
Chapter 34 
Wave-Particle Duality and Quantum Physics 
 
Conceptual Problems 

 
*1 •  
Determine the Concept The Young double-slit experiment, the diffraction of light by a 
small aperture, and the J.J. Thomson cathode-ray experiment all demonstrated the wave 
nature of electromagnetic radiation. Only the photoelectric effect requires an explanation 
based on the quantization of electromagnetic radiation. ( ) correct. is c  

 
2 ••  
Determine the Concept Since the power radiated by a source is the energy radiated per 
unit area and per unit time, it is directly proportional to the energy. The energy radiated 
varies inversely with the wavelength ( λhcE = ); i.e., the longer the wavelength, the 

less energy is associated with the electromagnetic radiation. ( ) correct. is b  

 
3 •  
(a) True  
 
(b) False. The work function of a metal is a property of the metal and is independent of 
the frequency of the incident light. 
 
(c) True  
 
(d) True  
 
4 •  
Determine the Concept In the photoelectric effect, the number of electrons emitted per 
second is a function of the light intensity, proportional to the light intensity, independent 
of the work function of the emitting surface and independent of the frequency of the light. 
( ) correct. is b  

 
*5 •  
Determine the Concept The threshold wavelength for emission of photoelectrons is 
related to the work function of a metal through tλφ hc= . Hence φλ hc=t and 

( ) correct. is a  
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6 •• 
Determine the Concept In order for electrons to be emitted hc/λ must be greater thanφ. 
Evidently, hc/λ1 < φ, but hc/λ2 > φ. 
 
7  •  
(a) True 
 
(b) True 
 
(c) True 
 
(d) False. Electrons are too small to be resolved by an electron microscope. 
 
8 •  
Determine the Concept If the de Broglie wavelengths of an electron and a proton are 
equal, their momenta must be equal. Since mp > me, vp < ve. Response (c) is correct. 
 
9 •  
Picture the Problem The kinetic energy of a particle can be expressed, in terms of its 

momentum, as
m

pK
2

2

= . We can use the equality of the kinetic energies and the fact that 

me < mp to determine the relative sizes of their de Broglie wavelengths. 
 
Express the equality of the kinetic 
energies of the proton and electron 
in terms of their momenta and 
masses: 
 

e

2
e

p

2
p

22 m
p

m
p

=  

Use the de Broglie relation for the 
wavelength of matter waves to 
obtain: 
 

2
ee

2

2
pp

2

22 λλ m
h

m
h

=  

or 
2
ee

2
pp λλ mm =  

 
Since me < mp: 2

e
2
p λλ <  and pe λλ >  

and ( ) correct. is c  

 
10 •  
Determine the Concept Yes. <x> can equal a value for which P(x) is zero.  An example 
is the asymmetric well for all even numbered states. 
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*11 •  
Determine the Concept In the photoelectric effect, an electron absorbs the energy of a 
single photon. Therefore, Kmax = hf − φ, independently of the number of photons incident 
on the surface. However, the number of photons incident on the surface determines the 
number of electrons that are emitted. 
 
12 ••  
Picture the Problem The probability of a particular event occurring is the number of 
ways that event can occur divided by the number of possible outcomes. The expectation 
value, on the other hand, is the average value of the experiment. 
 
(a) Find the probability of a 1 
coming up when the die is thrown: 

( )
2
1

6
31 ==P  

 
(b) Find the average value of a large 
number of throws of the die: 

5.1
6

2313
=

×+×
=n  

 
13 ••  
Determine the Concept According to quantum theory, the average value of many 
measurements of the same quantity will yield the expectation value of that quantity. 
However, any single measurement may differ from the expectation value. 
 
Estimation and Approximation 
 
14 ••  
Picture the Problem From Einstein’s photoelectric equation we have φ−= hfKmax , 
which is of the form bmxy += , where the slope is h and the  

Kmax-intercept is the work function. Hence we should plot a graph of Kmax versus f in 
order to obtain a straight line whose slope will be an experimental value for Planck’s 
constant.  
 
(a) The spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
A3 544 λ (nm) 
B3 0.36 Kmax (eV) 
C3 A3*10^−19 λ (m) 
D3 3*10^8/C3 λ/c  
E3 B3*1.6*10^−19 Kmax (J)  

 
lambda Kmax lambda f=c/lambda Kmax 

(nm) (eV) (m) (Hz) (J) 
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544 0.36 5.44E−07 5.51E+14 5.76E−20
594 0.199 5.94E−07 5.05E+14 3.18E−20
604 0.156 6.04E−07 4.97E+14 2.50E−20
612 0.117 6.12E−07 4.90E+14 1.87E−20
633 0.062 6.33E−07 4.74E+14 9.92E−21 

 
The following graph was plotted from the data shown in the above table. Excel’s ″Add 
Trendline″ was used to fit a linear function to the data. 

K max = 6.19E-34f  - 2.83E-19
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(b) From the regression line we note 
that the experimental value for 
Planck’s constant is: 
 

sJ1019.6 34
exp ⋅×= −h  

 

(c) Express the percent difference 
between hexp and h: 

%64.6
sJ1063.6
sJ1019.61

1diff%

34

34

expexp

=
⋅×
⋅×

−=

−=
−

=

−

−

h
h

h
hh

 

 
15 ••  
Picture the Problem From Einstein’s photoelectric equation we have φ−= hfKmax , 
which is of the form bmxy += , where the slope is h and the  

Kmax-intercept is the work function. Hence we should plot a graph of Kmax versus f in 
order to obtain a straight line whose intercept will be an experimental value for the work 
function.  
 
(a) The spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
A3 544 λ (nm) 
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B3 0.36 Kmax (eV) 
C3 A3*10^−19 λ (m) 
D3 3*10^8/C3 λ/c  
E3 B3*1.6*10^−19 Kmax (J)  

 
lambda Kmax lambda f=c/lambda Kmax 

(nm) (eV) (m) (Hz) (J) 
544 0.36 5.44E−07 5.51E+14 5.76E−20
594 0.199 5.94E−07 5.05E+14 3.18E−20
604 0.156 6.04E−07 4.97E+14 2.50E−20
612 0.117 6.12E−07 4.90E+14 1.87E−20
633 0.062 6.33E−07 4.74E+14 9.92E−21 

 
The following graph was plotted from the data shown in the above table. Excel’s ″Add 
Trendline″ was used to fit a linear function to the data. 

K max = 6.19E-34f  - 2.83E-19
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(b) From the regression line we note 
that the experimental value for the 
work function φ is: 
 

eV77.1

J101.6
eV1J1083.2 19

19
exp

=

×
××= −

−φ
 

 
(c) cesium.for function  work  theclosest to is eV 1.77  of  valueThe exp =φ  

 
*16 ••  
Picture the Problem From the Compton-scattering equation we have 

( )θλλλ cos1C12 −=− , where cmh eC =λ is the Compton wavelength. Note that this 

equation is of the form y = mx + b provided we let y = λ2 − λ1  and x = 1 − cosθ. Thus, we 
can linearize the Compton equation by plotting 12 λλλ −=∆ as a function of θcos1− . 

The slope of the resulting graph will yield an experimental value for the Compton 
wavelength. 
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(a) The spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
A3 45 θ (deg) 
B3 1 − cos(A3*PI()/180) 1 − cosθ  
C3 6.47E^−13 12 λλλ −=∆   

 
θ 1− cosθ λ2−λ1 

(deg)   
45 0.293 6.47E−13
75 0.741 1.67E−12
90 1.000 2.45E−12

135 1.707 3.98E−12
180 2.000 4.95E−12 

 
The following graph was plotted from the data shown in the above table. Excel’s ″Add 
Trendline″ was used to fit a linear function to the data. The regression line is 

( ) 1312 1003.1cos11048.2 −− ×−−×=∆ θλ  

delta lambda = 2.48E-12[1-cos(theta)]- 1.03E-13

0.0E+00

1.0E-12

2.0E-12

3.0E-12

4.0E-12

5.0E-12

6.0E-12

0.0 0.5 1.0 1.5 2.0

1-cos(theta)

de
lta

 la
m

bd
a

 
 

From the regression line we note 
that the experimental value for the 
Compton wavelength λC,exp is: 
 

m1048.2 12
expC,

−×=λ  

 

The Compton wavelength is given 
by: 
 

2
ee

C cm
hc

cm
h

==λ  

Substitute numerical values and 
evaluate λC: 
 

m1043.2
eV1011.5
nmeV1240 12

5C
−×=

×
⋅

=λ  
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Express the percent difference 
between λC and λC,exp: 

%06.21
m1043.2
m1048.2

1diff%

12

12

exp

expC,

exp

expexpC,

=−
×
×

=

−=
−

=

−

−

λ
λ

λ
λλ

 

 
*17 ••  
Picture the Problem The de Broglie wavelength of an object is given by λ = h/p, where 
p is the momentum of the object.  
  
