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Chapter 36 
Atoms 
 
Conceptual Problems 
 
*1 •  
Determine the Concept Examination of Figure 35-4 indicates that as n increases, the 
spacing of adjacent energy levels decreases. 
 
2 •  
Picture the Problem The energy of an atom of atomic number Z, with exactly one 

electron in its nth energy state is given by ... 3, 2, 1,   ,2

2
02 =−= n

n
EZEn . 

 
Express the energy of an atom of 
atomic number Z, with exactly one 
electron, in its nth energy state: 
 

... 3, 2, 1,   ,2

2
02 =−= n

n
EZEn  

where E0 is the atom’s ground state energy. 
 

For lithium (Z = 3) in its first 
excited state (n = 1) this expression 
becomes: 

( ) 02
02

2 9
1

3 EEE −=−=  

and correct. is )(a  

 
3 •   
Determine the Concept Bohr’s postulates are 1) the electron in the hydrogen  
atom can move only in certain non-radiating, circular orbits called stationary states, 2) if 
Ei and Ef are the initial and final energies of the atom, the frequency f of the emitted 
radiation during a transition is given by f = [Ei – Ef]/h, and 3) the angular momentum of a 
circular orbit is constrained by mvr = nh. correct. is )(a  

 
4 ••  
Picture the Problem  We can express the kinetic energy of the orbiting electron as well 
as its total energy as functions of its radius r. 
 
Express the total energy of an 
orbiting electron: 
 

UKE +=  

Express the orbital kinetic energy of 
an electron: 
 r

kZeK
2

2

=                                  (1) 

Express the potential energy of an 
orbiting electron: 
 r

kZeU
2

−=  

Substitute and simplify to obtain: 
 

r
kZe

r
kZe

r
kZe

r
kZe

r
kZeE

2

2
2

22
2

2222

−=

−=−=
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.  thereforeand negative less
becomes  increases,  as Thus,

increases
Er

 

 

decreases. 
increases,  if clear thatit  makes for  expression  theofn Examinatio

K
rK

 

 
5 •  
Picture the Problem We can relate the kinetic energy of the electron in the n = 2 state to 
its total energy using 222 UKE += . 
 
Express the total energy of the 
hydrogen atom in its n = 2 state: 
 

222222 2 KKKUKE −=−=+=  
or 

22 EK −=  
 

Express the energy of hydrogen in 
its nth energy state: 
 

( ) 2

2
0

2

2
02

2

2
02 1

n
E

n
E

n
EZEn −=−=−=  

where E0 is hydrogen’s  ground state 
energy and Z = 1. 
 

Substitute to obtain: 
 2

2
0

n
EKn = and 

42
0

2
0

2
EEK ==  

correct. is )(d  

 
6 •  
Picture the Problem The orbital radius r depends on the n = 1 orbital radius a0, the 
atomic number Z, and the orbital quantum number n according to r = n2a0/Z. 
 
The radius of the n = 5 orbit is: 
 0

02
5 25

1
5 aar ==  

because Z = 1 for hydrogen. 
( ) correct. is b  

 
*7 •  

Determine the Concept We can find the possible values of l  by using the constraints on 
the quantum numbers n and l .  
 
The allowed values for the orbital 
quantum number l  for  
n = 1, 2, 3, and 4 are summarized in 
table shown to the right: 

n l  
1 0 
2 0, 1 
3 0, 1, 2 
4 0, 1, 2, 3  

From the table it is clear that l  can 
have 4 values.   

correct. is )(a  
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8 •  

Picture the Problem We can find the number of different values ml can have by 
enumerating the possibilities when the principal quantum number n = 4. 
 
The allowed values for the orbital 
quantum number l  and the 
magnetic quantum number ml for 
 n = 4 are summarized to the right: 
 

3,2,1,0=l  
and 

3,2,1,0,1,2,3 −−−=lm  
 
 

From this enumeration we can see 
that m can have 7 values. 

correct. is )(c  

 
9 •   
Picture the Problem We can visualize the relationship between the quantum number l  
and the electronic configuration as shown in the table below. 
 

 s p d f g h
l value 0 1 2 3 4 5 

 
Because the p state corresponds to l  = 1, correct. is )(c  

 
*10 ••   
Determine the Concept The s state, with l  = 0, is a ″penetrating″ state in which the 
probability density near the nucleus is significant. Consequently, the 3s electron in 
sodium is in a region of low potential energy for a significant portion of the time. In the 
state l  = 1, the probability density at the nucleus is zero, so the 2p electron of sodium is 
shielded from the nuclear charge by the 1s electrons. In hydrogen, the 3s and 2p electrons 
experience the same nuclear potential. 
   
11 ••  
Determine the Concept In conformity with the exclusion principle, the total number of 
electrons that can be accommodated in states of quantum number n is n2 (see Problem 
48). The fact that closed shells correspond to 2n2 electrons indicates that there is another 
quantum number that can have two possible values. 
 
12 ••   

Picture the Problem We can group these elements by using Table 35-1 to look for a 
common outer electronic configuration in the ground states. 
 
The following elements have an outer 4s2 
configuration in the ground state: 
 

calcium and manganese, titanium,  
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The following elements have an outer 4s 
configuration in the ground state: 
 

copper. and chromium, potassium,  

Remarks: It is to be expected that atoms of the first group will have similar 
properties, and, likewise, that atoms of the second group will have similar 
properties.  
 
13 •  
Picture the Problem We can use the fact that the sum of the exponents in the electronic 
configuration representation is the atomic number to identify these two elements. 
 
(a) Adding the exponents yields a sum of 15.  Because this sum is the atomic 
number, Z, the element must be .phosphorus  

 
(b) Adding the exponents yields a sum of 24.  Because this sum is the atomic number, Z, 
the element must be chromium.  

 
Remarks: Checking the electronic configurations in Table 35-1 further confirms 
these conclusions. 
 
*14 •  
Picture the Problem We can apply the constraints on the quantum numbers l and ml to 
find the possible values for each when n = 3. 
 
Express the constraints on the 
quantum numbers n, l , and ml: 
 

...,3,2,1=n , 
1...,,2,1,0 −= nl , 

and 
llll ...,,1, +−−=m  

 
So, for n = 3, the constraints on l  
limit it to the values: 
 

.2and,1,0=l  

ml can take on the values: 2,1,0,1,2 −−=lm  

 
15 •   
Determine the Concept The correspondence between the letter designations K, L, M, N, 
O, and P for the shells and the principal quantum number n is summarized in the table 
below. 
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Shell designation K L M N O P Q 

n 1 2 3 4 5 6 7 
l  0 0 0 0 0 0 0 
  1 1 1 1 1 1 
   2 2 2 2 2 
    3 3 3 3 
     4 4 4 
      5 5 
       6 

 
While n = 2 for the L shell, l can be either 0 or 1. correct. is )(d  

 
16 ••   
Picture the Problem The strengths and weaknesses of each model are summarized in the 
following table. 
 
 Bohr Theory 

 
Schrödinger Theory 

Ease of application 
 

Easy Difficult 

Prediction of stationary        
state energies 
 

Correct predictions Correct predictions 

Prediction of angular 
momenta 
 

Predicts incorrect           
results 

Predicts correct results 

Spatial distribution of 
electrons 

Predicts incorrect 
results 

Predicts correct probabilistic 
distribution 

 
17 ••  
Determine the Concept The optical spectrum of any atom is due to the configuration of 
its outer-shell electrons.  Ionizing the next atom in the periodic table gives you an ion 
with the same number of outer-shell electrons, and almost the same nuclear charge.  
Hence, the spectra should be very similar. 
 
*18 ••  
Determine the Concept The Ritz combination principle is due to the quantization of 
energy levels in the atom. We can use the relationship between the wavelength of the 
emitted photon and the difference in energy levels within the atom that results in the 
emission of the photon to express each of the wavelengths and then the sum of the 
reciprocals of the first and second wavelengths and the sum of the reciprocals of the third 
and fourth wavelengths. 
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Express the wavelengths of the 
spectral lines λ1, λ2, λ3, and λ4 in 
terms of the corresponding energy 
transitions: 
 

23
1 EE

hc
−

=λ  

02
2 EE

hc
−

=λ  

13
3 EE

hc
−

=λ  

and 

01
4 EE

hc
−

=λ  

 
Add the reciprocals of λ1 and λ2 to 
obtain: 
 

hc
EE

hc
EE

hc
EE

03

0223

21

11

−
=

−
+

−
=+

λλ
      (1) 

 
Add the reciprocals of λ3 and λ4 to 
obtain: 
 

hc
EE

hc
EE

hc
EE

03

0113

43

11

−
=

−
+

−
=+

λλ
       (2) 

 
Because the right-hand sides of 
equations (1) and (2) are equal: 
 4321

1111
λλλλ

+=+  

 
One possible set of energy levels is 
shown  to the right:   

 
 
19 •  
Determine the Concept An allowed transition must satisfy the selection rules  
∆ ml = 0 or ±1 and ∆l = ±1. 
 
(a) ∆l = −1 and ∆ ml = 0:  
 

allowed. isn  transitioThe  

(b) (3,0,1) does not exist. 
 

allowed.not  isn  transitioThe  

(c) ∆l = −1 and ∆ ml = 2:  
 

allowed.not  isn  transitioThe  

(d) ∆l = +1 and ∆ ml = 1: 
 

allowed. isn  transitioThe  
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(e) ∆l = −1 and ∆ ml = 0:  allowed. isn  transitioThe  

 
Estimation and Approximation 
 
*20 ••  
Picture the Problem The number of photons need to stop a 85Rb  atom traveling at 300 
m/s is the ratio of its momentum to that of a typical photon. 
 
