
of two point objects that can just be 
resolved by an eye depends on the 
diameter D of the eye and the 
wavelength λ of light: 
 

D
λα 22.1c =  

Substitute for αc in the expression 
for w to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

D
hw λ22.1tan  

In low-earth orbit: 
 

( ) m6.58
mm5

nm60022.1tankm400 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=w  

 

moon.  thefromit  see  toable be
not  wouldeye naked a m, 5about  is Great Wall  theof width  theBecause

 

 
At a distance equal to that of the distance of the moon from earth: 
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( ) km2.56
mm5

nm60022.1tanm1084.3 8 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=w  

 

moon.  thefromit  see  toable be
not  wouldeye naked a m, 5about  is Great Wall  theof width  theBecause

 

 
13 •  

Picture the Problem We can use 
D
λθ 22.1sin = to relate the diameter D of the opaque-

disk water droplets to the angular diameter θ of a coronal ring and to the wavelength of 
light. We’ll assume a wavelength of 500 nm. 
 
The angle θ subtended by the first 
diffraction minimum is related to 
the wavelength λ of light and the 
diameter D of the opaque-disk water 
droplet: 
 

D
λθ 22.1sin =  

 

Because of the great distance to the 
cloud of water droplets,  
θ << 1 and: 
 

D
λθ 22.1≈  

 

Solve for D to obtain: 

θ
λ22.1

=D  

 
Substitute numerical values and 
evaluate D: 

( ) m50.3

180
rad10

nm50022.1
µ

π
=

°
×°

=D  

 
14 •  

Picture the Problem We can use 
D

nλθ 22.1sin = to relate the diameter D of a 

microsphere to the angular diameter θ of a coronal ring and to the wavelength of light in 
water.  
 
The angle θ subtended by the first 
diffraction minimum is related to 
the wavelength λn of light in water 
and the diameter D of the 
microspheres: 
 

nDD
n λλθ 22.122.1sin ==  

 

Because θ << 1: 
 nD

λθ 22.1≈  
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Substitute numerical values and 
evaluate θ : 

( )
( )
°=

=≈

65.6

rad116.0
m533.1
nm8.63222.1

µ
θ

 

 
15 •  

Picture the Problem We can use 
D
λθ 22.1sin = to relate the diameter D of a pollen 

grain to the angular diameter θ of a coronal ring and to the wavelength of light. We’ll 
assume a wavelength of 450 nm for blue light and 650 nm for red light. 
 
The angle θ subtended by the first 
diffraction minimum is related to 
the wavelength λ of light and to the 
diameter D of the microspheres: 
 

D
λθ 22.1sin =  

 

Because θ << 1: 
 nD

λθ 22.1≈  

 
Substitute numerical values and 
evaluate θ for red light: 

( )

°=

×=≈ −

82.1

rad1017.3
m25

nm65022.1 2
red µ

θ
 

 
Substitute numerical values and 
evaluate θ for blue light: 

( )

°=

×=≈ −

26.1

rad1020.2
m25

nm45022.1 2
blue µ

θ
 

 
*16 ••  
Picture the Problem The diagram shows the hair whose diameter d = a, the screen a 
distance L from the hair, and the separation ∆y of the first diffraction peak from the 
center. We can use the geometry of the experiment to relate ∆y to L and a and the 
condition for diffraction maxima to express θ in terms of the diameter of the hair and the 
wavelength of the light illuminating the hair. 

 
 
Relate θ to ∆y: 
 L

y∆
=θtan  
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Solve for ∆y: 
 

θtanLy =∆  

Diffraction maxima occur where: 
 

( )λθ 2
1sin += ma  

where m = 1, 2, 3, … 
 

Solve for θ  to obtain: 
 

( )
⎥⎦
⎤

⎢⎣
⎡ +

= −

a
m λθ 2

1
1sin  

 
Substitute for θ in the expression for 
∆y to obtain: 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +

=∆ −

a
mLy λ2

1
1sintan  

 
For the first peak, m = 1. Substitute numerical values and evaluate ∆y: 
 

( ) ( )( ) cm6.13
m70

nm8.6321sintanm10 2
1

1 =
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ +
=∆ −

µ
y  

 
Phase Difference and Coherence 
 
17 •  
Picture the Problem A path difference ∆r contributes a difference δ given 

by °
∆

= 360
λ

δ r
. 

 
(a) Relate a path difference ∆r to a 
phase shift δ : 
 

°
∆

= 360
λ

δ r
                           (1) 

Solve for∆r: 
°

=∆
360
δλr  

 
Substitute numerical values and 
evaluate ∆r: 

( )( ) nm300
360

nm600180
=

°
°

=∆r  

 
(b) Substitute numerical values in 
equation (1) and evaluate δ: 

°=°= 135360
nm800
nm300δ  

 
18 •  
Picture the Problem The wavelength of light in a medium whose index of refraction is n 
is the ratio of the wavelength of the light in air divided by n. The number of wavelengths 
of light contained in a given distance is the ratio of the distance to the wavelength of light 
in the given medium. The difference in phase between the two waves is the sum of a π  
phase shift in the reflected wave and a phase shift due to the additional distance traveled 
by the wave reflected from the bottom of the water−air interface. 
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(a) Express the wavelength of light 
in water in terms of the wavelength 
of light in air: 
 

nm376
1.33

nm500
===

nn
λλ  

(b) Relate the number of 
wavelengths N to the thickness t of 
the film and the wavelength of light 
in water: 
 

32.5
nm376

cm1022 4

=
×

==
−

n

tN
λ

 

(c) Express the phase difference as 
the sum of the phase shift due to 
reflection and the phase shift due to 
the additional distance traveled by 
the wave reflected from the bottom 
of the water−air interface: 
 

Nt
n

πππ
λ

π

δδδ

222
 traveleddistance additionalreflection

+=+=

+=
 

Substitute for N and evaluate δ: ( ) rad6.11rad32.52rad πππδ =+=  

or, subtracting 11.6π rad from 12π rad, 
rad4.0 πδ =  

 
*19 ••  
Picture the Problem The difference in phase depends on the path difference according 

to .360°∆
=
λ

δ r
 The path difference is the difference in the distances of (0, 15 cm) and 

(3 cm, 14 cm) from the origin. 
 
Relate a path difference ∆r to a 
phase shift δ: 
 

°
∆

= 360
λ

δ r
                            

The path difference ∆r is: ( ) ( )
cm682.0

cm14cm3cm15 22

=

+−=∆r  

 
Substitute numerical values and 
evaluate δ: 

°=°= 164360
cm5.1

cm682.0δ  
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Interference in Thin Films 
 
20 •  
Picture the Problem Because the mth fringe occurs when the path difference 2t equals m 
wavelengths, we can express the additional distance traveled by the light in air as an mλ. 
The thickness of the wedge, in turn, is related to the angle of the wedge and the distance 
from its vertex to the mth fringe. 
 

(a)
°180 is plate bottom  theof surface  top theand plate  top theof surfaceback 
 by the reflection  todue difference phase  thebecausedark  is bandfirst  The

 

 
(b) The mth fringe occurs when the 
path difference 2t equals m 
wavelengths: 

λmt =2  
 
 
 

Relate the thickness of the air wedge 
to the angle of the wedge: x

t
=θ  ⇒ θxt =  

where we’ve used a small-angle 
approximation to replace an arc length by 
the length of a chord. 
 

Substitute to obtain: λθ mx =2  
 

Solve for θ : λλθ
x
m

x
m

2
1

2
==  

 
Substitute numerical values and 
evaluate θ : 

( ) rad1075.1nm700
cm
5

2
1 4−×=⎟

⎠
⎞

⎜
⎝
⎛=θ

 
*21 ••  
Picture the Problem The condition that one sees m fringes requires that the path 
difference between light reflected from the bottom surface of the top slide and the top 
surface of the bottom slide is an integer multiple of a wavelength of the light. 
 
The mth fringe occurs when the path 
difference 2d equals m wavelengths: 

λmd =2  ⇒ 
2
λmd =  

 
 
 

Because the nineteenth (but not the 
twentieth) bright fringe can be seen, 

( ) ( )
22 2

1
2
1 λλ

+<<− mdm  
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the limits on d must be:  
 

where m = 19 

Substitute numerical values to 
obtain: 

( ) ( )
2
nm59019

2
nm59019 2

1
2
1 +<<− d  

or 
m75.5m46.5 µµ << d  

 
22 ••  
Picture the Problem The light reflected 
from the top surface of the bottom plate 
(wave 2 in the diagram) is phase shifted 
relative to the light reflected from the 
bottom surface of the top plate (wave 1 in 
the diagram). This phase difference is the 
sum of a phase shift of π (equivalent to a 
λ/2 path difference) resulting from 
reflection plus a phase shift due to the 
additional distance traveled.  
 
 
Relate the extra distance traveled by 
wave 2 to the distance equivalent to 
the phase change due to reflection 
and to the condition for constructive 
interference: 
 

...,3,2,2 2
1 λλλλ =+t  

or 
...,,,2 2

5
2
3

2
1 λλλ=t  

and 
( )λ2

12 += mt  where m = 0, 1, 2, … and λ 

is the wavelength of light in air. 
 

Solve for m:  ( )
2
14

2
122

2
12

−=−=−=
λλλ
rrtm  

where r is the radius of the wire. 
 

Substitute numerical values and 
evaluate m: 

( ) 166
2
1

nm600
mm025.04

=−=m  

 
23 ••  
Picture the Problem We can use the condition for destructive interference in a thin film 
to find its thickness. Once we’ve found the thickness of the film, we can use the 
condition for constructive interference to find the wavelengths in the visible portion of 
the spectrum that will be brightest in the reflected interference pattern and the condition 
for destructive interference to find the wavelengths of light missing from the reflected 
light when the film is placed on glass with an index of refraction greater than that of the 
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film. 
 
(a) Express the condition for 
destructive interference in the thin 
film: 
 

...,,,2 2
5

2
3

2
1

2
1 ''''t λλλλ =+   

or 
...,3,2,2 '''t λλλ=     

or 

 
n

m'mt λλ ==2                    (1) 

where m = 1, 2, 3, … and λ′ is the 
wavelength of the light in the film. 
 