The de Broglie wavelength of an 
object, in terms of its mass m and 
speed v, is: 
 

mv
h

=λ  

The values in the following table 
were obtained using the internet: 

Type of ball m vmax 
 (g) (m/s) 

Baseball 142 44 
Tennis 57 54 
Golf 57 42 

Soccer 250 31  
  
The de Broglie wavelength of a 
baseball, moving with its maximum 
speed, is: 
 

( )( ) m1006.1
m/s44kg142.0

sJ1063.6 34
34

−
−

×=
⋅×

=λ  

Proceed as above to obtain the 
values shown in the table: 
 

Type of 
ball 

m vmax λ 

 (g) (m/s) (m) 
Baseball 142 44 341006.1 −×  
Tennis 57 54 341015.2 −×  
Golf 57 42 341077.2 −×  

Soccer 250 31 3410855.0 −× 
  

h. wavelengtBroglie de
shortest  thehas ballsoccer   that theindicates  table theofn Examinatio

 

The Particle Nature of Light: Photons 
 
18 •  
Picture the Problem We can find the photon energy for an electromagnetic wave of a 
given frequency f from E = hf where h is Planck’s constant. 
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(a) For f = 100 MHz: 
( )( )

eV1014.4

J101.60
eV1J1063.6

J1063.6

MHz100sJ1063.6

7

19
26

26

34

−

−
−

−

−

×=

×
××=

×=

⋅×=

= hfE

 

 
(b) For f = 900 kHz: 

( )( )

eV1073.3

J101.60
eV1J1096.5

J1096.5

kHz900sJ1063.6

9

19
28

28

34

−

−
−

−

−

×=

×
××=

×=

⋅×=

= hfE

 

 
19 •  
Picture the Problem The energy of a photon, in terms of its frequency, is given by E=hf. 
 
(a) Express the frequency of a 
photon in terms of its energy and 
evaluate  f  for E = 1 eV: 
 

Hz1042.2

seV1014.4
eV1

14

15

×=

⋅×
== −h

Ef
 

 
(b) For E = 1 keV: 

Hz1042.2

seV1014.4
keV1

17

15

×=

⋅×
= −f

 

 
(c) For E = 1 MeV: 

Hz1042.2

seV1014.4
MeV1

20

15

×=

⋅×
= −f

 

 
*20 •  
Picture the Problem We can use E = hc/λ to find the photon energy when we are given 
the wavelength of the radiation. 
 
(a) Express the photon energy as a 
function of wavelength and evaluate 
E for λ = 450 nm: 

eV76.2
nm450

nmeV1240
=

⋅
==

λ
hcE  
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(b) For λ = 550 nm: eV25.2
nm550

nmeV1240
=

⋅
=E  

 
(c) For λ = 650 nm: eV91.1

nm650
nmeV1240

=
⋅

=E  

 
21 •  
Picture the Problem We can use E = hc/λ to find the photon energy when we are given 
the wavelength of the radiation. 
 
(a) Express the photon energy as a 
function of wavelength and evaluate 
E for λ = 0.1 nm: 
 

keV4.12
nm1.0

nmeV1240
=

⋅
==

λ
hcE  

 

(b) For λ =1 fm: GeV24.1
nm10

nmeV1240
6 =

⋅
= −E  

 
22 ••  
Picture the Problem We can express the density of photons in the beam as the number 
of photons per unit volume. The number of photons per unit volume is, in turn, the ratio 
of the power of the laser to the energy of the photons and the volume occupied by the 
photons emitted in one second is the product of the cross-sectional area of the beam and 
the speed at which the photons travel, i.e., the speed of light. 
 
Express the density of photons in 
the beam as a function of the 
number of photons emitted per 
second and the volume occupied by 
those photons: 
 

V
N

=ρ  

 

Relate the number of photons 
emitted per second to the power of 
the laser and the energy of the 
photons: 
 

hc
P

E
PN λ
==  

 

Express the volume containing the 
photons emitted in one second as a 
function of the cross sectional area 
of the beam: 
 

AcV =  
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Substitute to obtain: 
Ahc

P
2
λρ =  

 
Substitute numerical values and evaluate ρ: 
 

( )( )
( )( ) ( )

313

22834
m1005.4

mm1
4

m/s103sJ1063.6

nm632mW3 −

−

×=
⎟
⎠
⎞

⎜
⎝
⎛×⋅×

=
π

ρ  

 
*23 •  
Picture the Problem The number of photons per unit volume is, in turn, the ratio of the 
power of the laser to the energy of the photons and the volume occupied by the photons 
emitted in one second is the product of the cross-sectional area of the beam and the speed 
at which the photons travel; i.e., the speed of light. 
 
Relate the number of photons 
emitted per second to the power of 
the laser and the energy of the 
photons: 
 

hc
P

E
PN λ
==  

 

Substitute numerical values and 
evaluate N: 
 

( )( )
( )( )

116

834

s1095.1

m/s103sJ1063.6
m55.1mW5.2

−

−

×=

×⋅×
=

µN
 

 

The Photoelectric Effect 
 
24 •  
Picture the Problem The threshold wavelength and frequency for emission of 
photoelectrons is related to the work function of a metal through tt λφ hchf == . We 

can use Einstein’s photoelectric equation φ
λ
−=

hcKmax to find the maximum kinetic 

energy of the electrons for the given wavelengths of the incident light. 
 
(a) Express the threshold frequency 
in terms of the work function for 
tungsten and evaluate ft: 
 

Hz101.11

seV104.14
eV4.58

15

15t

×=

⋅×
== −h

f φ

 

 
Using v = fλ, express the threshold 
wavelength in terms of the threshold 

nm270
Hz101.11

m/s103
15

8

t
t =

×
×

==
f
vλ  
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frequency and evaluate λt: 
 

 

(b) Using Einstein’s photoelectric 
equation, relate the maximum 
kinetic energy of the electrons to 
their wavelengths and evaluate Kmax: 
 eV1.62

eV4.58
nm200

nmeV1240

max

=

−
⋅

=

−=−=−= φ
λ

φφ hchfEK

 

 
(c) Evaluate Kmax for  
λ = 250 nm: 

eV380.0

eV4.58
nm250

nmeV1240
max

=

−
⋅

=K
 

 
25 •  
Picture the Problem We can use the Einstein equation for photon energy to find the 
energy of an incident photon and his photoelectric equation to relate the work function 
for potassium to the maximum energy of the photoelectrons. The threshold wavelength 
can be found from φλ hc=t . 

 
(a) Use the Einstein equation for 
photon energy to relate the energy 
of the incident photon to its 
wavelength: 
 

eV4.13
nm300

nmeV1240
=

⋅
==

λ
hcE  

 

(b) Using Einstein’s photoelectric 
equation, relate the work function 
for potassium to the maximum 
kinetic energy of the photoelectrons: 
 

φ−= EKmax  

Solve for and evaluate φ: 

eV2.10

eV2.03eV13.4max

=

−=−= KEφ
 

 
(c) Proceed as in (b) with 

λhcE = : 

eV0.784

eV2.10
nm430

nmeV1240

max

=

−
⋅

=

−= φ
λ
hcK
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(d) Express the threshold 
wavelength as a function of 
potassium’s work function and 
evaluate λt: 

nm590
eV2.10

nmeV1240
t =

⋅
==

φ
λ hc

 

 
26 •  
Picture the Problem We can find the work function for silver using tλφ hc= and the 

maximum kinetic energy of the electrons using Einstein’s photoelectric equation. 
 
(a) Express the work function for 
silver as a function of the threshold 
wavelength: 
 

eV73.4
nm262

nmeV1240

t

=
⋅

==
λ

φ hc
 

 

(b) Using Einstein’s photoelectric 
equation, relate the work function 
for silver to the maximum kinetic 
energy of the photoelectrons: 
 eV2.36

eV4.73
nm175

nmeV1240

max

=

−
⋅

=

−=−= φ
λ

φ hcEK

 

 
27 •  
Picture the Problem We can find the threshold frequency and wavelength for cesium 
using tt λφ hchf == and the maximum kinetic energy of the electrons using Einstein’s 

photoelectric equation. 
 
(a) Use the Einstein equation for 
photon energy to express and 
evaluate the threshold wavelength 
for cesium: 
 

nm536
eV9.1

nmeV1240
t =

⋅
==

φ
λ hc

 

 

Use v = fλ to find the threshold 
frequency: 
 Hz104.59

nm653
m/s103

14

8

t
t

×=

×
==

λ
vf

 

 
(b) Using Einstein’s photoelectric 
equation, relate the maximum 
kinetic energy of the photoelectrons 
to the wavelength of the incident 
light and evaluate Kmax for λ = 250 
nm: 
 

eV06.3

eV90.1
nm502

nmeV1240

max

=

−
⋅

=

−= φ
λ
hcK
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(c) Proceed as above with  
λ = 350 nm: 
 eV64.1

eV90.1
nm503

nmeV1240
max

=

−
⋅

=K
 

 
*28 ••  
Picture the Problem We can use Einstein’s photoelectric equation to find the work 
function of this surface and then apply it a second time to find the maximum kinetic 
energy of the photoelectrons when the surface is illuminated with light of wavelength 365 
nm. 
 
Use Einstein’s photoelectric 
equation to relate the maximum 
kinetic energy of the emitted 
electrons to their total energy and 
the work function of the surface: 
 

φ
λ
−=

hcKmax  

Using Einstein’s photoelectric 
equation, find the work function of 
the surface: 
 

eV22.1

eV0.37
nm807

nmeV1240

maxmax

=

−
⋅

=

−=−= KhcKE
λ

φ

 

 
Substitute for φ and λ and evaluate 
Kmax: 

eV80.1

eV22.1
nm104

nmeV1240
max

=

−
⋅

=K
 

 
Compton Scattering 
 
29 •  
Picture the Problem We can calculate the shift in wavelength using the Compton 

relationship ( )θλ cos1
e

−=∆
cm

h
. 

