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Chapter 35 
Applications of the Schrödinger Equation 
 
Conceptual Problems 
 
1 •  
True 
 
2 •  
Determine the Concept Looking at the graphs in the text for the n = 1, 2, and 3 states, 
we note that the n = 4 state graph of the wave function must have four extrema in the 
region 0 < x < L and decay in toward zero in the regions x < 0 and x > L. 
 
(a) 

 
 

(b) 

 

 
3 •  
Determine the Concept Looking at the graphs in the text for the n = 1, 2, and 3 states, 
we note that the n = 5 state graph of the wave function must have five extrema in the 
region 0 < x < L and decay in toward zero in the regions x < 0 and x > L. 
 
(a)  

 
 

(b) 
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Estimation and Approximation 
 
*4 •  
Picture the Problem Assume a mass of 150 g for the baseball, 30 cm for the width of the 
locker, and 1 cm/s for the speed of the ball, and equate the kinetic energy of the ball and 
the quantum-mechanical energy and solve for the quantum number n. 
 
The allowed energy states of a 
particle of mass m in a  
1-dimensional infinite potential well 
of width L are given by: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2
2

8mL
hnEn  

The kinetic energy of the ball is: 2

2
1 mvK =  

 
For En = K: 
 

2
2

2
2

2
1

8
mv

mL
hn =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
Solve for the quantum number n: 
 h

mvLn 2
=  

 
Substitute numerical values and 
evaluate n: 

( )( )( )

3030

34

101036.1

sJ1063.6
m3.0m/s01.0kg15.02

≈×=

⋅×
= −n

 

 
The Schrödinger Equation 
 
5 ••  
Picture the Problem We can show that ψ3(x) is a solution to the time-independent 
Schrödinger equation by differentiating it twice and substituting in Equation 35-4. 
 
Equation 35-4 is: ( ) ( ) ( ) ( )xExxU

dx
xd

m
ψψψ

=+− 2

22

2
h

 

 
Because ψ1(x) and ψ2 (x) are 
solutions of Equation 35-4: 
 

( ) ( ) ( ) ( )xExxU
dx

xd
m 112

1
22

2
ψψψ

=+−
h

 

and 
( ) ( ) ( ) ( )xExxU

dx
xd

m 222
2

22

2
ψψψ

=+−
h
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Add these equations to obtain: 
 

( )[ ] [ ])()()()()()(
2 21212

2
2

2
1

22

xxExxxU
dx

xd
dx

xd
m

ψψψψψψ
+=++⎥

⎦

⎤
⎢
⎣

⎡
+−

h
   (1) 

 
Differentiate )()()( 213 xxx ψψψ +=  twice 

with respect to x to obtain: 
 

dx
xd

dx
xd

dx
xd )()()( 213 ψψψ

+=  

and 

2
2

2

2
1

2

2
3

2 )()()(
dx

xd
dx

xd
dx

xd ψψψ
+=  

 
Substitute in equation (1) to obtain: 
 

( ) )()()(
2 332

3
22

xExxU
dx

xd
m

ψψψ
=+−

h
 

which shows that )()()( 213 xxx ψψψ += satisfies Equation 35-4. 

 
The Harmonic Oscillator 
 
6 ••  
Picture the Problem We can relate the spring constant to the mass of the hydrogen atom 
and its angular frequency and then use the relationship between the allowed energy levels 
and the angular frequency ω to derive an expression for the spring constant k. 
 
The spring constant k is related to 
the mass m of the hydrogen 
molecule and its angular frequency 
ω: 
 

2ωmk =                        (1) 

Relate the energy spacing ∆E to the 
angular frequency ω: 
 

ω
π
ω

h===∆
2
hhfE  

Solve for ω: 
 h

E∆
=ω  

 
Substitute for ω in equation (1) to 
obtain: 
 

2

⎟
⎠
⎞

⎜
⎝
⎛ ∆=
h

Emk  

Substitute numerical values and evaluate k: 
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kN/m14.1
sJ1005.1

J107.8
u

kg101.66u1
2

34

2027

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

×
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×= −

−−

k  

 
Remarks: Our result is very similar to the stiffness constant of typical macroscopic 
springs.  Note that strictly speaking one should use the reduced mass of a hydrogen 
molecule rather than the simpler model of a single atom attached to a fixed point. 
 
7 ••  

Determine the Concept The integral 0
2

== ∫ dxxx ψ  because the integrand is an 

odd function of x for the ground state as well as any excited state of the harmonic 
oscillator. 

 
*8 ••  
Picture the Problem We can differentiate ψ(x) twice and substitute in the Schrödinger 
equation for the harmonic oscillator. Substitution of the given value for a will lead us to 
an expression for E1.  

 
The wave function for the first 
excited state of the harmonic 
oscillator is: 
 

( ) 2

11
axxeAx −=ψ  

Compute dψ1(x)/dx: ( ) [ ] 22

11
1 axax eAxeA

dx
d

dx
xd −− ==

ψ
 

 
Compute d2ψ1(x)/dx2: 
 

 

( ) [ ]
( ) 2

2222

1
32

1
32

1112
1

2

64

442

ax

axaxaxax

eAaxxa

eAxaeaxAeaxAeA
dx
d

dx
xd

−

−−−−

−=

+−−==
ψ

 

 
Substitute in the Schrödinger equation: 
 

( )[ ] 222

111
22

02
1

1
32

2

64
2

axaxax xeAExeAxmeAaxxa
m

−−− =+−− ωh
 

 
Divide out 

2

1
axeA −  to obtain: 

 

( )[ ] xExmaxxa
m 1

32
02

132
2

64
2

=+−− ωh
 

or 
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( ) ( ) xExmax
m

xa
m 1

32
02

1
2

32
2

6
2

4
2

=++− ωhh
 

 
Substitute for a to obtain: 
 

 

xExmxm
m

xm
m 1

32
02

10
2

3
2

0
2

2
6

22
4

2
=+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛− ωωω

h

h

h

h
 

 
Solve for E1 to obtain: 

002
3

1 3EE == ωh  

 
9 •••  
Picture the Problem We must show that, with A0 = (2mω0/h)1/4, the normalization 

condition ( ) 1
2

0

2

0

2

== ∫∫
∞

∞−

−
∞

∞−

dxeAdxx axψ is satisfied. 