Solve for λ: 
m
nt2

=λ  

 
Substitute for the missing 
wavelengths to obtain: m

nt2nm450 =  and 
1

2nm360
+

=
m

nt
 

 
Divide the first of these equations by 
the second and simplify to obtain: 
 m

m

m
nt
m
nt

1

1
2

2

nm360
nm450 +

=

+

=  

 
Solve for m: 
 

nm450for  4 == λm  

Solve equation (1) for t: 
n

mt
2
λ

=  

 
Substitute numerical values and 
evaluate t: 

( )
( ) nm600

5.12
nm4504

==t  

 
(b) Express the condition for 
constructive interference in the thin 
film: 
 

,...3,2,2 2
1 ''''t λλλλ =+  

or 
( ) 'm'''t λλλλ 2

1
2
5

2
3

2
1 ,...,,2 +==      (1) 

where λ′ is the wavelength of light in the 
oil and m = 0, 1, 2, … 
 

Substitute for λ′ to obtain: ( )
n

mt λ
2
12 +=  

where n is the index of refraction of the 
film. 
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Solve for λ: 

2
1

2
+

=
m

ntλ  

 
Substitute numerical values and 
simplify to obtain: 
 

( )( )
2
1

2
1

nm1800nm6005.12
+

=
+

=
mm

λ  

Substitute for m and evaluate λ to obtain the following table:  
 

m 0 1 2 3 4 5 
λ (nm) 3600 1200 720 514 400 327  

 

nm. 400 and nm, 514 nm, 720
are spectrum  visiblein the engthsonly wavel  that thesee  we table, theFrom

 

 
(c) Because the index of refraction 
of the glass is greater than that of the 
film, the light reflected from the 
film-glass interface will be shifted 
by λ2

1  (as is the wave reflected 

from the top surface) and the 
condition for destructive 
interference becomes: 
 

...,,,2 2
5

2
3

2
1 '''t λλλ=  

or 

( )
n

mt λ
2
12 +=  

where n is the index of refraction of the 
film and m = 0, 1, 2, … 

Solve for λ: 

2
1

2
+

=
m

ntλ  

 
Substitute numerical values and simplify to 
obtain: 
 

( )( )
2
1

2
1

nm1800nm6005.12
+

=
+

=
mm

λ  

Substitute for m and evaluate λ to obtain the following table:  
 

m 0 1 2 3 4 5 
λ (nm) 3600 1200 720 514 400 327  

 

nm. 400 and nm, 514 nm, 720
are spectrum  visiblein the hs wavelengtmissing  that thesee  we table theFrom

 

 
24 ••  
Picture the Problem Because there is a λ2

1  phase change due to reflection at both the 

air-oil and oil-water interfaces, the condition for constructive interference is that twice 
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the thickness of the oil film equal an integer multiple of the wavelength of light in the 
film. 
 
Express the condition for 
constructive interference: 
 

,...3,2,2 '''t λλλ=  

or 
'mt λ=2      (1) 

where λ′ is the wavelength of light in the oil a
= 1, 2, 3, … 
 

Substitute for λ′ to obtain: 
 n

mt λ
=2  

 
Solve for t: 

n
mt
2
λ

=  

 
Substitute numerical values and 
evaluate t: 

( )( )
( ) nm533

22.12
nm6502

==t  

 
25 ••  
Picture the Problem Because there is a λ2

1  phase change due to reflection at both the 

air-oil and oil-glass interfaces, the condition for constructive interference is that twice the 
thickness of the oil film equal an integer multiple of the wavelength of light in the film. 
 
Express the condition for 
constructive interference: 
 

'm'''t λλλλ == ,...3,2,2       (1) 

where λ′ is the wavelength of light in the oil 
and m = 0, 1, 2, … 
 

Substitute for λ′ to obtain: 
n

mt λ
=2  

where n is the index of refraction of the oil. 
 

Solve for λ: 
m
nt2

=λ  

 
Substitute for the predominant 
wavelengths to obtain: m

nt2nm690 =  and 
1

2nm460
+

=
m

nt
 

 
Divide the first of these equations by 
the second and simplify to obtain: 
 m

m

m
nt
m
nt

1

1
2

2

nm460
nm690 +

=

+

=  
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Solve for m: 
 

nm096for  2 == λm  

Solve equation (1) for t: 
n

mt
2
λ

=  

 
Substitute numerical values and 
evaluate t: 

( )( )
( ) nm476

45.12
nm6902

==t  

 
*26 ••  
Picture the Problem Because the index of refraction of air is less than that of the oil, 
there is a phase shift of π rad ( λ2

1 ) in the light reflected at the air-oil interface. Because 

the index of refraction of the oil is greater than that of the glass, there is no phase shift in 
the light reflected from the oil-glass interface. We can use the condition for constructive 
interference to determine m for λ = 700 nm and then use this value in our equation 
describing constructive interference to find the thickness t of the oil film. 
 
Express the condition for 
constructive interference between 
the waves reflected from the air-oil 
interface and the oil-glass interface: 
 

,...3,2,2 2
1 ''''t λλλλ =+  

or 
( ) 'm'''t λλλλ 2

1
2
5

2
3

2
1 ,...,,2 +==      (1) 

where λ′ is the wavelength of light in the 
oil and m = 0, 1, 2, … 

Substitute for 'λ and solve for λ to 
obtain: 2

1

2
+

=
m

ntλ  

 
Substitute the predominant 
wavelengths to obtain: 
 

2
1

2nm700
+

=
m

nt
 and 

2
3

2nm500
+

=
m

nt
 

 
Divide the first of these equations by 
the second to obtain: 
 2

1
2
3

2
3

2
1

2

2

nm500
nm700

+
+

=

+

+
=

m
m

m
nt

m
nt

 

 
Solve for m: 
 

nm 700for  2 == λm  

Solve equation (1) for t: ( )
n

mt
22

1 λ
+=  

 
Substitute numerical values and 
evaluate t: 

( ) ( ) nm603
45.12
nm7002 2

1 =+=t  
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Newton’s Rings 
 
*27 ••  
Picture the Problem This arrangement is essentially identical to a ″thin film″ 
configuration, except that the ″film″ is air. A phase change of 180° ( λ2

1 ) occurs at the 

top of the flat glass plate. We can use the condition for constructive interference to derive 
the result given in (a) and use the geometry of the lens on the plate to obtain the result 
given in (b). We can then use these results in the remaining parts of the problem. 
 
(a) The condition for constructive 
interference is:  
 

,...3,2,2 2
1 λλλλ =+t  

or 
( )λλλλ 2

1
2
5

2
3

2
1 ,...,,2 +== mt       

where λ is the wavelength of light in air and 
m = 0, 1, 2, … 
 

Solve for t: 
 

( ) ...,2,1,0,
22

1 =+= mmt λ
        (1) 

 
(b) From Figure 33-39 we have:  
 

( ) 222 RtRr =−+  

or 
2222 2 tRtRrR +−+=  

 
For t << R we can neglect the last 
term to obtain: 
 

RtRrR 2222 −+≈  

Solve for r: Rtr 2=                                   (2) 

 
(c) pattern. reflected  theary tocomplement ispattern  ed transmittThe  

 
(d) Square equation (2) and 
substitute for t from equation (1) to 
obtain: 
 

( ) λRmr 2
12 +=  

Solve for m: 
2
12

−=
λR

rm  

 
Substitute numerical values and 
evaluate m: 

( )
( )( )

fringes.bright 68be  will thereso and

67
2
1

nm590m10
cm2 2

=−=m
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(e) The diameter of the mth fringe is: ( ) λRmrD 2
122 +==  

 
Noting that m = 5 for the sixth 
fringe, substitute numerical values 
and evaluate D: 

( )( )( )
cm14.1

nm590m1052 2
1

=

+=D
 

 

(f) 
1.33.  factor  by the increased isseen  be

 that willfringes ofnumber   theand reduced is fringesbetween  separation
The nm. 444/ becomes film in thelight   theofh  wavelengtThe air

=

=

n

nλ
 

 
28 ••  
Picture the Problem This arrangement is essentially identical to a ″thin film″ 
configuration, except that the ″film″ is air. A phase change of 180° ( λ2

1 ) occurs at the 

top of the flat glass plate. We can use the condition for constructive interference and the 
results of Problem 27(b) to determine the radii of the first and second bright fringes in the 
reflected light. 
 
The condition for constructive 
interference is:  
 

,...3,2,2 2
1 λλλλ =+t  

or 
( )λλλλ 2

1
2
5

2
3

2
1 ,...,,2 +== mt       

where λ is the wavelength of light in air and 
m = 0, 1, 2, … 
 

Solve for t: 
 

( ) ...,2,1,0,
22

1 =+= mmt λ
         

 
From Problem 27(b): tRr 2=  

 
Substitute for t to obtain: 
 

( ) Rmr λ2
1+=  

The first fringe corresponds to  
m = 0: 
 

( )( ) mm721.0m2nm5202
1 ==r  

The second fringe corresponds to  
m = 1: 

( )( ) mm25.1m2nm5202
3 ==r  
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29 •• 
Picture the Problem This arrangement is essentially identical to a ″thin film″ 
configuration, except that the ″film″ is oil. A phase change of 180° ( λ2

1 ) occurs at lens-

oil interface. We can use the condition for constructive interference and the results from 
Problem 27(b) to determine the radii of the first and second bright fringes in the reflected 
light. 
 
The condition for constructive 
interference is:  
 

,...3,2,2 2
1 ''''t λλλλ =+  

or 
( ) 'm'''t λλλλ 2

1
2
5

2
3

2
1 ,...,,2 +==       

where λ′ is the wavelength of light in the 
oil and m = 0, 1, 2, … 
 

Substitute for λ′ and solve for t: 
 

( ) ...,2,1,0,
22

1 =+= m
n

mt λ
     

where λ is the wavelength of light in air.   
 

From Equation 33-29: tRr 2=  
 

Substitute for t to obtain: 
 ( )

n
Rmr λ

2
1+=  

 
The first fringe corresponds to  
m = 0: 
 

( )( ) mm535.0
82.1

m2nm520
2
1

==r  

The second fringe corresponds to  
m = 1: 

( )( ) mm926.0
82.1

m2nm520
2
3

==r  

 
Two-Slit Interference Pattern 
 
*30 •  
Picture the Problem The number of bright fringes per unit distance is the reciprocal of 
the separation of the fringes. We can use the expression for the distance on the screen to 
the mth fringe to find the separation of the fringes. 
 
Express the number N of bright 
fringes per centimeter in terms of 
the separation of the fringes: 
 

y
N

∆
=

1
                     (1) 

Express the distance on the screen to 
the mth and (m + 1)st bright fringe: d

Lmym
λ

= and ( )
d
Lmym

λ11 +=+  
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Subtract the second of these 
equations from the first to obtain: d

Ly λ
=∆  

 
Substitute in equation (1) to obtain: 
 L

dN
λ

=  

Substitute numerical values and 
evaluate N: ( )( )

1cm33.8
m2nm600

mm1 −==N  

 
31 •  
Picture the Problem We can use the expression for the distance on the screen to the mth 
and (m + 1)st bright fringes to obtain an expression for the separation ∆y of the fringes as 
a function of the separation of the slits d. Because the number of bright fringes per unit 
length N is the reciprocal of ∆y, we can find d from N, λ, and L.  
 