(a) The number N of photon-atom 
collisions needed to bring an atom 
to rest is the ratio of the change in 
the momentum of the atom as it 
stops to the momentum brought to 
the collision by each photon: 
 

E
mvc

c
E

mv
p
pN ==

∆
=

photon

atom  

where m is the mass of the atom. 

The kinetic energy of an atom 
whose temperature is T is: 
 

kTmv 2
32

2
1 =  ⇒ 

m
kTv 3

=  

 
Substitute for v to obtain: 
 mkT

E
c

m
kT

E
mcN 33

==  

 
For an atom use mass is 50 u: 

 

( )( ) 523
27

19

8

10K500J/K1038.1
u

kg101.66u503

eV
J101.6eV1

m/s103
≈×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
×

×
×

×
= −

−

−N  

 
(b) The number N of ping-pong ball-
bowling ball collisions needed to 
bring the bowling ball to rest is the 
ratio of the change in the 
momentum of the bowling ball as it 
stops to the momentum brought to 
the collision by each ping-pong ball: 
 

ppbppb

bbbb

ball pong-ping

ball bowling

vm
vm

p
p

N =
∆

=  

Provided the speeds of the 
approaching bowling ball and ping-
pong ball are approximately the 
same: 
 

3

ppb

bb

ball pong-ping

ball bowling 10
g4
kg6

≈≈≈
∆

=
m
m

p
p

N  

(c) The number of photons N needed 
to stop a 85Rb atom is the ratio of the 
change in the momentum of the 
atom to the momentum brought to 
the collision by each photon: 
 

h
mv

h
mv

p
pN λ

λ

==
∆

=
photon

atom  

Substitute numerical values and evaluate N: 
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( )( )( ) 4
34

27

1098.4
sJ1063.6

nm24.780m/s300kg1066.185
×=

⋅×
×

= −

−

N  

 
 
21 ••  
Picture the Problem We can use the relationship between the kinetic energy of an atom 
and its momentum, together with the de Broglie equation, to derive the expression for the 
thermal de Broglie wavelength. In Part (b), we can use the definition of the number 
density of atoms and the result from Part (a), with the interatomic spacing set equal to the 
thermal de Broglie wavelength, to estimate the temperature needed to create a Bose 
condensate. 
 
(a) Express the kinetic energy of an 
atom in terms of its momentum: 
 m

pK
2

2

=  

Use the de Broglie relationship to 
express the atom’s momentum in 
terms of its de Broglie wavelength: 
 

T

hp
λ

=  

where λT is the thermal de Broglie 
wavelength. 

Substitute for p to obtain: 
 2

2

2 Tm
hK

λ
=                             

 
The kinetic energy of an atom is 
also a function of its temperature T: 
 

kTK
2
3

=                               

Equate these expressions for K to 
obtain: 
 

2

2

22
3

Tm
hkT

λ
=  

 
Solve for λT: 

mkT
h

T 3

2

=λ  

 
(b) The number density of atoms ρ 
is given by: 
 

V
N

=ρ  

where N is the number of atoms and V is 
the volume they occupy. 
 

Assume that the atoms are arrayed 
on a cubic lattice of lattice spacing d 
to obtain: 
 

3NdV =  and 33
1
dNd

N
==ρ  

 

Solve for d to obtain: 31−= ρd  
 
 

Setting d = λT yields: 

mkT
h

3

2
31 =−ρ  
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Solve for T to obtain: 
 mk

hT
3

322ρ
=  

 
Substitute numerical values and evaluate T: 
 

( )

( )
nK2.75

K
J1038.1

u
kg1066.1u853

m
cm10

cm
atoms10sJ1063.6

2327

32

3

36

3
12234

=
⎟
⎠
⎞

⎜
⎝
⎛ ×⎟

⎠
⎞

⎜
⎝
⎛ ×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⋅×

=
−−

−

T  

 
The Bohr Model of the Hydrogen Atom 
 
22 •  

Picture the Problem The radius of the first Bohr orbit is given by 2

2

0 mke
a h

= . 

 
Equation 36-12 is: 

2

2

0 mke
a h

=  

 
Substitute numerical values and evaluate a0: 
 

( )
( )( )( )

nm0.0526

m1026.5
C1060.1/kgmN108.99kg109.11

sJ1005.1 11
21922931

234

0

=

×=
×⋅××

⋅×
= −

−−

−

a
 

 
23 •  
Picture the Problem We can use the equation relating the wavelength of the radiation 
emitted during a transition between two energy states to find the wavelengths for the 
transitions specified in the problem statement. 
 
Express the wavelength of the 
radiation emitted during an energy 
transformation from one energy 
state to another: 
 

fi

nmeV1240nmeV1240
EEE −
⋅

=
∆

⋅
=λ  

provided the energies are expressed in eV. 
Note that this relationship tells us that the 
longest wavelength corresponds to the 
smallest energy difference. 
 

Because Ef = −13.6 eV: 
 eV6.13

nmeV1240

i +
⋅

=
E

λ  
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Express the energy of the nth energy 
state of the atom: 
 

22
0 eV6.13

nn
EEn −=−=  

Substitute to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=

+−

⋅
=

2

2

11eV6.13

nmeV1240

eV6.13eV6.13
nmeV1240

n

n

λ

                  (1) 

 
(a) Evaluate equation (1) for  
n = n1 = 3: 

nm103

3
11eV6.13

nmeV1240

2

=
⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=λ  

 
(b) Evaluate equation (1) for  
n = n1 = 4: 

nm3.97

4
11eV6.13

nmeV1240

2

=
⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=λ  

 
24 •  
Picture the Problem For the Balmer series, Ef = E2 = −3.40 eV.  The wavelength 
associated with each transition is related to the difference in energy between the states 

by
fi

nmeV1240
EE −
⋅

=λ .  

 
Express the wavelength of the 
radiation emitted during an energy 
transformation from one energy state 
to another: 
 

E∆
⋅

=
nmeV1240λ                          (1) 

provided the energies are expressed in eV. 
Note that this relationship tells us that the 
longest wavelength corresponds to the 
smallest energy difference. 
 

Evaluate ∆E for the transition  
n = 3 to n = 2: 
 

22
0

22 E
n
EEEE nn −=−=∆ →  

Because Ef = E2 = −3.40 eV and  
E0 = −13.6 eV: 
 

eV40.3eV6.13
22 +−=∆ → n

En          (2) 

 
Evaluate equation (2) for n = 3: 

eV89.1

eV40.3
3

eV6.13
223

=

+−=∆ →E
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Substitute in equation (1) to obtain: nm656
eV89.1

nmeV1240
=

⋅
=λ  

 
Evaluate equation (2) for n = 4: 

eV55.2

eV40.3
4

eV6.13
224

=

+−=∆ →E
 

 
Substitute in equation (1) to obtain: nm486

eV55.2
nmeV1240

=
⋅

=λ  

 
Evaluate equation (2) for n = 5: 

eV86.2

eV40.3
5

eV6.13
225

=

+−=∆ →E
 

 
Substitute in equation (1) to obtain: nm434

eV86.2
nmeV1240

=
⋅

=λ  

 
25 ••  
Picture the Problem We can use Bohr’s second postulate to relate the photon energy to 

its frequency and use 
fi

nmeV1240
EE −
⋅

=λ to find the wavelengths of the three longest 

wavelengths in the Paschen series.  
 
(a) Use Bohr’s second postulate to 
express the energy of the photons in 
the Paschen series: 
 

fi EEEhf −=∆=  

For the series limit: 
 

∞=n  and 0i =E  

 
Substitute to obtain: 
 2

2

0
2
2

0
f n

E
n
EEE =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=−=∆             (1) 

 
Evaluate the photon energy for 
n2 = 3: 
 

eV51.1
3

eV6.13
2 ==hf  

 
Express the wavelength of the 
radiation resulting from an energy 
transition ∆E = hf: 
 

E∆
⋅

=
nmeV1240λ                              (2) 

provided the energies are expressed in eV.  
 



Chapter 36    
 

 

1184 

Evaluate λmin for the transition  
n = ∞ to n2 = 3: 
 

nm821
eV51.1

nmeV1240
min =

⋅
=λ  

(b) For the three longest 
wavelengths: 
 

6and,5,4i =n           

 

Equation (1) becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−=

2
i

02
i

2
2

0

2
2

0
2
i

0
fi

1
9
111

n
E

nn
E

n
E

n
EEEhf

  (3) 

 
Evaluate equation (3) for n = 4: ( )

eV661.0

16
1

9
1eV6.1334

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 0.661 eV: 
 

nm1876
eV661.0

nmeV1240
34 =

⋅
=→λ  

Evaluate equation (3) for n = 5: ( )

eV967.0

25
1

9
1eV6.1335

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 0.967 eV: 
 

nm1282
eV967.0

nmeV1240
35 =

⋅
=→λ  

Evaluate equation (3) for n = 6: ( )

eV13.1

36
1

9
1eV6.1336

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 1.13 eV: 
 

nm1097
eV13.1

nmeV1240
36 =

⋅
=→λ  

The positions of these lines on a horizontal linear scale are shown below with the 
wavelengths and transitions indicated.  
 