 
The shift in wavelength is given by: ( )θλ cos1

e

−=∆
cm

h
 

 
Substitute numerical values and evaluate ∆λ: 
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( )( )( ) pm1.21cos601
m/s103kg109.11

sJ106.63
831

34

=°−
××
⋅×

=∆ −

−

λ  

 
30 •  
Picture the Problem We can calculate the scattering angle using the Compton 

relationship ( )θλ cos1
e

−=∆
cm

h
. 

 
Using the Compton scattering 
equation, relate the shift in 
wavelength to the scattering angle: 
 

( )θλ cos1
e

−=∆
cm

h
 

Solve for θ : 
⎟
⎠
⎞

⎜
⎝
⎛ ∆−= − λθ

h
cme1 1cos  

 
Substitute numerical values and evaluate θ : 
 

( )( )( ) °=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

××
−= −

−
− 2.30pm0.33

sJ106.63
m/s103kg109.111cos 34

831
1θ  

 
31 •  
Picture the Problem We can calculate the shift in wavelength using the Compton 

relationship ( )θλ cos1
e

−=∆
cm

h
. 

 
Express the wavelength of the 
incident photons in terms of the 
fractional change in wavelength: 
 

023.0
%3.2 λλ

λ
λ ∆

=⇒=
∆

 

Using the Compton scattering 
equation, relate the shift in 
wavelength to the scattering angle: 
 

( )θλ cos1
e

−=∆
cm

h
 

Substitute numerical values and evaluate λ: 
 

( )( )( ) pm180135cos1
m/s103kg109.110.023

sJ106.63
831

34

=°−
××
⋅×

= −

−

λ  
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*32  •  
Picture the Problem We can use the Einstein equation for photon energy to find the 
energy of both the incident and scattered photon and the Compton scattering equation to 
find the wavelength of the scattered photon. 
 
(a) Use the Einstein equation for 
photon energy to obtain: 
 

keV17.4
nm0.0711
nmeV1240

1

=
⋅

==
λ
hcE  

 
(b) Express the wavelength of the 
scattered photon in terms of its pre-
scattering wavelength and the shift 
in its wavelength during scattering: 
 

( )θλλλλ cos1
e

112 −+=∆+=
cm

h
 

 

Substitute numerical values and evaluate λ2: 
 

( )( )( ) nm0.0760cos1801
m/s103kg109.11

sJ106.63nm0.0711 831

34

2 =°−
××
⋅×

+= −

−

λ  

 
(c) Use the Einstein equation for 
photon energy to obtain: 
 

keV16.3
nm0.0760
nmeV1240

2

=
⋅

==
λ
hcE  

 
33 •  
Picture the Problem Compton used X rays of wavelength 71.1 pm. Let the direction the 
incident photon (and the recoiling electron) is moving be the positive direction. We can 
use p = h/λ to find the momentum of the incident photon and the conservation of 
momentum to find its momentum after colliding with the electron. 
 
Use the expression for the 
momentum of a photon to find the 
momentum of Compton’s photons: 
 

m/skg109.32

pm71.1
sJ106.63

24

34

1
1

⋅×=

⋅×
==

−

−

λ
hp

 

 
Using the Compton scattering 
equation, relate the shift in 
wavelength to the scattering angle: 
 

( )θλλλ cos1C12 −+=  

Substitute numerical values and evaluate λ2: 
 

( )( ) pm76.0cos1801m102.43pm71.1 12
2 =°−×+= −λ  
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Apply conservation of momentum to 
obtain: 
 

2e1 ppp −= ⇒ 21e ppp −=  

 

Substitute for p1 and p2 and evaluate pe: 
 

m/skg101.80
pm76.0

sJ106.63m/skg109.32 23
34

24
e ⋅×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅×
−−⋅×= −

−
−p  

 
34 ••  
Picture the Problem We can calculate the shift in wavelength using the Compton 

relationship ( ) ( )θλθλ cos1cos1 C
e

−=−=∆
cm

h
 and use conservation of energy to find 

the kinetic energy of the scattered electron. 
 
(a) Use the Compton scattering 
equation to find the change in 
wavelength of the photon: 

( )
( )( )

pm2.43

cos901m102.43

cos1
12

C

=

°−×=

−=∆
−

θλλ

 

 
(b) Use conservation of energy to 
relate the change in the kinetic 
energy of the electron to the 
energies of the incident and 
scattered photon: 
 

21
e λλ

hchcE −=∆  

Find the wavelength of the scattered 
photon: 
 

pm8.43
pm2.43pm612

=
+=∆+= λλλ

 

 
Substitute and evaluate the kinetic 
energy of the electron (equal to the 
change in its energy since it was 
stationary prior to the collision with 
the photon): 

keV6.59

pm8.43
1

pm6
1nmeV1240

21
e

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

−=∆
λλ
hchcE

 

 
35 ••  
Picture the Problem We can find the number of head-on collisions required to double 
the wavelength of the incident photon by dividing the required change in wavelength by 
the change in wavelength per collision. The change in wavelength per collision can be 
found using the Compton scattering equation. 
 



Wave-Particle Duality and Quantum Physics 
 
1099

Express the number of collisions 
required in terms of the change in 
wavelength per collision: 
 

collisionλ
λ

∆
∆

=N  

Using the Compton scattering 
equation, express the wavelength 
shift per collision: 
 

( )θλλ cos1C −=∆  

 

Substitute numerical values and 
evaluate ∆λ: 

( )( )
pm86.4

cos1801m102.43 12

=
°−×=∆ −λ

 

 
Substitute and evaluate N: 42

pm4.86
pm200

==N  

 
Electrons and Matter Waves 
 
36 •  

Picture the Problem From Equation 34-16 we have nm226.1
K

=λ provided K is in 

electron volts. 
 
(a) For K = 2.5 eV: nm775.0nm

5.2
226.1

==λ  

 
(b) For K = 250 eV: nm0775.0nm

250
226.1

==λ  

 
(c) For K = 2.5 keV: nm0245.0nm

2500
226.1

==λ  

 
(d) For K = 25 keV: pm75.7nm

25000
226.1

==λ  

 
37  •  
Picture the Problem We can use its definition to find the de Broglie wavelength of this 
electron. 
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Use its definition to express the de 
Broglie wavelength of the electron 
in terms of its momentum: 
 vm

h
p
h

e

=

=λ
 

 
Substitute numerical values and 
evaluate λ: ( )( )

nm91.2

m/s102.5kg1011.9
sJ106.63

531

34

=

××
⋅×

= −

−

λ
 

 
38 •  
Picture the Problem We can find the momentum of the electron from the de Broglie 

equation and its kinetic energy from nm226.1
K

=λ , where K is in eV. 

 
(a) Use the de Broglie relation to 
express the momentum of the 
electron: 
 

m/skg103.31

nm200
sJ106.63

27

34

⋅×=

⋅×
==

−

−

λ
hp

 

 
(b) Use the electron wavelength 
equation to relate the electron’s 
wavelength to its kinetic energy: 
 

nm226.1
K

=λ  

 

Solve for and evaluate K: 
eV1076.3

nm200
nmeV1.226 5

221
−×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=K

 
*39 ••  
Picture the Problem The momenta of these particles can be found from their kinetic 
energies and speeds. Their de Broglie wavelengths are given by  
λ = h/p. 
 
(a) The momentum of a particle p, 
in terms of its kinetic energy K, is 
given by: 
 

mKp 2=  

Substitute numerical values and evaluate pe: 
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( )

sN1009.2

eV
C101.6keV150kg1011.922

22

19
31

ee

⋅×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××==

−

−
−Kmp

 

 
Substitute numerical values and evaluate pp: 
 

( )

sN1095.8

eV
C101.6keV150kg1067.122

21

19
27

pp

⋅×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××==

−

−
−Kmp

 

 
Substitute numerical values and evaluate pα: 
 

sN1079.1

eV
C101.6keV150

u
kg1066.1u422

20

1927

⋅×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
×==

−

−−

Kmp αα
 

 
(b) The de Broglie wavelengths of 
the particles are given by: 
 

p
h

=λ  

Substitute numerical values and 
evaluate λp: 

m1041.7
sN1095.8
sJ1063.6 14

21

34

p
p

−
−

−

×=
⋅×
⋅×

=

=
p
hλ

 
Substitute numerical values and 
evaluate λe: 
 

m1017.3
sN1009.2
sJ1063.6 12

22

34
e

e

−
−

−

×=
⋅×
⋅×

=

=
p
hλ

 
Substitute numerical values and 
evaluate λα: 

m1070.3
sN1079.1
sJ1063.6 14

20

34
−

−

−

×=
⋅×
⋅×

=

=
α

αλ p
h
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40 •  
Picture the Problem The wavelength associated with a particle of mass m and kinetic 

energy K is given by Equation 34-15 as
Kmc22
nmeV1240 ⋅

=λ . 

