Chapter 34
Wave-Particle Duality and Quantum Physics

Conceptual Problems

*1 °
Determine the Concept The Young double-slit experiment, the diffraction of light by a
small aperture, and the J.J. Thomson cathode-ray experiment all demonstrated the wave
nature of electromagnetic radiation. Only the photoelectric effect requires an explanation

based on the quantization of electromagnetic radiation. (c)is correct.

2 (1]
Determine the Concept Since the power radiated by a source is the energy radiated per

unit area and per unit time, it is directly proportional to the energy. The energy radiated
varies inversely with the wavelength (£ = hc/ A); i.e., the longer the wavelength, the

less energy is associated with the electromagnetic radiation. (b)is correct.

3 o
(a) True

(b) False. The work function of a metal is a property of the metal and is independent of
the frequency of the incident light.

(c) True

(d) True

4 .

Determine the Concept In the photoelectric effect, the number of electrons emitted per

second is a function of the light intensity, proportional to the light intensity, independent
of the work function of the emitting surface and independent of the frequency of the light.

(b)is correct.

*5 .
Determine the Concept The threshold wavelength for emission of photoelectrons is
related to the work function of a metal through ¢ = hic/ A, . Hence A, = he/¢and

(a)is correct.
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6 o0
Determine the Concept In order for electrons to be emitted 4c/A must be greater thané.

Evidently, Ac/A; < ¢, but hc/A, > @.

7 L]
(a) True

(b) True

(c) True

(d) False. Electrons are too small to be resolved by an electron microscope.
8 .

Determine the Concept If the de Broglie wavelengths of an electron and a proton are
equal, their momenta must be equal. Since m, > m,, v, < v.. Response (¢) is correct.

9 .

Picture the Problem The kinetic energy of a particle can be expressed, in terms of its
2

momentum, as K = ;; . We can use the equality of the kinetic energies and the fact that
m

me < m, to determine the relative sizes of their de Broglie wavelengths.

Express the equality of the kinetic p§ pez
energies of the proton and electron 2m, ) m,
in terms of their momenta and
masses:
Use the de Broglie relation for the h? B h’
wavelength of matter waves to 2m, ,1]2) B 2m A
obtain:
or
mpxlf) =mA
Since m. < my: A, <2 and A, > A,
and | (c)is correct.
10 -

Determine the Concept Yes. <x> can equal a value for which P(x) is zero. An example
is the asymmetric well for all even numbered states.



Wave-Particle Duality and Quantum Physics 1085

*11 -

Determine the Concept In the photoelectric effect, an electron absorbs the energy of a
single photon. Therefore, Ky..x = if — ¢, independently of the number of photons incident
on the surface. However, the number of photons incident on the surface determines the
number of electrons that are emitted.

12 e

Picture the Problem The probability of a particular event occurring is the number of
ways that event can occur divided by the number of possible outcomes. The expectation
value, on the other hand, is the average value of the experiment.

(a) Find the probability of a 1 P(l) 3 )1

coming up when the die is thrown: 6 |2

(b) Find the average value of a large <n> _ 3x1+3x2 -Ms
number of throws of the die: 6 '

13 e

Determine the Concept According to quantum theory, the average value of many
measurements of the same quantity will yield the expectation value of that quantity.
However, any single measurement may differ from the expectation value.

Estimation and Approximation

14 o
Picture the Problem From Einstein’s photoelectric equation we have K .= hf —¢,

which is of the form y =mx + b , where the slope is 4 and the

Kax-intercept is the work function. Hence we should plot a graph of K.« versus fin
order to obtain a straight line whose slope will be an experimental value for Planck’s
constant.

(a) The spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell | Formula/Content | Algebraic Form
A3 544 A (nm)

B3 0.36 Kinax (€V)

C3 A3*10"-19 A (m)

D3 3*10"8/C3 c/A

E3 | B3*1.6*10"-19 Kinax (J)

lambda | Kmax | lambda | f=c/lambda Kmax
(nm) | (eV) (m) (Hz) J)
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544 0.36 | 544E-07 | 5.51E+14 | 5.76E-20
594 0.199 | 5.94E-07 | 5.05E+14 | 3.18E-20
604 0.156 | 6.04E-07 | 4.97E+14 | 2.50E-20
612 0.117 | 6.12E-07 | 4.90E+14 | 1.87E-20
633 0.062 | 6.33E-07 | 4.74E+14 | 9.92E-21

The following graph was plotted from the data shown in the above table. Excel’s "Add
Trendline” was used to fit a linear function to the data.

K ya = 6.19E-34f - 2.83E-19 /

-

7.E-20

6.E-20

5.E-20 A

4.E-20

max (J )

Cd

» 3.E-20 v

1.E-20 -

0.E+00 T T T
46E+14 48E+14 5.0E+14 5.2E+14 5.4E+14 5.6E+14

f (Hz)

6.19x107*J s

(b) From the regression line we note

exp

that the experimental value for
Planck’s constant is:

h—h h

(c) Express the percent difference exp _q_Mew

% diff =

between /iy, and A: h h
_6.19x107)s
6.63x107*J s

6.64%

15 o
Picture the Problem From Einstein’s photoelectric equation we have K .= hf —¢,

which is of the form y =mx + b, where the slope is / and the
Kax-intercept is the work function. Hence we should plot a graph of K.« versus fin
order to obtain a straight line whose intercept will be an experimental value for the work

function.

(a) The spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell | Formula/Content
A3 544

Algebraic Form
A (nm)
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B3 0.36 Kmax (€V)
C3 A3*10"-19 A (m)
D3 3%1078/C3 )
E3 | B3*1.6¥10"-19 Kimax (J)

lambda | Kmax | lambda | f=c/lambda Kmax
m | V) | (m) (H2) )
544 0.36 | 5.44E-07 | 5.51E+14 | 5.76E-20
594 0.199 | 594E-07 | 5.05E+14 | 3.18E-20
604 0.156 | 6.04E-07 | 4.97E+14 | 2.50E-20
612 0.117 | 6.12E-07 | 4.90E+14 | 1.87E-20
633 0.062 | 6.33E-07 | 4.74E+14 | 9.92E-21

The following graph was plotted from the data shown in the above table. Excel’s "Add
Trendline” was used to fit a linear function to the data.

7.E-20

6.E-20
K oy = 6.19E-34f - 2.83E-19 /

5.E-20 /

4.E-20 -

% 3.E-20

2.E-20

1E-20

0.E+00 : : :

4.6E+14 48E+14 50E+14 52E+14 54E+14 5.6E+14
f (Hz)
(b) From the regression line we note -19 leV
Pop =2.83x1077 I X —————
1.6x107"J

that the experimental value for the

work function @ is:

=| 1.77eV

(c) | The valueof ¢, , =1.77 eV is closest to the work function for cesium.