Express the distance on the screen to 
the mth and (m + 1)st bright fringe: 
 

d
Lmym

λ
= and ( )

d
Lmym

λ11 +=+  

Subtract the second of these 
equations from the first to obtain: d

Ly λ
=∆  

 
Solve for d: 

y
Ld
∆

=
λ

 

 
Because the number of fringes per 
unit length N is the reciprocal of ∆y: 
 

LNd λ=  

Substitute numerical values and 
evaluate d: 

( )( )( ) mm95.4m3nm589cm28 1 == −d

 
32 •  
Picture the Problem We can use the 
geometry of the setup, represented to the 
right, to find the separation of the slits. To 
find the number of interference maxima 
that can be observed we can apply the 
equation describing two-slit interference 
maxima and require that sinθ ≤ 1.  
 
Because d << L, we can 
approximate sinθ1 as: 
 

d
λθ ≈1sin  
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Solve for d to obtain: 
 1sinθ

λ
≈d                            (1) 

 
From the right triangle whose sides 
are L and y1 we have: 
 

( ) ( )
06817.0

m82.0m12

m82.0sin
221 =

+
=θ

Substitute numerical values in 
equation (1) and evaluate d: 
 

m29.9
06817.0

nm633 µ=≈d  

(b) The equation describing two-slit 
interference maxima is: 
 

...,2,1,0sin == m,md λθ  

Because sinθ ≤ 1 determines the 
maximum number of interference 
fringes that can be seen: 
 

λmaxmd =  

Solve for mmax: 
λ
dm =max  

 
Substitute numerical values and 
evaluate mmax: 

14
nm633

m29.9
max ==

µm because m must be 

an integer. 
 

Because there are 14 fringes on 
either side of the central maximum: 

( ) 29114212 max =+=+= mN  

 
33 ••  
Picture the Problem We can use the equation for the distance on a screen to the mth 
bright fringe to derive an expression for the spacing of the maxima on the screen. In (c) 
we can use this same relationship to express the slit separation d. 
 
(a) Express the distance on the 
screen to the mth and (m + 1)st 
bright fringe: 
 

d
Lmym

λ
= and ( )

d
Lmym

λ11 +=+  

Subtract the second of these 
equations from the first to obtain: 
 

d
Ly λ

=∆                        (1) 

 
Substitute numerical values and 
evaluate ∆y: 
 

( )( ) m0.50
cm1

m1nm500 µ==∆y  
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(b) 
eye. naked the

 withobserved be  tosmall  toois separation The eye. unaided heNot with t
 

 
(c) Solve equation (1) for d: 

y
Ld
∆

=
λ

 

 
Substitute numerical values and evaluate d: ( )( ) mm500.0

mm1
m1nm500

==d  

 
34 •• 
Picture the Problem Let the separation of the slits be d. We can find the total path 
difference when the light is incident at an angle φ and set this result equal to an integer 
multiple of the wavelength of the light to obtain the given equation. 
 
Express the total path difference: 
  

msinsin θφ dd +=∆l  

The condition for constructive 
interference is: 
 

λm=∆l  
where m is an integer. 

Substitute to obtain: λθφ mdd =+ msinsin  

 
Divide both sides of the equation by 
d to obtain: d

mλθφ =+ msinsin  

 
*35 ••  
Picture the Problem Let the separation of the slits be d. We can find the total path 
difference when the light is incident at an angle φ and set this result equal to an integer 
multiple of the wavelength of the light to relate the angle of incidence on the slits to the 
direction of the transmitted light and its wavelength. 
 
Express the total path difference: 
  

θφ sinsin dd +=∆l  

The condition for constructive 
interference is: 
 

λm=∆l  
where m is an integer. 

Substitute to obtain: λθφ mdd =+ sinsin  

 
Divide both sides of the equation by 
d to obtain: d

mλθφ =+ sinsin  
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Set θ = 0 and solve for λ: 
m

d φλ sin
=  

 
Substitute numerical values and 
simplify to obtain: 

( )
mm

m25.130sinm5.2 µµλ =
°

=  

 
Evaluate λ for positive integral values of m: 
 

m λ (nm) 
1 1250 
2 625 
3 417 
4 313  

 

spectrum. neticelectromag the
ofportion   visiblein the are nm 417 and nm 625 that seecan   we table theFrom

 

 
36 ••  
Picture the Problem The diagram shows 
the two speakers, S1 and S2, the central-
bright image and the first-order image to 
the left of the central-bright image. The 
distance y is measured from the center of 
the central-bright image. We can apply the 
conditions for constructive and destructive 
interference from two sources and use the 
geometry of the speakers and microphone 
to find the distance to the first interference 
minimum and the distance to the first 
interference maximum.  
 
Relate the distance ∆y to the first 
minimum from the center of the 
central maximum to θ  and the 
distance L from the speakers to the 
plane of the microphone: 
 

L
y

=θtan                         

Solve for y to obtain: 
 

θtanLy =                                 (1) 

Interference minima occur where: 
 

( )λθ 2
1sin += md  

where m = 0, 1, 2, 3, … 
 

Solve for θ  to obtain: 
 

( )
⎥⎦
⎤

⎢⎣
⎡ +

= −

d
m λθ 2

1
1sin  
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Relate the wavelength λ of the 
sound waves to the speed of sound v 
and the frequency f of the sound: 
 

f
v

=λ  

Substitute for λ in the expression for 
θ to obtain: 
 

( )
⎥
⎦

⎤
⎢
⎣

⎡ +
= −

df
vm 2

1
1sinθ  

 
Substitute for θ in equation (1): 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ +
= −

df
vmLy 2

1
1sintan          (2) 

 
Noting that the first minimum corresponds to m = 0, substitute numerical values and 
evaluate ∆y: 
 

( ) ( )( )
( )( ) m365.0

kHz10cm5
m/s343sintanm1 2

1
1

min1st =
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
= −y  

 
The maxima occur where: 
 

λθ md =sin  
where m = 1, 2, 3, … 
 

For diffraction maxima, equation (2) 
becomes: 
 ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=∆ −

af
mvLy 1sintan  

 
Noting that the first maximum corresponds to m = 1, substitute numerical values and 
evaluate ∆y: 
 

( ) ( )( )
( )( ) m943.0

kHz10cm5
m/s3431sintanm1 1

max1st =
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
= −y  

 
Diffraction Pattern of a Single Slit 
 
37 •  
Picture the Problem We can use the expression locating the first zeroes in the intensity 
to find the angles at which these zeroes occur as a function of the slit width a. 
 
The first zeroes in the intensity 
occur at angles given by: 
 

a
λθ =sin  

Solve for θ : 
⎟
⎠
⎞

⎜
⎝
⎛= −

a
λθ 1sin  

 
(a) For a = 1 mm: 
 mrad600.0

mm1
nm600sin 1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −θ  
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(b) For a = 0.1 mm: 
 mrad00.6

mm1.0
nm600sin 1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −θ  

 
(c) For a = 0.01 mm: 
 mrad0.60

mm01.0
nm600sin 1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −θ  

 
38 •  
Picture the Problem We can use the expression locating the first zeroes in the intensity 
to find the wavelength of the radiation as a function of the angle at which the first 
diffraction minimum is observed and the width of the plate. 
 
The first zeroes in the intensity 
occur at angles given by: 
 

a
λθ =sin  

Solve for λ: θλ sina=  
 

Substitute numerical values and 
evaluate λ: 

( ) cm01.337sincm5 =°=λ  

 
*39 ••  
Picture the Problem The diagram shows the beam expanding as it travels to the moon 
and that portion of it that is reflected from the mirror on the moon expanding as it returns 
to earth. We can express the diameter of the beam at the moon as the product of the beam 
divergence angle and the distance to the moon and use the equation describing diffraction 
at a circular aperture to find the beam divergence angle. We can follow this same 
procedure to find the diameter of the beam when it gets back to the earth. In Parts (c) and 
(d) we can use the dependence of the power in a beam on its cross-sectional area to find 
the fraction of the power of the beam that is reflected back to earth and the fraction of the 
original beam energy that is recaptured upon return to earth. 
 

 
 
(a) Relate the diameter D of the 
beam at the moon to the distance to 
the moon L and the beam 
divergence angle θ :  

LD θ≈  
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The angle θ subtended by the first 
diffraction minimum is related to 
the wavelength λ of the light and the 
diameter of the telescope opening 
dtelescope by: 
 

telescope

22.1sin
d
λθ =  

Because θ << 1, sinθ ≈ θ and: 
 

telescope

22.1
d
λθ ≈  

 
Substitute for θ in equation (1) to 
obtain: 

telescope

22.1
d

LD λ
=  

 
Substitute numerical values and evaluate D: 
 

( ) ( ) km53.1

cm10
m1

in
cm2.54in6

nm50022.1m1082.3
2

8 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

××
×=D  

 
(b) The portion of the beam 
reflected back to the earth will be 
that portion incident on the mirror, 
so the diffraction angle is: 
 

mirror

22.1
d
λθ ≈  

The beam will expand back to: 
⎥
⎦

⎤
⎢
⎣

⎡
=

mirror

22.1
d

LD' λ
 

 
Substitute numerical values and evaluate D′: 
 

( ) ( ) m594

cm10
m1

in
cm2.54in20

nm50022.1m1082.3
2

8 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

××
×=D'  

 
(c) Because the power of the beam 
is proportional to its cross-sectional 
area, the fraction of the power that 
is reflected back to the earth is the 
ratio of the area of the mirror to the 
area of the expanded beam at the 
moon: 
 

2
mirror

2

2
mirror

beam

mirror

4

4 ⎟
⎠
⎞

⎜
⎝
⎛===

D
d

D

d

A
A

P
P'

π

π
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Substitute for D to obtain: 
 2

telescopemirror

2

telescope

mirror

22.122.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
λλ L

dd

d
L

d
P
P'

 (1) 

 
Substitute numerical values and evaluate 
P′/P: 
 

( )( )

( )( )

7

2

8

2

1010.1

nm500m1082.322.1
in

cm54.2in6in20

−×=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎟
⎠
⎞

⎜
⎝
⎛

=
P
P'

 

 
(d) The angular spread of the beam 
from reflection from the 20-in 
mirror is given by: 
 

mirror

22.1
d
λθ ≈  

The diameter D′ of the beam on 
return to earth will be: 
 mirror

22.1
d

LD' λ
≈  

Letting P′′ represent the power 
intercepted by the telescope, we 
have: 
 

2
telescope

2

2
telescope

beam

telescope

4

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

D'
d

D'

d

A
A

P'
P''

π

π

 

 
Substitute for D′ and simplify: 
 

2
mirrortelescope

22.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

λL
dd

P'
P''

                    (2) 

 
Multiply equation (2) by equation (1) and simplify to obtain: 
 

4
telescopemirror

2
telescopemirror

2
mirrortelescope

22.122.122.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

λλλ L
dd

L
dd

L
dd

P
P''

P
P'

P'
P''

 

 
Substitute numerical values and evaluate 
P′′/P: 
 

( )( )

( )( )

14

4

8

2

1021.1

nm500m1082.322.1
in

cm54.2in6in20

−×=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎟
⎠
⎞

⎜
⎝
⎛

=
P
P''
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Interference-Diffraction Pattern of Two Slits 
 
40 •  
Picture the Problem We need to find the value of m for which the mth interference 
maximum coincides with the first diffraction minimum. Then there will be 

12 −= mN fringes in the central maximum. 
 