 
Substitute numerical data in 
Equation 34-15 to obtain: ( )( )

nm202.0

eV02.0MeV9402
nmeV1240

=

⋅
=λ

 

 
41 •  
Picture the Problem The wavelength associated with a particle of mass m and kinetic 

energy K is given by Equation 34-15 as
Kmc22
nmeV1240 ⋅

=λ . 

 
Substitute numerical data in 
Equation 34-15 to obtain: ( )( )

fm2.20

nm1002.2

MeV2MeV9382
nmeV1240

5

=

×=

⋅
=

−

λ

 

 
*42 •  
Picture the Problem We can use its definition to calculate the de Broglie wavelength of 
this proton. 
 
Use its definition to express the de 
Broglie wavelength of the proton: 
 

ppp
p vm

h
p
h

==λ  

Substitute numerical values and evaluate λp: 

( ) ( )[ ] pm0.441
m/s1030.003kg101.67

sJ106.63
827

34

=
××
⋅×

= −

−

λ  

 
43 •  

Picture the Problem We can solve Equation 34-15 (
Kmc22
nmeV1240 ⋅

=λ ) for the kinetic 

energy of the proton and use the rest energy of a proton mc2 = 938 MeV to simplify our 
computation. 
 
Solve Equation 34-15 for the kinetic 
energy of the proton: 
 

( )
22

2

2
nmeV1240
λmc

K ⋅
=  
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(a) Substitute numerical values and 
evaluate K for λ = 1 nm: 

( )
( )( )

meV820.0

nm1MeV9382
nmeV1240

2

2

=

⋅
=K

 

 
(b) Evaluate K for λ = 1 nm: ( )

( )( )
MeV820

nm10MeV9382
nmeV1240

26

2

=

⋅
=

−
K

 

 
44 •  
Picture the Problem We’ll need to convert oz and mph into SI units. Then we can use its 
definition to calculate the de Broglie wavelength of the baseball. 
 
Use its definition to express the de 
Broglie wavelength of the baseball: 
 

baseballbaseballbaseball
baseball vm

h
p

h
==λ  

Substitute numerical values and evaluate λbaseball: 
 

m101.10

h
mi

s
m447.0

h
mi95

lb2.20
kg1

oz16
lb1oz5

sJ106.63 34
34

baseball
−

−

×=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

⋅×
=λ  

 
For the tennis ball: 
 

balll tennisball tennis

ball tennis
ball tennis

vm
h

p
h

=

=λ
 

 
Substitute numerical values and evaluate λtennis ball: 
 

m1001.2

h
mi

s
m447.0

h
mi130

lb2.20
kg1

oz16
lb1oz2

sJ106.63 34
34

balll tennis
−

−

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

⋅×
=λ  

 
h. wavelengtBroglie delonger   thehas ball  tennisThe  
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Remarks: Because λ = h/p, we could have solved the problem by determining which 
ball has the smaller momentum. 
 
45 •  
Picture the Problem If K is in electron volts, the wavelength of a particle is given 

by nm226.1
K

=λ provided K is in eV. 

 
Evaluate λ for K = 54 eV: nm167.0nm

54
1.226nm226.1

===
K

λ

 
46 •  

Picture the Problem We can use nm226.1
K

=λ , where K is in eV, to find the energy of 

electrons whose wavelength isλ. 
 
Relate the wavelength of the 
electrons to their kinetic energy: 
  

nm226.1
K

=λ  

Solve for K: 221eVnm226.1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

λ
K  

 
Substitute numerical values and 
evaluate K: eV8.22

nm257.0
eVnm226.1

221

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=K  

 
*47 •  

Picture the Problem We can use nm226.1
K

=λ , where K is in eV, to find the 

wavelength of 70-keV electrons. 
 
Relate the wavelength of the 
electrons to their kinetic energy: 
  

nm23.1
K

=λ  

Substitute numerical values and 
evaluate λ: 

pm63.4nm
eV1070

226.1
3

=
×

=λ  

 
48 •  
Picture the Problem We can use its definition to calculate the de Broglie wavelength of 
a neutron with speed 106 m/s. 
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Use its definition to express the de 
Broglie wavelength of the neutron: 
 

nnn
n vm

h
p
h

==λ  

Substitute numerical values and evaluate 
λn: ( )( )

pm0.397

m/s10kg101.67
sJ106.63
627

34

n

=

×
⋅×

= −

−

λ
 

 
Wave-Particle Duality 
 
49 •  
Picture the Problem In order for diffraction to occur, the diameter of the aperture d must 
be approximately equal to the de Broglie wavelength of the spherical object. We can use 
the de Broglie relationship to find the size of the aperture necessary for this object to 
show diffraction. 
 
Express the de Broglie wavelength 
of the spherical object: 
 

objectobjectobject
object vm

h
p

h
==λ  

Substitute numerical values and 
evaluate λobject: ( )( )

m1066.1

m/s100kg104
sJ106.63

33

3

34

object

−

−

−

×=

×
⋅×

=λ
 

aperture.an such  through squeeze  toable be  wouldobjectscommon  no so and
proton a ofdiameter  even thean smaller th magnitude of ordersmany  is This

 

 
50 •  
Picture the Problem In order for diffraction to occur, the size of the object must be 

approximatelyλ. The wavelength of the neutron is given by 
Kmc22
nmeV1240 ⋅

=λ . The rest 

energy of the neutron is mc2 = 940 MeV. 
 
Substitute numerical values and 
evaluate λ: ( )( )

fm10

nm1004.9

MeV10MeV9402
nmeV1240

6

≈

×=

⋅
=

−

λ

 

 

energy.  with thisneutrons
of nature  wave theedemonstrat  to targetssuitable be  wouldnuclei so and

diameternuclear  a as magnitude-of-order same  theof ish  wavelengtThis
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51 •  

Picture the Problem We can use nm226.1
K

=λ , where K is in eV, to find the 

wavelength of 200-eV electrons. In order for diffraction to occur, the size of the target 
must be approximatelyλ. 
 
Relate the wavelength of the 
electrons to their kinetic energy: 
  

nm226.1
K

=λ  

Substitute numerical values and 
evaluate λ: 

nm.08670nm
eV200

226.1
==λ  

 

energy.  with thiselectrons of nature  wave theedemonstrat  to targetssuitable
be  wouldatoms so and atoman  of size  theoforder   theof is distance This

 

 
A Particle in a Box 
 
*52 ••  

Picture the Problem The wave function for state n is ( )
L

xn
L

xn
πψ sin2

= . The 

following graphs were plotted using a spreadsheet program. The graph of ψ(x) for 
n = 1 is shown below: 
 

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

W
av

e 
fu

nc
tio

n
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The graph of ψ 2(x) for n = 1 is shown below: 
 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

Pr
ob

ab
ili

ty
 d

en
si

ty

 
The graph of ψ(x) for n = 2 is shown below: 
 

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

W
av

e 
fu

nc
tio

n
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The graph of ψ 2(x) for n = 2 is shown below: 
 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

Pr
ob
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ili

ty
 d

en
si

ty

 
The graph of ψ(x) for n = 3 is shown below: 
 

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

W
av

e 
fu

nc
tio

n
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The graph of ψ 2(x) for n = 3 is shown below: 
 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x /L

Pr
ob

ab
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ty
 d

en
si

ty

 
 
53  ••  

Picture the Problem We can find the ground-state energy using 2

2

1 8mL
hE = and the 

energies of the excited states using 1
2EnEn = . The wavelength of the electromagnetic 

radiation emitted when the proton transitions from one state to another is given by the 

Einstein equation for photon energy (
λ
hcE = ). 

 
(a) Express the ground-state energy: 

2
p

2

1 8 Lm
hE =  

 
Substitute numerical values and evaluate E1: 
 

( )
( )( ) MeV206

J101.6
eV1

m10kg101.678
sJ106.63

1921527

234

1 =
××

⋅×
= −−−

−

E  

 
Find the energies of the first two 
excited states: 

( ) MeV824MeV20642 1
2

2 === EE  

and 
( ) GeV85.1MeV20693 1

2
3 === EE  
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The energy-level diagram for this 
system is shown to the right: 

 
(b) Relate the wavelength of the 
electromagnetic radiation emitted 
during a proton transition to the 
energy released in the transition: 
 

E

E
hc

∆
⋅

=

∆
=

nmeV1240

λ
 

For the n = 2 to n = 1 transition: 11112 34 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ2→1: ( )

fm01.2

MeV2063
nmeV1240

3
nmeV1240

1
12

=

⋅
=

⋅
=→ E

λ
 

 
(c) For the n = 3 to n = 2 transition: 
 

11123 549 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ3→2: ( )

fm20.1

MeV2065
nmeV1240

5
nmeV1240

1
23

=

⋅
=

⋅
=→ E

λ
 

 
(d) For the n = 3 to n = 1 transition: 
 

11113 89 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ3→1: ( )

fm752.0

MeV2068
nmeV1240

8
nmeV1240

1
13

=

⋅
=

⋅
=→ E

λ
 

 
54 ••  

Picture the Problem We can find the ground-state energy using 2

2

1 8mL
hE = and the 

energies of the excited states using 1
2EnEn = . The wavelength of the electromagnetic 

radiation emitted when the proton transitions from one state to another is given by the 
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Einstein equation for photon energy (
λ
hcE = ). 

