Chapter 35
Applications of the Schriédinger Equation

Conceptual Problems

1 °
True
2 .

Determine the Concept Looking at the graphs in the text for the n = 1, 2, and 3 states,
we note that the » = 4 state graph of the wave function must have four extrema in the
region 0 < x < L and decay in toward zero in the regions x <0 and x > L.

(@ | | 0

3 .
Determine the Concept Looking at the graphs in the text for the n = 1, 2, and 3 states,
we note that the n = 5 state graph of the wave function must have five extrema in the
region 0 < x < L and decay in toward zero in the regions x <0 and x > L.

(@) (b)

e
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Estimation and Approximation

*4 °
Picture the Problem Assume a mass of 150 g for the baseball, 30 cm for the width of the
locker, and 1 cm/s for the speed of the ball, and equate the kinetic energy of the ball and
the quantum-mechanical energy and solve for the quantum number .

The allowed energy states of a o h?
. . E =n
particle of mass m in a " 8ml?
1-dimensional infinite potential well
of width L are given by:
The kinetic energy of the ball is: K = lmv
2
ForE, = K: of K 1
n > | =-mv
8mL 2
Solve for the quantum number #: n— 2mvL
h
Substitute numerical values and . 2(0.15kg)(0.01m/s)(0.3m)
evaluate »: 6.63x107*J-s

=1.36x10%* ~ | 10%

The Schrodinger Equation

5 (1]
Picture the Problem We can show that ys(x) is a solution to the time-independent
Schrddinger equation by differentiating it twice and substituting in Equation 35-4.

Equation 35-4 is: 1 dPy(x
AV Gy (x)= Eu )

Because y,(x) and v, (x) are n* d*y,(x) B

solutions of Equation 35-4: Tom Uy (x)=Eyi(x)
and

_%‘F;’Tzz(xh U(x)y,(x)= E,(x)
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Add these equations to obtain:

_i d’y,(x) n d’y,(x)
2m dx? dx?

:| + U(x)[l//l(x) TV, (x)] = E[l//l(x) TV, (x)] 1)

Differentiate w,(x) = w, (x) +y,(x) twice dy,(x) _dy,(x) N dy,(x)

with respect to x to obtain: dx dx dx
and
dzl//s (x) _ d’y,(x) n d’y,(x)
dx’* dx* dx’

Substitute in equation (1) to obtain:
h* dz‘//s (x)
— o G Uy (x) = Eyy ()
2m  dx
which shows that y,(x) = v, (x) + v, (x) satisfies Equation 35-4.

The Harmonic Oscillator

6 (L]

Picture the Problem We can relate the spring constant to the mass of the hydrogen atom
and its angular frequency and then use the relationship between the allowed energy levels
and the angular frequency @ to derive an expression for the spring constant 4.

The spring constant £ is related to k = ma? (1)
the mass m of the hydrogen
molecule and its angular frequency

@:
Relate the energy spacing AE to the AE = hf = h_a) — heo
angular frequency w: 2r
Solve for w: _AE

a) - —_—

h

Substitute for win equation (1) to AE )
obtain: k=m e

Substitute numerical values and evaluate £:
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_27 —20 2
e 1ux1'66X10 kg 8.7x1934J _[11akN/m
u 1.05x10™*J-s

Remarks: Our result is very similar to the stiffness constant of typical macroscopic
springs. Note that strictly speaking one should use the reduced mass of a hydrogen
molecule rather than the simpler model of a single atom attached to a fixed point.

7 (1]
2
Determine the Concept The integral (x) = Ix|w| dx = 0 because the integrand is an

odd function of x for the ground state as well as any excited state of the harmonic
oscillator.

*8 (L]

Picture the Problem We can differentiate y(x) twice and substitute in the Schrodinger
equation for the harmonic oscillator. Substitution of the given value for a will lead us to
an expression for E;.

The wave function for the first Wl(x) = Alxe’“"z

excited state of the harmonic

oscillator is:

Compute dy(x)/dx: dy,(x) _d [ e ]: Lo
dx et !

Compute d” ya(x)/dx*:

2
d :/i/xlz(x) _ % [ Ale_“xz ]: —Za)cAle_‘”rz - 4a)cAle_‘”‘2 + 461296316116_‘”‘2

= (4c12x3 — 6ax)Ale_‘”rz

Substitute in the Schrédinger equation:
hz 2.3 —ax? 1 2.2 —ax? _ —ax?
~om 4a°x” —6ax)de ™ |+5smayx A xe™ =E Axe
m

Divide out Ale“”r2 to obtain:

_;l_z[(4a2x3 - 6ax)]+ %ma)éxs =Ex
m
or
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2 2
—;l—m(4a2x3)+§—m(6ax)+ Imewlx® = Ex
Substitute for « to obtain:
2 2 2
L m@J.f+ZL6-ﬂ@lx+%m@ﬁ3:Ex
2m 2h 2m 2h
Solve for E; to obtain: E =|3hw, |=3E,
9 00
Picture the Problem We must show that, with 4o = (2man/h)**, the normalization
condition j|w0 (x) dx= J- Aoe‘”"z‘ dx =1is satisfied.
We need to show that: 2 .
I|W0(x)| dx = '[ Ae™™ | dx=1
With = 2 ma V=
4 Y4 I|l//o(x)| dx=( Oj j 2
4 :(Zma)oj _[ma ) e J zh ) 2
h mh
normalization condition becomes:
In Example 35-1 it is shown that: _ may
2h
Substitute to obtain: E 2 V2o may ,
I = N
—0 T —00
12 2
Let s = (ma)oj x. Then: ds = (m_a)oj dx
h h
and
-12
dx::(ﬁﬂﬂg) ds
h
Substitute for dx and simplify to ® 2 *

1% .
obtain: j|Wo(x)| dx:—J.e ds

1141
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o0

From integral tables (see Table D-5): J- >
eds =1

—00

Therefore: . , .
J.|‘/’o(x)| dx =1provided A4, = (Zma)oj

10 (11]
Picture the Problem We are required to evaluate <x2> = Ix2|w0(x)|2 with

—ax? mao, .
wolx)= 4,e™™", where a = 2h0 . We can then use U, = %ma)oz<x2> to find the
average potential energy of the harmonic oscillator.

<x2> = Tx2|t//| 2 dx

—00

We need to evaluate:

For the ground state of the harmonic |¢/,| - Age*“z
oscillator:
Substitute for [y| ? to obtain: <x2> _ AzT o2 gy

-0

- |
= 2A02 J-xze_z“x dx
0

Use the appropriate integral from <x2> _ 2A21 V4 :A_OZ K 1)
the inside of the back cover of the ° 2 (Za)z da \ 24

text to obtain:

The normalization condition is: = =

1= j|1//| *dx = AL J-e_za"z dx
+ o0

= 2A§ J'e_zwz dx

0
Again, use the appropriate integral 1-2.42 1l |7 _ 2|
from the inside of the back cover of T o\, T Y 24
the text to obtain:

Solve for A4 to obtain:
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Substitute in equation (1) to obtain: ) 1 |2a | «x 1
0= 2V e V2 ~laa) @

From Example 36-1: q= ma

2h
Substitute for a in equation (2) to <x2> _2n h
obtain: dmae, | 2mo,

The average potential energy of the U, =1 ma)oz<x2>
oscillator is:
Substitute for (x*) and simplify: i
() andsimpity U, =%mw§(2 J= Hho,
ma,
=3E,
11 o

Picture the Problem We can combine the result for <x2> from Problem 10 and the

result for (x) from Problem 7 to obtain an expression for <x2>—<x>2 . The lowest

2
energy of the electron in an infinite potential well is given by £; = 8h—L2 :
m
(@) From Problem 10 we have: <x2> _ h )
2ma,
The ground-state energy is given by: E - lha)
0~ 0
2
Solve for ax to obtain: o = 2E,
° n
Substitute in equation (1) and <x2> B h?
simplify to obtain:  4mE,
From Problem 7 we have: (x)=0 )
Substitute equations (1) and (2) in 5 > #2 o1
T () = a0 =5
the expression <x >—<x> to 4mE, 2\ mE,

obtain:
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Substitute numerical values and evaluate <x2>—<x>2 :

-34
<x2>—<x>2 :1.05><1; J-s 1 TWTER
(9.11x10™ kg)(Z.lxlO“‘ eV J
eV
=1 9.49nm
(b) The lowest energy of an electron E - h?
trapped in an infinite potential well L gmI?
is:
2
Letting L = <x2> - <x>2 yields: E = h
8m <x2> — <x>2
Substitute numerical values and evaluate E;:
-34 2
£ - (6.63x10% J ) leV TV,

" 80,1110 kg)(9.49 x10° m) 1.6x10°7

12 00
Picture the Problem We can begin by equating the average kinetic energy of the
harmonic oscillator and its average potential energy and solving for < p2> and then

evaluating and substituting for <x2>.

According to the problem statement: P°) 1
=)
Solve for <p2>2 <P2>:mk<x2>
or, because @ = E
m
<p2>:m2a)02<x2> 1)

We need to evaluate:

<x2> = Ix2|t//|2 = A()Zsze‘z“"zdx (2)

@y

m
where a =



2

Let y* = 2ax®. Then x° = Pl

2a

and:
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dx = ﬂ
2ax

With appropriate substitutions, the integral becomes:

DO')/’_267}72y_dy:wy_ge7y2 \/Zady . 1

° 2a

From integral tables (see Table D-
5):

In Problem 35-9 it was given that:

Substitute in equation (2) to obtain:

Substitute for a and simplify:

Substitute for <x2> in equation (1):

13

2ax * 2a

gz | vie " dy

(24

2ay

Iyze_yzdy :%\/;

( 2ma, jm
4y =
h

2ma,

(r*) =m2w§(2nfwj -

1
Ehma)o

Picture the Problem We can use the definition of the standard deviation of Ax and Ap
and the results of Problems 7, 10, and 12 to determine the uncertainty product Ax Ap for
the ground state of the harmonic oscillator.