The number of fringes N in the 
central maximum is: 
 

12 −= mN                        (1) 

Relate the angle θ1 of the first 
diffraction minimum to the width a 
of the slits of the diffraction grating: 
 

a
λθ =1sin  

Express the angle θm corresponding 
to the mth interference maxima in 
terms of the separation d of the slits: 
 

d
m

m
λθ =sin  

Because we require that θ1 = θm, we 
can equate these expressions to 
obtain: 
 

ad
m λλ

=   

Solve for and evaluate m: 55
===

a
a

a
dm  

 
Substitute in equation (1) to obtain: 
 

( ) 9152 =−=N  

If d = na: n
a

na
a
dm ===  

and  
12 −= nN  

 
41 ••  
Picture the Problem We can equate the sine of the angle at which the first diffraction 
minimum occurs to the sine of the angle at which the fifth interference maximum occurs 
to find a. We can then find the number of bright interference fringes seen in the central 
diffraction maximum using .12 −= mN  
 
(a) Relate the angle θ1 of the first 
diffraction minimum to the width a 
of the slits of the diffraction grating: 

a
λθ =1sin  
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Express the angle θ5 corresponding 
to the mth fifth interference maxima 
maximum in terms of the separation 
d of the slits: 
 

d
λθ 5sin 5 =  

Because we require that θ1 = θm5, 
we can equate these expressions to 
obtain: 
 

ad
λλ

=
5

  

Solve for and evaluate ma: m0.20
5
mm1.0

5
µ===

da  

 
(b) Because m = 5: ( ) 915212 =−=−= mN  

 
42 ••  
Picture the Problem We can equate the sine of the angle at which the first diffraction 
minimum occurs to the sine of the angle at which the mth interference maximum occurs 
to find m. We can then find the number of bright interference fringes seen in the central 
diffraction maximum using .12 −= mN  
 
The number of fringes N in the 
central maximum is: 
 

12 −= mN                  (1)          

Relate the angle θ1 of the first 
diffraction minimum to the width a 
of the slits of the diffraction grating: 
 

a
λθ =1sin  

Express the angle θm corresponding 
to the mth interference maxima in 
terms of the separation d of the slits: 
 

d
m

m
λθ =sin  

Because we require that θ1 = θm, we 
can equate these expressions to 
obtain: 
 

ad
m λλ

=   

Solve for m: 
a
dm =  

 
Substitute in equation (1) to obtain: 12

−=
a
dN  
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Substitute numerical values and 
evaluate N: 

( ) 391
mm01.0
mm2.02

=−=N  

 
*43 ••  
Determine the ConceptPicture the Problem There are 8 interference fringes on each 
side of the central maximum. The secondary diffraction maximum is half as wide as the 
central one. It follows that it will contain 8 interference maxima. 
 
44 ••  
Picture the Problem We can equate the sine of the angle at which the first diffraction 
minimum occurs to the sine of the angle at which the mth interference maximum occurs 
to find m. We can then find the number of bright interference fringes seen in the central 
diffraction maximum using .12 −= mN  In (b) we can use the expression relating the 

intensity in a single-slit diffraction pattern to phase constant θ
λ
πφ sin2 a=  to find the 

ratio of the intensity of the third interference maximum to the side of the centerline to the 
intensity of the center interference maximum. 
 
(a) The number of fringes N in the 
central maximum is: 
 

12 −= mN                         (1)          

Relate the angle θ1 of the first 
diffraction minimum to the width a 
of the slits of the diffraction grating: 
 

a
λθ =1sin  

Express the angle θm corresponding 
to the mth interference maxima in 
terms of the separation d of the slits: 
 

d
m

m
λθ =sin  

Because we require that θ1 = θm, we 
can equate these expressions to 
obtain: 
 

ad
m λλ

=   

Solve for m: 
a
dm =  

 
Substitute in equation (1) to obtain: 12

−=
a
dN  

 
Substitute numerical values and 
evaluate N: 

( ) 91
mm03.0
mm15.02

=−=N  
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(b) Express the intensity for a 
single-slit diffraction pattern as a 
function of the phase difference φ: 

2

2
1

2
1

0
sin

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ
φII                 (2)            

where θ
λ
πφ sin2 a=  

 
For m = 3: 

d
λθ 3sin 3 =   

and  

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛==

d
a

d
aa πλ

λ
πθ

λ
πφ 632sin2

3  

 
Substitute numerical values and 
evaluate φ: 5

6
mm15.0
mm03.06 ππφ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Solve equation (2) for the ratio of I3 
to I0: 
 

2

2
1

2
1

0

sin
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ
φ

I
I

 

Substitute numerical values and 
evaluate I3/I0: 

255.0

5
6

2
1

5
6

2
1sin

2

0

3 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
π

π

I
I

 

 
Using Phasors to Add Harmonic Waves 
 
45 •  
Picture the Problem Chose the coordinate 
system shown in the phasor diagram. We 
can use the standard methods of vector 
addition to find the resultant of the two 
waves. 

 
 
The resultant of the two waves is of 
the form: 
 

( )δω += tRE sin  

Express R
r

in vector form: 
 

jiR ˆ3ˆ2 −=
r

 

Find the magnitude of R
r

: ( ) ( ) 61.332 22 =−+=R  
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Find the phase angle δ between 
R
r

and :1E
r

 
°−=⎟

⎠
⎞

⎜
⎝
⎛ −= − 3.56

2
3tan 1δ  

 
Substitute to obtain: ( )°−= 3.56sin61.3 tE ω  

 
*46 •  
Picture the Problem Chose the coordinate system shown in the phasor diagram. We can 
use the standard methods of vector addition to find the resultant of the two waves. 

 
 
The resultant of the two waves is of 
the form: 
 

( )δω += tRE sin  

Express the x component of :R
r

 
 

50.560cos34 =°+=xR  

Express the y component of :R
r

 
 

60.260sin30 =°+=yR  

Find the magnitude of R
r

: ( ) ( ) 08.660.250.5 22 =+=R  

 
Find the phase angle δ between 
R
r

and :1E
r

 
°=⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −− 3.25

50.5
60.2tantan 11

x

y

R
R

δ  

 
Substitute to obtain: ( )°+= 3.25sin08.6 tE ω  

 
Remarks: We could have used the law of cosines to find R and the law of sines to 
find δ. 
  
47 ••  
Picture the Problem We can evaluate the expression for the intensity for a single-slit 
diffraction pattern at the second secondary maximum to express I2 in terms of I0. 
 
The intensity at the second 
secondary maximum is given by: 
 

2

2
1

2
1

02
sin

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
φII  
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where 

θ
λ
πφ sin2 a=  

 
At this second secondary maximum: λθ

2
5sin =a  

and 

πλ
λ
πφ 5

2
52

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
Substitute for φ and evaluate I2: 

0

2

02 0162.0

2
5

2
5sin

III =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

= π

π

 

 
48 ••  
Picture the Problem We can use phasor concepts to find the phase angle δ in terms of 
the number of phasors N (three in this problem) forming a closed polygon of N sides at 
the minima and then use this information to express the path difference ∆r for each of 
these locations. Applying a small angle approximation, we can obtain an expression for y 
that we can evaluate for enough of the path differences to establish the pattern given in 
the problem statement. 
 
Express the phase angle δ in terms 
of the number of phasors N forming 
a closed polygon of N sides at the 
first minimum: 
 

N
πδ 2

=  

Express the path difference ∆r in 
terms of  sinθ  and the separation d 
of the slits: 

θsindr =∆  
or, provided the small angle approximation 
is valid, 

L
ydr =∆  

where L is the distance to the screen. 
 

Solve for y: 
 

r
d
Ly ∆= δ

d
Ly

2
=  

 
For three equally spaced sources, 
the phase angle corresponding to the 
first minimum is: 

3
2πδ =  and λδ

π
λ

3
1

2
==∆r  

 



Interference and Diffraction 
 

 

1047

Substitute to obtain: ( )
d
L

d
Ly

3
1

31
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
The phase angle corresponding to 
the second minimum is: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

3
2

2
1 πδ  and λδ

π
λ

3
2

2
==∆r  

 
Substitute to obtain: ( )

d
L

d
Ly

3
2

3
2

2
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
 When the path difference is λ, we have an 

interference maximum. 
 

The path difference corresponding 
to the fourth minimum is: 
 

λ3
4=∆r  

 

Substitute to obtain: ( )
d
L

d
Ly

3
4

3
4

2
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
Continue in this manner to obtain: 

...,8,7,5,4,2,1,
3min == n
d
Lny λ

 

 
(b) For L = 1 m, λ = 5×10–7 m, and d 
= 0.1 mm: 

( )( )
( ) mm33.3

mm0.13
m1nm50022 min ==y  

  
49 ••  
Picture the Problem We can use phasor concepts to find the phase angle δ in terms of 
the number of phasors N (four in this problem) forming a closed polygon of N sides at the 
minima and then use this information to express the path difference ∆r for each of these 
locations. Applying a small angle approximation, we can obtain an expression for y that 
we can evaluate for enough of the path differences to establish the pattern given in the 
problem statement. 
 
Express the phase angle δ in terms 
of the number of phasors N forming 
a closed polygon of N sides at the 
first minimum: 
 

N
πδ 2

=  

Express the path difference ∆r in 
terms of  sinθ  and the separation d 
of the slits: 

θsindr =∆  
or, provided the small angle approximation 
is valid, 
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L
ydr =∆  

where L is the distance to the screen. 
 

Solve for y: 
 

r
d
Ly ∆=  

 
For four equally spaced sources, the 
phase angle corresponding to the 
first minimum is: 
 

2
πδ =  and λδ

π
λ

4
1

2
==∆r  

 

Substitute to obtain: ( )
d
L

d
Ly

4
1

41
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
The phase angle corresponding to 
the second minimum is: 
 

πδ =  and λδ
π
λ

2
1

2
==∆r  

 
Substitute to obtain: ( )

d
L

d
Ly

4
2

22
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
The phase angle angle 
corresponding to the third minimum 
is: 
 

2
3πδ =  and 

4
3

2
3

2
λπ

π
λ

=⎟
⎠
⎞

⎜
⎝
⎛=∆r  

 

Substitute to obtain: ( )
d
L

d
Ly

4
3

4
3

3
λλ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
Continue in this manner to obtain: ,...9,7,6,5,3,2,1,

4min == n
d
Lny λ

 

 
(b) For L = 2 m, λ = 6×10–7 m,  
d = 0.1 mm, and n = 1: 
 

( )( )
( ) mm00.6

mm0.14
m2nm60022 min ==y  

For two slits:  ( )
d

Lmy λ2
1

min
22 +

=  

 
For L = 2 m, λ = 6×10–7 m,  
d = 0.1 mm, and m = 0: 

( )( ) mm0.12
mm0.1

m2nm6002 min ==y  

sources. for two width  thehalf is sourcesfour for  width The  
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50 ••  
Picture the Problem We can use aλθ =sin to find the first zeros in the intensity 

pattern. The four-slit interference maxima occur at angles given by 
...,2,1,0sin == m,md λθ . In (c) we can use the result of Problem 49 to find the 

angular spread between the central interference maximum and the first interference 
minimum on either side of it. In (d) we’ll proceed as in Example 33-6, using a phasor 
diagram for a four-slit grating, to find the resultant amplitude at a given point in the 
intensity pattern as a function of the phase constant δ, that, in turn, is a function of the 
angle θ that determines the location of a point in the interference pattern. 
 