*16 e

Picture the Problem From the Compton-scattering equation we have

A, — 4 = A.(1-cos8), where A. = h/m,c is the Compton wavelength. Note that this
equation is of the form y = mx + b provided we let y= 1, — 4; and x =1 — cosé. Thus, we
can linearize the Compton equation by plotting A4 = 4, — 4, as a function of 1-cosé.
The slope of the resulting graph will yield an experimental value for the Compton
wavelength.
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(a) The spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
A3 45 6 (deg)

B3 | 1 - cos(A3*PI()/180) 1 —cosf
C3 6.47E"-13 Ad=2, -4

[ 1—cos@| A4
(deg)
45 0.293 | 6.47E-13
75 0.741 | 1.67E-12
90 1.000 | 2.45E-12
135 1.707 | 3.98E—12
180 | 2.000 | 4.95E-12

The following graph was plotted from the data shown in the above table. Excel’s "Add
Trendline” was used to fit a linear function to the data. The regression line is

AL =2.48x10"(1-cos@)—1.03x107"

6.0E-12 I
delta lambda = 2.48E-12[1-cos(theta)]- 1.03E-13
5.0E-12 +—
< 4.0E-12 1 .
=]
E
= 3.0E-12
]
3
2.0E-12 /
1.0E-12 po
0.0E+00 T T
0.0 0.5 1.0 15 2.0
1-cos(theta)
From the regression line we note A op = | 2:48x 107%m

that the experimental value for the
Compton wavelength A¢ ey 1s:

The Compton wavelength is given 1= h _ he
by: < me mc?
Substitute numerical values and _1240eV-nm

c = 5 =243%x10"%m
evaluate A¢: 5.11x10° eV
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i Aoy — A A
Express the percent difference o diff = ZCow ~Lew _ Zeew
between Ac and Ac exp: Aexp Aexp
-12
_ M —1=[2.06%
2.43x107 " m

*17 oo
Picture the Problem The de Broglie wavelength of an object is given by A= A/p, where
p is the momentum of the object.

The de Broglie wavelength of an 1= i
object, in terms of its mass m and my
speed v, is:
The values in the following table Type ofball | m Vinax
were obtained using the internet: (g) | (m/s)
Baseball 142 | 44
Tennis 57 54
Golf 57 42
Soccer 250 | 31
The de Brogli? wav.eleflgth of-a d= 6.63x107*J-s 10610 m
baseball, moving with its maximum (0_ 142 kg)(44 m/s)
speed, is:
Proceed as above to obtain the Typeof | m | Vimax A
values shown in the table: ball

(g) | (m/s) (m)
Baseball | 142 | 44 | 1.06x107**

Tennis 57 54 2.15x107*
Golf 57 | 42 | 2.77x107*
Soccer |250| 31 | 0.855x107**

Examination of the table indicates that the soccer ball has the shortest

de Broglie wavelength.

The Particle Nature of Light: Photons

18 -
Picture the Problem We can find the photon energy for an electromagnetic wave of a
given frequency f from £ = hf where / is Planck’s constant.



1090  Chapter 34

(a) For /=100 MHz: E=hf
—(6.63x107 J5)(100 MHz)

=16.63x1072°J

leV
1.60x107"J

=|4.14x107" eV

6.63x107°° J x

(b) For f=900 kHz: E =hf
—(6.63x107J-5)(900 kHz)

=[5.96x107J

leV
1.60x107%J

=13.73x107 eV

=5.96x1072 J x

19 -
Picture the Problem The energy of a photon, in terms of its frequency, is given by E=hf.

(a) Express the frequency of a f= £ _ leV
photon in terms of its energy and h 4.14x10"%eV-s
evaluate f for E=1¢V: 2 42x10" Hz
(b) For E=1keV: f= 1keV
4.14x10 eV s
=|2.42x10" Hz
(¢c) For E=1MeV: f= 1MeV
4.14x10 eV s
=|2.42x10% Hz

*20 -
Picture the Problem We can use E = hc/A to find the photon energy when we are given
the wavelength of the radiation.

(a) Express the photon energy as a

E: 1240eV -nm _[576ev

function of wavelength and evaluate A 450nm
E for A =450 nm:
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(b) For A =550 nm:

(¢) For 2 =650 nm:

21 -

1240eV~nm: 2250V
550 nm

1240V -nm _ 191eV
650 nm

Picture the Problem We can use E = hc¢/A to find the photon energy when we are given

the wavelength of the radiation.
(a) Express the photon energy as a
function of wavelength and evaluate

E for A =0.1 nm:

(b) For A =1 fm:

22 oo

E=

E =

— = =|124keV
A 0.1nm
w _[124GevV

107° nm

hc 1240eV-nm

Picture the Problem We can express the density of photons in the beam as the number
of photons per unit volume. The number of photons per unit volume is, in turn, the ratio

of the power of the laser to the energy of the photons and the volume occupied by the

photons emitted in one second is the product of the cross-sectional area of the beam and

the speed at which the photons travel, i.e., the speed of light.

Express the density of photons in
the beam as a function of the
number of photons emitted per
second and the volume occupied by
those photons:

Relate the number of photons
emitted per second to the power of
the laser and the energy of the
photons:

Express the volume containing the
photons emitted in one second as a
function of the cross sectional area
of the beam:

N
=

v P _PA
E ke

V =Ac
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Substitute to obtain: _ PA
he* A

Substitute numerical values and evaluate p:

(3mW)(632nm)

=[4.05x10" m"
(6.63x107 J-5)(3x10° m/s)z[z (1 mm)zj

p:

*23

Picture the Problem The number of photons per unit volume is, in turn, the ratio of the
power of the laser to the energy of the photons and the volume occupied by the photons
emitted in one second is the product of the cross-sectional area of the beam and the speed
at which the photons travel; i.e., the speed of light.

Relate the number of photons N = £ _ P_ﬂ

emitted per second to the power of E ke

the laser and the energy of the

photons:

Substitute numerical values and N = (2-5 mW)(l 55 pm)
evaluate N: (6.63x107 1 -5)(3x10° mvs)

=11.95x10"%s™"

The Photoelectric Effect

24 .
Picture the Problem The threshold wavelength and frequency for emission of
photoelectrons is related to the work function of a metal through ¢ = Af, = hc/ A, . We

he

can use Einstein’s photoelectric equation K, = o ¢ to find the maximum kinetic

energy of the electrons for the given wavelengths of the incident light.

(a) Express the threshold frequency f= 9 _ 4.58eV
in terms of the work function for " h 4.14x10"eV-s
tungsten and evaluate f;: ~[111x10" Hz
Usi =14, the threshold 8
sing v = fA, express the thresho P 3x10°m/s 270 0m

wavelength in terms of the threshold ' /i 1.11x10" Hz
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frequency and evaluate A;:

(b) Using Einstein’s photoelectric
equation, relate the maximum
kinetic energy of the electrons to
their wavelengths and evaluate Ky:

(c) Evaluate K., for
A =250 nm:

25 o

he
Kmax =E_¢=hf_¢=7_¢
_ 1240eV -nm

—4.58eV
200 nm
=|1.62eV
K. _1240eV-nm _ , o
250nm
=|0.380eV

Picture the Problem We can use the Einstein equation for photon energy to find the
energy of an incident photon and his photoelectric equation to relate the work function

for potassium to the maximum energy of the photoelectrons. The threshold wavelength

can be found from A, = hc/¢.

(a) Use the Einstein equation for
photon energy to relate the energy
of the incident photon to its
wavelength:

(b) Using Einstein’s photoelectric
equation, relate the work function
for potassium to the maximum
kinetic energy of the photoelectrons:

Solve for and evaluate ¢:

(c) Proceed as in (b) with
E=hc/:

E=E= 1240eV - nm _[413ev
A 300nm

max

p=E-K_  =413eV-2.03eV
=|2.10eV

he
K =—-
max l ¢
B 1240eV -nm

430nm
=|0.784eV

-2.10eV
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(d) Express the threshold
wavelength as a function of
potassium’s work function and
evaluate A;:

26

1 =

t

E= 1240eV - nm 590 0m

¢  2.10eV

Picture the Problem We can find the work function for silver using ¢ = hc//, and the

maximum kinetic energy of the electrons using Einstein’s photoelectric equation.

(a) Express the work function for
silver as a function of the threshold
wavelength:

(b) Using Einstein’s photoelectric
equation, relate the work function
for silver to the maximum kinetic
energy of the photoelectrons:

27 -

hc 1240eV-nm

¢=— 4.73eV
A, 262nm
he
K =F—-¢=—-
max ¢ 2{ ¢
_ 1240eV -nm _473eV
175nm
=|2.36eV

Picture the Problem We can find the threshold frequency and wavelength for cesium
using ¢ = hf, = hc/ A, and the maximum kinetic energy of the electrons using Einstein’s

photoelectric equation.