 
(a) Express the ground-state energy: 

2
p

2

1 8 Lm
hE =  

 
Substitute numerical values and evaluate E1: 
 

( )
( )( )

meV14.5
J101.60

eV1
nm.20kg101.678

sJ106.63
19227

234

1 =
××

⋅×
= −−

−

E  

 
Find the energies of the first two 
excited states: 

( ) meV6.20meV14.542 1
2

2 === EE  

and 
( ) meV3.46meV14.593 1

2
3 === EE  

 
(b) Relate the wavelength of the 
electromagnetic radiation emitted 
during a proton transition to the 
energy released in the transition: 
 

E

E
hc

∆
⋅

=

∆
=

nmeV1240

λ
 

For the n = 2 to n = 1 transition: 11112 34 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ2→1: ( )

m4.80

meV14.53
nmeV1240

3
nmeV1240

1
12

µ

λ

=

⋅
=

⋅
=→ E  

 
(c) For the n = 3 to n = 2 transition: 
 

11123 549 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ3→2: ( )

m2.48

meV14.55
nmeV1240

5
nmeV1240

1
23

µ

λ

=

⋅
=

⋅
=→ E  

 
(d) For the n = 3 to n = 1 transition: 
 

11113 89 EEEEEE =−=−=∆  

 
Substitute numerical values and 
evaluate λ3→1: ( )

m2.30

meV14.58
nmeV1240

8
nmeV1240

1
13

µ

λ

=

⋅
=

⋅
=→ E  
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Calculating Probabilities and Expectation Values 
 
55 ••  
Picture the Problem The probability of finding the particle in some range ∆x is ψ2dx. 
The interval ∆x = 0.002L is so small that we can neglect the variation in ψ(x) and just 
compute ψ2∆x. 
 
Express the probability of finding 
the particle in the interval ∆x: 
 

( ) ( ) xxxxPP ∆=∆= 2ψ  

Express the wave function for a 
particle in the ground state: 
 

( )
L
x

L
x πψ sin2

1 =  

Substitute to obtain: 

( )

L
x

L
L
x

L

x
L
x

L
P

π

π

π

2

2

2

sin004.0

002.0sin2

sin2

=

⎟
⎠
⎞

⎜
⎝
⎛=

∆=

 

 
(a) Evaluate P at  x = L/2: 

004.0
2

sin004.0
2

sin004.0 22

=

==
ππ

L
LP

 

 
(b) Evaluate P at  x = 2L/3: 

003.0
3

2sin004.0
3
2sin004.0 22

=

==
ππ

L
LP

 

 
(c) Evaluate P at  x = L: 

0

sin004.0sin004.0 22

=

== ππ
L
LP

 

 
*56 ••  
Picture the Problem The probability of finding the particle in some range ∆x is ψ 2dx. 
The interval ∆x = 0.002L is so small that we can neglect the variation in ψ(x) and just 
compute ψ 2∆x. 
 
Express the probability of finding 
the particle in the interval ∆x: 
 

( ) ( ) xxxxPP ∆=∆= 2ψ  
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Express the wave function for a 
particle in its first excited state: 
 

( )
L

x
L

x πψ 2sin2
2 =  

Substitute to obtain: 

( )

L
x

L
L

x
L

x
L

x
L

P

π

π

π

2sin004.0

002.02sin2

2sin2

2

2

2

=

⎟
⎠
⎞

⎜
⎝
⎛=

∆=

 

 
(a) Evaluate P at  x = L/2: 

0

sin004.0
2
2sin004.0 22

=

== ππ
L
LP

 

 
(b) Evaluate P at  x = 2L/3: 

003.0
3

4sin004.0
3
4sin004.0 22

=

==
ππ

L
LP

 

 
(c) Evaluate P at  x = L: 

0

2sin004.02sin004.0 22

=

== ππ
L
LP

 

 
57 ••  

Picture the Problem We’ll use ( ) ( ) ( )∫= dxxxfxf 2ψ with ( )
L

xn
L

xn
πψ sin2

= . 

 
(a) Express ψ(x) for the n = 2 state: ( )

L
x

L
x πψ 2sin2

2 =  

 
Express x using the n = 2 wave 

function: 
 

∫=
L

dx
L

x
L
xx

0

2 2sin2 π
 

Change variables by 

letting
L

xπθ 2
= . Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

2

and ,2

,
2

=

=

=

 

and the limits on θ are 0 and 2π. 
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Substitute to obtain: 
 

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

θθθ
π

θ
π

θθ
π

2

0

2
2

0

2

sin
2

2
sin

2
2

dL

dLL
L

x
L

 

 
Using a table of integrals, evaluate 
the integral: 
 

28
1

8
1

2

8
2cos

4
2sin

42

2
2

2

0

2

2

LL

Lx

=⎥⎦
⎤

⎢⎣
⎡ +−=

⎥
⎦

⎤
⎢
⎣

⎡
−−=

π
π

θθθθ
π

π

 

 
(b) Express 2x using the n = 2 

wave function: 
 

∫=
L

dx
L

x
L
xx

0

2
2

2 2sin2 π
 

Change variables as in (a) and 
substitute to obtain: 
 

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

θθθ
π

θ
π

θθ
π

2

0

22
3

2

0

2
2

2

sin
4

2
sin

2
2

dL

dLL
L

x
L

 

 
Using a table of integrals, evaluate the integral: 
 

2
2

2

3

3

22

0

23

3

2
2

321.0
8

1
3
1

23
4

44
2cos2sin

8
1

464

LL

LLx

=⎟
⎠
⎞

⎜
⎝
⎛ −=

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

π

ππ
π

θθθθθ
π

π

 

 
58 ••  

Picture the Problem We’ll use ( ) ( ) ( )∫= dxxxfxf 2ψ  with ( )
L

xn
L

xn
πψ sin2

= . 

In Part (c) we’ll use ( ) ( )xxP 2
2ψ= to determine the probability of finding the particle in 

some small region dx centered at x = ½L. 
 
(a) Express the wave function for a 
particle in its first excited state: 
 

( )
L

x
L

x πψ 2sin2
2 =  

Square both sides of the equation to 
obtain: 

( )
L

x
L

x πψ 2sin2 22
2 =  
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The graph of ψ 2(x) as a function of 
x is shown to the right: 

 
(b) Express x using the n = 2 

wave function: 
 

∫=
L

dx
L

x
L
xx

0

2 2sin2 π
 

Change variables by 

letting
L

xπθ 2
= . Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

3

and ,3

,
3

=

=

=

 

and the limits on θ are 0 and 2π. 
 

Substitute to obtain: 
 

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

θθθ
π

θ
π

θθ
π

2

0

2
2

0

2

sin
2

2
sin

2
2

dL

dLL
L

x
L

 

 
Using a table of integrals, evaluate 
the integral: 
 

28
1

8
1

2

8
2cos

4
2sin

42

2
2

2

0

2

2

LL

Lx

=⎥⎦
⎤

⎢⎣
⎡ +−=

⎥
⎦

⎤
⎢
⎣

⎡
−−=

π
π

θθθθ
π

π

 

 
(c) Express P(x): 
 

( ) ( )

dx
L

x
L

xxP
π

ψ
2sin2 2

2
2

=

=
 

 
Evaluate P(L/2): 

0sin2
2

2sin2
2

2

2

==

⋅=⎟
⎠
⎞

⎜
⎝
⎛

π

π

L

L
LL

LP
 

 
Because P(L/2) = 0: 0

2
=⎟

⎠
⎞

⎜
⎝
⎛ dxLP  
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(d)

zero. is /2  yield will
position  oft measuremen oneany y that probabilit h theeven thoug /2,

 yield  willparticle  theofposition   theof tsmeasuremen of  valueaverage
  that thestates )( ory.contradictnot  are )( and )( Parts  toanswers The

L
L

bcb

 

 
59 ••  
Picture the Problem We can find the constant A by applying the normalization 

condition ( )∫
∞

∞−

=12 dxxψ and finding the value for A that satisfies this condition. As soon 

as we have found the normalization constant, we can calculate the probability of the 

finding the particle in the region −a ≤ x ≤  a using ( )∫
−

=
a

a

dxxP 2ψ . 

 
(a) Express the normalization condition: ( )∫

∞

∞−

=12 dxxψ  

 
Substitute ( ) axAex −=ψ : ( ) ∫∫

∞
−

∞

∞−

− =
0

222
2 dxeAdxAe axax  

 
From integral tables: 
 α

α 1

0

=∫
∞

− dxe x  

 
Therefore: 

1
2

22 22

0

22 ==⎟
⎠
⎞

⎜
⎝
⎛=∫

∞
− aAaAdxeA ax  

 
Solve for A: 

a
A 1
=  

 
(b) Express the normalized wave 
function: 
 

( ) axe
a

x −=
1ψ  

The probability of finding the 
particle in the region −a ≤ x ≤  a is: 
 

( )

865.012

12

2

0

2

0

22

=−==

==

−−

−

−

∫

∫∫

edxe
a

dxe
a

dxxP

a
ax

a
ax

a

a

ψ
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60 ••  
Picture the Problem The probability density for the particle in its ground state is given 

by ( ) x
LL

xP π2sin2
= . We’ll evaluate the integral of P(x) between the limits specified in 

(a), (b), and (c). 
 