Express the standard deviation of Ap

(see Equation 17-35q):

Because p,, = 0:

(4 =[(p- pu ¥,

[ =2pp., -1’ ]

(Ap) =(p?).,
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Express the standard deviation of Ax
(see Equation 17-35aq):

Because x,, = 0:

We have, from Problems 10 and 12,
for the ground state of the harmonic

oscillator: and
2 2 hma)o
=(Ap) =
(p)=(ap) ==
Express the product of (Ax) and 2
xoressthe product of (42 (o e | )
(Ap)’: 2ma, )\ 2 ) 4
Take the square root of both sides of h
. . AxAp =—
the equation to obtain: 2
Reflection and Transmission of Electron Waves: Barrier
Penetration
*14 oo
Picture the Problem We can use the total energy of the particle in the region
x>0 to express k, in terms of « and &;. Knowing & in terms of k;, we can use
2
R = % to find R and 7 =1 — R to determine the transmission coefficient 7.
1 + 2

(@) Using conservation of energy,
express the energy of the particle in
the region x > 0:

Solve for k,:

From the equation for the total
energy of the particle:

(Ax) = [(r-x, 1.,

_[.2_ _ 2]
= [x 2xx, = x|

hk?
2m

+U, =al,

k, = w/2mU0i05 ~1)

h

i _y2maU,
=0

h
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Express the ratio of & to k;: 2mU, (e 1)
ﬁ B A _Ja-1
k, \2maU, o
h
and k, = a—_lkl
a
(b) The reflection coefficient R is R (k,—k,)
given by: - (kl +k2)2
Factor k; from the numerator and k, 2
denominator to obtain: =
1
R= 5
kl
Substitute our result from () for 2 2
. @ 1— a-1 a-1
kz/kl. a 1_ - =
R= - = @ -
[1+ a—lJ 1+\/a—
a a
The transmission coefficient is a—1 2
given by: 1- a
T'=1-R=1- T
1+ a;
a

A spreadsheet program to plot R and T as functions of « is shown below. The formulas
used to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A2 1.0 a
B2 (1-SQRT((A2-1)/A2))/ 1 2
(1+SQRT((A2-1)/A2))"2 1- |97
a
1+ a-1
a
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C2 1-B2 2
a-1
1- |[Z—=
1— a
-1
R
a
A B C
1 alpha R T
2 1.0 1.000 0.000
3 1.2 0.298 0.702
4 14 0.198 0.802
5 1.6 0.149 0.851
18 4.2 0.036 0.964
19 4.4 0.034 0.966
20 4.6 0.032 0.968
21 4.8 0.031 0.969
22 5.0 0.029 0.971
The following graph was plotted using the data in the above table:
1.0
== =R
—_—T
0.2 I
0.0 17 *f===-- .
1 2 2 3 3 4 4 5 5
alpha

15 oo

Picture the Problem We can use the total energy of the particle in the region

x> 0to find k,. Knowing k,, we can use R =

determine the transmission coefficient 7.

(ks +k,)

(kl _kz)

2
5 tofindRand 7=1-Rto
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(a) Using conservation of energy, hk?

L . -U, =2U,
express the particle in the region x > 2m
0:

Solve for k: i \6mU,
2 —

energy of the particle:

h
From the equation for the total [AmU
ky N0
h
V 0

Express the ratio of &, to 4;: 6mU
E = h = E - k2 = Ekl
1 AmU, 2 2
h
(b) The reflection coefficient R is (1 k, jz
given by: e (kl —k, )2 _ k,
2 2
(k, +&,) (1+k2]
kl
Substitute for k,/k; and evaluate R: [ 3 JZ
1—.|—
2
R=-——%-=|0.0102
2
(c) Because R+ T=1: T'=1-R=1-0.0102=]| 0.990
(d) If we let N, represent the number N,T =10°%0.990 =| 9.90x10°

of particles incident upon the Classicallv.all 10° 1d conti
potential step, then the number that assieatly,a WOLTE COMTINEE

continue beyond is: to move past the potential step.

16 e
Picture the Problem We can use the energies in the regions U = 0 and U = U, to express
the ratio of the potential energy to the total energy in terms of the ratio of the wave
numbers. We can also express this ratio in terms of the reflection coefficient R to obtain
an expression for the ratio of £ to U in terms of R.
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In the region U = 0:

In the region U = Uy:

Let » equal the ratio of &, to &;:

Letting Uy = U, solve for U/E:

Write the reflection coefficient R as

a function of » = k—z:
kl

Solve for r to obtain:

Substitute for  in equation (1):

Substitute a numerical value for R
and evaluate E/U:

1.03
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17 oo
Picture the Problem The probability that a proton will tunnel out of a nucleus in one
collision with a nuclear barrier if it has a given energy is given by Equation 35-29.