(a) Use the Einstein equation for
photon energy to express and
evaluate the threshold wavelength
for cesium:

Use v = fA to find the threshold
frequency:

(b) Using Einstein’s photoelectric
equation, relate the maximum
kinetic energy of the photoelectrons
to the wavelength of the incident
light and evaluate K, for 4 =250
nm:

i:

t

f =

E: 1240eV - nm _6530m
@ 1.9eV

v _3x10°m/s
653nm

A
4.59x10" Hz

t

he
K =——
max l ¢

_ 1240eV -nm
250nm

=|3.06eV

-1.90eV
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(c) Proceed as above with = 1240eV-nm _ 1.90eV
A=350 nm: 350nm

=|1.64eV
*28 oo

Picture the Problem We can use Einstein’s photoelectric equation to find the work
function of this surface and then apply it a second time to find the maximum kinetic
energy of the photoelectrons when the surface is illuminated with light of wavelength 365
nm.

Use Einstein’s photoelectric K = E 4
equation to relate the maximum 2
kinetic energy of the emitted

electrons to their total energy and

the work function of the surface:

Using Einstein’s photoelectric p=E-K__ = @ K.
equation, find the work function of
the surface: _ 1240eV-nm 0376V
780nm
=1.22¢eV
Substitute for ¢ and A and evaluate K. - 1240eV-nm 1226V
Knax: 410nm
=|1.80eV

Compton Scattering

29 -
Picture the Problem We can calculate the shift in wavelength using the Compton
h
relationship A4 = —(1 —Cos (9).
m.c

The shift in wavelength is given by: Al = h (l —cos 6’)
m.

[

Substitute numerical values and evaluate AA:
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B 6.63x107 J-s
(9.11x10™" kg)(3x 10° mys

)(l —¢0s60°)=| 1.21pm

30 -
Picture the Problem We can calculate the scattering angle using the Compton

relationship A4 = L(l —cos (9) .

mc
Using the Compton scattering AL = h (1 oS 0)
equation, relate the shift in m.c

wavelength to the scattering angle:

Solve for 6: 0= cos‘l(l - %AZJ

Substitute numerical values and evaluate &

-31 8
0= cos-‘[l b X;(; . Xﬁ)ﬁi ; 1: m/ S)(0.33 pm)] =[302°

31 -
Picture the Problem We can calculate the shift in wavelength using the Compton
h
relationship A1 = —(1—cos ).
m,c
Express the wavelength of the AL —030 = ] = AL
incident photons in terms of the A 0.023
fractional change in wavelength:
Using the Compton scattering Al = h (1 —cos 0)
equation, relate the shift in mc

wavelength to the scattering angle:

Substitute numerical values and evaluate A:

P 6.63x107J-s
0.023(9.11x 107" kg )(3x 10* my/s

)(1—003135°): 180 pm
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*32 -

Picture the Problem We can use the Einstein equation for photon energy to find the
energy of both the incident and scattered photon and the Compton scattering equation to
find the wavelength of the scattered photon.

(a) Use the Einstein equation for = he _ 1240eV-nm _ 7 4keV
photon energy to obtain: A 0.0711nm

h
(b) Express the wavelength of the A=A+ A=+ (1 oS 9)
scattered photon in terms of its pre- m.c

scattering wavelength and the shift
in its wavelength during scattering:

Substitute numerical values and evaluate A:

34
A, :0-0711nm+( 6.63x107*J-s

1 - cos180°) = [ 0.0760
9.11x1031kg)(3><108m/s)( cos180°) o

(¢) Use the Einstein equation for = he _ 1240eV -nm _M63keV
photon energy to obtain: A, 0.0760nm
33 e

Picture the Problem Compton used X rays of wavelength 71.1 pm. Let the direction the
incident photon (and the recoiling electron) is moving be the positive direction. We can
use p = h/A to find the momentum of the incident photon and the conservation of
momentum to find its momentum after colliding with the electron.

Use the expression for the B i _ 6.63x 107475
P A 71.1pm

=19.32x10"* kg -m/s

momentum of a photon to find the

momentum of Compton’s photons:

Using the Compton scattering A, = A +A.(1-cosB)
equation, relate the shift in
wavelength to the scattering angle:

Substitute numerical values and evaluate A,:

2, =71.1pm+(2.43x10"? m)(1 - cos180°) = 76.0 pm
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Apply conservation of momentum to Pr=P.=Pr=P. =P — P>
obtain:

Substitute for p; and p, and evaluate p.:

=|1.80x10 kg -m/s

34
P. =9.32x1024kg,m/5_(_ 6.63x107* ] S]

76.0pm

34 e
Picture the Problem We can calculate the shift in wavelength using the Compton

h
relationship A1 = ——(1—cos @) = A.(1—cos @) and use conservation of energy to find
m.c

e

the kinetic energy of the scattered electron.

(a) Use the Compton scattering AL =A.(1-cosb)
equation to find the change in = (2_43 x 10712 m)(l - cos90°)
wavelength of the photon: _[243pm
(b) Use conservation of energy to AE = E _ E
relate the change in the kinetic A4 A
energy of the electron to the
energies of the incident and
scattered photon:
Find the wavelength of the scattered A, =4, +Al=6pm+2.43pm
photon: =8.43pm
Substitute and evaluate the kinetic AE = he  he
energy of the electron (equal to the ¢ A A
change in its energy since it was 1 1
stationary prior to the collision with =1240eV-nm 6pm YE pm
the photon):
=| 59.6keV
35 e

Picture the Problem We can find the number of head-on collisions required to double
the wavelength of the incident photon by dividing the required change in wavelength by
the change in wavelength per collision. The change in wavelength per collision can be
found using the Compton scattering equation.
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Express the number of collisions _ AL
required in terms of the change in AZ/collision

wavelength per collision:

Using the Compton scattering

AL =A.(1-cos®)

equation, express the wavelength

shift per collision:

Substitute numerical values and

evaluate AA:

Substitute and evaluate N:

A4 =(2.43%x10"> m)(1 - cos180°)
=4.86pm

_ 200pm

= =| 42
4.86 pm

Electrons and Matter Waves

36 -

Picture the Problem From Equation 34-16 we have A =

electron volts.

(a) ForK=2.5¢eV:

(b) For K =250 ¢V:

(c) For K =2.5 keV:

(d) For K =25 keV:

37 -

JK

nm provided K is in

nm=| 0.775nm

nm=| 0.0775nm

nm =| 0.0245nm

A=—=nm=| 7.75pm

1099

Picture the Problem We can use its definition to find the de Broglie wavelength of this

electron.
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Use its definition to express the de 1= h
Broglie wavelength of the electron p
in terms of its momentum: h
- m.v
Substitute numerical values and B 6.63x107*J-s
evaluate A: (9.11x10™ kg)(2.5x10° mys)
=|2.91nm

38 -
Picture the Problem We can find the momentum of the electron from the de Broglie

o 1.226 .
equation and its kinetic energy from A = \/E nm, where K is in eV.

(a) Use the de Broglie relation to _h_6.63x 10775
express the momentum of the pP= A 200nm
electron:

=|3.31x10"" kg-m/s

(b) Use the electron wavelength 1= 1.226
equation to relate the electron’s \/E
wavelength to its kinetic energy:

nm

=13.76x107 eV

Solve for and evaluate K: 1.226 eVl/znm 2
K =| 22208y
200 nm

*30 oo
Picture the Problem The momenta of these particles can be found from their kinetic

energies and speeds. Their de Broglie wavelengths are given by
A= hip.