 
We need to show that: 
 ( ) 1

2

0

2

0

2

== ∫∫
∞

∞−

−
∞

∞−

dxeAdxx axψ  

 
With 

,2
41

0
41

0
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛=

hπ
ωω m

h
mA  the 

normalization condition becomes: 
 

( ) ∫∫
∞

∞−

−
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= dxemdxx ax22

21

0

2

0
hπ
ωψ  

In Example 35-1 it is shown that: 
 h2

0ωma =  

 
Substitute to obtain: 
 ( ) ∫∫

∞

∞−

−
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= dxemdxx

xm 20
21

0

2

0
h

h

ω

π
ωψ  

 

Let .
21

0 xms ⎟
⎠
⎞

⎜
⎝
⎛=

h

ω
 Then: dxmds

21
0 ⎟
⎠
⎞

⎜
⎝
⎛=

h

ω
 

and 

dsmdx
21

0
−

⎟
⎠
⎞

⎜
⎝
⎛=

h

ω
 

 
Substitute for dx and simplify to 
obtain: ( ) ∫∫

∞

∞−

−
∞

∞−

= dsedxx s21
2

0 π
ψ  
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From integral tables (see Table D-5): 
 ∫

∞

∞−

− = πdse s2

 

 
Therefore: 

( ) 1
2

0 =∫
∞

∞−

dxxψ provided 
41

0
0

2
⎟
⎠
⎞

⎜
⎝
⎛=

h
mA ω

 
10 •••  

Picture the Problem We are required to evaluate ( ) 2

0
22 ∫= xxx ψ with 

( ) ,2
00

axeAx −=ψ  where 
h2

0ωma = . We can then use 22
02

1
av xmU ω=  to find the 

average potential energy of the harmonic oscillator. 
 

We need to evaluate: 
∫
+∞

∞−

= dxxx 222 ψ      

 
For the ground state of the harmonic 
oscillator: 

222
0

2 axeA −=ψ  

 
Substitute for 

2ψ to obtain: 

∫

∫
∞+

−

+∞

∞−

−

=

=

0

222
0

222
0

2

2

2

2 dxexA

dxexAx

ax

ax

 

 
Use the appropriate integral from 
the inside of the back cover of the 
text to obtain: 
 

( ) aa
A

a
Ax

2424
12

2
0

2
2
0

2 ππ
==    (1) 

The normalization condition is: 

∫

∫∫
∞+

−

+∞

∞−

−
+∞

∞−

=

==

0

22
0

22
0

2

2

2

2

1

dxeA

dxeAdx

ax

axψ

 

 
Again, use the appropriate integral 
from the inside of the back cover of 
the text to obtain: 
 

a
A

a
A

222
121 2

0
2
0

ππ
==  

Solve for 2
0A  to obtain: 

π
aA 22

0 =  
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Substitute in equation (1) to obtain: 
 aa

a
a

x
4
1

2
2

4
12 ==

π
π

      (2) 

From Example 36-1: 
 h2

0ωma =  

 
Substitute for a in equation (2) to 
obtain: 

00

2

24
2

ωω mm
x hh

==  

 
The average potential energy of the 
oscillator is: 
 

22
02

1
av xmU ω=                             

Substitute for 2x  and simplify: 

02
1

04
1

0

2
02

1
av 2

E
m

mU

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ω

ω
ω h

h

 

 
11 ••  

Picture the Problem We can combine the result for 2x  from Problem 10 and the 

result for x from Problem 7 to obtain an expression for 
22 xx − . The lowest 

energy of the electron in an infinite potential well is given by 2

2

1 8mL
hE = . 

 
(a) From Problem 10 we have: 
 0

2

2 ωm
x h

=                  (1) 

 
The ground-state energy is given by: 
  00 2

1 ωh=E  

Solve for ω0 to obtain: 
 h

0
0

2E
=ω  

 
Substitute in equation (1) and 
simplify to obtain: 
 

0

2
2

4mE
x h

=  

From Problem 7 we have: 
 

0=x                              (2) 

Substitute equations (1) and (2) in 

the expression 
22 xx − to 

obtain: 
 

00

2
22 1

2
0

4 mEmE
xx hh

=−=−  
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Substitute numerical values and evaluate 
22 xx − : 

 

( )

nm49.9

eV
J101.6eV101.2kg1011.9

1
2

sJ1005.1
19

431

34
22

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×××

⋅×
=−

−
−−

−

xx

 

 
(b) The lowest energy of an electron 
trapped in an infinite potential well 
is: 
 

2

2

1 8mL
hE =

 
 

Letting L =
22 xx − yields: 

 
22

2

1
8 xxm

hE
−

=
 

 
Substitute numerical values and evaluate E1: 
 

( )
( )( ) meV19.4

J101.6
eV1

m1049.9kg1011.98
sJ1063.6

192931

234

1 =
×××

⋅×
= −−−

−

E  

 
12 •••   
Picture the Problem We can begin by equating  the average kinetic energy of the 
harmonic oscillator and its average potential energy and solving for 2p  and then 

evaluating and substituting for  .2x  

 
According to the problem statement: 