Express P(x) for 0 < x < d: ( ) ∫=

d

xdx
LL

xP
0

2sin2 π
 

 
Change variables by 

letting x
L
πθ = . Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

=

=

=

and ,

,

 

 
Substitute to obtain: 
 ( )

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛=

'

'

d

dL
L

xP

θ

θ

θθ
π

θ
π

θ

0

2

0

2

sin2

sin2

 

 
Using a table of integrals, evaluate 

∫
'

0

2sin
θ

θθ d : 

 

( )
'

xP
θθθ

π 04
2sin

2
2

⎥⎦
⎤

⎢⎣
⎡ −=           (1) 

 

(a) Noting that the limits on θ are 0 
and π/2, evaluate equation (1) over 
the interval 0 < x < ½L: 

( )

500.0

4
2

4
2sin

2
2 2

0

=

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ −=

π
π

θθ
π

π

xP
 

 
(b) Noting that the limits on θ are 0 
and π/3, Evaluate equation (1) over 
the interval 0 < x < L/3: 

( )

196.0
4

3
3
1

4
32sin

6
2

4
2sin

2
2 3

0

=−=

⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −=

π

ππ
π

θθ
π

π

xP
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(c) Noting that the limits on θ are 0 
and 3π/4, Evaluate equation (1) over 
the interval 0 < x < 3L/4: 

( )

909.0
2
1

4
3

4
46sin

8
32

4
2sin

2
2 43

0

=+=

⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −=

π

ππ
π

θθ
π

π

xP

 

 
 
61 ••  
Picture the Problem The probability density for the particle in its first excited state is 

given by ( ) x
LL

xP π2sin2 2= . We’ll evaluate the integral of P(x) between the limits 

specified in (a), (b), and (c). 
 
Express P(x) for 0 < x < d: ( ) ∫=

d

xdx
LL

xP
0

2 2sin2 π
 

 
Change variables by 

letting x
L
πθ 2

= . Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

2

and ,2

,
2

=

=

=

 

 
Substitute to obtain: 
 ( )

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛=

'

'

d

dL
L

xP

θ

θ

θθ
π

θ
π

θ

0

2

0

2

sin1

2
sin2

 

 
Using a table of integrals, evaluate 

∫
'

0

2sin
θ

θθ d : 

 

( )
'

xP
θθθ

π 04
2sin

2
1

⎥⎦
⎤

⎢⎣
⎡ −=           (1) 

 

(a) Noting that the limits on θ are 0 
and π, evaluate equation (1) over the 
interval 0 < x < ½L: 

( )

500.0

2
1

4
2sin

2
1

0

=

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ −=

π
π

θθ
π

π

xP
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(b) Noting that the limits on θ are 0 
and 2π/3, evaluate equation (1) over 
the interval 0 < x < L/3: 

( )

402.0
4

23
3
1

4
34sin

6
21

4
2sin

2
1 32

0

=+=

⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −=

π

ππ
π

θθ
π

π

xP

 

 
(c) Noting that the limits on θ are 0 
and 3π/2, evaluate equation (1) over 
the interval 0 < x < 3L/4: 

( )

750.0

4
31

4
2sin

2
1 23

0

=

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ −=

π
π

θθ
π

π

xP
 

 
62 ••  
Picture the Problem Classically, ( )∫= dxxxPx and ( )∫= dxxPxx 22 . 

 
Evaluate x with P(x) = 1/L: 

22 0

2

0

L
L

xdx
L
xx

LL

=⎥
⎦

⎤
⎢
⎣

⎡
== ∫  

 
Evaluate 2x with P(x) = 1/L: 

33

2

0

3

0

2
2 L

L
xdx

L
xx

LL

=⎥
⎦

⎤
⎢
⎣

⎡
== ∫  

 
63 ••  

Picture the Problem We’ll use ( ) ( ) ( )∫= dxxxfxf 2ψ  with ( )
L

xn
L

xn
πψ sin2

=  to 

show that  
2
Lx =  and 22

22
2

23 πn
LLx == .   

 
(a) Express x for a particle in the 

nth state: 
 

∫=
L

dx
L

xn
L
xx

0

2sin2 π
 

Change variables by 

letting
L

xnπθ = . Then: 

θ
π

πθ

θ
π

d
n
Ldx

dx
L

nd

n
Lx

=

=

=

and ,

,

 

and the limits on θ are 0 and nπ. 
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Substitute to obtain: 
 

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

π

θθθ
π

θ
π

θθ
π

n

n

d
n

L

d
n
L

n
L

L
x

0

2
22

0

2

sin2

sin2

 

 
Using a table of integrals, evaluate the integral: 
 

2

8
1

8
1

4
2

8
1

8
2cos

4
2sin

4
2

8
2cos

4
2sin

4
2

22

22

22

22

0

2

22

L

n
n

Lnnnn
n

L

n
Lx

n

=

⎥
⎦

⎤
⎢
⎣

⎡
+−=⎥

⎦

⎤
⎢
⎣

⎡
+−−=

⎥
⎦

⎤
⎢
⎣

⎡
−−=

π
π

ππππ
π

θθθθ
π

π

 

 
Express 2x for a particle in the 

nth state: 
 

∫=
L

dx
L

xn
L
xx

0

2
2

2 sin2 π
 

Change variables by 

letting
L

xnπθ = . Then: 

θ
π

πθ

θ
π

d
n
Ldx

dx
L

nd

n
Lx

=

=

=

and ,

,

 

and the limits on θ are 0 and nπ. 
 

Substitute to obtain: 
 

∫

∫

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

π

θθθ
π

θ
π

θθ
π

n

n

d
n

L

d
n
L

n
L

L
x

0

22
33

2

0

2
2

2

sin2

sin2

 

 
Using a table of integrals, evaluate the integral: 
 

22

22

33

33

2

0

23

33

2
2

23

46
2

4
2cos2sin

8
1

46
2

π

ππ
π

θθθθθ
π

π

n
LL

nn
n

L
n

Lx
n

−=

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=
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(b) 
62. Problemin given 

 3/ of  valueclassical  with theagreesresult   the, of  valueslargeFor 2Ln
 

 
*64 ••  

Picture the Problem From Problem 63 we have 
2
Lx = and 22

22
2

23 πn
LLx −= . A 

spreadsheet program was used to plot the following graphs of <x> and <x2> as a function 
of n. 
 

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 10 19 28 37 46 55 64 73 82 91 100

n

<x>
<x^2>

 
 

3
 , As

2
2 Lxn →∞→  

 
65 ••  
Picture the Problem For the ground state, n = 1 and so we’ll evaluate 

( ) ( ) ( )∫= dxxxfxf 2ψ  using ( )
L
x

L
x πψ cos2

1 = . 

 
Because ( )x2

1ψ is an even function 
of x, ( )xx 2

1ψ is an odd function of 

x. It follows that the integral of 
( )xx 2

1ψ  between −L/2 and L/2 is 

zero. Thus: 
 

0=x  for all values of n. 
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Express 2x : 
∫

−

=
2

2

222 cos2 L

L

xdx
L

x
L

x π
 

 

Change variables by letting
L
xπθ = . 

Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

=

=

=

and ,

,

 

and the limits on θ are −π/2 and π/2. 
 

Substitute to obtain: 
 

∫

∫

−

−

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

2

2

22
3

2

2

2

2
2

2

cos2

cos2

π

π

π

π

θθθ
π

θ
π

θθ
π

dL

dLL
L

x

 

 
Use a trigonometric identity to 
rewrite the integrand: 
 

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

−=

∫∫

∫

−−

−

2

2

22
2

2

2
3

2

2

2

22
3

2
2

sin2

sin12

π

π

π

π

π

π

θθθθθ
π

θθθ
π

ddL

dLx

 

 
Evaluate the second integral by looking it up in the tables: 
 

⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++

⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

−

−

2
2

3

3

2

23

23

3

2

2

2

23

3

2

2

2

233

3

2
2

2
1

12
1

424
2

8
cossin

8
1

1648

8
cossin

8
1

1648
2

4
2cos2sin

8
1

46
2

4
2cos2sin

8
1

463
2

π
ππ

π

πππππ

πππππ
π

θθθθθ
π

θθθθθθ
π

π

π

π

π

LL

L

L

Lx
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Remarks: The result differs from that of Example 34-8. Since we have shifted the 
origin by ∆x = L/2, we could have arrived at the above result, without performing 
the integration, by subtracting (∆x)2  = L2/4 from 2x as given in Example 34-8. 

 
66 ••  
Picture the Problem For the first excited state, n = 2, and so we’ll evaluate 

( ) ( ) ( )∫= dxxxfxf 2ψ  using ( )
L

x
L

x πψ 2sin2
2 = . 

 
Since ( )x2

2ψ is an even function of 
x, ( )xx 2

2ψ is an odd function of x. It 
follows that the integral of ( )xx 2

2ψ  

between −L/2 and L/2 is zero. Thus: 
 

0=x   

 

Express 2x : 
∫

−

=
2

2

222 2sin2 L

L

xdx
L

x
L

x π
 

 
Change variables by letting 

L
xπθ 2

= . Then: 

θ
π

πθ

θ
π

dLdx

dx
L

d

Lx

2

and ,2

,
2

=

=

=

 

and the limits on θ are −π  and π. 
 