(a) The first zeros in the intensity 
occur at angles given by: a

λθ =sin  

 
Solve for θ : 

⎟
⎠
⎞

⎜
⎝
⎛= −

a
λθ 1sin  

 
Substitute numerical values and 
evaluate θ : rad242.0

m2
nm480sin 1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

µ
θ  

 
(b) The four-slit interference 
maxima occur at angles given by: 
 

...,2,1,0sin == m,md λθ  

Solve for θm: 
⎥⎦
⎤

⎢⎣
⎡= −

d
m

m
λθ 1sin  

 
Substitute numerical values to 
obtain:  

( ) ( )mm
m 08.0sin

m6
nm480sin 11 −− =⎥

⎦

⎤
⎢
⎣

⎡
=

µ
θ  

 
Evaluate θm for m = 0, 1, 2, and 3: ( )[ ] 008.00sin 1

0 == −θ  

( )[ ] mrad1.8008.01sin 1
1 == −θ  

( )[ ] rad.161008.02sin 1
2 == −θ  

( )[ ] rad.242008.03sin 1
3 == −θ  

where θ3 will not be seen as it coincides 
with the first minimum in the diffraction 
pattern. 
 

(c) From Problem 49 we have: 
d

n
4min
λθ =  
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For n = 1: 
( ) rad0200.0

m64
nm480

min ==
µ

θ  

 
(d) Use the phasor method to show the superposition of four waves of the same amplitude 

A0 and constant phase difference .sin2 θ
λ
πδ d=  

 

 
 

Express A in terms of δ ′ and δ ′′: 
 

( )'A''AA δδ coscos2 00 +=    (1) 

Because the sum of the external 
angles of a polygon equals 2π: 
 

πδα 232 =+  
 

Examining the phasor diagram we 
see that: 
 

πδα =+ ''  

Eliminate α  and solve for ''δ to 
obtain:  
 

δδ 2
3=''  

Because the sum of the internal 
angles of a polygon of n sides is (n − 
2)π :  
 

πδφ 323 =+ ''  

From the definition of a straight 
angle we have: 
 

πδδφ =+− '  

Eliminate φ between these equations 
to obtain: 
 

δδ 2
1='  
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Substitute for ''δ and 'δ in equation 

(1) to obtain: 
 

( )δδ 2
1

2
3

0 coscos2 += AA  

Because the intensity is proportional 
to the square of the amplitude of the 
resultant wave: 
 

( )22
1

2
3

0 coscos4 δδ += II  

The following graph of I/I0 as a function of sinθ  was plotted using a spreadsheet 

program. The diffraction envelope was plotted using ,sin4
2

2
1

2
1

2

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ
φ

I
I

where 

.sin2 θ
λ
πφ a=  Note the excellent agreement with the results calculated in (a), (b), and 

(c). 
 

-2

0

2

4

6

8

10

12

14

16

18

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

sin(theta)

I /I 0

intensity

diffract ion
envelope

 
 
51 •••  
Picture the Problem We can find the 
phase constant δ from the geometry of the 
diagram to the right. Using the value of δ  
found in this fashion we can express the 
intensity at the point 1.72 cm from the 
centerline in terms of the intensity on the 
centerline. On the centerline, the amplitude 
of the resultant wave is 3 times that of each 
individual wave and the intensity is 9 times 
that of each source acting separately.  
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(a) Express δ  for the adjacent slits: 
 

θ
λ
πδ sin2 d=  

For small angles, sinθ ≈ tanθ : 
L
y

=≈ θθ tansin  

 
Substitute to obtain: 
 L

dy
λ
π

δ
2

=  

 
Substitute numerical values and 
evaluate δ : 

( )( )
( )( )

°==

=

270rad
2

3
m5.2nm550

cm72.1mm06.02

π

π
δ

 

 
The three phasors, 270° apart, are 
shown in the diagram to the right. 
Note that they form three sides of a 
square. Consequently, their sum, 
shown as the resultant R, equals the 
magnitude of one of the phasors. 
  
(b) Express the intensity at the point 
1.72 cm from the centerline: 
 

2RI ∝  

Because I0 ∝ 9R2: 
2

2

0 9R
R

I
I
=  ⇒ 

9
0I

I =  

 
Substitute for I0 and evaluate I: 2

2

mW/m56.5
9
W/m05.0

==I  

 
*52 •••  
Picture the Problem We can use the phasor diagram shown in Figure 33-26 to determine 
the first three values of φ that produce subsidiary maxima. Setting the derivative of 
Equation 33-19 equal to zero will yield a transcendental equation whose roots are the 
values of φ corresponding to the maxima in the diffraction pattern. 
 
(a) Referring to Figure 33-26 we see 
that the first subsidiary maximum 
occurs when: 
 

πφ 3=  

A minimum occurs when: 
 

πφ 4=  
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Another maximum occurs when: πφ 5=  

 
Thus, subsidiary maxima occur 
when: 
 

( ) ...,3,2,112 =+= n,n πφ  

and the first three subsidiary maxima  
are at φ = 3π, 5π, and 7π. 
 

(b) The intensity in the single-slit 
diffraction pattern is given by: 
 

2

2
1

2
1

0

sin
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ
φ

II  

 
Set the derivative of this expression equal to zero for extrema: 
 

( )
minima and maxima relativefor  0

sincossin
2 2

2
1

2
1

2
1

2
1

4
1

2
1

2
1

0 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ

φφφ
φ
φ

φ
I

d
dI

 

 
Simplify to obtain the transcendental 
equation: 
 

φφ 2
1

2
1tan =  

Solve this equation numerically (use 
the ″Solver″ function of your 
calculator) to obtain: 
 

πππφ 6.94and92.486.2 ,,=  

Remarks: Note that our results in (b) are smaller than the approximate values found 
in (a) by 4.80%, 1.63%, and 0.865% and that the agreement improves as n 
increases. 
 
Diffraction and Resolution 
 
53 •  
Picture the Problem We can use 

D
λθ 22.1=  to find the angle between the 

central maximum and the first diffraction 
minimum for a Fraunhofer diffraction 
pattern and the diagram to the right to find 
the distance between the central maximum 
and the first diffraction minimum on a 
screen 8 m away from the pinhole.  
 
(a) The angle between the central 
maximum and the first diffraction D

λθ 22.1=  
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minimum for a Fraunhofer 
diffraction pattern is given by: 
 
Substitute numerical values and 
evaluate θ : 

mrad54.8
mm1.0
nm700

22.1 ==θ  

 
(b) Referring to the diagram, we see 
that: 
 

θtanLy =  

Substitute numerical values and 
evaluate y: 

( ) ( ) cm83.6mrad54.8tanm8 ==y  

 
54 •  
Picture the Problem We can apply Rayleigh’s criterion to the overlapping diffraction 
patterns and to the diameter D of the pinhole to obtain an expression that we can solve for 
∆y. 

 
 
Rayleigh’s criterion is satisfied 
provided: 
 

D
λα 22.1c =  

Relate αc to the separation ∆y of the 
light sources: 
 

L
y∆

≈cα  provided αc << 1. 

Equate these expressions to obtain: 
 DL

y λ22.1=∆
 

Solve for ∆y: 
D
Ly λ22.1=∆  

 
Substitute numerical values and 
evaluate ∆y: 

( )( ) cm54.8
mm1.0

m10nm70022.1 ==∆y  
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*55 •  
Picture the Problem We can use 
Rayleigh’s criterion for slits and the 
geometry of the diagram to the right 
showing the overlapping diffraction 
patterns to express x in terms of λ, L, and 
the width a of the slit. 

 
 
Referring to the diagram, relate αc, 
L, and x: L

x
≈cα  

 
For slits, Rayleigh’s criterion is: 
 a

λα =c  

 
Equate these two expressions to 
obtain: 
 

aL
x λ
=  

Solve for x: 
a
Lx λ

=  

 
Substitute numerical values and 
evaluate x: 

( ) ( )
mm00.7

mm5.0

m5nm700
==x  

 
56 •  
Picture the Problem We can use Rayleigh’s criterion for circular apertures and the 
geometry of the diagram to express L in terms of λ, x, and the diameter D of your pupil. 

 
 
Referring to the diagram, relate αc, 
L, and x: L

x
≈cα  
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For circular apertures, Rayleigh’s 
criterion is: 
 

D
λα 22.1c =  

 
Equate these two expressions to 
obtain: 
 

DL
x λ22.1=  

Solve for L: 
λ22.1

xDL =  

 
Substitute numerical values and 
evaluate L: 

( )( )
( ) km35.8

nm55022.1
mm5cm112

==L  

 
57 •  
Picture the Problem We can use Rayleigh’s criterion for circular apertures and the 
geometry of the diagram to express L in terms of λ, x, and the diameter D of your pupil. 

 
 
Referring to the diagram, relate αc, 
L, and x: L

x
≈cα  

 
For circular apertures, Rayleigh’s 
criterion is: 
 

D
λα 22.1c =  

 
Equate these two expressions to 
obtain: 
 

DL
x λ22.1=  

Solve for L: 
λ22.1

xDL =  

 
Substitute numerical values and 
evaluate L: 

( )( )
( ) m844

nm55022.1
mm5cm5.6

==L  

 



Interference and Diffraction 
 

 

1057

58 ••  
Picture the Problem We can use 
Rayleigh’s criterion for circular apertures 
and the geometry of the diagram to the 
right showing the overlapping diffraction 
patterns to express L in terms of λ, x, and 
the diameter D of your pupil. 

 
 
(a) Referring to the diagram, relate 
αc, L, and x: L

x
≈cα provided α << 1 

 
For circular apertures, Rayleigh’s 
criterion is: 
 

D
λα 22.1c =  

 
Equate these two expressions to 
obtain: 
 

DL
x λ22.1=  

Solve for L: 
λ22.1

xDL =  

 
Substitute numerical values and 
evaluate L: 

( )( )
( ) m2.49

nm50022.1
mm5mm6

==L  

 

(b)
velength.shorter wa a hash light whict with viole

better resolved becan  holes  the  toalproportioninversely  is  Because ,L λ
 

 
59 ••  
Picture the Problem We can use Rayleigh’s criterion for circular apertures and the 
geometry of the diagram to obtain an expression we can solve for the minimum 
separation ∆x of the stars. 