2
2

2
1

2
xk

m

p
=  

 
Solve for :2p  22 xmkp =  

or, because ,
m
k

=2
0ω  

22
0

22 xmp ω=                            (1) 

 
We need to evaluate: 

∫∫
∞

∞−

−== dxexAxx ax2222
0

222 ψ      (2) 

where 
h2

0ωma =  
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Let y2 = 2ax2. Then 
a

yx
2

2
2 =  and: ax

ydydx
2

=  

 
With appropriate substitutions, the integral becomes: 
 

( ) ∫∫∫
∞

∞−

−
∞

∞−

−
∞

∞−

− == dyey
aay

dyae
a

y
ax

ydye
a

y yyy 222 2
23

32

2
1

2
2

222
 

 
From integral tables (see Table D-
5): 
 

π
2
122 =∫

∞

∞−

− dyey y  

In Problem 35-9 it was given that: 41
0

0
2

⎟
⎠
⎞

⎜
⎝
⎛=

h
mA ω

 

 
Substitute in equation (2) to obtain: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= πω

2
12

2
1 21

0
23

2

h
m

a
x  

 
Substitute for a and simplify: 

0

21
0

23
0

2

2

2
121

ω

πω
ω

m

h
m

m
x

h

h

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

 

 
Substitute for 2x in equation (1): 

02
1

0

2
0

22

2
ω

ω
ω m

m
mp h

h
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
13 •••   
Picture the Problem We can use the definition of the standard deviation of ∆x and ∆p 
and the results of Problems 7, 10, and 12 to determine the uncertainty product ∆x ∆p for 
the ground state of the harmonic oscillator. 

 
Express the standard deviation of ∆p 
(see Equation 17-35a): 
 

( ) ( )[ ]
[ ]

av
2

av
2

av
2

av
2

av
2 pppp

ppp

−−=

−=∆
 

 
Because pav = 0: ( ) ( )av

22 pp =∆   
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Express the standard deviation of ∆x 
(see Equation 17-35a): 
 

( ) ( )[ ]
[ ]

av
2

av
2

av
2

av
2

av
2 xxxx

xxx

−−=

−=∆
 

 
Because xav = 0: ( ) ( )av

22 xx =∆  

 
We have, from Problems 10 and 12, 
for the ground state of the harmonic 
oscillator: 

( )
0

22

2 ωm
xx h

=∆=  

and 

( )
2

022 ωmpp h
=∆=  

 
Express the product of ( )2x∆  and 

( )2p∆ : 

 

( ) ( )
422

2
0

0

22 hhh
=⎟

⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆∆

ω
ω

m
m

px  

Take the square root of both sides of 
the equation to obtain: 2

h
=∆∆ px  

 
Reflection and Transmission of Electron Waves: Barrier 
Penetration 
 
*14 ••  
Picture the Problem We can use the total energy of the particle in the region  
x > 0 to express k2 in terms of α and k1. Knowing k2 in terms of k1, we can use 

( )
( )221

2
21

kk
kkR

+
−

=  to find R and T = 1 − R to determine the transmission coefficient T. 

 
(a) Using conservation of energy, 
express the energy of the particle in 
the region x > 0: 
 

00

2
2

2

2
UU

m
k α=+

h
 

Solve for k2: ( )
h

12 0
2

−
=

αmU
k

 
 

From the equation for the total 
energy of the particle: h

0
1

2 Um
k

α
=  
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Express the ratio of k2 to k1: ( )

α
α

α

α
1

2

12

0

0

1

2 −
=

−

=

h

h
Um

mU

k
k

  

and 12
1kk

α
α −

=  

 
(b) The reflection coefficient R is 
given by: 
 

( )
( )221

2
21

kk
kkR

+
−

=  

 
Factor k1 from the numerator and 
denominator to obtain: 
 2

1

2

2

1

2

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

k
k

k
k

R  

 
Substitute our result from (a) for 
k2/k1: 

2

2

2

11

11

11

11

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

α
α
α

α

α
α

α
α

R  

 
The transmission coefficient is 
given by: 
 

2

11

11
11

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
−

−=−=

α
α
α

α

RT  

 
A spreadsheet program to plot R and T as functions of α is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A2 1.0 α 
B2 (1−SQRT((A2−1)/A2))/ 

(1+SQRT((A2−1)/A2))^2 
2

11

11

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
−

α
α
α

α
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C2 1−B2 2

11

11
1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
−

−

α
α
α

α

 

 
 

 A B C 
1 alpha R T 
2 1.0 1.000 0.000 
3 1.2 0.298 0.702 
4 1.4 0.198 0.802 
5 1.6 0.149 0.851 
    

18 4.2 0.036 0.964 
19 4.4 0.034 0.966 
20 4.6 0.032 0.968 
21 4.8 0.031 0.969 
22 5.0 0.029 0.971  

 
The following graph was plotted using the data in the above table: 
 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 2 3 3 4 4 5 5

alpha

R
T

 
 

15 ••  
Picture the Problem We can use the total energy of the particle in the region  

x > 0 to find k2. Knowing k2, we can use 
( )
( )221

2
21

kk
kkR

+
−

=  to find R and T = 1 − R to 

determine the transmission coefficient T. 
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(a) Using conservation of energy, 
express the particle in the region x > 
0: 
 

00

2
2

2

2
2

UU
m
k

=−
h

 

Solve for k2: 

h
0

2

6mU
k =  

 
From the equation for the total 
energy of the particle: h

0
1

4mU
k =  

 
Express the ratio of k2 to k1: 

2
3

4

6

0

0

1

2 ==

h

h
mU

mU

k
k

 ⇒ 12 2
3kk =  

 
(b) The reflection coefficient R is 
given by: 
 