 6→3        5→3      4→3 
---|--------------|---------------------------------------------|-----   

          1097 nm     1282 nm    1876 nm 
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*26 ••  
Picture the Problem We can use Bohr’s second postulate to relate the photon energy to 

its frequency and use 
fi

nmeV1240
EE −
⋅

=λ to find the wavelengths of the three longest 

wavelengths in the Brackett series.  
 
(a) Use Bohr’s second postulate to 
express the energy of the photons in 
the Paschen series: 
 

fi EEEhf −=∆=  

For the series limit: 
 

∞=n  and 0i =E  

 
Substitute to obtain: 
 2

2

0
2
2

0
f n

E
n
EEE =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=−=∆           (1) 

 
Evaluate the photon energy for  
n2 = 4: 
 

eV850.0
4

eV6.13
2 ==hf  

 
Express the wavelength of the 
radiation resulting from an energy 
transition ∆E = hf: 
 

E∆
⋅

=
nmeV1240λ                          (2) 

provided the energies are expressed in eV.  
 

Evaluate λmin for the transition  
n = ∞ to n2 = 4: 
 

nm1459
eV850.0

nmeV1240
min =

⋅
=λ  

(b) For the three longest 
wavelengths: 
 

7and,6,5i =n           

 

Equation (1) becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−=∆

2
i

02
i

2
2

0

2
2

0
2
i

0
fi

1
16
111

n
E

nn
E

n
E

n
EEEE

  (3) 

 
Evaluate equation (3) for n = 5: ( )

eV306.0

25
1

16
1eV6.1345

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 0.306 eV: 

nm4052
eV306.0

nmeV1240
45 =

⋅
=→λ  
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Evaluate equation (3) for n = 6: ( )

eV472.0

36
1

16
1eV6.1346

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 0.472 eV: 
 

nm2627
eV472.0

nmeV1240
46 =

⋅
=→λ  

Evaluate equation (3) for n = 7: ( )

eV572.0

49
1

16
1eV6.1347

=

⎟
⎠
⎞

⎜
⎝
⎛ −=∆ →E

 

 
Evaluate equation (2) for 
∆E = 0.572 eV: 
 

nm2168
eV572.0

nmeV1240
47 =

⋅
=→λ  

The positions of these lines on a horizontal linear scale are shown below with the 
wavelengths and transitions indicated.  
 
 

 7→4  6→4            5→4 
---|---------|---------------------------------------------|-----  

          2168 nm 2627 nm         4052 nm 
 

 
27 ••  
Picture the Problem We can use the grating equation to find the wavelength of the given 
spectral line and the Rydberg-Ritz formula to evaluate R. 
 
(a) The grating equation is: 
 

θλ sindm =  
where m = 1, 2, 3, … 
 

Solve for λ: 
 m

d θλ sin
=  

 
Substitute numerical values and 
evaluate λ for m = 1: 
 

( )

nm8.657
1

233.11sinm377.3

=

°
=

µλ
 

 
(b) The Rydberg-Ritz formula is: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

1
2
2

111
nn

R
λ
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Solve for R to obtain: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

2
1

2
2

11
11

nn

R
λ

 

 
Substitute numerical values and evaluate R: 

171

22

m101.0946m 946.10

3
1

2
1

1
m 6578.0

1

−− ×==

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
=

µ

µ
R

 

 
Remarks: The data used here came from a real experiment.  The value for R differs 
by approximately 0.2% from the commonly accepted value. 
 
28 •••  
Picture the Problem This is an extreme value problem in which we need to identify the 
relationship between E and r, differentiate it with respect to r, and set that derivative 
equal to zero.  Solving the latter expression for r will give us rm. 
 
Express the total energy of the 
electron: r

ke
mr

E
2

2

2

2
−=

h
 

 
Differentiate this expression with 
respect to r to obtain: 
 

valuesextremefor 0

2

2

2

2

3

2

2

2

2

2

2

2

=

+−=

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
−=

r
ke

mr

r
ke

dr
d

mrdr
d

r
ke

mrdr
d

dr
dE

h

h

h

 

 
Solve for r to obtain: 
 mke

r 2

2h
=  

 
Differentiate E a second time to 
obtain: 
 

3

2

4

2

2

2 23
r
ke

mrdr
Ed

−=
h

 

 
Evaluate d2E/dr2 at r to obtain: 

06

384

2

2

2

2
>=

=
hh

mek
dr

Ed

mke
r

 

Therefore, our extreme value is a minimum 
and the value for r that minimizes the 
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energy is  
mke

r 2

2h
=  

 
Note that this is just the Bohr radius 
a0. Consequently, the energy is the 
ground state energy of the hydrogen 
atom and: 

eV6.13min =E  

 
*29 •••  
Picture the Problem We can express the total kinetic energy of the electron-nucleus 
system as the sum of the kinetic energies of the electron and the nucleus. Rewriting these 
kinetic energies in terms of the momenta of the electron and nucleus will lead to K = 
p2/2mr. 
 
(a)  Express the total kinetic energy 
of the electron-nucleus system: 
 

ne KKK +=  

Express the kinetic energies of the 
electron and the nucleus in terms of 
their momenta: 
 

e

2

e 2m
pK = and 

M
pK

2

2

n =  

 

Substitute to obtain: 
 

r

2

e

e

2

e

e
2

e

22

e

2

2

2
2

11
222

m
p

mM
Mm

p
Mm
mMp

Mm
p

M
p

m
pK

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

 

provided we define µ = meM/(M + me). 
 

(b) From Equation 36-14 we have: 
 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
==

M
m

mC
c

ekmR
e

e
3

42
r

14 hπ
          (1) 

where  

3

42

4 hc
ekC

π
=  

 
Use the Table of Physical Constants at the 
end of the text to obtain: 

kg/m10204663.1 137 −×=C  
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For H: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

p

e

e
H

1
m
m

mCR  

 
Substitute numerical values and evaluate RH: 
 

( ) 17

27

31

31
137

H m10096850.1

kg1067.1
kg1011.91

kg1011.9kg/m10204663.1 −

−

−

−
− ×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+

×
×=R  

 
Let M → ∞ in equation (1) to obtain 
RH,approx: 
 

eapproxH, CmR =  

 

Substitute numerical values and evaluate RH,approx: 
 

( )( ) 1731137
approxH, m10097448.1kg1011.9kg/m10204663.1 −−− ×=××=R  

 
figures.t significan  three toagree  and approxH,H RR  

 
(c) Express the ratio of the kinetic 
energy K of the electron in its orbit 
about a stationary nucleus to the 
kinetic energy of the reduced-mass 
system K′: 
 

p

eep

p

ep

ep

ee

r

2
e

2

1

1

1

2

2

m
mmm

m

mm
mm

mm
m
p
m
p

K'
K

+
=

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
===

µ

 

 
Substitute numerical values and 
evaluate the ratio of the kinetic 
energies: 
 999455.0

kg1067.1
kg1011.91

1

27

31

=
×
×

+
=

−

−K'
K

 

or 
K'K 999455.0=  

and the correction factor is the ratio of the 
masses or %0545.0  
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Remarks: The correct energy is slightly less than that calculated neglecting the 
motion of the nucleus. 
 
*30 ••  
Picture the Problem We can use Equation 36-15 with Z = 2 to explain how it is that 
every other line of the Pickering series is very close to a line in the Balmer series. We can 
use the relationship between the energy difference between two quantum states and the 
wavelength of the photon emitted during a transition from the higher state to the lower 
state to find the wavelength of the photon corresponding to a transition from the n = 6 to 
the n = 4 level of He+. 
 
(a) From Equation 36-15, the energy 
levels of an atom are given by: 
 

2
02

n
EZEn −=  

where E0 is the Rydberg constant  
(13.6 eV).   
 

For He+, Z = 2 and: 
2
04

n
EEn −=  

 
Because of this, an energy level with even principal quantum number n in He+ will have 
the same energy as a level with quantum number n/2 in H.  Therefore, a transition 
between levels with principal quantum numbers 2m and 2p in He+ will have almost the 
same energy as a transition between level m and p in H.  In particular, transitions from 
2m to 2p = 4 in He+ will have the same energy as transitions from m to n = 2 in H (the 
Balmer series). 
 
(b) Transitions between these energy 
levels result in the emission or 
absorption of a photon whose 
wavelength is given by: 
 

46 EE
hc
−

=λ                            (1) 

Evaluate E6 and E4: 
 eV 51.1

6
eV 6.134 26 −=⎟

⎠
⎞

⎜
⎝
⎛−=E  

and 

eV 40.3
4

eV 6.134 24 −=⎟
⎠
⎞

⎜
⎝
⎛−=E  

 
Substitute for E6 and E4 in equation 
(1) and evaluate λ: ( ) nm656

eV40.3eV51.1
nmeV1240

=
−−−
⋅

=λ  

which is the same as the n = 3 to n = 2 
transition in H. 

 
Quantum Numbers in Spherical Coordinates 
 
31 •  
Picture the Problem We can use the expression relating L to l  to find the magnitude of 
the angular momentum and the constraints on the quantum numbers to determine the 
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allowed values for m. 
 
(a) Express the angular momentum 
as a function of l : 
 

( )hll 1+=L  

Substitute numerical values and 
evaluate L: 
 

( )
( )

sJ1049.1

sJ10055.12

2111

34

34

⋅×=

⋅×=

=+=

−

−

hhL

 

 
(b) Because ml = − l , ... , 0, ... , l   
the allowed values for l  = 1 are: 
 

1,0,1 +−=lm  

(c) The vector diagram is shown on 
the right. Note that because  
Lz = mlħ and h2=L , the vectors 
for ml = −1 and ml= 1 must make 
angles of 45° with the z axis. 