(a) The momentum of a particle p, p=+2mK
in terms of its kinetic energy K, is

given by:

Substitute numerical values and evaluate p.:
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-19
p. = K = \/2(9.11><1031 kg)(lsokevij
e
=|2.09x107 N-s
Substitute numerical values and evaluate py:
1.6x107"° C
-27
p,=2m K = \/2(1.67><10 kg)(lSOkerTj
=|8.95x107' N5
Substitute numerical values and evaluate py:
27 -19
p, = IR - HWMJ[MMMJ
u eV
=|1.79x107 N s
(b) The de Broglie wavelengths of 1= ﬁ
the particles are given by: p
Substitute numerical values and 1= i
evaluate A, P P,
34
2 06310 IS _r 10
8.95x107" N-s
Substitute numerical values and 1 = i
evaluate A.: °op.
34
_ 6.63 x 10_22 J-s ~[317x10 " m
2.09x107" N-s
Substitute numerical values and 1 = i
evaluate A,: “ p,,
34
_ 6.63 x 10720 J-s _[370x10 " m
1.79%x107" N -s
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40 -
Picture the Problem The wavelength associated with a particle of mass m and kinetic
o . 1240eV -nm
energy K is given by Equation 34-15 as A = ————.
N2mc’K
Substitute numerical data in _ 1240eV - nm
Equation 34-15 to obtain: \/ 2(940 MeV)(0.02 eV)
=|0.202nm
41 .
Picture the Problem The wavelength associated with a particle of mass m and kinetic
o . 1240eV -nm
energy K is given by Equation 34-15 as A = ————.
N2mc*K
Substitute numerical data in _ 1240eV -nm
Equation 34-15 to obtain: \/ 2(938 MeV)(Z MeV)
=2.02x107° nm
=|20.2fm

*42 .
Picture the Problem We can use its definition to calculate the de Broglie wavelength of
this proton.

Use its definition to express the de 1 = i _ h

Broglie wavelength of the proton: p, my

Substitute numerical values and evaluate A,:
6.63x10™"J -5
A= 27 8
(1.67x 107" kg)[0.003(3x 10° mys )

=|0.441pm

43 .
1240eV -nm

\2mce*K

energy of the proton and use the rest energy of a proton mc”* = 938 MeV to simplify our

Picture the Problem We can solve Equation 34-15 (A = ) for the kinetic

computation.

Solve Equation 34-15 for the kinetic (1 240eV - nm)2

energy of the proton: 2me* A
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(a) Substitute numerical values and B (1240 eVv. nm)2
evaluate K for A= 1 nm: a 2(938 MeV )(1 nm)z
=| 0.820meV
(b) Evaluate K for A= 1 nm: K- (1 240eV - nm)2
2(938MeV)(10°* nm
=| 820 MeV
44

Picture the Problem We’ll need to convert oz and mph into SI units. Then we can use its
definition to calculate the de Broglie wavelength of the baseball.

Use its definition to express the de A, _ h h
Broglie wavelength of the baseball: el Praseball ~ Masevall Vbaseball

Substitute numerical values and evaluate Apggepar:

6.63x1074 -3

;”baseball = = 110 X 10734 m
m
. 0447 —
507x 11b y lkg mi s
160z 2.201b h mi
h
For the tennis ball: h
/Itennis ball —
tennis ball
B h
m tennis ballvtennis balll

Substitute numerical values and evaluate Aiepnis bail:

6.63x107*J-s

2“tennisballl = m = 2.01X10_34 m
. 0447 —
2ozx 10, ke )pagmi s
160z 2.201b h mi
h

The tennis ball has the longer de Broglie wavelength.
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Remarks: Because A4 = h/p, we could have solved the problem by determining which
ball has the smaller momentum.

45
Picture the Problem If K is in electron volts, the wavelength of a particle is given

by A= 1226 nm provided K is in eV.
JK

Evaluate A for K =54 eV: 1= 1.226 nm = 1.226 nm=| 0.167 nm

E " s

46 -
1.226

JK

Picture the Problem We canuse A =

nm, where K is in eV, to find the energy of

electrons whose wavelength isA.

Relate the wavelength of the q= 1.226 am
electrons to their kinetic energy: \/E
Solve for K: 1.226nm-eV"? 2
K==
A
Substitute numerical values and 1.226 nm - eV"? 2
evaluate K: = 0257 nm =|22.8eV
*4T7 .
1.226

Picture the Problem We can use A = nm, where K is in eV, to find the

K

wavelength of 70-keV electrons.

Relate the wavelength of the 1= 1.23 nm

electrons to their kinetic energy: \/?

Substitute numerical values and 1= 1.226 nm = 4.63pm
evaluate A: AJ70x10° eV

48

Picture the Problem We can use its definition to calculate the de Broglie wavelength of
a neutron with speed 10° m/s.
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Use its definition to express the de 1 = h _ h

Broglie wavelength of the neutron: "op, myv,

Substitute numerical values and evaluate 4= 6.63x107*J-s

I " (1.67x10™ kg)(10° m/s)
=(0.397 pm

Wave-Particle Duality

49 .

Picture the Problem In order for diffraction to occur, the diameter of the aperture d must
be approximately equal to the de Broglie wavelength of the spherical object. We can use
the de Broglie relationship to find the size of the aperture necessary for this object to
show diffraction.

Express the de Broglie wavelength 2 h h

object

mobjectvobj ect

of the spherical object:

object

Substitute numerical values and p) _ 6.63x 10775
evaluate Aopject: oblect (4 x107° kg)(l 00m/s)
=11.66x10 m

This is many orders of magnitude smaller than even the diameter of a proton

and so no common objects would be able to squeeze through such an aperture.

50 -

Picture the Problem In order for diffraction to occur, the size of the object must be
1240eV -nm

approximately 4. The wavelength of the neutron is given by 4 = ————————_ The rest

N2mce*K

energy of the neutron is mc* = 940 MeV.

Substitute numerical values and _ 1240eV -nm
evaluate 4: J2(940MeV)(10MeV)
=9.04x10"° nm
~| 10fm

This wavelength is of the same order - of - magnitude as a nuclear diameter
and so nuclei would be suitable targets to demonstrate the wave nature of

neutrons with this energy.
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51
1.226

e

wavelength of 200-eV electrons. In order for diffraction to occur, the size of the target

Picture the Problem We canuse A = nm , where K is in €V, to find the

must be approximately .

Relate the wavelength of the 1= 1.226
= nm
electrons to their kinetic energy: VK
i i 1.22
Substitute numerical values and 1= 6 nm =] 0.0867 nm
evaluate A: 4/200eV

This distance is of the order of the size of an atom and so atoms would be

suitable targets to demonstrate the wave nature of electrons with this energy.