( )
( ) 2

1

2

2

1

2

2
21

2
21

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
+
−

=

k
k

k
k

kk
kkR  

 
Substitute for k2/k1 and evaluate R: 

0102.0

2
31

2
31

2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=R  

 
(c) Because R + T = 1: 990.00102.011 =−=−= RT  

 
(d) If we let N0 represent the number 
of particles incident upon the 
potential step, then the number that 
continue beyond is: 

56
0 1090.9990.010 ×=×=TN  

step. potential past the move to
continue  would10 all y,Classicall 6

 

 
16 ••  
Picture the Problem We can use the energies in the regions U = 0 and U = U0 to express 
the ratio of the potential energy to the total energy in terms of the ratio of the wave 
numbers. We can also express this ratio in terms of the reflection coefficient R to obtain 
an expression for the ratio of E to U in terms of R. 
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In the region U = 0: 

m
kE

2

2
1

2h
=  ⇒ 21

2
h

mEk =  

 
In the region U = U0: 

m
kUE

2

2
2

2

0
h

=−  ⇒ 
( )

2
0

2
2

h

UEmk −
=  

 
Let r equal the ratio of k2 to k1: ( )

E
U

mE

UEm

k
kr 0

2

2
0

1

2 1
2

2

−=

−

==

h

h  

 
Letting U0 = U, solve for U/E: 
 

21 r
E
U

−=                        (1) 

 
Write the reflection coefficient R as 

a function of 
1

2

k
kr = : 

 

( )
( )

( )
( )2

2

2

1

2

2

1

2

2
21

2
21

1
1

1

1

r
r

k
k

k
k

kk
kkR

+
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
+
−

=  

 
Solve for r to obtain: 
 R

Rr
+
−

=
1
1

 

 
Substitute for r in equation (1): 2

1
11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−

−=
R
R

E
U

 

and 
12

1
11

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

−=
R
R

U
E

 

 
Substitute a numerical value for R 
and evaluate E/U: 03.1

5.01
5.011

12

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

−=

−

U
E
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17 ••  
Picture the Problem The probability that a proton will tunnel out of a nucleus in one 
collision with a nuclear barrier if it has a given energy is given by Equation 35-29.  

 
Equation 35-29 is: aeT α2−=  

where 
( ) ( )

hh

EUmEUm −
=

−
= 0

2
0 22α  

 
Multiply the numerator and 
denominator of α by c to obtain: 
 

( )
c

EUmc
h

−
= 0

22
α  

where 
mMeV10974.1 13 ⋅×= −ch  

 
Using MeV,9382

p =cm evaluate T: 

 

( ) ( )( )
341.0

mMeV10974.1
MeV6MeV9382

m102exp 13
15 =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅×
−= −

−T  

 
*18 ••  
Picture the Problem The probability that the electron with a given energy will tunnel 
through the given barrier is given by Equation 35-29. 

 
(a) Equation 35-29 is: aeT α2−=  

where 
( ) ( )

hh

EUmEUm −
=

−
= 0

2
0 22α  

 
Multiply the numerator and 
denominator of α by c to obtain: 
 

( )
c

EUmc
h

−
= 0

22
α  

where 
mMeV10974.1 13 ⋅×= −ch  

Using keV,5112
e =cm evaluate T: 

 

( ) ( )( ) 18
13

9 1091.5
mMeV10974.1

eV10eV25keV5112
m102exp −

−
− ×=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅×
−

−=T  

 
(b) Repeat with a = 10−10 m: 
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( ) ( )( ) 2
13

10 1089.1
mMeV10974.1

eV10eV25keV5112
m102exp −

−
− ×=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅×
−

−=T  

 
19 •••  
Picture the Problems We can find the distance of closest approach by equating the 
kinetic energy of the alpha particle and the Coulomb potential energy. The probability that 
the electron with a given energy will tunnel through the given barrier is given by 

,2 aeT α−= where α is the transmission coefficient and depends on ∆E.  

 
(a) The distance of closest approach 
is related to the kinetic energy E of 
the alpha particles: 

1

2
r
eZekE =  

 
 

Solve for r1: 
E

kZer
2

1
2

=  

 
For E = 4 MeV: 
 

( )( )( ) m1062.6

eV
J101.6MeV4

C106.192C/mN1099.82 14
19

219229

MeV 4,1
−

−

−

×=
×

×

×⋅×
=r  

 
For K = 7 MeV:  
 

( )( )( ) m1078.3

eV
J101.6MeV7

C106.192C/mN1099.82 14
19

219229

MeV 7,1
−

−

−

×=
×

×

×⋅×
=r  

 
(b) The transmission coefficient T is 
given by: 

aeT α2−=                            (1) 
where 

hh

EmEm ∆
=

∆
=

22
2α  

 
Evaluate α4 MeV for ∆E = 4 MeV: 
 

114
34

1927

MeV4 m1078.8
sJ1005.1

eV
J101.6MeV4

u
kg1066.1u42

−
−

−−

×=
⋅×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
×

=α  
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Evaluate α7 MeV for ∆E = 7 MeV: 
 

115
34

1927

MeV 7 m1016.1
sJ1005.1

eV
J101.6MeV7

u
kg1066.1u42

−
−

−−

×=
⋅×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
×

=α  

 
Substitute numerical values in 
equation (1) and evaluate T4 MeV: 
 

( )( )

51

m1062.6m1078.82
MeV 4

1027.3

14114

−

××−

×=

=
−−

eT
 

 
Substitute numerical values in 
equation (1) and evaluate T7 MeV: 
 

( )( )

39

m1078.3m1016.12
MeV 7

1021.8

14115

−

××−

×=

=
−−

eT
 

 
The Schrödinger Equation in Three Dimensions 
 
20 •  

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

3

2
3

2
2

2
2

2
1

2
1

22

,, 2321 L
n

L
n

L
n

m
E nnn

πh
 with the given sides 

of the box to find the quantum numbers n1, n2, n3 that correspond to the lowest ten 
quantum states of this box. 