 
 
32 •  
Picture the Problem We can use the expression relating L to l  to find the magnitude of 
the angular momentum and the constraints on the quantum numbers to determine the 
allowed values for m. 
 
(a) Express the angular momentum 
as a function of l : 
 

( )hll 1+=L  

Substitute numerical values and 
evaluate L: 
 

( )
( )

sJ1065.3

sJ10055.132

32133

34

34

⋅×=

⋅×=

=+=

−

−

hhL

 

 
(b) Because ml = − l , ... , 0, ... , l   
the allowed values for l  = 1 are: 
 

3,2,1,0,1,2,3 +++−−−=lm  
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(c) The vector diagram is shown on 
the right. Note that because  
Lz = mlħ and h32=L , the angles 
between the vectors and the z axis are 
determined by  32cos lmm =θ . 

Thus θ3 = 30°, θ2 = 54.7°, and  
θ1 = 73.2°. The spacing between the 
allowed values of Lz is constant and 
equal to h.  
 
33 •  

Picture the Problem We can find the possible values of l  by using the constraints on 
the quantum numbers. A more analytical solution is to first derive the number of electron 
states for an arbitrary value of n and then substitute the specific value of n. 
 
(a) When n = 3: 2,1,0=l  

 
(b)  For l  = 0: 0=lm  

 
For l  = 1: 1,0,1 +−=lm  

 
For l  = 2: 2,1,0,1,2 ++−−=lm  

 
(c) We can find the total number of 
electron states by enumerating the 
possibilities as shown in the table. 
 

n l ml 
3 0 0 
3 1 −1 
3 1 0 
3 1 1 
3 2 −2 
3 2 −1 
3 2 0 
3 2 1 
3 2 2  

18. is stateselectron  ofnumber   thestates,  ofnumber   thetwice
 is stateselectron  ofnumber   the, Because  states.  9 are e that therNote

lm
Nm

 

 
Alternatively, we can derive an expression for the number of electron states for an 
arbitrary value of n and then substitute specific values of n: 

 
The number of ml states for a given 
n is given by: 

( ) ( )∑∑∑
−

=

−

=

−

=

+=+=
1

0

1

0

1

0
1212

nnn

mN
lll

ll  
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Express the sum of all integers from 
0 to p:  
 

( )12
1

0
+=∑

=

pp
p

l

l  

Use this result to evaluate ∑
−

=

1

0
2

n

l

l : ( )[ ] nnnn
n

−=−=∑
−

=

2
2
1

1

0
122

l

l  

 
Evaluate the second term to obtain: 
 

( ) n
n

=∑
−

=

1

0
1

l

 

 
Substitute to obtain: 
 

22 nnnnNm =+−=  

and, because N, the number of electron 
states is twice the number of m states, the 
number of electron states is N = 2n2. 
 

Hence, for n = 3, the number of electron 
states is: 

( ) 18322 22 === nN  

 

34 •  

Picture the Problem While we could find the number of electron states by finding the 
possible values of l  from the constraints on the quantum numbers and then enumerating 
the states, we’ll take a more analytical approach by deriving an expression for the number 
of electron states for an arbitrary value of n and then substitute specific values of n. 
 
The number of m states for a given n 
is given by: 
 

( ) ( )∑∑∑
−

=

−

=

−

=

+=+=
1

0

1

0

1

0
1212

nnn

mN
lll

ll  

Express the sum of all integers from 
0 to p:  
 

( )12
1

0
+=∑

=

pp
p

l

l  

Use this result to evaluate ∑
−

=

1

0
2

n

l

l : ( )[ ] nnnn
n

−=−=∑
−

=

2
2
1

1

0
122

l

l  

 
Evaluate the second term to obtain: 
 

( ) n
n

=∑
−

=

1

0
1

l

 

 
Substitute to obtain: 
 

22 nnnnNm =+−=  

and, because N, the number of electron 
states is twice the number of m states, the 
number of electron states is N = 2n2. 
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(a) For n = 4, the number of electron 
states is: 
 

( ) 32422 22 === nN  

(b) For n = 2, the number of electron states 
is: 
 

( ) 8222 22 === nN  

 
*35 ••  

Picture the Problem The minimum angle between the z axis and L
r

 is the angle between 
the L

r
 vector for m = l  and the z axis. 

 
Express the angle θ as a function of 
Lz and L: 
 

⎟
⎠

⎞
⎜
⎝

⎛= −

L
Lz1cosθ

 
 

Relate the z component of L
r

to ml 
and l : 
 

lhhl == mLz  

Express the angular momentum L: 
 

( )hll 1+=L  

 
Substitute to obtain: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
= −−

1
cos

1
cos 11

l

l

hll

lhθ  

 
(a) For l = 1: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= − 0.45

11
1cos 1θ  

 
(b) For l = 4: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= − 6.26

14
4cos 1θ  

 
(c) For l = 50: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= − 05.8

150
50cos 1θ  

 
 
36 ••  
Picture the Problem We can use constraints on the quantum numbers in spherical 
coordinates to find the possible values of n and ml for each of the values of l . 
 
The constraints on n, ml, and l  are: 
 

n = 1, 2, 3, ... 
l  = 0, 1, 2, ..., n − 1 
ml = − l , (− l  + 1), ... 0, 1, 2, ... l  
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(a) For l  = 3: 
 

3,2,1,0,1,2,3and4 −−−=≥ lmn  

(b) For l  = 4: 
 

4,3,2,1,0,1,2,3,4and5 −−−−=≥ lmn  

(c) For l  = 0: 0and1 =≥ lmn  

 
37 ••  
Picture the Problem The magnitude of the orbital angular momentum L of an electron is 
related to orbital quantum number l by ( )hll 1+=L and the z component of the 
angular momentum of the electron is given by .hmLz =  
 
(a) For the l = 2 state, the square 
magnitude of the angular 
momentum is: 
 

( ) 222 6122 hh =+=L  

 

(b) For the l = 2 state, the maximum 
value of Lz

2  is: 
 

2222 42 hh ==zL  

 

(c) The smallest value of Lx
2 + Ly

2  is 
given by: 

2222222 246 hhh =−=−=+ zyx LLLL  

 
 
Quantum Theory of the Hydrogen Atom 
 
38 •  

Picture the Problem We can use ( ) 0

23

0

1 aZre
a
Zr −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ  to evaluate the normalized 

ground-state wave function and its square at r = a0 and ( ) 224 ψπrrP =  to find the radial 

probability density at the same location. 
 
(a) Noting that Z = 1 for hydrogen, 
evaluate ( )0aψ  to obtain: 

 

( )

00

23

0
0

1

11
00

aea

e
a

a aa

π

π
ψ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

 

 
(b) Square ( )0aψ  to obtain: 

 ( )
ππ

ψ 3
0

2

2

00
0

2 11
aeaea

a =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  
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(c) Use the result from part (b) to evaluate 
P(a0): 

( )

0
2

3
0

2
2
0

22
00

4

144

ae

ae
aaaP

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

π
πψπ

 

 
*39 •  
Picture the Problem We can use the constraints on n, ,l and m to determine the number 
of different wave functions, excluding spin, corresponding to the first excited energy state 
of hydrogen. 
 
For n = 2: 1or  0=l  

 
(a) For l = 0, ml= 0 and we have: 1 state 

 
For l = 1, ml = −1, 0, +1 and we 
have: 
 

3 states 

Hence, for n = 2 we have: states 4  

 
(b) The four wave functions are 
summarized to the right. 
 

n l ml (n, l , ml) 
2 0 0 (2,0,0) 
2 1 −1 (2,1,−1) 
2 1 0 (2,1,0) 
2 1 1 (2,1,1)  

 
40 ••  

Picture the Problem We can use ( ) 0

23

0

1 aZre
a
Zr −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ  to evaluate the normalized 

ground-state wave function and its square and ( ) 224 ψπrrP =  to find the radial 

probability density at the same location. Because the range ∆r is so small, the variation in 
the radial probability density P(r) can be neglected.  The probability of finding the 
electron in some small range ∆r is then P(r) ∆r. 
 
Express the probability of finding 
the electron in the range ∆r: 

( )∫= drrPy Probabilit                (1) 

where P(r) is the radial probability density 
function. 
 

The radial probability density 
function is: 

( ) 224 ψπrrP =                            (2) 
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Express the normalized ground-state 
wave function: ( ) 0

23

0

1 aZre
a
Zr −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ  

 
Evaluate the normalized ground-
state wave function evaluated at 
 r = a0 to obtain: 
 

( )
00

23

0
0

111
00

aea
e

a
a aa

ππ
ψ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −  

 

Square ( )0aψ  to obtain: 

 ( )
ππ

ψ 3
0

2

2

00
0

2 11
aeaea

a =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

 
Substitute in equation (2) to obtain: ( )

0
23

0
2

2
0

22
00

4144
aeae

aaaP =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

π
πψπ

 
 

(a) Substitute in equation (1) to find 
the probability of finding the 
electron in the small range  
∆r = 0.03a0: 
 

( ) ( )

( ) 0162.003.04

y Probabilit

0
0

2

00

==

∆≈= ∫
a

ae

raPdraP
 

 
(b) Evaluate the normalized ground-
state wave function at r = 2a0 to 
obtain: 
 

( )
00

2
2

23

0
0

1112 00

aae
e

a
a aa

ππ
ψ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

 

Square ( )02aψ  to obtain: 

 ( )
ππ

ψ 3
0

4

2

00
20

2 112
aeaae

a =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

 
Substitute in equation (2) to obtain: 
 ( ) ( )

0
4

3
0

4
2
0

22
00

16

116242

ae

ae
aaaP

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

π
πψπ

 

 
Substitute in equation (1) to find the 
probability of finding the electron in 
some small range  
∆r = 0.03a0: 
 

( ) ( )

( ) 00879.003.016

22y Probabilit

0
0

4

00

==

∆≈= ∫
a

ae

raPdraP

 
Remarks: There is about a 2% chance of finding the electron in this range at r = a0, 
but at r = 2a0, the chance is only about 0.9%. 
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41 ••  
Picture the Problem We can use Equation 36-36 and the given expression for C2,0,0 to 
evaluate the spherically symmetric wave function ψ for n = 2, l  = 0,  
ml = 0, and Z = 1 and then use this result to evaluate ψ2 and P(r) for r = a0. 
 