 
 



Chapter 33    
 

 

1058 

(a) Rayleigh’s criterion is satisfied 
provided: 
 

D
λα 22.1c =  

Relate αc to the separation ∆x of the 
light sources: 
 

L
x∆

≈cα because αc << 1 

Equate these expressions to obtain: 
 DL

x λ22.1=∆
 

Solve for ∆x: 
D
Lx λ22.1=∆  

 
Substitute numerical values and evaluate ∆x: 
 

( )
m1000.5

in1
cm2.54in200

y1
m10461.9y4nm550

22.1 9

15

×=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
×

×⋅
=∆

c
c

x  

 
*60 ••  
Picture the Problem We can use Rayleigh’s criterion for circular apertures and the 
geometry of the diagram to obtain an expression we can solve for the minimum diameter 
D of the pupil that allows resolution of the binary stars. 

 
 
(a) Rayleigh’s criterion is satisfied 
provided: 
 

D
λα 22.1c =  

Solve for D: 

c

22.1
α
λ

=D  

 



Interference and Diffraction 
 

 

1059

Substitute numerical values and 
evaluate D: 
 

cm1mm89.9
180

rad
3600

114

nm550
22.1

≈=
°

×
°

×
=

π
''

''
D

 

 
Diffraction Gratings 
 
61 •  
Picture the Problem We can solve λθ md =sin for θ with m = 1 to express the location 
of the first-order maximum as a function of the wavelength of the light. 
 
The interference maxima in a 
diffraction pattern are at angles θ 
given by: 

λθ md =sin  
where d is the separation of the slits and m 
= 0, 1, 2, … 
 

Solve for the angular location θm of 
the maxima : 

⎟
⎠
⎞

⎜
⎝
⎛= −

d
m

m
λθ 1sin  

 
Relate the number of slits N per 
centimeter to the separation d of the 
slits: 
 

d
N 1
=  

Substitute to obtain: 
 

( )λθ mNm
1sin−=  

Evaluate θ1 for λ = 434 nm: ( )( )[ ]
mrad9.86

nm434cm2000sin 11
1

=

= −−θ
 

 
Evaluate θ1 for λ = 410 nm: ( )( )[ ]

mrad1.82

nm410cm2000sin 11
1

=

= −−θ
 

 
*62 •  
Picture the Problem We can solve λθ md =sin for λ with m = 1 to express the location 
of the first-order maximum as a function of the angles at which the first-order images are 
found. 
 
The interference maxima in a 
diffraction pattern are at angles θ 
given by: 

λθ md =sin  
where d is the separation of the slits and m 
= 0, 1, 2, … 
 



Chapter 33    
 

 

1060 

Solve for λ: 
m

d θλ sin
=  

 
Relate the number of slits N per 
centimeter to the separation d of the 
slits: 
 

d
N 1
=  

Let m =1 and substitute for d to 
obtain: N

d θλ sin
=  

 
Substitute numerical values and 
evaluate λ1 for θ1 = 9.72 ×10–2 rad: 
 

( ) nm485
cm2000

rad1072.9sin
1

2

1 =
×

= −

−

λ  

Substitute numerical values and 
evaluate λ1 for θ 2 = 1.32 ×10–1 rad: 

( ) nm658
cm2000

rad1032.1sin
1

1

1 =
×

= −

−

λ  

 
63 •  
Picture the Problem We can solve λθ md =sin for θ with m = 1 to express the location 
of the first-order maximum as a function of the wavelength of the light. 
 
The interference maxima in a 
diffraction pattern are at angles θ 
given by: 

λθ md =sin  
where d is the separation of the slits and m 
= 0, 1, 2, … 
 

Solve for the angular location θm of 
the maxima : 

⎟
⎠
⎞

⎜
⎝
⎛= −

d
m

m
λθ 1sin  

 
Relate the number of slits N per 
centimeter to the separation d of the 
slits: 
 

d
N 1
=  

Substitute to obtain: 
 

( )λθ mNm
1sin−=  

Evaluate θ1 for λ = 434 nm: ( )( )[ ]
°==

= −−

6.40rad7089.0

nm434cm15000sin 11
1θ

 

 
Evaluate θ1 for λ = 410 nm: ( )( )[ ]

°==

= −−

0.38rad6624.0

nm410cm15000sin 11
1θ
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64 •  
Picture the Problem We can use the grating equation with sinθ = 1 and  
m = 5 to find the longest wavelength that can be observed in the fifth-order spectrum 
with the given grating spacing. 
 
The interference maxima are at 
angles θ  given by: 
 

...,3,2,1sin == m,md λθ  

Solve for λ: 
m

d θλ sin
=  

 
Evaluate λ for sinθ = 1 and  
m = 5: 
 nm500

5
cm4000

1

5

1

===
−dλ  

 
65 •  
Picture the Problem We can use the grating equation to find the angle at which 
normally incident blue light will be diffracted by the Morpho’s wings. 
 
The grating equation is: 
 

λθ md =sin  
where m = 1, 2, 3, … 
 

Solve for θ to obtain: 
 ⎥⎦

⎤
⎢⎣
⎡= −

d
mλθ 1sin  

 
Substitute numerical values and evaluate 
θ1: 

( )( )
°=⎥

⎦

⎤
⎢
⎣

⎡
= − 0.30

nm880
nm4401sin 1θ  

 
66 ••  
Picture the Problem We can use the grating equation to find the angular separation of 
the first-order spectrum of the two lines. In (b) we can apply the definition of the 
resolving power of the grating to find the width of the grating that must be illuminated for 
the lines to be resolved. 
 
(a) Express the angular separation in 
the first-order spectrum of the two 
lines: 
 

577579 θθθ −=∆  

Solve the grating equation for θ : 
⎟
⎠
⎞

⎜
⎝
⎛= −

d
mλθ 1sin  

 
Substitute to obtain: 
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( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=∆

−

−

−

−

1

1

1

1

cm2000
1

nm577
sin

cm2000
1

nm579
sin

mm
θ  

 
For m = 1: 
 

( )( ) ( )( )
°=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=∆

−

−

−

− 0231.0

cm2000
1

nm5771
sin

cm2000
1

nm5791
sin

1

1

1

1θ  

 
(b) Express the width of the beam 
necessary for these lines to be 
resolved: 
 

Ndw =                       (1) 

Relate the resolving power of the 
diffraction grating to the number of 
slits N that must be illuminated in 
order to resolve these wavelengths 
in the mth order: 
 

mN=
∆λ
λ

 

For m = 1:  
λ
λ
∆

=N  

 
Substitute in equation (1) to obtain: 

λ
λ
∆

=
dw  

 
Letting λ be the average of the two 
wavelengths, substitute numerical 
values and evaluate w: 

( )
mm45.1

nm2
cm2000

1nm578 1

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
−

w

 
 
*67 ••  
Picture the Problem We can use the grating equation ... 3, 2, 1, sin == m,md λθ  to 

express the order number in terms of the slit separation d, the wavelength of the light λ, 
and the angle θ. 
 
The interference maxima in the 
diffraction pattern are at angles θ  

... 3, 2, 1, sin == m,md λθ  



Interference and Diffraction 
 

 

1063

given by: 
 
Solve for m: 
 λ

θsindm =  

If one is to see the complete 
spectrum: 
 

1sin ≤θ  and 
λ
dm ≤  

 
Evaluate mmax: 

98.2
nm700
cm4800

1
cm4800

1
1

max

1

max ==
−−

λ
m  

 
2. and 1  for only  spectrum complete  theseecan  one 2.98,   Because max == mm  

 
Express the condition for overlap: 
 

2211 λλ mm ≥  

spectrum.
order- thirdin the lengthsshort wave order with second in the swavelength

long of overlap is  therehowever, spectrum;order -first  theinto spectrum
order-second  theof overlap no is  therenm, 4002   nm 700 Because ×<

 

 
68 ••  
Picture the Problem We can use the grating equation and the resolving power of the 
grating to derive an expression for the angle at which you should look to see a 
wavelength of 510 nm in the fourth order. 
 
The interference maxima in the 
diffraction pattern are at angles θ  
given by: 
 

... 3, 2, 1, sin == m,md λθ         (1) 

 

The resolving power R is given by: 
 

mNR =  
where N is the number of slits and m is the 
order number. 
 

Relate d to the width w of the 
grating: 
 

N
wd =  

Substitute for N to obtain: 
R

mwd =  
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Substitute for d in equation (1) to 
obtain: 

λθ m
R

mw
=sin  

 
Solve for θ : 

⎟
⎠
⎞

⎜
⎝
⎛= −

w
Rλθ 1sin  

 
Substitute numerical values and 
evaluate θ : 

( )( )
°=⎥

⎦

⎤
⎢
⎣

⎡
= − 0.13

cm5
nm510000,22sin 1θ

 
69 ••  
Picture the Problem The distance on the screen to the mth bright fringe can be found 
using ,dLmym λ= where d is the slit separation. We can use LyNd 2min ∆== λθ  

to find the width of the central maximum and the R = mN, where N is the number of slits 
in the grating, to find the resolution in the first order. 
 
(a) The distance on the screen to the 
mth bright fringe is given by: 
 

d
Lmym

λ
=  

or, because d = n−1, 
Lmnym λ=  

 
Substitute numerical values to 
obtain:  

( )( )( )
( )m
mym

m353.0
m5.1nm589cm4000 1

=
= −

 

 
Evaluate y1 and y2: 
 

( )( ) m353.01m353.01 ==y  

and 
( )( ) m706.02m353.02 ==y  

 
(b) The angle θmin that locates the 
first minima in the diffraction 
pattern is given by: 
 

L
y

Nd 2min
∆

==
λθ  

where ∆y is the width of the central 
maximum. 
 

Solve for ∆y: 
 Nd

Ly λ2
=∆  

 
Substitute numerical values and 
evaluate ∆y: 
 

( )( )

( )

m4.88

cm4000
1lines8000

nm589m5.12

1

µ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆

−

y
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(c) The resolution R in the mth order 
is given by: 
 

mNR =  

Substitute numerical values and 
evaluate R: 

( )( ) 800080001 ==R  

 
70 ••  
Picture the Problem The width of the grating w is the product of its number of lines N 
and the separation of its slits d. Because the resolution of the grating is a function of the 
average wavelength, the difference in the wavelengths, and the order number, we can 
express w in terms of these quantities. 
 