 
The energies of the quantum states 
are given by Equation  
35-34: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

3

2
3

2
2

2
2

2
1

2
1

22

,, 2321 L
n

L
n

L
n

m
E nnn

πh
 

For a box with sides L1,  
L2 = 2L1, and L3 = 3L1: 
 

( )2
3

2
2

2
12

1

2

2
3

2
22

12
1

2

2
1

2
3

2
1

2
2

2
1

2
1

22

,,

936
288

948

942321

nnn
mL

h

nnn
mL
h

L
n

L
n

L
n

m
E nnn

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

πh

 

 

The energies in units of 2
1

2

288mL
h

 are listed in the following table: 

 
n1 n2 n3 E 
1 1 1 49 
1 1 2 61 
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1 2 1 76 
1 1 3 81 
1 2 2 88 
1 2 3 108
1 1 4 109
1 3 1 121
1 3 2 133
1 2 4 136 

 
21 •  
Picture the Problem  The wave functions are of the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= z

L
ny

L
nx

L
nA

1

3

1

2

1

1

3
sin

2
sinsin πππψ  

 
22 •  

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

3

2
3

2
2

2
2

2
1

2
1

22

,, 2321 L
n

L
n

L
n

m
E nnn

πh
 with the given sides 

of the box to find the quantum numbers n1, n2, n3 that correspond to the lowest ten 
quantum states of this box. 

 
(a) The energies of the quantum 
states are given by Equation  
35-34: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

3

2
3

2
2

2
2

2
1

2
1

22

,, 2321 L
n

L
n

L
n

m
E nnn

πh
 

For a box with sides L1,  
L2 = 2L1, and L3 = 4L1: 
 

( )2
3

2
2

2
12

1

2

2
3

2
22

12
1

2

2
1

2
3

2
1

2
2

2
1

2
1

22

,,

416
128

1648

1642321

nnn
mL

h

nnn
mL
h

L
n

L
n

L
n

m
E nnn

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

πh

 

 

The energies in units of 2
1

2

128mL
h

 are listed in the following table: 

 
n1 n2 n3 E 
1 1 1 21
1 1 2 24
1 1 3 29
1 2 1 33
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1 1 4 36
1 2 2 36
1 2 3 41
1 1 5 45
1 2 4 48
1 3 1 53
1 1 6 56
1 3 2 56 

 
Referring to the table, we see that 
there are two degenerate levels: 

( ) ( )1,2,2and4,1,1  

and 
( ) ( )1,3,2and6,1,1  

 
*23 •  
Picture the Problem The wave functions are of the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= z

L
ny

L
nx

L
nA

1

3

1

2

1

1

4
sin

2
sinsin πππψ  

 
24 •  
Picture the Problem The boundary conditions in the y and z directions are the same 
those in Figure 35-1. In the x direction, we’ll require the ψ = 0 at −L/2 and L/2. 

 
(a) The boundary conditions in the x 
direction are: 
 

( ) ( ) 02
1

2
1 ==− LL ψψ  

The general solution of the time-
independent Schrödinger equation 
is: 
  

( ) kxBkxAx cossin +=ψ  

Apply the boundary conditions to 
obtain: 
 

( ) 0
2

cos
2

sin2
1 =+−=−

kLBkLALψ  

and 

( ) 0
2

cos
2

sin2
1 =+=

kLBkLALψ  

 
Eliminate the terms in B by 
subtracting the equations: 

0
2

sin =
kLA  

 
For A ≠ 0: ...,2,,00sin

2
1 ππ== −kL
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or 

...,4,2,0, 1
1 == n
L

nk π
 

 
Eliminate the terms in A by adding 
the equations: 

0
2

sin =
kLB  

 
For B ≠ 0: ...,

2
5,

2
3,

2
0cos

2
1 πππ

== −kL
 

or 

...,5,3,1, 2
2 == n
L

nk π
 

 
Thus: 
 

( ) 12,sinsincos 1
321 +=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= nnz

L
ny

L
nx

L
nBx,y,z πππψ  

and 

( ) nnz
L

ny
L

nx
L

nAx,y,z 2,sinsinsin 1
321 =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

πππψ  

 
The ground-state wave function is: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= z

L
y

L
x

L
A πππψ cossincos1,1,1  

 
(b) L.    0for  0  with  wellafor   thoseas same  theare energies allowed The <<= xU  

 
25 ••  
Picture the Problem We can apply the solution to the time-independent Schrödinger 
equation in three dimensions to obtain the wave function and the allowed energies for the 
given two-dimensional region. In (c), we must find three different sets of quantum 
numbers (m,n) for which the sum of the squares are the same. 

 
(a) The solution to the time-
independent Schrödinger equation in 
two-dimensions is: 
 

( )

y
L

mx
L

nA

ykxkAyx

ππ

ψ

sinsin

sinsin, 21

=

=
 

where n and m are integers. 
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(b) The energy is quantized to the 
values: 
 

( )22
2

2

, 8
mn

mL
hE mn +=  

(c) The lowest two states that are 
degenerate are: 
 

2

2

1,22,1 8
5
mL
hEE ==  

(d) The energies of three lowest 
states that have the same energies  

(in units of 2

2

8mL
h

) are listed in the 

table to the right: 
 

n m En,m 
1 7 50 
7 1 50 
5 5 50  

The quantum numbers for the three 
states are: 
 

( ),7,1 ( ),1,7 and ( )5,5  

and their energies are 

( ) 2

2

2

2

4
25

8
50

mL
h

mL
hE ==  

 
The Schrödinger Equation for Two Identical Particles 
 
26 •  
Picture the Problem We must differentiate Equation 35-37 twice and substitute these 
derivatives in this equation to show that it is a solution. 