(a) Express the spherically 
symmetric wave function for  
n = 2, l  = 0, ml = 0, and Z = 1 
(Equation 35-36): 
 

0

0

2

0

23

0

2

0
0,0,20,0,2

21
24
1

2

ar

ar

e
a
r

a

e
a
rC

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

π

ψ

 

 
Evaluate this expression for  
r = a0: ( )

23
0

23
0

2

0

0

23

0
00,0,2

0605.0
24

1

21
24
1

00

aae

e
a
a

a
a aa

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

π

π
ψ

 
(b) Square ( )00,0,2 aψ  to obtain: 

( )[ ] 3
0

2

23
0

2
00,0,2

00366.00605.0
aa

a =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ψ  

 
(c) Express the radial probability density: 
 

( ) ( )rrrP 224 ψπ=  

Substitute to obtain: ( )
0

3
0

2
00

0460.000366.04
aa

aaP == π  

 
42 •••  
Picture the Problem We can use the definition of the radial probability density and the 
wave function (Equation 35-37) for the state (2, 1, 0) to obtain the result given in the 
problem statement. 
 
Using Equation 35-37, express the 
wave function for the state  
(2, 1, 0): 
 

( ) θψ cos02

0
0,1,20,1,2

aZre
a
ZrCr −=  

Square ( )r0,1,2ψ  to obtain: 
( )[ ]

θ

θψ

2
2
0

22
2

0,1,2

2
2

0
0,1,2

2
0,1,2

cos

cos

0

0

aZr

aZr

e
a

rZC

e
a
ZrCr

−

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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Express the radial probability 
density: 
 

( ) ( )rrrP 224 ψπ=  

Substitute and simplify to obtain: ( )

0

0

24

2
2
0

22
2

0,1,2
2

cos

cos4

aZr

aZr

eAr

e
a

rZCrrP

−

−

=

=

θ

θπ
 

where 

2
0

22
0,1,24

a
ZC

A
π

==  

 
43 •••  
Picture the Problem In this instance, ( )∫ drrP extends over a sufficiently narrow 

interval ∆r << 0.02a0 that we can neglect the dependence of P(r) on r. Hence, we can 
set ( ) ( ) rrPdrrP ∆=∫  and use the wave function (Equation 36-36) for the state  

(2, 0, 0) and the expression for C2,0,0 from Problem 41 to find ψ2,0,0, 2
0,0,2ψ , P(r), and the 

probability of finding the electron in the range specified at r = a0 and  
r = 2a0. 
 
(a) Express the probability of 
finding the electron in the range ∆r: 

( )∫= drrPy Probabilit                (1) 

where P(r) is the radial probability density 
function. 
 

The radial probability density 
function is: 
 

( ) 224 ψπrrP =                           (2) 

The normalized wave function for 
the (2, 0, 0) state of hydrogen is 
given by Equation 36-36: 
 

( ) 02

0
0,0,20,0,2 2 are

a
rCr −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ψ

 

From Problem 41 we have, for 
hydrogen: 
 

23

0
0,0,2

1
24
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a
C

π
 

 
Substitute to obtain: ( )

0

0

2

0

23

0

2

0
0,0,20,0,2

21
24
1

2

ar

ar

e
a
r

a

e
a
rCr

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

π

ψ
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Evaluate the normalized ground-
state wave function at r = a0 to 
obtain: 
 

( )

23
0

23
0

2
23

0
00,0,2

0605.0
24

1

1
24
1

00

aae

e
a

a aa

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

π

π
ψ

 

 
Square ( )00,0,2 aψ  to obtain: 

 
( )[ ] 3

0

2

23
0

2
00,0,2

00366.00605.0
aa

a =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ψ  

 
Substitute in equation (2) to obtain: ( ) ( )

( )
00

3
0

2
00

22
00

0460.000366.04

00366.044

aa

a
aaaaP

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

π

πψπ
 

 
Substitute in equation (1) to find the 
probability of finding the electron in 
some small range  
∆r = 0.02 a0: 
 

( ) ( )

( )

4

0
0

00

1020.9

02.00460.0

y Probabilit

−×=

=

∆≈= ∫
a

a

raPdraP

 

 
(b) Evaluate the normalized ground-state wave function at r = 2a0 to obtain: 
 

( ) 0221
24
12 00 22

0

0

23

0
00,0,2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − aae

a
a

a
a

π
ψ  

 
Square ( )00,0,2 2aψ  to obtain: 

 

( )[ ] 02
00,0,2 =aψ  

 
Substitute in equation (2) to obtain: 
 

( ) 02 0 =aP  

 
Substitute in equation (1) to find the 
probability of finding the electron in 
some small range  
∆r = 0.02 a0: 

( ) ( )
0

22y Probabilit 00

=

∆≈= ∫ raPdraP
 

 
 
*44 ••  

Picture the Problem We wish to show that 00

23

0
0,0,1

1 aZraZr Cee
a
Z −− =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ is a 

solution to ( ) ,
2

2
2

2

ψψψ ErU
r

r
rmr

=+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−
h

 where ( ) .
2

r
kZerU −=  Because the 
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ground state is spherically symmetric, we do not need to consider the angular partial 
derivatives in Equation 36-21.   
 
The normalized ground-state wave 
function is: 00

23

0
0,0,1

1 aZraZr Cee
a
Z −− =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ  

 
Differentiate this expression with 
respect to r to obtain: 
 

[ ] 00

0

0,0,1 aZraZr e
a
ZCe

r
C

r
−− −=

∂
∂

=
∂

∂ψ
 

 
Multiply both sides of this equation 
by r2: 
 

02

0

0,0,12 aZrer
a
ZC

r
r −−=

∂
∂ψ

 

Differentiate this expression with respect to r to obtain: 
 

( ) 00

2

0

2

0

2

0

0,0,12 2 aZraZr Ce
a
Zr

a
Zrer

ra
ZC

r
r

r
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂ ψ

 

 
Substitute in Schrödinger’s equation to obtain: 
 

000

22

0

2

0
2

2 2
2

aZraZraZr ECeCe
r

kZeCe
a
Zr

a
Zr

mr
−−− =−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

h
 

 
Solve for E: 
 

r
kZe

a
Zr

a
Zr

mr
E

22

0

2

0
2

2 2
2

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

h
 

 

Because 2

2

0 mke
a h

= : 

 

2

422

2

2

422222

2

2
2

2

2

2

2

2

2
2

2

h

hhh

h

mekZ

r
kZemekZ

r
kZe

r
kZeZmkerZrmke

mr
E

−=

−−=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

 

Because this is the correct ground state energy, we have shown that Equation  
36-33, is a solution to Schrödinger’s Equation 36-21 with the potential energy function 
Equation 36-26. 
 
45 ••  
Picture the Problem We can substitute the dimensions of the physical quantities for the 
physical quantities in Equation 36-28 and simplify the resulting expression to show that it 
has dimensions of energy. 
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Equation 36-28 is: 
 2

42

0 2h

emkE =  

 
The units of this equation are: 
 [ ] [ ]

[ ]
[ ][ ]

[ ]
[ ][ ]

[ ]
[ ]J

s
mkg

smN
mNkg

sJ

C
C

mNkg

2

2

2

22

2

4
2

2

2

=

=

⋅⋅
⋅

=
⋅

⎥
⎦

⎤
⎢
⎣

⎡ ⋅

 

 
46 ••  

Picture the Problem The Bohr radius is 
 
a0 =

h2

mke2 . We can substitute the dimensions 

of the physical quantities for the physical quantities in this equation and simplify the 
resulting expression to show that it has dimensions of length. 
 
Because the SI units of h are J⋅s, its 
dimensions are: 
 T

LMT
T

LM 2

2

2 ⋅
=⋅

⋅
 

Because the SI units of k are 
N⋅m2/C2, its dimensions are: 
 

22

3

2
2

2 QT
LM

Q
1L

T
LM

⋅
⋅

=⋅⋅
⋅

 

where Q is the dimension of charge. 
 