Equation 35-29 is: T = g2

where

2m(U, - E) m
a = > =
h h

Multiply the numerator and 2mc2(U0 _ E)
denominator of « by ¢ to obtain: a= e

where

hic=1.974x107° MeV -m

Using m c” = 938 MeV, evaluate T:

0.341

I —exp {_ oo 17/2(938MeV)(6 Mev)} _

/1.974x10™2 MeV -m

*18 oo
Picture the Problem The probability that the electron with a given energy will tunnel
through the given barrier is given by Equation 35-29.

(a) Equation 35-29 is: T = g2

where

\/MUO——E? 2m(U, —E)
a = > =
h h

Multiply the numerator and chz(UO _ E)
denominator of « by ¢ to obtain: o= he

where

hic =1.974x107° MeV -m
Using m,c” =511keV,evaluate T:

5.91x107

-on] s TS 100

(b) Repeat with ¢ = 10" m:
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1.89x107

T = exp {_ 210 m)¢2(511 keV)(2135 eV -10 ev)} _
1.974x10 " MeV -m

19  eee
Picture the Problems We can find the distance of closest approach by equating the
kinetic energy of the alpha particle and the Coulomb potential energy. The probability that
the electron with a given energy will tunnel through the given barrier is given by

T = e™®™ where « is the transmission coefficient and depends on AE.

(@) The distance of closest approach E= k2eZe
is related to the kinetic energy E of i
the alpha particles:

Solve for ry: L 2kZe®

For E =4 MeV:

2(8.99x10° N-m?/C?)(92){1.6x10™ Cf

Ravev = 9 =1 6.62x10™"m
4MeV><1'6X10 J
eV
For K =7 MeV:
9 2 2 -19
- 2(8.99x10° N -m /fG)(glzo)(llg.gsxlo f o
TMeV x =222~
(b) The transmission coefficient 7'is T =e*™ Q)
given by: where
\/ZmAE N2mAE
a = 2 =
h h

Evaluate au mev for AE = 4 MeV:

—-27 -19
\/2(4UX1.66><10 kgj(4MeVX1.6x10 JJ
u eV

[04 =
MeV 1.05x10°*J-s

=8.78x10%m™
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Evaluate a7 mey for AE =7 MeV:

—27 -19
\/2(4u 16610 kg][7 Moy o 16X107)

] =1.16x10"m™

u eV
a =
eV 1.05x107#J-s
Substitute numerical values in ey = 28780 m (g.62:10 m)

equation (1) and evaluate T} pev: _[327x10%

- . - 15 -1 -14
Substitute numerical values in 211640 m 37810 m)

equation (1) and evaluate 77 pev:

T7MeV =

=[8.21x10°*

The Schrodinger Equation in Three Dimensions

20 -

Picture the Problem We can use F

g Ny

2_2 2 2 2
_h'zm(n; n, n
2m

3 - - -
L_f + L_i + L—g] with the given sides
of the box to find the quantum numbers ny, ny, 13 that correspond to the lowest ten
guantum states of this box.

The energies of the quantum states . Wn’(n? ni nl
are given by Equation (LTI W Lf +L_§ Lé
35-34:

For a box with sides L;, E - Wr®(nf  ni  nd
Lp=2Ly,and Ls = 3L: nrets s om (12 ALR 9L

_ n2+n—22+n—§
smI’ ' 4 9

h2

= 36n% +9n? + n?
288mL§( ;40 + )

2
The energies in units of

> are listed in the following table:
88mL;

ni | Ny | N3 E
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76
81
88
108
109
121
133
136

GG
N (W [w [k NN [N
BN (RS w[N|w -

21 -
Picture the Problem The wave functions are of the form

w = Asin 7y Isin My sin| 3%,
L 2L, 3L,

22 o

7’12

> +—2+—2 | with the given sides
Ll LZ LS

) Wr?(n? n?
Picture the Problem We can use FE = + 42

Ny

2m

of the box to find the quantum numbers ny, ny, 13 that correspond to the lowest ten
guantum states of this box.

(a) The energies of the quantum £ Wrt(n? nl nl
states are given by Equation wits = om \ 22 12
35-34:

For a box with sides L;, - ner®(n? s n . n}
Lo =2Ly,and Ls = 4Ly wrets T om \(I2 0 ALF 1612

= M(lfinf + 47’122 + n32)

2

The energies in units of are listed in the following table:

28ml?

n | ny|n3| E
111|121
111|224
111|329
112|133
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36
36
41
45
48
53
56
56

N T N e
Wik W [N~ (NN e
N (o |k (S0 |w (NS

Referring to the table, we see that (1,1,4)and(1,2,2)
there are two degenerate levels:

and
(1,1,6)and(1,3,2)

*23 e
Picture the Problem The wave functions are of the form

w = Asin M7+ sin My sin| 287 2
L 2L, 4L,

PZ
Picture the Problem The boundary conditions in the y and z directions are the same
those in Figure 35-1. In the x direction, we’ll require the w=0 at —L/2 and L/2.