 
With U = 0, Equation 35-35 
becomes: 

( ) ( )

( )21

2
2

21
22

2
1

21
22

,

,
2

,
2

xxE
x

xx
mx

xx
m

ψ

ψψ

=
∂

∂
−

∂
∂

−
hh

  (1) 

 
Differentiate Equation 35-7 with 
respect to x1: 
 

L
x

L
x

L
A

L
x

L
xA

xx

21

21

11

2sincos

2sinsin

πππ

ππψ

=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
∂
∂

 

 
Compute the second derivative with 
respect to x1: 
 

L
x

L
x

L
A

L
x

L
x

L
A

xx

21
2

2

21

1
2
1

2

2sinsin

2sincos

πππ

πππψ

−=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
∂
∂
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Differentiate Equation 35-7 with 
respect to x2: 
 

L
x

L
x

L
A

L
x

L
xA

xx

21

21

22

2cossin2

2sinsin

πππ

ππψ

=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
∂
∂

 

 
Compute the second derivative with 
respect to x2: 
 

L
x

L
x

L
A

L
x

L
x

L
A

xx

21
2

2

21

2
2
2

2

2sinsin4

2cossin2

πππ

πππψ

−=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
∂
∂

 

 
Substitute in equation (1) to obtain: 
 

L
x

L
xEA

L
x

L
x

L
A

mL
x

L
x

L
A

m

21

21
2

22
21

2

22

2sinsin

2sinsin4
2

2sinsin
2

ππ

ππππππ

=

⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
−−

hh

 

 
Solve for E to obtain: 

2

22

2
5

mL
E πh
=  

 

.
2
5

provided 35-35Equation  satisfies 37-35Equation  shown that ve we'Thus

2

22

mL
E πh
=

 

 
27 •  
Picture the Problem Because bosons have symmetric wave functions and do not obey 
the Pauli exclusion principle, they can occupy the same ground state. 

 
The ground-state energy of a single 
particle in a one-dimensional box of 
length L is: 
 

2

2

particle 1,0 8mL
hE =  

For 10 bosons: 
2

2

2

2

bosons 10,0 4
5

8
10

mL
h

mL
hE ==  

 
*28 •  
Picture the Problem For fermions, such as neutrons for which the spin quantum number 
is ½, two particles can occupy the same spatial  state. 
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The lowest total energy for the 10 
fermions is: 

( )
( )

2

2

2

2

22222
1

4
55

55
8

2

543212

mL
h

mL
h

EE

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

++++=

 

 
Orthogonality of Wave Functions 
 
29 ••  

Picture the Problem We need to show that ( ) ( )∫
∞

∞−

= 010 dxxx ψψ , where ψ0(x) and ψ1(x) 

are given by Equations 35-23 and 35-25, respectively. 
 

Equations 35-23 and 35-25 are: 
 

( ) 2

00
axeAx −=ψ                    35-23 

and 
( ) 2

11
axxeAx −=ψ                   35-25 

 
Note that ψ1(x) is antisymmetric, 
whereas ψ0(x) is symmetric.  
Because the product of an 
antisymmetric function and a 
symmetric function is 
antisymmetric: 
 

( ) ( ) 10 xx ψψ is antisymmetric 

 

Because the integral of an 
antisymmetric function over 
symmetric limits is zero: 

( ) ( )∫
∞

∞−

= 010 dxxx ψψ  

 
30 ••  

Picture the Problem We need to show that ( ) ( )∫
∞

∞−

= 021 dxxx ψψ , where ψ2(x) is given 

in the problem statement and ( ) .
2

11
axxeAx −=ψ  

 
Note that ψ1(x) is antisymmetric, 
whereas ψ2(x) is symmetric.  
Because the product of a symmetric 
function and an antisymmetric 
function is antisymmetric: 
 

( ) ( ) 21 xx ψψ is antisymmetric. 

 



Chapter 35 
 

1160 

Because the integral of an 
antisymmetric function over 
symmetric limits is zero: 

( ) ( )∫
∞

∞−

= 021 dxxx ψψ  

 
31 ••  

Picture the Problem We need to show that .0sinsin
0

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛∫ dx

L
xm

L
xnL ππ

 

 
Use the trigonometric identity ( )( ) ( )[ ] ( )[ ]{ }αααα bababa +−−= coscossinsin 2

1  

to rewrite the product of the two sine functions as the difference of two cosine functions: 
 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−⎥⎦

⎤
⎢⎣
⎡ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

L
xmn

L
xmn

L
xm

L
xn ππππ coscos

2
1sinsin  

 

Substitute for  sin ⎟
⎠
⎞

⎜
⎝
⎛

L
xnπ

and ⎟
⎠
⎞

⎜
⎝
⎛

L
xmπsin  and evaluate :sinsin

0

dx
L

xm
L

xnL

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛∫

ππ
 

 

( ) ( )
( )

( )

mn
L
xmn

L

mn
L
xmn

Ldx
L
xmn

L
xmn

+

⎥⎦
⎤

⎢⎣
⎡ +

−

−

⎥⎦
⎤

⎢⎣
⎡ −

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−⎥⎦

⎤
⎢⎣
⎡ −∫

∞

∞−

π

π

π

π
ππ

sin

sin
coscos

2
1

 

 
Because n and m are integers and n ≠ m, the sine functions vanish at the two limits x = 0 

and x = L. Therefore, 0sinsin
0

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛∫ dx

L
xm

L
xnL ππ

 for n ≠ m.  