Substitute the dimensions 

in
  
a0 =

h2

mke2  to obtain: 

 
L

T
LM

T
LM

Q
QT
LMM

T
LM

2

32

2

42

2
22

3

22

=
⋅

⋅

=
⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅
⋅

⋅

⎥
⎦

⎤
⎢
⎣

⎡ ⋅

 

 
47 ••   
Picture the Problem This is an extreme value problem.  We'll begin its solution with the 
radial probability distribution function, differentiate it with respect to its independent 
variable r, set this derivative equal to zero, and solve for the value for an extreme value 
for r. We can show that this value corresponds to a maximum by evaluating the second 
derivative of  P(r) at the location found from the first derivative. 
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Differentiate the radial probability 
distribution function with respect to 
r to obtain: 
 

( ) [ ]

extremafor  0

2

22

02

0

2

0

2
2

22

0

00

0

=

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎥
⎦

⎤
⎢
⎣

⎡
−=

=

−

−−

−

r
Z
ae

a
CZr

e
a
ZrreC

er
dr
dC

dr
rdP

aZr

aZraZr

aZr

 

 
Solve for r to obtain: 
 Z

ar 0=  

 
To show that this value for r 
corresponds to a maximum, 
differentiate dP(r)/dr to obtain: 
 

( )

0

0

2

0
2
0

2

02

0
2

2

24

2

aZr

aZr

e
a
CZ

a
CZ

r
Z
ae

a
CZr

dr
rPd

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

 

 
Evaluate this derivative at  
r = a0/Z: 

( )  02 2
2

2

0

<−= −

=

Ce
dr

rPd

Z
ar

 

because C is a positive constant. Hence, 

P(r) has its maximum value at 
Z
ar 0=  

 
48 •••  
Picture the Problem We can double the sum of the number of m states for a given n to 
show that the number of states in the hydrogen atom for a given n is 2n2. 
 
The number of ml states for a given 
n is:  
      

( ) ( )∑∑∑
−

=

−

=

−

=

+=+=
1

0

1

0

1

0

1212
nnn

mN
lll

ll
l

 

 
The sum of all integers from 0 to p 
is: 

( )12
1

0
+=∑

=

pp
p

l

l  

and 

( )( )( ) nnnn
n

−=−=∑
−

=

2
2
1

1

0
122

l

l  

 
The second term is: ( ) n

n

=∑
−

=

1

0
1

l
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Substitute to obtain: 22 nnnnNm =+−=
l

 

 
Because N, the number of electron 
states, is twice the number of ml 
states, the number of electron states 
is:  

222 nNN m ==
l

 

 
49 •••  
Picture the Problem The ground state of a hydrogen atom is the state described by n = 1, 
l = 0, ml = 0. We can calculate the probability that the electron in the ground state of the 

hydrogen atom is in the region 0 < r < a0 by evaluating the integral ( )drrr
a

∫
0

0

2
0,0,1

24 ψπ . 

 
Express the probability that the 
electron in the ground state of a 
hydrogen atom is in the region  
0 < r < a0: 
 

( )drrr
a

∫=
0

0

2
0,0,1

24yProbabilit ψπ  

Express the ground-state wave 
function for hydrogen: 
 

( ) 0

23

0
0,0,1

11 are
a

r −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
ψ  

Square the wave function to obtain: 
 

( ) 02
3
0

2
0,0,1

1 are
a

r −=
π

ψ  

 
Substitute to obtain: 
 

drer
a

dre
a

r

ar
a

ar
a

0

0

0

0

2

0

2
3
0

2
3
00

2

4

14yProbabilit

−

−

∫

∫

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
π

 

 
Use a table of integrals to find: 
 

( )∫ +−= 2222
3

2 bxxb
b
edxex

bx
bx  

 
Use this integral to show that: 

323.051

122y Probabilit

2

00
2
0

2
2

0

0

=−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

−

−

e

a
r

a
re

a

ar
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The Spin-Orbit Effect and Fine Structure 
 
*50 •   
Picture the Problem The energy difference between the two possible orientations of an 
electron in a magnetic field is 2µB and the wavelength of the photons required to induce 
a spin-flip transition can be found from hc/∆E. The magnetic moment µB associated with 
the spin of an electron is 5.79×10−5 eV/T. 
 
(a) Relate the difference in energy 
between the two spin orientations in 
terms of the difference in the 
potential energies of the two states: 
 

( )( )
eV1095.6

T6.0eV/T1079.52
2

5

5

−

−

×=

×=

=∆ BE µ

 

(b) Relate the  wavelength of the 
photon needed to induce such a 
transition to the energy required: 
 

E
hc
∆

=λ  

Substitute numerical values and 
evaluate λ: 

cm78.1

nm1078.1
eV1095.6

nmeV1240 7
5

=

×=
×

⋅
= −λ

 

 
51 •   
Determine the Concept j and l are constrained according to 2

1±= lj . For 

j = ½, 2
1

2
1 ±=l or 1or 0=l . 

 
52 •   
Determine the Concept j and l are constrained according to 2

1±= lj . For 

l  = 2, 2
12 ±=j , or 2

5
2
3 or  =j   

 
53 •  
Picture the Problem The total angular 
momentum vector J

r
is the sum of the 

orbital momentum vector L
r

and the spin 
orbital angular momentum vector S

r
.The 

quantum number j can be either 2
1+l or 

2
1−l , where l ≠ 0. Hence, j can take on 

the values  3 + 1/2 = 7/2 and 3 − 1/2 = 5/2. 
The scaled vector diagrams are shown to 
the right. 
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The Periodic Table 
 
54 •  
Determine the Concept The total number of quantum states of hydrogen with quantum 
number n is 2n2.  For n =4, we have 2(4)2 = 32. correct. is )(c  

 
55 •  
Determine the Concept From Table 36-1, oxygen’s electronic configuration is 
1s22s22p4.  Because there are 4 electrons in the p state, correct. is )(c  

 
*56 •  
Determine the Concept We can use the atomic numbers of carbon and oxygen to 
determine the sum of the exponents in their electronic configurations and then use the 
rules for the filling of the shells to find their electronic configurations. 
 
(a) The atomic number Z of carbon 
is 6.  So we must fill the subshells of 
the electronic configuration until we 
have placed its 6 electrons.  This is 
accomplished by writing: 
 

222 p2s2s1  

 

(b) The atomic number Z of oxygen 
is 8.  So we must fill the subshells of 
the electronic configuration until we 
have placed its 8 electrons.  This is 
accomplished by writing: 

422 p2s2s1  

 
57 •   
Determine the Concept We can find the z component of the orbital angular momentum 
using Lz = mħ and the relationship between the quantum numbers l (which we know from 
the state of the electrons) and ml (which is related to l through ml = −l, (−l + 1), …, 0, 1, 
2, … l). 
 
(a) For a p electron l = 1. For  
l = 1, ml = −1, 0, or 1. Because  
Lz = −mħ, …, mħ: 
 

hhhh 2,,0,,2 −−=zL  

(b) For an f electron, l = 4. 
For l = 4, ml = −4, −3, −2, −1, 0, 1, 
2, 3, 4. Because  Lz = −mħ, …, mħ: 

hhhhhhhh 4,3,2,,0,,2,3,4 −−−−=zL
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Optical Spectra and X-Ray Spectra 
 
58 •             
Determine the Concept Lithium, sodium, potassium, chromium, and cesium have one 
outer s electron and hence belong in the same group.  Beryllium, magnesium, calcium, 
nickel, and barium have two outer s electrons and, hence, belong in the same group.   
 
59 •  
Determine the Concept We can use Table 35-1 to find the electronic configurations for 
the first excited states of these elements. 
 
(a) For H, E depends only on n and 
the lowest excited state is: 
 

2por  s2  

(b) For Na, the 3p state is higher 
energy than the 3s state and the 
lowest excited state is: 
 

p32p2ss1 622  

(c) For He, the lowest excited state 
has one electron in the 2s state and 
the lowest excited state is: 

s2s1  

 
60 •  
Determine the Concept Atoms with one outer electron have spectra similar to H: Li, Rb, 
Ag, Fr.  Atoms with two outer electrons have spectra similar to He: Ca, Ti, Hg, Cd, Ba, 
Ra.  Therefore, the table should be completed as shown below: 
 

Optical Spectra 
Similar to Hydrogen 

Optical Spectra 
Similar to Helium 

Li, Rb, Ag, Fr Ca, Ti, Hg, Cd, Ba, Ra 

 
*61 •  
Picture the Problem When an electron from state n drops into a vacated state in the n = 
1 shell, a photon of energy ∆E = En − E1 is emitted.  We can find the wavelength of this 
photon using Ehc ∆=λ . The second and third longest wavelengths in the K series 

correspond to transitions from n = 3 to n = 1 and n = 4 to n = 1 and the shortest 
wavelength to the transition from n = ∞ to n = 1. 
 