(a) The boundary conditions in the x W(— %L) = w(%L) =0
direction are:
The general solution of the time- l//(X) = Asin kx + B COS kx
independent Schrddinger equation
is:

iti . kL kL
App!y the boundary conditions to W(—%L) — _Asin™ , Beos™ — 0
obtain:

and

w(iL)= Asin%L+Bcos%L:O

Eliminate the terms in B by Asin k_L -0

subtracting the equations:

For 4 #0: _Lzsin‘10:0,7r,27r,
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or
k=" 5 =0,2,4, ..
L

Eliminate_ the terms in 4 by adding Bsink—L ~0

the equations:

For B # 0: k—L=C0810—£,3—7Z,5—7Z,
2 2 2 2
or
k=222 p =135,

Thus:

n,mzT . n,7mw . n,7w
x,,z)=Bcos| =—x [sin| ===y [sin| ==z |,n, =2n+1
w(x.y.2) (L](Ly] (le
and

. n,Jr . n,yza . N, T
x,y,z)= Asin| *=x [sin| ==y |sin| ==z |, n, =2n
w(xy.z) (L j [Lyj (L ) )

The ground-state wave function is:

w(11)=4 cos(% xj sin(% yj cos(% zj

(b)| The allowed energies are the same as those for a well with U =0 for 0 < x < L.

25 oo

Picture the Problem We can apply the solution to the time-independent Schrodinger
equation in three dimensions to obtain the wave function and the allowed energies for the
given two-dimensional region. In (c¢), we must find three different sets of quantum
numbers (m,n) for which the sum of the squares are the same.

() The solution to the time- w(x,y)=Asinkxsink,y
independent Schrodinger equation in
two-dimensions is:

. nrw . mn
=| Asin—xsin—y
L L

where n and m are integers.



(b) The energy is quantized to the
values:

(c) The lowest two states that are
degenerate are:

(d) The energies of three lowest

states that have the same energies
2

(in units of 3 ) are listed in the

LZ

table to the right:

The quantum numbers for the three
states are:
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h’ 2 2
E = n +m
i 8mL2( )
5h°
E =E =
1,2 21 8mL2
n|\m|E,.
1|17 ]| 50
711 50
55| 50

(L7), 1] (72), |and | (5,5)
and their energies are

h? 25h°
E =(50) =
( "8m1’ 4mL*

The Schrodinger Equation for Two Identical Particles

26 -

Picture the Problem We must differentiate Equation 35-37 twice and substitute these
derivatives in this equation to show that it is a solution.

With U =0, Equation 35-35
becomes:

Differentiate Equation 35-7 with
respect to x;:

Compute the second derivative with
respect to x;:

0 Opln) 1 ()
2m  ox} 2m x5 (1)

ZEW(xl’XZ)

2 :i[Asin 1 in 27“2}
ox, Ox; L L

Ar  mx, . 27,
=——C0S—=SIn——~=
L L

2
0 l/Z/ :i[ﬂcosﬂsin_zmz}
ol x| L L L

Ar® . m . 2mx,
=———sin—tsin—=
L L L
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respect to x,: ox, - 0ox,

247w . mx, 27,
= TSIH—COS—

Differentiate Equation 35-7 with dy _ & [Asin %sin 27?2}

respect to x: oxZ  ox,

Compute the second derivative with w0 [24r . m™,  2m,
sin—-cos—=

447° . m, . 2m,
=- 57— SIN—=38In———~
L

Substitute in equation (1) to obtain:

sin —isin —% |- — >
2m L

| Ax® . 2mx, | h'| dAn® . mx, . 2mx,
- 7 - - SIN —=SIn —=
2m L L L

= EAsin ﬂsin%
L L

Solve for E to obtain: 5h2r?
=27
2mlL

Thus we've shown that Equation 35 - 37 satisfies Equation 35 - 35 provided
5h2r?

E=——.
2mL

27 -
Picture the Problem Because bosons have symmetric wave functions and do not obey
the Pauli exclusion principle, they can occupy the same ground state.

The ground-state energy of a single E _ h’

particle in a one-dimensional box of Otparticle = g, 2

length L is:

For 10 bosons: 104? 5k

EO,lObosons - 8mL2 - 4mL2

*28 o
Picture the Problem For fermions, such as neutrons for which the spin guantum number
is ¥, two particles can occupy the same spatial state.
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The lowest total energy for the 10 E= 2El(12 +22 432 +4% + 52)
fermions is: n?
=2 55
[s5?
4ml?