A Particle in a Box
*5D e
: 2 .
Picture the Problem The wave function for state n isy/,, (x) = \/; sm% . The

following graphs were plotted using a spreadsheet program. The graph of y(x) for
n =1 is shown below:

1.0

0s \

Wave function

0.0

0.0 0.2 0.4 0.6 0.8 1.0
x/L
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The graph of y*(x) for n = 1 is shown below:

Probability density

The graph of y(x) for n = 2 is shown below:

Wave function
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The graph of w*(x) for n = 2 is shown below:

1.0

° o o
IS o ©

Probability density

o
[N}

The graph of yA(x) for n = 3 is shown below:

Wave function
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The graph of y*(x) for n = 3 is shown below:

1.0

0.8

0.6 1

ARV
RV LY,

0.0 0.2 0.4 0.6 0.8 1.0
x/L

Probability density

53 oo

2
Picture the Problem We can find the ground-state energy using £, = S—Lzand the
m

energies of the excited states using £, = an1 . The wavelength of the electromagnetic

radiation emitted when the proton transitions from one state to another is given by the

Einstein equation for photon energy ( E = %).
(a) Express the ground-state energy: E = h?
: 8mpL2
Substitute numerical values and evaluate E;:
_34 2
. (6.63x10J-5) YV ey
8(1.67x107 kg)(10"* m)' 1.6x10™J
Find the energies of the first two E, =2E, =4(206 MeV) = | 824 MeV

excited states:
and

E,=3"E, =9(206 MeV)=|1.85GeV
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The energy-level diagram for this
system is shown to the right:

(b) Relate the wavelength of the
electromagnetic radiation emitted
during a proton transition to the
energy released in the transition:

For the n = 2 to n = 1 transition:

Substitute numerical values and

evaluate A,_,;:

(c¢) For the n =3 to n = 2 transition:

Substitute numerical values and
evaluate A;_,,:

(d) For the n =3 to n =1 transition:

Substitute numerical values and
evaluate A4;_,:

54 e

5/51‘ i
%54 —— 5
164 —— 4
fol —— 3
44— 2
11— 1
0-
4= he
AE
_1240eV -nm
AE

AE =E, —E, =4E, —E, = 3E,

1= 1240eV-nm 1240eV-nm
. 3E, 3(206MeV)

=|2.01fm

AE = E,—E, =9E, —4E, =5E,

A= 1240eV-nm 1240eV -nm
2 SE, 5(206 MeV)

=|1.20fm

AE = E, —E, =9E, — E, = 8E,

P 1240eV-nm _ 1240eV -nm
e 8E, 8(206 MeV)

=| 0.752fm

2

. ) h
Picture the Problem We can find the ground-state energy using £, = 8—L2 and the
m

energies of the excited states using £, = ”2E1 . The wavelength of the electromagnetic

radiation emitted when the proton transitions from one state to another is given by the
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Einstein equation for photon energy (E = —).

(a) Express the ground-state energy:

Substitute numerical values and evaluate E;:

(6.63x107 JsJ

h2
b 8mpL2

lev 5.14meV

1 =

Find the energies of the first two
excited states:

(b) Relate the wavelength of the
electromagnetic radiation emitted
during a proton transition to the
energy released in the transition:

For the n = 2 to n = 1 transition:

Substitute numerical values and
evaluate A,_,;:

(c) For the n =3 to n = 2 transition:

Substitute numerical values and
evaluate A;_,,:

(d) For the n =3 to n =1 transition:

Substitute numerical values and

evaluate A;_,:

8(1.67x107 kg)(0.2nm) 1.60x10"°J

1111

E, =27E, =4(5.14meV)=| 20.6meV

and

E,=3"E, =9(5.14meV)=| 46.3meV

_ hc
-
_1240eV-nm
=Ry

A

AE=E, —E, =4E, —E, = 3E,

1240eV-nm  1240eV -nm

1 = =
. 3E, 3(5.14meV)

=| 80.4 um

AE = E, —E, =9E, —4E, = 5E,

_1240eV-nm 1240V -nm

A2 = 56, 5(5.14meV)

=[ 48.2 um

AE = E,—E, =9E, — E, = 8E,

P 1240eV-nm _1240eV -nm
e 8E, 8(5.14meV)

=(30.2 um
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Calculating Probabilities and Expectation Values

55 e
Picture the Problem The probability of finding the particle in some range Ax is y/dkx.
The interval Ax = 0.002L is so small that we can neglect the variation in y(x) and just
compute Y Ax.

Express the probability of finding P= P(x)Ax = l//2 (x)Ax
the particle in the interval Ax:

Express the wave function for a 2 . o
.y (%)= sin =~
particle in the ground state: L L
i in: 2 . ,m
Substitute to obtain: P="gin2 ™ Ay

= z(smz Ej(o.oozL)
L\ L

—0.004sin> 2
L

(@) Evaluate Pat x=L1/2: P =0.004sin> 7= = 0.004sin’ z

=| 0.004

(b) Evaluate P at x = 2L/3: P —0.004sin’ 2372L — 0.004sin> 2T7Z

={0.003

(c) Evaluate Pat x=L: P =0.004sin’ % = 0.004sin’ 77

*5E oo

Picture the Problem The probability of finding the particle in some range Ax is y *dx.
The interval Ax = 0.002L is so small that we can neglect the variation in y(x) and just
compute i *Ax.

Express the probability of finding P= P(x)Ax =y’ (x)Ax
the particle in the interval Ax:
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Express the wave function for a 2 . 2m
va(x) =47 sin==

particle in its first excited state: L
Substitute to obtain: p_ 2 sin 2mx Ax
2( . ,2
= —(smz —’“j(o.oozL)
L L

- 0.004sin> 2%
L
(a) EValuate Pat x :L/2 P — 0.004Sin2 ZLL — 0.004Sin2 T

(b) Evaluate P at x =2L/3: P =0.004sin> 437ZL — 0.004 sin> 4T7Z'

={0.003

(c) Evaluate Pat x = L: P =0.004sin> —27LZL = 0.004sin* 27

57 (L]
Picture the Problem We'll use (f(x)) = J.f(x)t//z(x)dxwith w,(x)= \/%sin%.
(a) Express y(x) for the n = 2 state: v (x) B \/E sin 27
L(x)= /= sin ==
Express <x> using the n = 2 wave <x> B .L[ & sin’ 2_7zx dx
function: 0 L
Change variables by Y= L 0

letting & = 277236 Then: 5
do = Tﬂdx, and

dx:ide
27

and the limits on fare 0 and 27z
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Substitute to obtain: <x> _ 2 j‘ ( L 9) sin? 9( i d ej
Ly \ 27 2
2
= Osin® 6dO
27’ '([
Using a table of integrals, evaluate L 0% Osin20 cos26 2
the integral: <x> gt T B 4 - 8 o
L , 1 1 L
=— |7 ——+—|=| =
2 8 8 2
(b) Express <x2> using the n = 2 <x2> B j- 2_x2 sin? 2_7zx dx
wave function: 0 L
Change variables as in (a) and N2 0L 0 > 2 L 40
substitute to obtain: <x > = z}[ E sin —7[
2 2z
=—[0*sin*0d0
4

0

Using a table of integrals, evaluate the integral:

2z
2 e (6 1). 0 cos?26 LI’ |47 «
<x >= T2 |sin20-———| =—%|——-—=
4771 6 4 8 4 0 4z 3 2

58 (1]
Picture the Problem We’ll use <f(x)> = jf(x)l//z(x)dx with , (x)= \/%sin—.

In Part (¢) we’ll use P(x) = 1/122 (x)to determine the probability of finding the particle in

some small region dx centered at x = L.

(a) Express the wave function for a ( ) 2 . 2mx

particle in its first excited state: Volx)= L st L
i i 2 . ,2m

Square both sides of the equation to sz (x) — “gin?

obtain:
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The graph of y*(x) as a function of
x is shown to the right:

(b) Express <x> using the n = 2

wave function:

Change variables by

2
letting & = ™ Then:

Substitute to obtain:

Using a table of integrals, evaluate
the integral:

(c) Express P(x):

Evaluate P(L/2):

Because P(L/2)=0:

probability density

d0 =" dx, and
L

dxzide
RY/4

and the limits on @are 0 and 27z

(x)= %z (i 9] sin’ 9(% d@j

L
27

27
j Osin2 0do
0

L [0* 0sin20 cos20]”
()= gn20
27| 4 4 8

L , 1 1 L
=— |7 ——+=|=|=
2r 8 8 2

0
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The answers to Parts (b) and (c) are not contradictory. () states that the

average value of measurements of the position of the particle will yield

(d)

L/2, even though the probability that any one measurement of position

will yield L/21is zero.

59 e
Picture the Problem We can find the constant 4 by applying the normalization

condition J.l//2 (x)dx =1 and finding the value for 4 that satisfies this condition. As soon

as we have found the normalization constant, we can calculate the probability of the

finding the particle in the region —a <x < aq using P = Il// 2 (x)dx .