Substitute to obtain: 
 

∫

∫

−

−

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

π

π

π

π

θθθ
π

θ
π

θθ
π

dL

dLL
L

x

22
3

2

2
2

2

sin
4

2
sin

2
2
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Evaluate the integral by looking it up in the tables: 
 

⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
−+⎢

⎣

⎡
−=

⎥
⎦

⎤
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+

⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

−

2
2

3

3

2

33

3

2

23

23

3

2

23

3

2
2

8
1

12
1

234

46464

4
2cos2sin

8
1

46

4
2cos2sin

8
1

464

4
2cos2sin

8
1

464

π
ππ

π

ππππ
π

πππππ

πππππ
π

θθθθθ
π

π

π

LL

L

L

Lx

 

 
Remarks: The result differs from that of Example 34-8. Since we have shifted the 
origin by ∆x = L/2, we could have arrived at the above result, without performing 
the integration, by subtracting (∆x)2  = L2/4 from 2x as given in Example 34-8. 

 
General Problems 
 
*67 •  
Picture the Problem We can use the Einstein equation for photon energy to find the 
energy of each photon in the beam. The intensity of the energy incident on the surface is 
the ratio of the power delivered by the beam to its delivery time. Hence, we can express 
the energy incident on the surface in terms of the intensity of the beam. 
 
(a) Use the Einstein equation for 
photon energy to express the energy 
of each photon in the beam: 

λ
hchfE ==photon  

 
Substitute numerical values and 
evaluate Ephoton: 

eV3.10
nm400

nmeV1240
photon =

⋅
=E  

 
(b) Relate the energy incident on a 
surface of area A to the intensity of 
the beam: 
 

tIAE ∆=  
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Substitute numerical values and 
evaluate E: 

( )( )( )

eV106.25

J101.60
eV1J0.01

s1m10W/m100

16

19

242

×=

×
×=

=

−

−E

 

 
(c) Express the number of photons 
striking this area in 1 s as the ratio 
of the total energy incident on the 
surface to the energy delivered by 
each photon: 

16

16

photon

1002.2

eV3.10
ev106.25

×=

×
==

E
EN

 

 
68 •  

Picture the Problem The particle’s nth-state energy is 2

2
2

8mL
hnEn = . We can find n by 

solving this equation for n and substituting the particle’s kinetic energy for En. 
 
Express the energy of the particle 
when it is in its nth state: 2

2
2

8mL
hnEn =  

 
Solve for n: 

nmE
h
Ln 8=  

 
Express the energy (kinetic) of the 
particle: 

2
2
1 mvEn =  

 
Substitute to obtain: 

h
mvLn 2

=  

 
Substitute numerical values and 
evaluate n: 

( )( )( )

1919

34

239

1031002.3

sJ106.63
m10m/s10kg102

×≈×=

⋅×
= −

−−−

n
 

 
69 •  
Picture the Problem We can use the fact that the uncertainties are given by  
∆x/L = 0.01 percent and ∆p/p = 0.01 percent to find ∆x and ∆p. 
 
(a) Assuming that ∆x/L = 0.01 
percent, find ∆x: 

( ) ( ) m00.1m101010 244 µ===∆ −−− Lx
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Assuming that ∆p/p = 0.01 percent, 
find ∆p: 

( )( )
m/skg10

m/s10kg101010
16

3944

⋅=

==∆
−

−−−− mvp
 

 
(b) Evaluate (∆x∆p)/h : ( )( )

12

34

16

10949.0

10054.1
m/skg10m1

×=

×
⋅

=
∆∆

−

−µ
h

px
 

 
70 •  
Picture the Problem We can estimate the number of emitted photons from the ratio of 
the total energy in the flash to the energy of a single photon. 
 
Letting N be the number of emitted 
photons, express the ratio of the 
total energy in the flash to the 
energy of a single photon: 
 

photonE
EN =  

Relate the energy in the flash to the 
power produced: 
 

tPE ∆=  

Express the energy of a single 
photon as a function of its 
wavelength: 
 

λ
hcE =photon  

 

Substitute to obtain: 
 hc

tPN λ∆
=  

 
Substitute numerical values and evaluate 
N: 
 

( )( )( )
( )( )

22

834

91215

1001.1

m/s103sJ106.63
m10400s10W105

×=

×⋅×
××

= −

−−

N
 

 
71 •  

Picture the Problem We can use the electron wavelength equation nm,23.1
K

=λ  where 

K is in eV to find the minimum energy required to see an atom. 
 
Relate the energy of the electron to 
the size of an atom (the wavelength 
of the electron): 
 

nm23.1
K

=λ  

provided K is in eV. 
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Solve for K: ( )
2

221 nmeV23.1
λ

⋅
=K  

 
Substitute numerical values and 
evaluate K: 

( )
( )

eV151
nm1.0

nmeV23.1
2

221

=
⋅

=K  

 
72 •  
Picture the Problem The flea’s de Broglie wavelength is ,ph=λ where p is the flea’s 

momentum immediately after takeoff. We can use a constant acceleration equation to 
find the flea’s speed and, hence, momentum immediately after takeoff. 
 
Express the de Broglie wavelength 
of the flea immediately after 
takeoff: 
 

0mv
h

p
h
==λ  

 

Using a constant acceleration 
equation, express the height the flea 
can jump as a function of its takeoff 
speed: 
 

yavv ∆+= 22
0

2  

or, since v = 0 and a = −g, 
ygv ∆= 20  

Substitute to obtain: 
ygm

h
∆

=
2

λ  

 
Substitute numerical values and 
evaluate λ: ( ) ( )( )

m1018.4

m0.2m/s9.812kg108
sJ106.63

29

26

34

−

−

−

×=

×

⋅×
=λ

 

 
*73 ••  
Picture the Problem We can relate the fraction of the photons entering the eye to ratio of 
the area of the pupil to the area of a sphere of radius R. We can find the number of 
photons emitted by the source from the rate at which it emits and the energy of each 
photon which we can find using the Einstein equation. 
 
Letting r be the radius of the pupil, 
Nentering eye the number of photons per 
second entering the eye, and Nemitted 
the number of photons emitted by 
the source per second, express the 
fraction of the light energy entering 
the eye at a distance R from the 

2

2

2

2

2
eye

emitted

eyeentering

4

4

4

R
r

R
r

R
A

N
N

=

=

=

π
π

π
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source: 
 

 

Solve for R to obtain: 
 

eyeentering

emitted

2 N
NrR =                              (1) 

 
Find the number of photons emitted 
by the source per second: 
 

photon
emitted E

PN =  

Using the Einstein equation, express 
the energy of the photons: 
 

λ
hcE =photon  

 
Substitute numerical values and 
evaluate Ephoton: 
 

eV2.07
nm600

nmeV1240
photon =

⋅
=E  

Substitute and evaluate Nemitted: 
( )( )

120

19emitted

s1002.3
J/eV101.60eV2.07

W100

−

−

×=

×
=N

 

 
Substitute for Nemitted in equation (1) 
and evaluate R: 

km1080.6

s20
s103.02

2
mm5.3

3

1

120

×=

×
= −

−

R
 

  
74 ••  
Picture the Problem The intensity of the light such that one photon per second passes 
through the pupil is the ratio of the energy of one photon to the product of the area of the 
pupil and time interval during which the photon passes through the pupil. We’ll use the 
Einstein equation to express the energy of the photon. 
 
Use its definition to relate the 
intensity of the light to the energy of 
a 600-nm photon: 
 

tA
E

A
PI

∆
== photon1

photon1  

 

Using the Einstein equation, express 
the energy of a 600-nm photon: 
 

λ
hcE =photon1  

Substitute for E1 photon to obtain: 
 tA

hcI
∆

=
λphoton1  
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Substitute numerical values and evaluate I1 photon: 

( )( )
( ) ( ) ( )

214

23

19

photon1 W/m101.69
s1m105

4
πnm600

J/eV10602.1nmeV1240 −

−

−

×=

⎥⎦
⎤

⎢⎣
⎡ ×

×⋅
=I  

 
75 ••  
Picture the Problem We can find the intensity at a distance of 1.5 m directly from its 
definition. The number of photons striking the surface each second can be found from the 
ratio of the energy incident on the surface to the energy of a  
650-nm photon. 
 
(a) Use its definition to express the 
intensity of the light as a function of 
distance from the light bulb: 
 

24 R
P

A
PI

π
==  

 

Substitute numerical data to obtain: 
( )

2
2 W/m3.18

m1.54
W90

==
π

I  

 
(b) Express the number of photons 
per second that strike the surface as 
the ratio of the energy incident on 
the surface to the energy of a 650-
nm photon: 
 

photonE
IAN =  

where A is the area of the surface. 