 
General Problems 
 
32 ••  
Picture the Problem We can use the wave functions ψ1(x) and ψ2(x) and the definitions 
of <x> and <x2> to evaluate these quantities and the wave functions at x = 0. 

 
(a) The wave functions ψ1(x) and 
ψ2(x) are: 
 

nmx
L

m
Lm 2,sin2

=⎟
⎠
⎞

⎜
⎝
⎛=

πψ  

and 

12,cos2
+=⎟

⎠
⎞

⎜
⎝
⎛= nmx

L
m

Lm
πψ  
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where n = 0, 1, 2, … 
 

Evaluate these functions at x = 0 to 
obtain: 
 

( ) ( ) 00sin201 =⎥⎦
⎤

⎢⎣
⎡=

LL
πψ  

and 

( ) ( )
LLL
20cos202 =⎥⎦

⎤
⎢⎣
⎡=
πψ  

 
(b) Because ( ) 2xmψ is an even 

function of x in all cases, ( )xx m
2ψ is 

an odd function of x and: 
 

( )∫
−

==
2

2

2 0
L

L
m dxxxx ψ  

(c) For n = 1: 
∫

−

=
2

2

222 sin2 L

L

xdx
L

x
L

x π
 

 
From integral tables: 
 

( ) ( ) ( )
23

33
22

4
2cos2sin

8
1

46
sin

a
axxax

aa
xxdxaxx −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=∫  

 
Use this integral with a = π/L  to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛ += 2

2
2 61

12 π
Lx  

For n = 2: 
∫

−

=
2

2

222 2cos2 L

L

xdx
L

x
L

x π
 

 
From integral tables: 
 

( ) ( ) ( )
23

33
22

4
2cos2sin

8
1

46
cos

a
axxax

aa
xxdxaxx +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=∫  

 
Use this integral with a = 2π/L  to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛ += 2

2
2

2
31

12 π
Lx  

 

Remarks: Note that for any value of m, .61
12 22

2
2 ⎟

⎠
⎞

⎜
⎝
⎛ +=

πm
Lx  
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*33 ••  
Picture the Problem We can determine the energies of the state by identifying  the four 
lowest quantum states that are occupied in the ground state and computing their 
combined energies. We can then find the energy difference between the ground state and 
the first excited state and use this information to find the energy of the excited state. 

 
Each n, m state can accommodate 
only 2 particles. Therefore, in the 
ground state of the system of 8 
fermions, the four lowest quantum 
states are occupied. These are: 
 

(1,1), (1,2), (2,1) and (2,2) 
 
Note that the states (1,2) and (2,1) are 
distinctly different states because the x and 
y directions are distinguishable. 

The energies are quantized to the 
values given by: 
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The energy of the ground state is the sum of the energies of the four lowest quantum 
states: 
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The next higher state is achieved by 
taking one fermion from the (2,2) 
state and raising it to the next higher 
unoccupied state. That state is the 
(1,3) state. The energy difference 
between the ground state and this 
state is: 
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Hence, the energies of the degenerate 
states (1,3) and (3,1) are: 
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The three lowest energy levels are 
therefore: 2

2

0
5
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and two states of energy  
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34 ••  
Picture the Problem The energy levels are the same as for a two-dimensional box of 
widths L and 3L.  

 
(a) The energies of the bound states 
are given by: 
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The three lowest energy states are: 
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.degenerate are states  theseof None  

 
(b) Express the condition that must 
be satisfied for two states to be 
degenerate: 
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2
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This condition is first satisfied for: 
 

6 and1and,3,2 2211 ==== mnmn  

Find the energy of this doubly 
degenerate state: ( ) 2
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35 •••  
Picture the Problem We can use the definition of the classical expectation value 
(average value) to show that the classical expectation value of x2 for a particle in a one-
dimensional box of length L centered at the origin is L2/12. In (b) we’ll proceed as in (a) 
using the definition of the quantum expectation value of x2. 
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(a) The classical expectation value is given 
by: 
 

( ) ( )

12

12
1

3
1

1

2

32

2

3

2

2

2

2
1

2
1av

2

L

L
L

x
L

dxx
LL

x

L

L

L

L

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
=

−−
=

−

−
∫

 

 
(b) For a particle in the nth state in a 
one-dimensional box: ∫
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=
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From integral tables: 
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In the limit n >> 1: 
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2
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36 ••  
Picture the Problem We can solve Equation 35-28 for T and substitute for R using 
Equation 35-27. Letting r = k2/k1 and simplifying will lead to the given result. 

 
Equation 35-28 is: 1=+ RT  ⇒ RT −=1  

 
From Equation 35-27: 
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where r = k2/k1 
 

Substitute for R to obtain: ( )
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Substitute for k2/k1 for r and 
simplify to obtain: ( )221
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kkT

+
=  
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37 ••  
Picture the Problem We can use the energies in the regions U = 0 and U = U0 to express 
the ratio of the wave numbers k1 and k2 in these regions in terms of E and U0 and the 

definition of the reflection coefficient R to show that 
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In the region U0 = 0: 
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In the region U = U0: 
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Let r equal the ratio of k2 to k1: ( )
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The reflection coefficient R is given 
by: 
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Factor k1 from the numerator and 
denominator to obtain: 
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Substitute for k2/k1 to obtain: ( )
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38 ••  
Picture the Problem 
 
(a) From Problem 37 we have: ( )

( )
,

1
1
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r
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E
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Because E = αU0, R can be written: 
 α

11−=r  

From Problem 36 we have: 
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A spreadsheet program to plot R and T as functions of α is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A2 1.0 α 
B2 SQRT(1−1/A2) 