Express the width w of the grating 
as a function of the number of lines 
N and the slit separation d: 
 

Ndw =  

The resolving power R of the 
grating is given by: 
 

mNR =
∆

=
λ
λ

 

Solve for N to obtain: 
 λ

λ
∆

=
m

N  

 
Substitute for N in the expression 
for w to obtain: 
 

λ
λ
∆

=
m

dw  

Letting λ be the average of the given wavelengths, substitute numerical values and 
evaluate w: 
 

( )

( ) cm43.3
nm519.313nm322.5192

cm8400
1nm519.322nm313.519 12

1

=
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
−

w  

 
*71 ••  
Picture the Problem We can use the expression for the resolving power of a grating to 
find the resolving power of the grating capable of resolving these two isotopic lines in the 
third-order spectrum. Because the total number of the slits of the grating N is related to 
width w of the illuminated region and the number of lines per centimeter of the grating 
and the resolving power R of the grating, we can use this relationship to find the number 
of lines per centimeter of the grating 
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The resolving power of a diffraction 
grating is given by: 
 

mNR =
∆

=
λ
λ

                  (1) 

Substitute numerical values and 
evaluate R: 
  51009.3

07355.54607532.546
07532.546

×=

−
=R

 

 
Express n, be the number of lines 
per centimeter of the grating, in 
terms of the total number of slits N 
of the grating and the width w of the 
grating: 
  

w
Nn =  

From equation (1) we have: 
 m

RN =  

 
Substitute to obtain: 
 mw

Rn =  

 
Substitute numerical values and 
evaluate n: ( )( )

14
5

cm1015.5
cm23
1009.3 −×=

×
=n  

 
72 ••  
Picture the Problem We can differentiate the grating equation implicitly to obtain an 
expression for the number of lines per centimeter n as a function of cosθ and dθ /dλ. We 
can use the Pythagorean identity sin2θ + cos2θ = 1 and the grating equation to write cosθ 
in terms of n, m, and λ.  Making this substitution and approximating dθ /dλ by ∆θ /∆λ 
will yield an expression for n in terms of m, λ, ∆λ, and ∆θ. 
 
(a) The grating equation is: 
 

... 2, 1, 0,  sin == , mmd λθ         (1) 

Differentiate both sides of this 
equation with respect to λ: 

( ) ( )λ
λ

θ
λ

m
d
dd

d
d

=sin  

or 

m
d
dd =
λ
θθcos  

 
Because n = 1/d: 
 

nm
d
d

=
λ
θθcos  
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Solve for n to obtain: 
λ
θθ

d
d

m
n cos1
=  

 
Approximate dθ /dλ by ∆θ /∆λ: θ

λ
θ cos1

∆
∆

=
m

n  

 
Substitute for cosθ : θ

λ
θ 2sin11

−
∆
∆

=
m

n  

 
From equation (1): λλθ nm

d
m

==sin  

 
Substitute to obtain: 22211 λ

λ
θ mn

m
n −

∆
∆

=  

 
Solve for n: 
 2

2

1

⎟
⎠
⎞

⎜
⎝
⎛
∆
∆

+

=

θ
λλm

n  

Substitute numerical values and evaluate n: 
 

1

15

2

2

cm6677

m10677.6

180
rad

12

nm480nm500
2

nm500nm480
3

1

−

−

=

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

°
×°

−
+⎟

⎠
⎞

⎜
⎝
⎛ +

=

π

n

 

 
(b) Express mmax in terms of d and 
λmax: 
 

maxmax
max

1
λλ n

dm ==  

Substitute numerical values and evaluate 
mmax: ( )( )

3
nm500cm6677

1
1max ==
−

m  
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73 ••  
Picture the Problem We can use the 
grating equation and the geometry of the 
diagram to derive an expression for the 
separation ∆y = y2 − y1 of the spectral lines 
in terms of the distance L to the screen, the 
wavelengths of the resolved lines, and the 
number of grating slits per centimeter n. 
We will assume that the angle θ 2 is small 
and then verify that this is a justified 
assumption.  
 
(a) The grating equation is: 
 

... 2, 1, 0,  sin == , mmd λθ          

Assuming that θ2  << 1 and  
m = 2: L

y
=≈ 22 tansin θθ  

 
Substitute to obtain: 
 

λm
L
yd =  

 
Solve for y: 

d
mLy λ

=  

 
Letting the numerals 1 and 2 refer to 
the spectral lines, express y2 – y1: 

( )1212 λλ −=−=∆
d

mLyyy  

 
 

Solve for d to obtain: 
 

( )12
12

λλ −
−

=
yy

mLd  

 
The number of lines per centimeter 
n is the reciprocal of d: 
 

( )12

12

λλ −
−

=
mL

yyn  

Substitute numerical values and 
evaluate n: 
 

( )( )( )
1cm750

nm520nm590m82
cm8.4

−=

−
=n

 

 
To confirm our assumption that  
θ2  << 1, solve the grating equation 
for θ2: 
   

( )n
d

λλθ 2sin2sin 11
2

−− =⎟
⎠
⎞

⎜
⎝
⎛=  
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Substitute numerical values and 
evaluate θ2: 
 

( )( )[ ]
11086.8

cm750nm5902sin
2

11
2

<<×=

=
−

−−θ
 

Because θ2 << 1: 
 

222 tansin θθθ ≈≈ , as was assumed 

above. 
 

(b) The separation of the 
wavelengths is given by: 
 

( ) ( )1212 λλλλ −=−=∆ mLn
d

mLy  

For m = 1: 
 

( )( )( )( ) cm20.4nm520nm590cm750m81 1 =−=∆ −y  

 
For m = 3: 
 

( )( )( )( ) cm6.12nm520nm590cm750m83 1 =−=∆ −y  

 
74 •••  
Picture the Problem We can differentiate the grating equation implicitly and 
approximate dθ /dλ by ∆θ /∆λ to obtain an expression ∆θ  as a function of m, n, ∆λ, and 
cosθ.  We can use the Pythagorean identity sin2θ + cos2θ  = 1 and the grating equation to 
write cosθ in terms of n, m, and λ.  Making these substitutions will yield the given 
equation. 
 
The grating equation is: 
 

... 2, 1, 0,  sin == , mmd λθ         (1) 

Differentiate both sides of this 
equation with respect to λ: 

( ) ( )λ
λ

θ
λ

m
d
dd

d
d

=sin  

or 

m
d
dd =
λ
θθcos  

 
Because n = 1/d: 
 

nm
d
d

=
λ
θθcos  

 
Solve for n to obtain: 

λ
θθ

d
d

m
n cos1
=  

 
Approximate dθ /dλ by ∆θ /∆λ: θ

λ
θ cos1

∆
∆

=
m

n  
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Solve for ∆θ : 
 θ

λθ
cos
∆

=∆
nm

 

 
Substitute for cosθ : 

θ

λθ
2sin1−

∆
=∆

nm
 

 
From equation (1): λλθ nm

d
m

==sin  

 
Substitute to obtain: 

2221 λ

λθ
mn

nm
−

∆
=∆  

 
Simplify by dividing the numerator and denominator by nm: 
 

2
2222

222222 1111
λ

λ
λ

λ

λ

λθ
−

∆
=

−

∆
=

−

∆
=∆

mnmn
mnmn

nm

 

 
75 •••  
Picture the Problem We can use the grating equation and the geometry of the grating to 
derive an expression for φm in terms of the order number m, the wavelength of the light λ, 
and the groove separation a. 
 
(a) The grating equation is: 
 

... 2, 1, 0,  sin == , mmd λθ         (1) 

Because φ and θI have their left and 
right sides mutually perpendicular: 
 

mφθ =i  

Substitute to obtain: 
 

λφ md m =sin  

Solve for φm: 
⎟
⎠
⎞

⎜
⎝
⎛= −

d
m

m
λφ 1sin  

 
(b) For m = 2: 

( )( )
°=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

−

− 2.64

cm000,10
1

nm4502sin
1

1
2φ  
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76 •••  
Picture the Problem We can follow the procedure outlined in the problem statement to 
obtain R = λ/∆λ = mN. 
 
(a) Express the relationship between 
the phase difference φ and the path 
difference ∆r: 
 

λπ
φ r∆

=
2

 ⇒ 
λ
πφ r∆

=
2

 

Because ∆r = dsinθ : 
θ

λ
πφ sin2 d

=  

 
(b) Differentiate this expression 
with respect to θ to obtain: 
 

θ
λ
πθ

λ
π

θθ
φ cos2sin2 dd

d
d

d
d

=⎥⎦
⎤

⎢⎣
⎡=  

Solve for dφ: 
θθ

λ
πφ ddd cos2

=  

 
(c) From (b):  

θπ
φλθ

cos2 d
dd =  

 
Substitute 2π/N for dφ to obtain: 

θ
λθ
cosNd

d =               33-30 

 
(d) Equation 33-27 is: 
 

... 2, 1, 0,   sin == m,md λθ  

Differentiate this expression 
implicitly with respect to λ to 
obtain: 
 

[ ] [ ]λ
λ

θ
λ

m
d
dd

d
d

=sin  

or 

m
d
dd =
λ
θθcos  

 
Solve for dθ  to obtain: 
 θ

λθ
cosd

mdd =                   33-31 

 
(e) Equate the two expressions for dθ 
obtained in (c) and (d): θ

λ
θ

λ
coscos d

md
Nd

=  

 
Solve for R = λ/∆λ: 

mN
d

R ==
λ
λ
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General Problems 
 
*77 •  
Picture the Problem We can apply the condition for constructive interference to find the 
angular position of the first maximum on the screen. Note that, due to reflection, the 
wave from the image is 180o out of phase with that from the source. 
 
(a) Because y0 << L, the distance 
from the mirror to the first 
maximum is given by: 
 

00 θLy =                             (1) 

Express the condition for 
constructive interference: 
 

( ) ...,2,1,0sin 2
1 =+= m,md λθ  

Solve for θ : 
 

( ) ⎥⎦
⎤

⎢⎣
⎡ += −

d
m λθ 2

11sin  

 
For the first maximum, m = 0 and: ( ) ⎥⎦

⎤
⎢⎣
⎡= −

d
λθ 2

11
0 sin  

 
Substitute in equation (1) to obtain: 
 

( ) ⎥⎦
⎤

⎢⎣
⎡= −

d
Ly λ

2
11

0 sin  

Because the image of the slit is as 
far behind the mirror’s surface as 
the slit is in front of it, d = 2 mm. 
Substitute numerical values and 
evaluate y0: 
 

( ) ( )

mm150.0

mm2
nm600sinm1 2

11
0

=

⎥
⎦

⎤
⎢
⎣

⎡
= −y

 

 

(b) The separation of the fringes on 
the screen is given by: 
 

d
Ly λ

=∆  

The number of dark bands per 
centimeter is the reciprocal of the 
fringe separation: 
 

L
d

y
n

λ
=

∆
=

1
 

Substitute numerical values and 
evaluate n: ( )( )

13 m1033.3
m1nm600

mm2 −×==n  

 
78 ••  
Picture the Problem The light from the radio galaxy reaches the radio telescope by two 
paths; one coming directly from the galaxy and the other reflected from the surface of the 
lake. The latter is phase shifted 180°, relative to the former, by reflection from the surface 
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of the lake. We can use the condition for constructive interference of two waves to find 
the angle above the horizon at which the light from the galaxy will interfere 
constructively. 