Orthogonality of Wave Functions

29 oo

Picture the Problem We need to show that on (x)t//l(x)dx =0, where yo(x) and y4(x)

—00

are given by Equations 35-23 and 35-25, respectively.

Equations 35-23 and 35-25 are: wo(x)= dye™ 35-23
and
v, (x)= Axe 35-25
Note that ya(x) is antisymmetric, v, (x)l//l(x) is antisymmetric

whereas yp(x) is symmetric.
Because the product of an
antisymmetric function and a
symmetric function is
antisymmetric:

Because the integral of an 2
antisymmetric function over .['//0 (X)W1(x)dx =0
symmetric limits is zero: =

30 oo

Picture the Problem We need to show that jl//l(x)l//z(x)dx =0, where ys(x) is given

in the problem statement and , (x) = Alxe“’"Z.

Note that y4(x) is antisymmetric, t//l(x)t//z(x) is antisymmetric.
whereas y»(x) is symmetric.

Because the product of a symmetric

function and an antisymmetric

function is antisymmetric:
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Because the integral of an 2
antisymmetric function over .[ V/l(x)'//z (x) -
symmetric limits is zero:

31 o0

L
Picture the Problem We need to show that Isin(%)sin(%)dx =0.
0

Use the trigonometric identity (sinaa)(sinba)=1{cos|(a —b)a]-cos|(a + b)e]}

to rewrite the product of the two sine functions as the difference of two cosine functions:

(o) ez ofr ]

L
Substitute for sin nm and sin nm and evaluate Jsin nm sin mn dx:
L L L L

Because n and m are integers and »n = m, the sine functions vanish at the two limits x =0

L
and x = L. Therefore, Isin(%)sin(%)dx =0 forn #m.
0

General Problems

32 e
Picture the Problem We can use the wave functions y(x) and y»(x) and the definitions
of <x> and <x*> to evaluate these quantities and the wave functions at x = 0.

(@) The wave functions y(x) and |2 sin mr _>
yo(x) are: Vi T\ L A

and

gym:\/zcos ﬁx ,m=2n+1
L L
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wheren=0,1, 2, ...
Evaluate these functions at x =0 to 2 .
obtain: '//1(0):\/;9”{%(0)} :@
and
2 2
i0)= 2co Z0)|<| 2
2. L2
(b) Because |/, (x)| is an even <x> _ .[Xl//z (x) d = @
function of x in all cases, x> (x) is -1/2 "
an odd function of x and:
(c)Forn=1: <x2>:£L/2 25in2 % vdx
L

From integral tables:

2
a

3 3
J.xzsmz(ax)dx=x——(x—— L Jsin(Zax)—M
6 8 4

Use this integral with @ = 7Z/L to obtain: <x2> _ L_Z 1+£
12 7?
Forn=2: e
<x2> =— I x% c0s* == xdx
-1/2

From integral tables:

4q?
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*33 e
Picture the Problem We can determine the energies of the state by identifying the four
lowest quantum states that are occupied in the ground state and computing their
combined energies. We can then find the energy difference between the ground state and
the first excited state and use this information to find the energy of the excited state.

Each n, m state can accommodate (1,2), (1,2), (2,1) and (2,2)
only 2 particles. Therefore, in the
ground state of the system of 8 Note that the states (1,2) and (2,1) are
fermions, the four lowest quantum distinctly different states because the x and
states are occupied. These are: y directions are distinguishable.
The energies are quantized to the h? s
gies are o P Nz n2)
values given by: iy ml?

The energy of the ground state is the sum of the energies of the four lowest quantum
states:

Eo = E1,1 + E1,2 + E2,1 + Ez,z

:4§h;j@2+f)+{éh;]@2+f)+4§h;J@2+f)+4§h;j@2+2ﬂ

m m m m
hZ
=2 — |(2+5+5+8)
8mL
B 5h*
mL?

The next higher state is achieved by AE=FE ;- E,,
taking one fe.rmlt')n from the (2,?) ~ h2 ( , 32) K2 (22 22)
state and raising it to the next higher = 8l to )= 8ml2 +
unoccupied state. That state is the B2 B2
(1,3) state. The energy difference =——(10-8)= 5

. 8mL dmL
between the ground state and this
state is:
Hence, the energies of the degenerate E ;=E;; =E,+AE
states (1,3) and (3,1) are: 542 h? 212

= + =
mL*  4mL?  4mL*

The three lowest energy levels are 5h?
therefore: £ = ml?

and two states of energy
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21h°
4ml?

E=E, =

34 e
Picture the Problem The energy levels are the same as for a two-dimensional box of
widths L and 3L.