—a

(a) Express the normalization condition:

Tl//z(x)dx =1

: — Ao 2 2 <
Substitute y/(x) Ae : .[(Ae—‘x‘/a) dx = 2A2J.e—2x/adx
—o 0
From integral tables: T o 1
Ie dx =—
0 a
Therefore:

242 j e gy = ZA{%) —ad® =1
0

Solve for 4: 1
olve for 4| L

Ja

)= et

function: a

(b) Express the normalized wave

The probability of finding the
particle in the region —a <x < a is:

P= Il//z(x)dx = 2Tlezx/“dx
-a 0 d

_2 j ey =1—e? =] 0.865
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60 oo
Picture the Problem The probability density for the particle in its ground state is given

2 .
by P(x) = Zsm2 %x . We’ll evaluate the integral of P(x) between the limits specified in

(a), (b), and (c).

Express P(x) for 0 <x <d: 2% .
P ) P(x)——.[smzﬁxdx
Ly
; L
Change variables by x=20,
letting & = %x. Then: 4
d0 =" dx,and
L
L
dx=—d@o
T
Substitute to obtain: 2% . L
P(x)= —J-sm2 9(— d@j
Ly V4
27
== I sin® 4d 6
7%
Using a table of integrals, evaluate 2160 sin26 7
; Plx)=—|2-=, ()
[sin*0do: d 0
0
(a) Noting that the limits on fare 0 P( )_ 216 sin26 /2 2|z
and 772, evaluate equation (1) over X)= ; E B 4 | a ; Z
the interval 0 <x < AL:
=10.500
(b) Noting that the limits on @are 0 P ( )_ 29 sin201"
and 773, Evaluate equation (1) over X)= ; E B 4 |,
the interval 0 <x < L/3: _z[ﬁ_ sin 27[/3}
7|6 4

=--Y2-[0.196
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(c) Noting that the limits on &are 0

and 3774, Evaluate equation (1) over
the interval 0 <x <3L/4:

61 oo

. 3r/4
P(x):z[g— sm2t9}
|2 4
_2{31_ sin67z/4}
7| 8 4
:§+L: 0.909
4 2z

Picture the Problem The probability density for the particle in its first excited state is

2 .,2
given by P(x) = 7 sin’ Tﬂx . We’ll evaluate the integral of P(x) between the limits

specified in (a), (b), and (c).

Express P(x) for 0 <x <d:

Change variables by

2
letting @ = Tﬁx . Then:

Substitute to obtain:

Using a table of integrals, evaluate

.
j sin> 0d@ :

0

(a) Noting that the limits on & are 0
and 7, evaluate equation (1) over the
interval 0 <x <AL:

d
P(x) =£J.sm 2—xa’x
Ly L

= 49
2
27
do = —dx, and
L
dx:LdH
27

sin’ &d o

P(x)= %jfsm e(gdej
=

176 sin207]
Px)=—|Z - 1
(X) 77[2 4 :|0 M

7|2 4 | 2
=1 0.500

-2 )]
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(b) Noting that the limits on fare 0
and 2773, evaluate equation (1) over
the interval 0 < x < L/3:

(¢) Noting that the limits on &are 0
and 3772, evaluate equation (1) over
the interval 0 <x <3L/4:

62 oo

1119

. 27/3
P(x) _ l{g B sm42<9}
0

_ 127 sin4z/3
| 6 4

1,32

N

R

2 4 7| 4
=| 0.750

0.402

Picture the Problem Classically, (x) = J.xP(x)dx and <x2> = j x> P(x)dx .

Evaluate <x> with P(x) = 1/L:
2\ . _
Evaluate <x >W1th P(x)=1/L:

63 oo
Picture the Problem We’ll use f

L2

show that <x> :é and <x >_ 3

(a) Express <x> for a particle in the
nth state:

Change variables by
letting & = % . Then:

T
=
~—

Il
—

N~ =
=

Il
1
e
1
=,

[l

N |~

x)dx with v, (x)= \/%sin% to

)= r(x)

I’
21127r2

d0 =" dx, and
L

dx :ide
nmw

and the limits on @are 0 and nr.
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Substitute to obtain:

(x) =%j (ie] sin’ e(idej

nrw nrw

0

- 2L [osin’ 040

nw

Using a table of integrals, evaluate the integral:

2L | 6* 0Osin20 cos260
(-2 sn20_

- 2 2
n T

4

4

:|n7r
0

2.2
nm

L
2

4

4

Express <x2> for a particle in the

nth state:

Change variables by

letting @ = % . Then:

Substitute to obtain:

2.2
nmw

d0 ="~ dx, and
L

dx :idﬁ
nmw

and the limits on @are 0 and nxz.

2" (L Y. L
<x2>=Z ! [Eej sin’ Q(Ede

20

-3 _3
nmw

6*sin* 0do

0

Using a table of integrals, evaluate the integral:

2 | &
=2 55

L2

3

L2

2n’x?

ljsin2¢9—
8

6

-3
n7z3
0

6’cos2<9]m 217 {n37r3 nﬂ}

4

2L nzﬁz_nﬂsinZnﬂ_cos2n7[+l 2L | n'x’ 1
8 8 4 g8 8

)
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®) For large values of #, the result agrees with the classical value of 1 /3

given in Problem 62.

*64 oo
. L I I
Picture the Problem From Problem 63 we have <x> =—and <x2> =
2 3 2nrxw

spreadsheet program was used to plot the following graphs of <x> and <x*> as a function

of n.
0.55
0.50
0.45
——
0.40 - m T x>
0.35
s mlmm cbholbohk ol a|a e
0.30 &
0.25 ‘ ‘ ‘
1 10 19 28 37 46 55 64 73 82 91 100
n
LZ
2
Asn — o, <x >—>—
3
65 (1]

Picture the Problem For the ground state, » = 1 and so we’ll evaluate

<f(x)> = If(x)wz(x)dx using ¥, (x): \/%COSE.

L

Because y; (x)is an even function < x> =| 0 | for all values of n.

of x, xy; (x) is an odd function of

x. It follows that the integral of
xy! (x) between —L/2 and L/2 is

zero. Thus:
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2\ . L/2
Express <x > <x2> _2 j x*cos® Z xdx
L 1 L
. . X L
Change variables by letting @ = —. x=—40,
L /4
Then: d0 == dx,and
L
dx = £a’ 7
T

and the limits on @are —7/2 and /2.

Substitute to obtain: ) /2 LV I
<x2> == I [—9) cos’ 0(—(10}
L -7/2 4 T
2 72
=2L3 IHZ cos’ 0do
T -/2
Use a trigonometric identity to 5 272 72 , .,
rewrite the integrand: <x > =— _[9 (1 —sin 9)d9
T -7/2
2| #/2 7/2
:% Iezdé’— Iﬁzsinzﬁde
4 ~7z/2 -/2

Evaluate the second integral by looking it up in the tables:

wle (68 (¢ 1 0cos20] 1"
<x2>=—3 ——q——| ———sin20—
213 |6 |4 8 4

-7/2
_ 2_1’2_03 +(0_2_ljsin219+ 6’00526}”/2
4 8

/2

22 72 (72'2 lj. JTCOSTT
= T+
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Remarks: The result differs from that of Example 34-8. Since we have shifted the
origin by Ax = L/2, we could have arrived at the above result, without performing
the integration, by subtracting (Ax)* = L%4 from <x2> as given in Example 34-8.