 
 
Because the reflected light is phase 
shifted by 180°, the condition for 
constructive interference at point P 
is: 
 

( )λ2
1+=∆ mr  

where m = 0, 1, 2, … 

Referring to the figure, note that: 

d
r∆

≈θsin  ⇒ ⎥⎦
⎤

⎢⎣
⎡∆= −

d
r1sinθ  

 
Substitute for ∆r to obtain: ( )

⎥⎦
⎤

⎢⎣
⎡ +

= −

d
m λ

θ 2
1

1sin  

 
Noting that m = 0 for the first 
interference maximum, substitute 
numerical values and evaluate θ0: 

( )

°=

×=⎥
⎦

⎤
⎢
⎣

⎡
= −−

286.0

rad1000.5
m20
cm20sin 32

1
1

0θ
 

 
79 •  
Picture the Problem We can use the 
condition determining the location of 
points of zero intensity in a diffraction 
pattern to express the location of the first 
zero in terms of y and L. The width of the 
central maximum can then be found from 
∆y = 2y.  
 
Express the horizontal length of the 
principal diffraction maximum on 
the screen: 
 

yy 2=∆                               (1) 

Referring to the diagram, relate the 
angle θ  to the distances y and L: 
 

L
y

=θtan  

or, because θ  << 1, tanθ ≈ sinθ  and 
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L
y

=θsin  

 
The points of zero intensity for a 
single-slit diffraction pattern are 
determined by the condition: 
 

...,2,1sin == m,ma λθ  

Substitute for sinθ  to obtain: 
 

λm
L
ay

=  

 
Solve for y: 

a
Lmy λ

=  

 
Substitute for y in equation (1): 
 a

Lmy λ2=∆  

 
At the first diffraction minimum, m 
= 1. Substitute numerical values and 
evaluate ∆y: 

( ) ( )( ) cm68.1
mm5.0

m6nm70012 ==∆y  

 
80 •  
Picture the Problem We can use the Rayleigh criterion to express αc in terms of λ and 
the diameter of the opera glasses lens D and the geometry of the problem to relate αc to 
separation y of the singer’s eyelashes and the observation distance L. 

 
 
The critical angular separation, 
according to Rayleigh’s criterion, is: 
 

D
λα 22.1c =  

Given that αc << 1, it is also given 
by: 
 

L
y

≈cα  

Equating these two expressions 
yields: 
 

DL
y λ22.1=  
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Solve for D to obtain: 
y
LD λ22.1=  

 
Substitute numerical values and 
evaluate D: 

( )( ) mm6.33
mm5.0

m25nm55022.1 ==D  

 
81 •  
Picture the Problem The resolving power of a telescope is the ability of the instrument 
to resolve two objects that are close together. Hence we can use Rayleigh’s criterion as 
the resolving power of the Arecibo telescope. 
 
Rayleigh’s criterion for resolution 
is: 
 

D
λα 22.1c =  

Substitute numerical values and 
evaluate αc: 

mrad130.0
m300

cm2.322.1c ==α  

 
*82 ••  
Picture the Problem Note that reflection 
at both surfaces involves a phase shift of π  
rad. We can apply the condition for 
destructive interference to find the 
thickness t of the nonreflective coating. 

 
 
The condition for destructive 
interference is: 
 

( ) ( )
coating

air
2
1

coating2
12

n
mmt λλ +=+=  

Solve for t: ( )
coating

air
2
1

2n
mt λ
+=  

 
Evaluate t for m = 0: ( ) ( ) nm115

30.12
nm600

2
1 ==t  
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83 ••  
Picture the Problem The Fabry-Perot 
interferometer is shown in the figure. For 
constructive interference in the transmitted 
light the path difference must be an integral 
multiple of the wavelength of the light. 
This path difference can be found using the 
geometry of the interferometer.  

 
Express the path difference between 
the two rays that emerge from the 
interferometer:  
 

θcos
2ar =∆  

For constructive interference we  
Require that: 
 

...,2,1,0==∆ m,mr λ  

Equate these expressions to obtain: 
 θ

λ
cos
2am =  

Solve for a to obtain: 
θλ cos

2
ma =  

 
84 ••  
Picture the Problem The gaps in the 
spectrum of the visible light are the result 
of destructive interference between the 
incident light and the reflected light. 
Noting that there is a π rad phase shift at 
the first air-mica interface, we can use the 
condition for destructive interference to 
find the index of refraction n of the mica 
sheet. 

 

 
Because there is a π rad phase shift 
at the first air-mica interface, the 
condition for destructive 
interference is: 
 

...,32,1,,2 air
mica === m

n
mmt λλ  

Solve for n: 
 t

mn
2

airλ
=                            (1) 

 
For λ = 474 nm: ( )mt nm4742 =  
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For λ = 421 nm: ( )( )1nm4212 += mt  

 
Equate these two expressions for 2t 
and solve for m to obtain: 
 

m = 8 for λ = 474 nm 

Substitute numerical values in 
equation (1) and evaluate n: ( ) 58.1

m2.12
nm4748 ==
µ

n  

 
85 ••  
Picture the Problem Note that the light 
reflected at both the air-film and film-lens 
interfaces undergoes a π rad phase shift. 
We can use the condition for destructive 
interference between the light reflected 
from the air-film interface and the film-lens 
interface to find the thickness of the film. 
In (c) we can find the factor by which light 
of the given wavelengths is reduced by this 
film from .cos 2

12 δ∝I   

 

 

 
(a) Express the condition for 
destructive interference between the 
light reflected from the air-film 
interface and the film-lens interface: 
 

( ) ( )
n

mmt air
2
1

film2
12 λλ +=+=       (1) 

where m = 0, 1, 2, … 

Solve for t: 
 

( )
n

mt
2

air
2
1 λ

+=  

 
Evaluate t for m = 0: 

( ) nm8.97
38.12
nm540

2
1

=⎟
⎠
⎞

⎜
⎝
⎛=t  

 
(b) Solve equation (1) for λair: 

2
1air

2
+

=
m

tnλ  

 
Evaluate λair for m = 1: ( )( ) nm180

1
38.1nm8.972

2
1air =

+
=λ  

 
spectrum.  theofportion   visiblein thenot  is nm 180 because No;  

 
(c) Express the reduction factor f as δ2

12cos=f                               (2) 
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a function of the phase difference δ 
between the two reflected waves: 
 
Relate the phase difference to the 
path difference ∆r: 
 

film2 λπ
δ r∆

=  ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
=

film

2
λ

πδ r
 

Because ∆r = 2t: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

film

22
λ

πδ t
 

 
Substitute in equation (2) to obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

air

2

film

2

film
2
12

2cos

2cos22cos

λ
π

λ
π

λ
π

nt

ttf
 

 
Evaluate f  for λ = 400 nm: ( )( )

273.0

nm400
nm8.9738.12cos2

400

=

⎥
⎦

⎤
⎢
⎣

⎡
=

πf
 

 
Evaluate f  for λ = 700 nm: ( )( )

124.0

nm700
nm8.9738.12cos2

400

=

⎥
⎦

⎤
⎢
⎣

⎡
=

πf
 

 
86 ••  
Picture the Problem As indicated in the 
problem statement, we can find the optimal 
size of the pinhole by equating the angular 
width of the object at the film and the 
angular width of the diffraction pattern.  

 
 
Express the angular width of the a 
distant object at the film in terms of 
the diameter D of the pinhole and 
the distance L from the pinhole to 
the object: 
 

L
D

=θ2  ⇒ 
L

D
2

=θ  

Using Rayleigh’s criterion, express 
the angular width of the diffraction D

λθ 22.1ndiffractio =  



Interference and Diffraction 
 

 

1079

pattern: 
 
Equate these two expressions to 
obtain: 
 

DL
D λ22.1
2

=  

Solving for D yields: LD λ44.2=  
 

Substitute numerical values and 
evaluate D: 

( )( )
mm366.0

cm10nm55044.2

=

=D
 

 
*87 ••  
Picture the Problem We can use the geometry of the dots and the pupil of the eye and 
Rayleigh’s criterion to find the greatest viewing distance that ensures that the effect will 
work for all visible wavelengths. 

 
 
Referring to the diagram, express 
the angle subtended by the adjacent 
dots: 
 

L
d

≈θ  

Letting the diameter of the pupil of 
the eye be D, apply Rayleigh’s 
criterion to obtain:  
 

D
λα 22.1c =  

Set θ = αc to obtain: 
DL

d λ22.1=  

 
Solve for L: 

λ22.1
DdL =  

 
Evaluate L for the shortest 
wavelength light in the visible 
portion of the spectrum: 

( )( )
( ) m3.12

nm40022.1
mm2mm3

==L  
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*88 •••  
Picture the Problem It is given that with one tube evacuated and one full of air at 1-atm 
pressure, there are 198 more wavelengths of light in the tube full of air than in the 
evacuated tube of the same length.  We can use this condition to obtain an equation that 
expresses this difference in terms of L, λn, and  λ0.  We can obtain a second equation 

relating λn, n, and λ0 ( nn
0λλ = ) and solve the two equations simultaneously to find n.  

 
(a) The wavelengths are related by: 

nn
0λλ =  

 
The number of wavelengths in 
length L is the length L divided by 
the wavelength. Thus: 
 

198
0

=−
λλ
LL

n

 

 

Substitute for λn: 198
00

=−
λλ
LnL

 

 
Solve for λn to obtain: 
 L

n 01981 λ
+=  

Substitute numerical values and 
evaluate n: 0002916.1

m4.0
nm5891981 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=n  

 
(b) Replace 198 with 198 ± 0.25 and assume that the uncertainties in L and λ0 are 
negligible: 
 

( ) 0000004.00002916.125.01981 0 ±=±+=
L

n λ
 

 
89 •••  
Picture the Problem We can use the 
condition that determines points of zero 
intensity for a single slit diffraction pattern 
and the geometry of the slit and screen 
shown in the diagram to derive the given 
width of the central maximum on the 
screen.  
 
(a) The points of zero intensity for a 
single-slit diffraction pattern are 
given by: 

...,3,2,1sin == m,ma λθ              (1) 
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Relate the half-width y of the 
diffraction pattern to θ  and L: L

y
=θtan  

 
Because θ is very small,  
tanθ  ≈ sinθ and: 
 

L
y

≈θsin  

Substitute for sinθ  in equation (1) 
to obtain: 

λm
L
ya ≈  

 
Solve for y: 

a
Lmy λ

≈  

 
The width of the central maximum 
(m = 1) is: a

Ly λ22 ≈  

 

(b) Set 
a
La λ2

=  and simplify to 

obtain: 

a

a
L

Ly =≈ λ
λ

2
22  
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