Express the wavelength of the 
emitted photon in terms of the 
energy transition within the atom: 

11

nmeV1240
EEEE

hc

nn −
⋅

=
−

=λ  
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Express the energy of the nth energy 
state: 
 

( ) 2
021

n
EZEn −−=  

where n = 1, 2, … 
 

Substitute to obtain: 
 

( ) ( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−

⋅
=

⎟
⎠
⎞

⎜
⎝
⎛ −−−−−

⋅
=

−
=

20
2

2
02

2
02

1

111

nmeV1240
1

11

nmeV1240

n
EZ

EZ
n
EZ

EE
hc

n

λ

 

 
(a) Evaluate this expression with n = 
3 and Z = 42 to obtain: 
 

( ) ( )

nm0610.0

3
11eV6.13142

nmeV1240

2
2

3

=

⎟
⎠
⎞

⎜
⎝
⎛ −−

⋅
=λ

 

 
Use n = 4 and Z = 42 to obtain: 
 ( ) ( )

nm0578.0

4
11eV6.13142

nmeV1240

2
2

4

=

⎟
⎠
⎞

⎜
⎝
⎛ −−

⋅
=λ

 

 
(b) The shortest wavelength in the 
series corresponds to the largest 
energy difference between the initial 
and final states. Repeat the 
calculation in part (a) with n = ∞ to 
obtain: 

( ) ( )( )
nm0542.0

01eV6.13142
nmeV1240

2

=

−−
⋅

=∞λ
 

 
62 •  
Picture the Problem When an electron from state n drops into the vacated state in the n 
= 1 shell, a photon of energy En − E1 is emitted. The wavelength of this photon 

is
( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−

=

2
2 11eV6.131

n
Z

hcλ . Hence, if we know the wavelength of the Kα line we 

can solve for the atomic number of the element and use its value to identify the element. 
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Express the wavelength of the Kα 
line as a function of the atomic 
number of the element: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−

=

2
2 11eV6.131

n
Z

hcλ  

Solve for Z: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

+=

2
11eV6.13

1

n

hcZ
λ

 

 
Substitute numerical values and 
evaluate Z: ( )( )

20
2
11eV6.13nm3368.0

nmeV12401

2

=

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
+=Z

 

 
calcium. is 20 isnumber  atomic oseelement wh The  

 
63 •   
Picture the Problem The Kα corresponds to a transition from n = 2 to n = 1.  Equation 
36-16 relates the atomic number Z to the wavelength of the emitted photon When an 
electron from state n drops into a vacated state in the n = 1 shell, a photon of energy  
En − E1 is emitted.  We can find the wavelength of this photon using ( )1EEhc n −=λ  

and En from ( )2
0

2 nEZEn −=  . 

 
Express the wavelength of the Kα 
line: 
 

11

nmeV1240
EEEE

hc

nn −
⋅

=
−

=λ  

 
Express the energy of the atom’s 
nth energy state: 
 

2
02

n
EZEn −=  

Substitute and simplify to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=

+−

⋅
=

20
2

0
2

2
02 11

nmeV1240nmeV1240

n
EZEZ

n
EZ

λ  

 
(a) Substitute n = 2, Z = 12, and  
E0 = 13.6 eV to obtain: ( )

nm00.1

2
11eV6.1311

nmeV1240

2
2

=
⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=λ  
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(b) Substitute n = 2, Z = 29, and  
E0 = 13.6 eV to obtain: ( )

nm155.0

2
11eV6.1328

nmeV1240

2
2

=

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
=λ

 

 
General Problems 
 
64 •   
Picture the Problem The energy associated with a transition from an initial state to some 
final state is given by ∆E = Ei − Ef and the wavelength λ of a photon emitted in such a 
transition is given by λ = hc/∆E. Hence, the shortest wavelength corresponds to the 
largest energy difference.    
 
Express the wavelength of the 
emitted photon in terms of the 
energy difference ∆E between the 
atom’s initial and final states: 
 

E
hc
∆

=λ   or 
λ
hcE =∆  

 

For λmin, ∆E  will be the energy 
required to ionize a hydrogen atom:   

eV6.13
min

max ==∆
λ
hcE  

 
65 •   
Picture the Problem This spectral line is due to a transition from some initial state ni to a 
final state nf (we’re given that the final state is the ground state). The wavelength of the 
spectral line is related to the difference in energy ∆E between these states according to 

E∆⋅= nmeV1240λ and the energy of the nth state is given (for hydrogen, Z = 1) by 

En = (12)(−13.6 eV)/n2. 
 
Relate the wavelength of a spectral 
line to the energy transition within 
the atom: 
 

E∆
⋅

=
nmeV1240λ                        (1) 

Express the energy difference ∆E in 
a transition: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−=−=∆

2
i

2
f

0
2

2
f

0
2

2
i

0
2

fi

11
nn

EZ

n
EZ

n
EZEEE

 

 
For Z = 1 and E0 = 13.6 eV: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∆ 2

i
2
f

11eV6.13
nn

E  
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Substitute in equation (1) to obtain: 

( )

2
i

2
f

2
i

2
f

11
nm2.91

11eV6.13

nmeV1240

nn

nn

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅
=λ

 

or 

λ
nm2.9111

2
i

2
f

=−
nn

 

 
For λ = 97.254 nm and nf = 1 this 
expression simplifies to:  
 

938.0
nm254.97

nm2.9111 2
i

==−
n

 

Solve for ni to obtain: 
 

4i =n  

 

.1  to4
from length wasgiven wave  theproducedn that  transitioThe

fi == nn
 

 
66 •   
Picture the Problem This spectral line is due to a transition from some initial state ni to a 
final state nf (we’re given that the final state is the ground state). The wavelength of the 
spectral line is related to the difference in energy ∆E between these states according to 

E∆⋅= nmeV1240λ and the energy of the nth state is given (for hydrogen, Z = 1) by 

En = (12)(−13.6 eV)/n2. 
 
Relate the wavelength of a spectral 
line to the energy transition within 
the atom: 
 

E∆
⋅

=
nmeV1240λ                        (1) 

Express the energy difference ∆E in 
a transition: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−=

−=∆

2
i

2
f

0
2

2
f

0
2

2
i

0
2

fi

11
nn

EZ

n
EZ

n
EZ

EEE

 

 
For Z = 1 and E0 = 13.6 eV: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∆ 2

i
2
f

11eV6.13
nn

E  
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Substitute in equation (1) to obtain: 

( )

2
i

2
f

2
i

2
f

11
nm2.91

11eV6.13

nmeV1240

nn

nn

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅
=λ

 

or 

λ
nm2.9111

2
i

2
f

=−
nn

 

 
For λ = 1093.8 nm this expression 
simplifies to:  
 

0834.0
nm8.1093

nm2.9111
2
i

2
f

==−
nn

 

Because the only constraints on nf and ni are that they be integers, we can solve this 
equation by trial and error.  One way to do this is to plot a graph of ni as a function of nf 
and look for integer solutions visually or with a trace of the trajectory of the curve.  The 
following graph was plotted using a spreadsheet program. Note that a solution to our 
equation is ni = 6 and nf = 3. 
 

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10

n i

n f

 
 

.3  to6
from islength given wave theproducesn that  transitio theThus,

fi == nn
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67 •  
Picture the Problem These spectral lines are due to transitions in singly ionized helium 
from some initial state ni to a final state nf. The wavelengths of the spectral lines are 
related to the difference in energy ∆E between these states according to 

E∆⋅= nmeV1240λ and the energy of the nth state is given (for helium, Z = 2) by 

En = (22)(−13.6 eV)/n2. 
 
Relate the wavelength of a spectral 
line to the energy transition within 
the atom: 
 

E∆
⋅

=
nmeV1240λ                        (1) 

Express the energy difference ∆E in 
a transition: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−=

−=∆

2
i

2
f

0
2

2
f

0
2

2
i

0
2

fi

11
nn

EZ

n
EZ

n
EZ

EEE

 

 
For Z = 2 and E0 = 13.6 eV: ( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆

2
i

2
f

2
i

2
f

2

11eV4.54

11eV6.132

nn

nn
E

 

 
Substitute in equation (1) to obtain: 

( ) 2
i

2
f

2
i

2
f

11
nm8.22

11eV4.54

nmeV1240

nnnn
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅
=λ  

or 

λ
nm8.2211

2
i

2
f

=−
nn

 

 
For λ = 164 nm this expression 
becomes:  
 

139.0
nm164
nm8.2211

2
i

2
f

==−
nn

 

Because the only constraints on nf and ni are that they be integers, we can solve this 
equation by trial and error.  One way to do this is to plot a graph of ni as a function of nf 
and look for integer solutions visually or with a trace of the trajectory of the curve.  The 
following graph was plotted using a spreadsheet program. Note that a solution to our 
equation is ni = 3 and nf = 2. 
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1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0 1 2 3 4 5 6 7 8 9 10

n i

n
f

 

.2  to3
from islength given wave  theproducesn that  transitio theThus,

fi == nn
 

 
Similarly, for λ  = 230.6 nm: 
 

.3  to9
from islength given wave the

producesn that  transitioThe

fi == nn
 

 
For λ = 541 nm: 
 

.4  to7
from islength given wave the

producesn that  transitioThe

fi == nn
 

 
*68 ••   
Picture the Problem We can show that ke2 = 1.44 eV⋅nm by solving the equation for the 
ground state energy of an atom for ke2.  
 
Express the ground state energy of 
an atom as a function of k, e, and a0: 
 

0

2

0 2a
keE =  

Solve for ke2: 
 

00
2 2 aEke =  

 
Substitute for E0 and a0 to obtain: 
 

( )( )
nmeV44.1

nm0529.0eV6.1322

⋅=

=ke
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69 ••   
Picture the Problem Because the energies of the photons emitted by potassium 
during these transitions are related to their wavelengths through  
hf = (1240 eV⋅ nm/λ) eV where λ is in nm, we can use this relationship to find the 
energies of the given photons. The difference in energy between these states can be found 
using its definition and is related to the magnetic field through BE B2µ=∆ . 

 
(a) For λ = 766.41 nm: 
 
 

eV6179.1
nm766.41
nmeV1240

=
⋅

=hf  

For λ = 769.90 nm: 
 

eV6106.1
nm769.90
nmeV1240

=
⋅

=hf  

 
(b) Using its definition, express the 
difference in energy between these 
two states: 
 

eV00730.0

eV 1.6106eV6179.1

=

−=∆E
 

(c) Relate the energy difference 
between these states ∆E to the 
magnetic field B and the quantum 
unit of magnetic moment (a Bohr 
magneton) µB:  
 

BE B2µ=∆  

Solve for B: 

B2µ
EB ∆

=  

 
Substitute numerical values and 
evaluate B: ( ) T0.63

eV/T105.792
eV0073.0

-5 =
×

=B  

 
Remarks: This magnetic field is about 42 times that of commercial magnetic 
resonance imagers. 
 