66  ee
Picture the Problem For the first excited state, n = 2, and so we’ll evaluate

jf dx using V/z( )—\/%smz—ﬂx

L

Since 1/122 (x)is an even function of < x> =10

X, Xy (x) is an odd function of x. It
follows that the integral of xy/; (x)
between —L/2 and L/2 is zero. Thus:

2\ . L2
Express <x > <x2> _2 I #* sin® 27 xdx
L2 L
Change variables by letting _ 0
0= 2T7zx Then: 27;
do = —dx, and
L
dx = Ld 0
2
and the limits on fare —7 and =
Substitute to obtain: < 2> 2 "f ( ) sin? 9( L J ej
L~ 2r

sin” 0do
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Evaluate the integral by looking it up in the tables:

L2 x) [ 1
471 3 2 12 87°

Remarks: The result differs from that of Example 34-8. Since we have shifted the
origin by Ax = L/2, we could have arrived at the above result, without performing

the integration, by subtracting (Ax)? = L%4 from <x2> as given in Example 34-8.

General Problems

*67 o

Picture the Problem We can use the Einstein equation for photon energy to find the
energy of each photon in the beam. The intensity of the energy incident on the surface is
the ratio of the power delivered by the beam to its delivery time. Hence, we can express
the energy incident on the surface in terms of the intensity of the beam.

(a) Use the Einstein equation for E = hf = E

photon energy to express the energy photon A

of each photon in the beam:

Substitute numerical values and _1240eV-nm _ 310eV
evaluate Ephoton photon 400nm .

(b) Relate the energy incident on a E =TAAt
surface of area A to the intensity of
the beam:
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Substitute numerical values and E= (1 00 W/m? )(1 0~ m? )(l S)
evaluate E:
=0.01Jx %
1.60x107°7J
=1 6.25x10" eV

(¢) Express the number of photons E  625x 10" ev

N =
striking this area in 1 s as the ratio Ephoton 3.10eV
of the total energy incident on the T

. =|2.02x10
surface to the energy delivered by

each photon:

68 -

2
Picture the Problem The particle’s nth-state energy is £, = n’

el We can find n by
m

solving this equation for » and substituting the particle’s kinetic energy for E,.

Express the energy of the particle £ , W
e . =n
when it is in its nth state: " Sml?

. L
Solve for n: n:Z‘ISmEn

Express the energy (kinetic) of the E =im/’
particle:
Substitute to obtain: n= 2mvL
h
Substitute numerical values and B 2(1 0’ kg)(l 0 m/s)(l 0 m)
evaluate 7: B 6.63x107*7-s

=3.02x10" ~| 3x10"

69 -
Picture the Problem We can use the fact that the uncertainties are given by
Ax/L = 0.01 percent and Ap/p = 0.01 percent to find Ax and Ap.

(@) Assuming that Ax/L = 0.01 Ax=10" (L) =10" (1 0 m) =|1.00 gm
percent, find Ax:
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Assuming that Ap/p = 0.01 percent, Ap=10"my = 104(1 (e kg)(l (I m/s)
find Ap: _[1076 kg - m/s
(b) Evaluate (AxAp)/#i AxAp (1 ,um)(l 0'"kg-m/ s)
h 1.054x107*
=| 0.949x10"
70 -

Picture the Problem We can estimate the number of emitted photons from the ratio of
the total energy in the flash to the energy of a single photon.

Letting N be the number of emitted E
photons, express the ratio of the E

total energy in the flash to the
energy of a single photon:

Relate the energy in the flash to the E = PAt
power produced:
Express the energy of a single _ E
photon as a function of its photon = 2
wavelength:
Substitute to obtain: N = PAtA
he
Substitute numerical values and evaluate B (5 x10" W)(l 0" s)(400 x107 m)
N: (6.63x107* J-5)(3x10° m/s)
=11.01x10*
71 .

. . 1.2
Picture the Problem We can use the electron wavelength equation A = ﬁ nm, where

K is in eV to find the minimum energy required to see an atom.

Relate the energy of the electron to 1= 1.23
= ——nm
the size of an atom (the wavelength VK

of the electron): provided K is in eV.
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Solve for K:

Substitute numerical values and
evaluate K:

72 .

(1.23 eV'? -nm)2

K= e

(1.23 eV'? -nm)2 _
(O.Inm)2 -

151eV

Picture the Problem The flea’s de Broglie wavelength is A = A/ p, where p is the flea’s

momentum immediately after takeoff. We can use a constant acceleration equation to

find the flea’s speed and, hence, momentum immediately after takeoft.

Express the de Broglie wavelength
of the flea immediately after
takeoff:

Using a constant acceleration
equation, express the height the flea
can jump as a function of its takeoff

speed:

Substitute to obtain:

Substitute numerical values and
evaluate A:

*73 o0

_h

A=

"
P my,
v =V +2aly

or, since v=0and a = —g,

Vo =+/28AY

_ h

A=—
m~2gAy

6.63x107*J-s
(8x10 kg )\2(0.81m/s7)(0.2m)

=| 4.18x10 m

1=

Picture the Problem We can relate the fraction of the photons entering the eye to ratio of

the area of the pupil to the area of a sphere of radius R. We can find the number of

photons emitted by the source from the rate at which it emits and the energy of each

photon which we can find using the Einstein equation.

Letting » be the radius of the pupil,
Nentering eye the number of photons per
second entering the eye, and Nemitted
the number of photons emitted by
the source per second, express the
fraction of the light energy entering
the eye at a distance R from the

N enteringeye __ Aeye
- 2
N emitted 47ZR
2
_
47R*
2
_ r
4R’
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source:

Solve for R to obtain:

Find the number of photons emitted
by the source per second:

Using the Einstein equation, express
the energy of the photons:

Substitute numerical values and
evaluate Ephoton:

Substitute and evaluate Nemited:

Substitute for Nemiyed in equation (1)
and evaluate R:

74 e

R = 1 Nemitted (1)
2 N entering eye
P
Nemitted = E
photon
hc
photon = 7
o 1240eV -nm 5076V
’ 600nm
100 W
Nemitted = -19
(2.07¢V)(1.60x10™"° J/eV)
=3.02x10"s™
R 3-5mm [3.02x 107s™
2 20s™
=| 6.80x10° km

Picture the Problem The intensity of the light such that one photon per second passes

through the pupil is the ratio of the energy of one photon to the product of the area of the

pupil and time interval during which the photon passes through the pupil. We’ll use the

Einstein equation to express the energy of the photon.

Use its definition to relate the
intensity of the light to the energy of
a 600-nm photon:

Using the Einstein equation, express
the energy of a 600-nm photon:

Substitute for £} photon to obtain:

E

I _ £ __ "“lphoton
1photon — A - ANt
hc
Elphoton = 7

he

I -
1photon M A ¢
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Substitute numerical values and evaluate /; pnoton:

_ (1240eV-nm)(1.602x107 J/eV)

1

Iphoton ~—

75 e

(600 nm)[z (5x10° m)z}(ls)

=11.69%x10™* W/m?

Picture the Problem We can find the intensity at a distance of 1.5 m directly from its
definition. The number of photons striking the surface each second can be found from the

ratio of the energy incident on the surface to the energy of a

650-nm photon.

(a) Use its definition to express the
intensity of the light as a function of
distance from the light bulb:

Substitute numerical data to obtain:

(b) Express the number of photons
per second that strike the surface as
the ratio of the energy incident on
the surface to the energy of a 650-
nm photon:

Use the Einstein equation to express
the energy of the 650-nm photons:

Substitute to obtain:

Substitute numerical values and
evaluate NV:

76 e

P P
] = — = 3
A 4nR
=2V I3 18wWim®
47(1.5m)
N = 14
Ephoton

where 4 is the area of the surface.

gole
A

N 12
he

 (3.18W/m?)(10* m?)(650 nm)
~ (1240eV -nm)(1.60x107° J/eV )

=]1.04x10"

Picture the Problem The maximum kinetic energy of the photoelectrons is related to the

frequency of the incident photons and the work function of the cathode material through

the Einstein equation. We can apply this equation to the two sets of data and solve the

resulting equations simultaneously for the work function.
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Using the Einstein equation, relate K., ..=hf—¢
the maximum kinetic energy of the he
emitted electrons to the frequency of y)

the incident photons and the work

function of the cathode material:

Substitute numerical data for the 1.8eV = K _
light of wavelength 4;: .