Use the Einstein equation to express 
the energy of the 650-nm photons: 
 

λ
hcE =  

Substitute to obtain: 
hc

IAN λ
=  

 
Substitute numerical values and 
evaluate N: 

( )( )( )
( )( )

15

19

242

1004.1

J/eV101.60nmeV1240
nm650m10W/m3.18

×=

×⋅
= −

−

N
 

 
76 ••  
Picture the Problem The maximum kinetic energy of the photoelectrons is related to the 
frequency of the incident photons and the work function of the cathode material through 
the Einstein equation. We can apply this equation to the two sets of data and solve the 
resulting equations simultaneously for the work function. 
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Using the Einstein equation, relate 
the maximum kinetic energy of the 
emitted electrons to the frequency of 
the incident photons and the work 
function of the cathode material: 
 

φ
λ

φ

−=

−=
hc
hfKmax

 

Substitute numerical data for the 
light of wavelength λ1: 

φ
λ

−=
1

eV8.1 hc
 

 
Substitute numerical data for the 
light of wavelength λ1/2: 

φ
λ

φ
λ

−=−=
11

2
2

eV5.5 hchc
 

 
Solve these equations 
simultaneously for φ to obtain: 

eV90.1=φ  

 
77 ••  
Picture the Problem We can use the Einstein equation to express the energy of the 
scattered photon in terms of its wavelength and the Compton scattering equation to relate 
this wavelength to the scattering angle and the pre-scattering wavelength. 
 
Express the energy of the scattered 
photon E′ as a function of their 
wavelength λ′: 
 

'
hcE'
λ

=  

Express the wavelength of the 
scattered photon as a function of the 
scattering angle θ : 
 

( ) λθλ +−= cos1
ecm
h'  

where λ is the wavelength of the incident 
photon. 
 

Substitute and simplify to obtain: 

( )

( )

( ) 1cos1

1cos1

cos1

2
e

2
e

e

+−
=

+−
=

+−
=

θ

θ
λ

λ

λθ

cm
E

E

cm
hc

hc
cm

h
hcE'
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78 ••  
Picture the Problem While we can work with either of the transitions described in the 
problem statement, we’ll use the first transition in which radiation of wavelength 114.8 
nm is emitted. We can express the energy released in the transition in terms of the 
difference between the energies in the two states and solve the resulting equation for n. 
 
Express the energy of the emitted 
radiation as the particle goes from 
the nth to n – 1 state: 
 

1−−=∆ nn EEE  

Express the energy of the particle in 
nth state: 
 

1
2EnEn =  

 

Express the energy of the particle in 
the n – 1 state: 
 

( ) 1
2

1 1 EnEn −=−  

Substitute and simplify to obtain: ( )

( )
λ
hcEn

EnEnE

=−=

−−=∆

1

1
2

1
2

12

1
 

 
Solve for n: 

2
1

2 1

+=
E

hcn
λ

 

 
Substitute numerical values and evaluate n: 

( )( ) 5
2
1

eV1.2nm114.82
nmeV1240

=+
⋅

=n  

 
*79 ••  
Picture the Problem We can use the expression for the energy of a particle in a well to 
find the energy of the most energetic electron in the uranium atom. 
Relate the energy of an electron in 
the uranium atom to its quantum 
number n: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2
2

8mL
hnEn  

Substitute numerical values and evaluate E92: 
 

( ) ( )
( )( )

MeV28.1
J101.6

eV1
nm05.0kg1011.98

sJ1063.692 19231

234
2

92 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×
×

×
⋅×

= −−

−

E  

 
The rest energy of an electron is: 
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( )( ) MeV512.0
J101.6

eV1m/s103kg1011.9 19

28312
e =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

××= −
−cm  

 
Express the ratio of E92 to mec2: 
 

50.2
MeV512.0

MeV1.28
2

e

92 ==
cm

E
 

 

electron.an  ofenergy  mass-rest
  the times2.5ely approximat iselectron  energeticmost   theofenergy  The

 

 
80 ••  
Picture the Problem We can express the kinetic energy of an electron in the beam in 
terms of its momentum. We can use the de Broglie relationship to relate the electron’s 
momentum to its wavelength and use the condition for constructive interference to find λ. 

 
 
Express the kinetic energy of an 
electron in terms of its momentum: 
 

m
pK
2

2

=                           (1) 

Using the de Broglie relationship, 
relate the momentum of an electron 
to its momentum: 
 

λ
hp =  

Substitute for p in equation (1) to 
obtain: 
 

2

2

2 λm
hK =                       (2) 

The condition for constructive 
interference is: 
 

λθ nd =sin  
where d is the slit separation and  
n = 0, 1, 2, … 
 

Solve for λ: 
 n

d θλ sin
=  

 
For θ << 1, sinθ is also given by: 
 L

y∆
≈θsin  
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Substitute for sinθ to obtain: 
nL

yd∆
=λ  

 
Substitute for λ in equation (2) to 
obtain: 
 

( )22

222

2 ymd
hLnK
∆

=  

Substitute numerical values (n = 1) and evaluate K: 
 

( ) ( ) ( )
( )( ) ( )

keV52.2
J101.6

eV1
mm68.0nm54kg1011.92

sJ106.63m5.11
192231

23422

=
××

⋅×
= −−

−

K  

 
81 ••  
Picture the Problem The maximum kinetic energy of the photoelectrons is related to the 
frequency of the incident photons and the work function of the illuminated surface 
through the Einstein equation. We can apply this equation to either set of data and solve 
the resulting equations simultaneously for the work function of the surface and the 
wavelength of the incident photons. 
 
Using the Einstein equation, relate 
the maximum kinetic energy of the 
emitted electrons to the frequency of 
the incident photons and the work 
function of the cathode material: 
 

φ
λ

φ

−=

−=
hc
hfKmax

 

Substitute numerical data for the 
light of wavelength λ: 

φ
λ
−=

hceV2.1  

 
Substitute numerical values for the 
light of wavelength λ′: 

φ
λ

φ
λ

−=−=
8.0

eV76.1 hc
'

hc
 

 
Solve these equations 
simultaneously for φ to obtain: 
 

eV04.1=φ  

Substitute in either of the equations 
and solve for λ: 

nm554=λ  
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82 ••  
Picture the Problem The diagram shows 
the pendulum with an angular displacement 
θ. The energy of the oscillator is equal to 
its initial potential energy mgh = mgL(1 − 
cosθ). We can find n by equating this 
initial energy to ( ) 02

1 hfnEn += and 

solving for n. In part (b) we’ll express the 
ratio of ∆En to En and solve for ∆n. 

 
 
(a) Express the nth-state energy as a 
function of the frequency of the 
pendulum: 
 

( ) ( )
L
ghnhfnEn π22

1
02

1 +=+=  

 

Express the energy of the pendulum: 
 

( )θcos1−= mgLEn  

 
Substitute to obtain: ( ) ( )

L
ghnmgL

π
θ

2
cos1 2

1+=−  

 
Solve for n: ( )

2
1cos12 23

−
−

=
h

Lgm
n

θπ
 

 
Substitute numerical values and evaluate n: 
 

( ) ( ) ( ) 32
34

232

1035.1
2
1

sJ1063.6
10cos1m1m/s9.81kg3.02

×=−
⋅×

°−
= −

π
n  

 
(b) Express the ratio of ∆En to En: ( ) ( )

( )
4

2
1

02
1

02
1

02
1

10−=
+
∆

=

+
+−+∆+

=
∆

n
n

hfn
hfnhfnn

E
E

n

n

 

 
Solve for and evaluate ∆n: ( ) 284

2
14 1035.11010 ×=≈+=∆ −− nnn  

 
*83 ••  
Picture the Problem We can use the fact that the energy of the nth state is related to the 
energy of the ground state according to 1

2EnEn = to express the fractional change in 

energy in terms of n and then examine this ratio as n grows without bound. 
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(a) Express the ratio  
(En + 1 − En)/En: 

( )

nnn

n
n

n
nn

E
EE

n

nn

212

121

2

22

22
1

≈+=

+
=

−+
=

−+

 

for n >> 1. 
 

(b) Evaluate 
1000

10001001

E
EE −

: %2.0
1000

2

1000

10001001 =≈
−

E
EE

 

 

(c) 
mal.infinitesi is levelsadjacent between  differenceenergy 

  the, of  valueslargeFor very  .continuous isenergy   they,Classicall n
 

 
84 ••  
Picture the Problem We can apply the definition of power in conjunction with the de 
Broglie equation for the energy of a photon to derive an expression for the average power 
produced by the laser. 
 
The average power produced by the 
laser is: t

EP
∆
∆

=  

 
Use the de Broglie equation to 
express the energy of the emitted 
photons: 
 

λ
NhcNhfE ==∆  

where N is number of photons in each 
pulse. 
 

Substitute for ∆E to obtain: 
 t

NhcP
∆

=
λ

 

Substitute numerical values and evaluate P: 
 

( )( )( )
( )( ) mW117

s01nm850
m/s103sJ1063.6105

8

8349

=
×⋅××

= −

−

P  

 
Remarks: Note that the pulse length has no bearing on the solution. 
 
85 ••  
Picture the Problem We can find the rate at which energy is delivered to the atom using 
the definitions of power and intensity. We can also use the definition of power to 
determine how much time is required for an amount of energy equal to the work function 
to fall on one atom. 
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(a) Relate the energy per second 
(power) falling on an atom to the 
intensity of the incident radiation: 
 

IA
t
EP =
∆
∆

=  

 

Substitute numerical values and 
evaluate P: 

( )( )

eV/s106.25

J101.60
eV1

s
J01

m100.01W/m0.01

4

19
22

2182

−

−
−

−

×=

×
×=

×=P

 

 
(b) Classically: 

PP
Et φ
=

∆
=∆  

 
Substitute numerical values and 
evaluate ∆t: 

min53.3

s3200
eV/s106.25

eV2
4

=

=
×

=∆ −t
 

 
 
 
 
 