α
11−  

C2 (1−B2)^2/(1+B2)^2 ( )
( )2

2

1
1

r
r

+
−

 

D2 4*B2//(1+B2)^2 

( )21
4

r
r

+
 

 
 

 A B C D 
1 alpha r R T 
2 1.0 0.000 1.000 0.000 
3 1.5 0.577 0.072 0.928 
4 2.0 0.707 0.029 0.971 
5 2.5 0.775 0.016 0.984 
     

16 8.0 0.935 0.001 0.999 
17 8.5 0.939 0.001 0.999 
18 9.0 0.943 0.001 0.999 
19 9.5 0.946 0.001 0.999 
20 10.0 0.949 0.001 0.999  

 
The following graph of R and T as functions of α was plotted using the data in the table: 
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(b)
1. and 0 1, as  that,shows also

graph The 0. and 1 , as  that,note  wegraph,  theFrom
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39 •••  
Picture the Problem We require that 
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Expand the integrand to obtain: 
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Substitute in the integral expression: 
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 (see Table D-5) to integrate equation 

(1) term by term: 
 

( ) ( ) 1
22

1
222

14
222

38 2
22

1
2

2
223

2
2

2 =⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡

a
A

aa
aA

aa
Aa πππ

 

or 

1
24

1
22

1
24

32
2 =⎥

⎦

⎤
⎢
⎣

⎡
+−

aaa
A πππ

 

or 

1
22

12
2 =⎥

⎦

⎤
⎢
⎣

⎡

a
A π

 

 
Solve for A2: 
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40 •••  
(a) Let x = −x. The second derivative is an even operator, that is, 

( ) ( ) ( ) 2222 dxxdxdxd ψψ =−− . Therefore, if ( ) ( ),xUxU =−  the Schrödinger 

equation for ψ (−x) = ψ (x) and must give the same values for the energy E. If  
ψ (−x) differs from ψ (x), the ratio ψ (−x)/ψ (x) cannot be a function of x and must be a 
constant. Hence, ψ (x) = Cψ (−x). 
 
(b) The previous result means that replacing the argument of the wave function by its 
negative is equivalent to multiplication by C. Thus, if Cψ (−x) is a good wave function 
and we replace its argument by its negative, that is, by x, we must multiply by C again. 
Thus, ψ (x) = C 2ψ (x), C 2 = 1, and C = ±1. 

 
*41 •••  
Picture the Problem We can follow the step-by-step procedure outlined in the problem 
statement to show that (Eav)min = + 2

1 ħ ω. 

 
1. The total classical energy is: 
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2. Express the standard deviation of 
∆p: 
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Because pav = 0: ( ) ( )av
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3. Express the standard deviation of 
∆x: 
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Because xav = 0: ( ) ( )av

22 xx =∆  
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4. Use the uncertainty principle 
∆p = h/2∆x to eliminate (p2)av from 
the average energy in equation (1): 
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Let Z = (x2)av to obtain: 
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5. Differentiate Eav with respect to Z 
and set this derivative equal to zero: 
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Solve for Z to find the value of Z 
that minimizes Eav (see the remark 
below): 
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6. Evaluate Eav when Z = h/2mω: 
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Remarks: All we’ve shown is that Z = h/2mω is an extreme value, i.e., either a 
maximum or a minimum. To show that Z = h/2mω minimizes Eav, we must either 1) 
show that the second derivative of Eav with respect to Z evaluated at Z = h/2mω is 
positive, or 2) confirm that the graph of Eav as a function of Z opens upward at Z = 
h/2mω. 
 
42 •••  
Picture the Problem 
 
The classically allowed region is for 
E ≥ U(z). In the figure below, this 
region extends from z = 0 to z = 
zmax. 
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The kinetic energy is E − U(z). In 
this case, K(z) is a straight line 
extending from E at z = 0 to 0 at z = 
zmax.  
 

 
A sketch of the wave functions for 
the lowest three energy states is 
shown to the right: 
 

 

 
 
43 ••  
Picture the Problem If f(x) = 0 everywhere on the interval 1 < x < 2, then the slope of 
f(x) is zero everywhere on the interval; and if the slope remains zero everywhere on the 
interval, then the rate of change of the slope (with respect to x) also remains zero 
everywhere on the interval; the rate of change of slope remains zero everywhere on the 
interval, then the rate of change of the rate of change of the slope also remains zero 
everywhere on the interval; and so on.  More concisely, if f(x) = 0 everywhere on the 
interval 1 < x < 2, then derivatives of f(x) with respect to x of order 1, 2, 3, … are each 
equal to zero everywhere on the interval. 
 
Calculating the first three 
derivatives of f we obtain: 
 

CxBxAx
dx
df

++= 23 2  

BAx
dx

fd 262

2

+=  

and 

A
dx

fd 63

3

=  

 
Using d3f/df 3 = 0 and solving for A 
one obtains: 
 

A = 0 

Substituting 0 for A in the 
expression for d2f/dx2 gives: 
 

BB
dx

fd 2202

2

=+=  

Using d2f/dx2 =0 and solving for B 
yields: 
 

B = 0 

Substituting 0 for both A and B in 
the expression for df/dx yields: 
 

CxCx
dx
df

=++= 00  

Using df/dx =0 and solving for C C = 0 
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one obtains: 
 
Substituting 0 for A, B, and C in the 
expression for f gives: 
 

f = 0 + 0 + 0 + D = D 

Using f  = 0 and solving for D 
gives: 
 

D = 0 

Thus, we’ve shown that if f(x) = Ax3 + Bx2 + Cx + D = 0 everywhere on the interval  
1 < x < 2, it follows that A = B = C = D = 0. 
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