; i h 2h
Substitute numerical data for the 550V = "¢ _ ¢ = c_ y
light of wavelength 4,/2: A2 A
Solve these equations ¢=|190eV

simultaneously for ¢ to obtain:

77 e

Picture the Problem We can use the Einstein equation to express the energy of the
scattered photon in terms of its wavelength and the Compton scattering equation to relate
this wavelength to the scattering angle and the pre-scattering wavelength.

Express the energy of the scattered o E
photon £’ as a function of their A
wavelength 1':
Express the wavelength of the 2= h (l — cos 9) )
scattered photon as a function of the m.c
scattering angle 6 where A is the wavelength of the incident
photon.
Substitute and simplify to obtain: o hc
h
—(1-cos@)+ 2
m.c
he
_ A
he
———(l—-cos@)+1
meCZ/l ( )
B E
5 (1-cos@)+1
m.c
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78 e

Picture the Problem While we can work with either of the transitions described in the
problem statement, we’ll use the first transition in which radiation of wavelength 114.8
nm is emitted. We can express the energy released in the transition in terms of the
difference between the energies in the two states and solve the resulting equation for #.

Express the energy of the emitted AE=E, -E, |
radiation as the particle goes from
the nth to n — 1 state:

Express the energy of the particle in E = an1
nth state:
Express the energy of the particle in E = (n - 1)2 E,

the n — 1 state:

Substitute and simplify to obtain: AE = an1 - (n — 1)2 E,
=(2n-1)E, = he
A
Solve for n: - he 1
2AE, 2

~ 2(114.8nm)(1.2eV

Substitute numerical values and evaluate n: 1240eV -nm 1
n +—==|5
) 2

*79 oo

Picture the Problem We can use the expression for the energy of a particle in a well to
find the energy of the most energetic electron in the uranium atom.

Relate the energy of an electron in K
the uranium atom to its quantum E,=n (gm I j
number #:

Substitute numerical values and evaluate Eq,:

34
£, - (92) (6.63i<10 J-sf V| e
8(9.11x10" kg)(0.05nm)’ "~ 1.6x10™°J

The rest energy of an electron is:
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leV
mce*=19.11x10"" kg )(3x10° m/s| | ———— |=0.512MeV
¢ ( g)( )z 1.6x107"7J
Express the ratio of Eo, to mc’: Ey, _ 1.28MeV _ 250

mc®  0.512MeV

The energy of the most energetic electron is approximately 2.5 times the

rest - mass energy of an electron.

80 e
Picture the Problem We can express the kinetic energy of an electron in the beam in
terms of its momentum. We can use the de Broglie relationship to relate the electron’s

momentum to its wavelength and use the condition for constructive interference to find A.
n=1

Ay

lu=(}

Express the kinetic energy of an K= p )
electron in terms of its momentum: B 2m
Using the de Broglie relationship, _h
p e
relate the momentum of an electron A
to its momentum:
Substitute for p in equation (1) to h?
' pineq M K=-"" 2
obtain: 2mA
The condition for constructive dsin@ =nA
interference is: where d is the slit separation and
n=0,1,2, ...
Solve for A: 4= dsin@
n
. . . . . A
For << 1, sinfis also given by: sind ~ Ty
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Substitute for sindto obtain: 1= dAy

nL
Substitute for A in equation (2) to K n*L*h?
obtain: " omd Z(Ay)2

Substitute numerical values (z = 1) and evaluate K:

(1P(1.5m)(6.63x10 1-sf leV

_ ~[252keV
2(9.11x107" kg)(54 nm)*(0.68 mm )’ 1.6x107°J °

81 e

Picture the Problem The maximum kinetic energy of the photoelectrons is related to the
frequency of the incident photons and the work function of the illuminated surface
through the Einstein equation. We can apply this equation to either set of data and solve
the resulting equations simultaneously for the work function of the surface and the
wavelength of the incident photons.

Using the Einstein equation, relate K. .=hf—¢
the maximum kinetic energy of the he
emitted electrons to the frequency of a 7 —¢

the incident photons and the work
function of the cathode material:

Substitute numerical data for the _he
1.2eV=—-
light of wavelength A:

. . h h
Substitute numerical values for the 1766V = he = c p
light of wavelength 1': A 0.84
Solve these equations ¢=|1.04eV

simultaneously for ¢ to obtain:

Substitute in either of the equations A=|554nm

and solve for A:
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82 e

Picture the Problem The diagram shows
the pendulum with an angular displacement
0. The energy of the oscillator is equal to
its initial potential energy mgh = mgL(1 —
cos6). We can find n by equating this
initial energy to E, = (n +1)hf, and
solving for n. In part (b) we’ll express the
ratio of AE, to E, and solve for An.

(a) Express the nth-state energy as a
function of the frequency of the

pendulum:

Express the energy of the pendulum: E, = mgL(l —COoS 6’)

Substitute to obtain: mgL(1 - cos0)= (n +1 ) ho|g
2z N L

h 2

Solve for n: 27m\gL*(1-cosf) 1
n= -

Substitute numerical values and evaluate 7:

) 3/2(1 o
nzz;z(o.skg)\/M(lm) (I=cos10°) 1 135,707

6.63x107*J s 2
(b) Express the ratio of AE, to E,: AE, _ (n +An+ %)hfo - (n + %)hfo
E, (n+ 4,
— An —107*
n+%
Solve for and evaluate An: An=107"* (n + %) ~10%n=|135x10%

*83 oo
Picture the Problem We can use the fact that the energy of the nth state is related to the
energy of the ground state according to £, = an1 to express the fractional change in

energy in terms of » and then examine this ratio as # grows without bound.
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(a) Express the ratio E.-E, (n + l)2 —n’ _ 2n+1
(En+l _En)/En: En 7’12 I’lz
_2 12
non
for n>>1.

E1001 _Ewoo ~ 2

E —E
(b) Evaluate —201_—~1000 . ~ =|0.2%
E 00 E\ 00 1000
© Classically, the energy is continuous. For very large values of n, the
C
energy difference between adjacent levelsis infinitesimal.
84 e

Picture the Problem We can apply the definition of power in conjunction with the de
Broglie equation for the energy of a photon to derive an expression for the average power

produced by the laser.
The average power produced by the p= £
laser is: At
Use the de Broglie equation t.o AE = Nif = c
express the energy of the emitted
photons: where & is number of photons in each
pulse.
Substitute for AE to obtain: p= Nhc
ANt

Substitute numerical values and evaluate P:

p_ [5210°)(6.63x107 5-s)3x10" ms) _ -
- (850nm)(10™ s ) -

Remarks: Note that the pulse length has no bearing on the solution.

85 e

Picture the Problem We can find the rate at which energy is delivered to the atom using
the definitions of power and intensity. We can also use the definition of power to
determine how much time is required for an amount of energy equal to the work function
to fall on one atom.
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(a) Relate the energy per second
(power) falling on an atom to the

intensity of the incident radiation:

Substitute numerical values and
evaluate P:

(b) Classically:

Substitute numerical values and
evaluate At:

=14

p-AE
At

P=(0.01W/m?)(0.01x10™"* m?)
=10"" lx—lev
s 1.60x10™J

=1 6.25x10*eV/s

At =

AE_ ¢
P P

- 2eV
6.25x10*eV/s

=| 53.3min

=3200s