(a) The energies of the bound states W (n?> m?
are given by: nm =g\ 12 912
h2 2 2
= O +m
72ml? ( )
The three lowest energy states are: 2 2
El = h—z (9 + 1) = lz
T 12mL 36mL
h? 13h*
=——9+4)=| ——
Y2 72ml? ( ) 72mL’
and
h? h?
E.,=——(9+9)=
Y 2ml? ( ) 4mL*

None of these states are degenerate.

(b) Express the condition that must 9(1112 —~ nf): ms —m?
be satisfied for two states to be
degenerate:
This condition is first satisfied for: n,=2,m =3,andn, =land m, =6
Find the energy of this doubly h? 542
, E,,=——(36+9)=
degenerate state: 23 7 79mI2 8ml?

35 e
Picture the Problem We can use the definition of the classical expectation value
(average value) to show that the classical expectation value of x*for a particle in a one-
dimensional box of length L centered at the origin is L%/12. In (b) we’ll proceed as in (a)
using the definition of the quantum expectation value of x%.
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(@) The classical expectation value is given
by:

(b) For a particle in the nth state in a
one-dimensional box:

From integral tables:

3 3
sz Sinz(ax)dx:%—(x——

In the limit n >> 1;

36 oo

1 12
(x2 )av = - Ixzdx
$1L-(-3L) ),
AH/ 4(2)
L\ 3),, Ll12
L2
Tl12
Lz ni
<x2>:— I x?sin? == xdx
12 L

isj sin(2ax)— e C(Zscgfax)

Picture the Problem We can solve Equation 35-28 for T and substitute for R using
Equation 35-27. Letting » = k»/k, and simplifying will lead to the given result.

Equation 35-28 is:

From Equation 35-27:

Substitute for R to obtain:

Substitute for k»/k; for r and
simplify to obtain:

T+R=1=T=1-R

2

k

1-=2
Rz(kl_kZ)z_[ li

(ky +k, ) @+@I

where r = kylk;

(1+ r)2 - (1— r)z

_, =r)
Ty

4r
@+r)

(+r)

4k,k,
(k1 +k, )2
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37 [ 1)
Picture the Problem We can use the energies in the regions U = 0 and U = U, to express
the ratio of the wave numbers &; and k; in these regions in terms of £ and U, and the

@-ry

definition of the reflection coefficient R to show that R =

(1+ r)z .
In the region U, = 0: 22
g 0 E:hzkl k= 271;12E
m
In the region U = Uy: 272 _
g 0 E_Uozhkz K, = 2m(E2 U,)
2m fi
Let » equal the ratio of & to &;: 2m E—Uo)
r= LS = n = \/l— Yo
k, 2mE E
hZ
The reflection coefficient R is given R (kl —k, )2
by: (k)
Factor &, from the numerator and k, 2
denominator to obtain: 1--=
R _ 1
- 2
k
1+-2
kl
Substitute for k»/k; to obtain: . (l— r)z

38 e
Picture the Problem

From Problem 37 we have: _+V
@ R= (1 r)z ,Where r = 1/1—ﬂ
@+r) E

Because £ = aU,, R can be written:

From Problem 36 we have: 4y
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A spreadsheet program to plot R and T as functions of « is shown below. The formulas
used to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A2 1.0 a
B2 SQRT(1-1/A2) 1
a
C2 (1-B2)"2/(1+B2)"2 (1_ ,,)2
(1 + r)2
D2 4*B2//(1+B2)"2 4r
(l + r)z
A B C D
1 alpha r R T
2 1.0 0.000 1.000 0.000
3 1.5 0.577 0.072 0.928
4 2.0 0.707 0.029 0.971
5 25 0.775 0.016 0.984
16 8.0 0.935 0.001 0.999
17 8.5 0.939 0.001 0.999
18 9.0 0.943 0.001 0.999
19 9.5 0.946 0.001 0.999
20 10.0 0.949 0.001 0.999

The following graph of R and T as functions of « was plotted using the data in the table:

1.0

0.8 1

0.6 1 - - =R

0.4

0.2

0.0 ™ wm m m | m o=
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From the graph, we note that, as @ — o, T'—1and R — 0. The graph

b
( alsoshows that,asa - 1,7 ->0and R —> 1.

~—

39 o00
Picture the Problem We require that

A7 T (2ax2 - %)2 e 2 dx = 2A22]3 (2ax2 - %)2 e 2 gy =1,
e 0

Expand the integrand to obtain:

2 2 —2ax® 2.4 2 ~2ax* 24 -2ax’ 2 -2ax’ ~2ax?
(Za —%)e “ =(4ax —2ax +%)e “ =4a°x"e™™ —2ax"e ™™ +4e "

Substitute in the integral expression:

% _ 2 _ 2 . 2
2A22.[(4a2x4e 2 _2ax’e ™+l )dle
0
or

8c12/122J‘x4e’2‘”‘2 dx —4aA? j X272 dx + 14 j e dx=1 (1)
0 0 0

Use the definite integrals I e dy = %\/% and
0

sz"ebxzdx _ 1-3-5---(2n-1)
2n+1bn

0

\/% ,n>1 (see Table D-5) to integrate equation

(1) term by term:

8a7AZ — > || 4ad? ZL L PO L
2°(2a)’ \ 2a 2°(2a)\ 2a 2\ 2a

or
P BBy A A K2
4\N2a 2\2a 4\2a
or
P
2\ 2a
Solve for 4. 24
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Because a = -0 :% 4 =| 4 8ma,
? h
40 o00
(a) Letx =—x. The second derivative is an even operator, that is,
/d =d?y(x)/dx? . Therefore, if U(~x)=U(x), the Schrodinger

equatlon for l//(—x) = w (x) and must give the same values for the energy E. If
w (—x) differs from w (x), the ratio w (—x)/w (x) cannot be a function of x and must be a
constant. Hence,  (x) = Cy (—x).

(b) The previous result means that replacing the argument of the wave function by its
negative is equivalent to multiplication by C. Thus, if Cy (—x) is a good wave function
and we replace its argument by its negative, that is, by x, we must multiply by C again.
Thus, ¥ (x) = C?w (x), C?=1,and C = +1.

*41 00
Picture the Problem We can follow the step-by-step procedure outlined in the problem
statement to show that (Ea)min = + 3 7 .

1. The total classical energy is: E, =U,+K,

= yma’(x?), +% ?
2. Express the standard deviation of (Ap)2 = [(p — P )2 LV
ap: =[p* -2pp. - p?],,
Because p,, = 0: (Ap) = (pz)av
3. Express the standard deviation of (Ax)2 = [(x — X, )ZLV
Ax:

[z _ 2]
= [x 2xx0 =X |

Because x,, = 0: (Ax) = (xz)av
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4. Use the uncertainty principle
Ap = hl2Ax to eliminate (p°)a from
the average energy in equation (1):

Let Z= (Xz)av to obtain:

5. Differentiate E,, with respect to Z
and set this derivative equal to zero:

Solve for Z to find the value of Z
that minimizes E,, (see the remark
below):

6. Evaluate E,, when Z = hl2mw:

E = %ma)z(xz)av + Azl;j

= %ma)z(xz)av +2i|:h—2j|

m| &(Axy

E, =ima’Z + f
8mZ
2
By _ 4 ima’Z + h
dz dz 8mZ
1 2 n’
=smo” - > = 0 for extrema
8mZ
7=
2me

(Bl =3mo 5o |4 [ 202

me%h

J I
= Ehd)

Remarks: All we’ve shown is that Z = #i/2mw is an extreme value, i.e., either a
maximum Or @ minimum. T0 show that Z = A/2m e minimizes E,,, we must either 1)
show that the second derivative of E,, with respect to Z evaluated at Z = #2mw is
positive, or 2) confirm that the graph of E,, as a function of Z opens upward at Z =

hil2ma.

42 (1T ]
Picture the Problem

The classically allowed region is for
E > U(z2). In the figure below, this
region extends fromz=0toz =

Zmax-

Li(z)

Zimax
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The kinetic energy is £ — U(z). In K()
this case, K(z) is a straight line
extending from Eatz=0toOatz = E—

Zmax-

| “~

Zl\\d\
A sketch of the wave functions for
the lowest three energy states is
shown to the right: n=0

n W
n=1
43 oo

Picture the Problem If f{x) = 0 everywhere on the interval 1 < x < 2, then the slope of
Sx) is zero everywhere on the interval; and if the slope remains zero everywhere on the
interval, then the rate of change of the slope (with respect to x) also remains zero
everywhere on the interval; the rate of change of slope remains zero everywhere on the
interval, then the rate of change of the rate of change of the slope also remains zero
everywhere on the interval; and so on. More concisely, if f{x) = 0 everywhere on the
interval 1 < x < 2, then derivatives of f{x) with respect to x of order 1, 2, 3, ... are each
equal to zero everywhere on the interval.

Calculating the first three

af
derivatives of f'we obtain: —~—=34x* +2Bx+ Cx

dx
2
d { =6A4Ax+ 2B
dx
and
3
o,
dx
Using &%pdf* = 0 and solving for 4 A=0
one obtains:
Substituting 0 for 4 in the d*f
expression for d*f/dx” gives: 7 0+2B=2B
Using d?f/dx* =0 and solving for B B=0
yields:
Substituting 0 for both 4 and B in df
the expression for df/dx yields: P 0+0+Cx=Cx

Using df/dx =0 and solving for C Cc=0



Applications of the Schrédinger Equation 1171

one obtains:

Substituting 0 for 4, B, and C in the f=0+0+0+D=D
expression for f'gives:

Using /= 0 and solving for D D=0

gives:

Thus, we’ve shown that if f{x) = Ax® + Bx? + Cx + D = 0 everywhere on the interval
l<x<2, itfollowsthat A=B=C=D=0.
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