70 ••  
Picture the Problem One 1s electron must be released from the atom. It is shielded from 
the nuclear charge Z by one other 1s electron. Thus, the effective charge is Z − 1, and the 
ionization energy for that 1s electron is Emin = (Z − 1)2E0.  
 
(a) For tungsten, Z = 74, and:  
 

( ) keV5.72eV6.13732
min ==E  

(b) For molybdenum, Z = 42, and: 
 

( ) keV9.22eV6.13412
min ==E  
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(c) For copper, Z = 29, and: ( ) keV7.10eV6.13282
min ==E  

 
*71 ••  
Picture the Problem We can show that α is dimensionless by showing that it has no 
units. In part (b) we can use Bohr’s 3rd postulate and the expression for the radii of the 
Bohr orbits, together with the definition of α, to show that the speed of the electron in a 
stationary state of quantum number n is related to α according to vn = cα /n. 
 
(a) Express the units of α: 

( )
1

mJ
mN

s
msJ

C
mNC

22

2
2

=
⋅
⋅

=
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅

 

 
ess.dimensionl also isit  unitless, is  Becauseα  

 
(b) Apply the quantization of 
angular momentum postulate to 
obtain: 
 

n
n mr

nv h
=  

The radii of the Bohr orbits are 
given by: 2

2
2

mkZe
nrn

h
=  

or, because Z = 1 for hydrogen, 

2

2
2

mke
nrn

h
=  

 
Substitute and simplify to obtain: 
 hh

h

n
ke

mke
mn

nvn

2

2

2
2

==  

 
Divide this expression by the 
definition of α to obtain: 
 n

c

c
ke

n
ke

vn ==

h

h
2

2

α
 

 
Solve for vn: 

n
cvn

α
=  

 
72 ••   
Picture the Problem We can use Problem 29 to express the energy levels of positronium 
in terms of the reduced mass of the electron-positron system. In part (b) we can find the 
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energies corresponding to 400 nm and 700 nm to decide whether the transitions between 
any of the levels found in (a) fall in the visible range of wavelengths 
 
Express the energy of positronium 
as a function of the quantum number 
n: 
 

2

2

2

42

2 n
ZekmE r

n
h

−=  

From Problem 29 we have: 
 

pose

pose

mm
mm

mr +
=  

Because me = mpos: 
 2

e

ee

ee m
mm

mmmr =
+

=  

 
Substitute and simplify to obtain: 

2
0

22

42
e

2
1

4 n
E

n
ekmEn −=−=

h
 

 
(a) Evaluate En for n = 1, 2, 3, 4, 
and 5 to obtain: 
 
 
 
 
 
 

n En 
 (eV) 

1 −6.80  
2 −1.70 
3 −0.756 
4 −0.425 
5 −0.272  

Relate the wavelength of the emitted 
photons to the energy-level 
differences:  
 

EE
hc

∆
⋅

=
∆

=
nmeV 1240λ  

Solve for ∆E: 
 λ

nmeV 1240 ⋅
=∆E  

 
Evaluate ∆E for λ = 400 nm and  
λ = 700 nm: 
 

eV10.3
nm400

nmeV 1240
nm 400 =

⋅
=∆E  

and 

eV77.1
nm700

nmeV 1240
nm 700 =

⋅
=∆E  

 

hs. wavelengtof range  visiblein the are ns transitiono eV, 3.10  toeV 1.77
interval in the are aboveshown   tablein the energies  theof none Because

 

 



Chapter 36    
 

 

1218 

73 •  
Picture the Problem We can use E = hf to find the frequency of the photon and  
λ = hc/E to find its wavelength. 
 
(a) The energy of the photon whose 
energy is equal to the Lamb shift 
energy is given by: 
 

hfE =  

Solve for f to obtain: 
 h

Ef =  

 
Substitute numerical values and 
evaluate f: GHz06.1

seV1014.4
eV10372.4

15

6

=
⋅×

×
= −

−

f  

 
(b) The wavelength of this photon is 
given by: E

hc
=λ  

 
Substitute numerical values and 
evaluate λ: cm4.28

eV10372.4
nmeV1240
6 =

×
⋅

= −λ  

 
spectrum. neticelectromag  theofportion  microwave in the ish  wavelengtThis  

 
*74 •  
Picture the Problem The ionization energy of the electron is the magnitude of the 
energy of the atom in the given state. We can use E = −E0/n2, where E0 is the ground-state 
energy, to find the energy levels in the 44th and 45th states and, hence, the energy level 
separation between the states. The wavelength of a photon resonant with this transition 
can be found from λ = hc/∆E. We’ll approximate the size of the atom in the n = 45 state 
by finding the radius of the outer-shell electron. 
 
(a) The energy of the atom in its nth 
state is: 
 

2
0

n
EEn −=  

The energy of the atom in the  
n = 45 state is: 
 ( )

meV72.6
45

eV6.13
245 −=−=E  

The ionization energy is the 
negative of the energy in the state n 
= 45: 
 

meV72.645ionizing =−= EE  

(b) The energy level separation 
between the n = 45 and n = 44 state 
is: 
 eV 1009.3

(44)
eV 13.6

(45)
eV 13.6

4

224445

−

→

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=E

 

 
(c) The photon wavelength is:  
 E

hc
∆

=λ  
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Substitute numerical values and 
evaluate λ: nm 104.01

eV1009.3
nmeV 1240 6

4 ×=
×

⋅
= −λ  

 
(d) The radii of the Bohr orbits are given 
by: 
 Z

anr 02=  

Substitute numerical values and evaluate 
the radius of the 45th Bohr orbit: ( ) nm107

1
nm0529.045 2 ==r  

 
75 ••   
Picture the Problem We can use the definition of the Rydberg constant and the equation 
for the reduced mass from Problem 29 to calculate the Rydberg constant for hydrogen 
and for deuterium. We can find the wavelength difference between the longest 
wavelength Balmer lines of hydrogen and deuterium by finding the longest wavelengths 
from the Rydberg-Ritz equation, using the appropriate value for R, and taking their 
difference.  
 
(a) From Equation 36-14 we have: 
 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
==

M
m

mC
c

ekmR
e

e
3

42
r

14 hπ
 

where  

kg/m10204662.1
4

137
3

42
−×==

hc
ekC

π
 

 
For H: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

p

e

e
H

1
m
m

mCR  

 
Substitute numerical values and 
evaluate RH: 

( )

17

27

31

31

137
H

m10096776.1

kg10672623.1
kg10109390.91

kg10109390.9

kg/m10204662.1

−

−

−

−

−

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+

×
×

×=R
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For deuterium: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

p

e

e
D

2
1

m
m

mCR  

 
Substitute numerical values and 
evaluate RD: 

( )

( )
17

27

31

31

137
D

m10097075.1

kg10672623.12
kg10109390.91

kg10109390.9

kg/m10204662.1

−

−

−

−

−

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+

×
×

×=R

 

 
(b) Express the wavelength 
difference between the longest 
wavelength Balmer lines of 
hydrogen and deuterium: 
 

D longest,H longest, λλλ −=∆  

Use the Rydberg-Ritz formula to 
express the reciprocal wavelength:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

1
2
2

111
nn

R
λ

 

where n1 and n2 are integers and  
n1 > n2. 
 

Solve for λ to obtain: 
 ( )2

2
2
1

2
2

2
1

nnR
nn
−

=λ  

 
The longest wavelength in the 
Balmer series corresponds to a 
transition from n1 = 3 to n2 = 2. Use 
R = RH to evaluate λlongest, H: 
 

( )
( )( )

nm470.656
23m10096776.1

23
2217

22

H longest,

=
−×

= −λ
 

Find λlongest,D using  R = RD: 
 

( )
( )( )

nm291.656
23m10097075.1

23
2217

22

D longest,

=
−×

= −λ
 

 
Substitute to obtain: 

nm179.0

nm291.656nm470.656

=

−=∆λ
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76 ••   
Picture the Problem We can use Problem 29 to express the energy levels of muonium in 
terms of the reduced mass of the muonium-proton system. In Part (b) we can find the 
energies corresponding to 400 nm and 700 nm to decide whether the transitions between 
any of the levels found in (a) fall in the visible range of wavelengths 
 
Express the energy of muonium as a 
function of the quantum number n: 
 

2

2

2

42

2 n
ZekmE r

n
h

−=                      (1) 

From Equation 35-47 in Problem 17 
we have: 
 

1-

1-

p

p

µ

µ

mm
mm

mr +
=  

Because e2071 mm =−µ
: 

 
p

e

e

ep

ep

2071

207
207

207

m
m

m
mm

mm
mr

+
=

+
=  

 
Because mp = 1836me: 
 e

e 186

1836
2071

207 mmmr =
+

=  

 
Substitute in equation (1) and 
simplify to obtain: 2

0
22

42
e 1861

2
186

n
E

n
ekmEn −=−=

h
 

 
(a) Evaluate En for n = 1, 2, 3, 4, 
and 5 to obtain: 
 
 
 
 
 
 

n En 
 (keV) 

1 −2.53  
2 −0.633 
3 −0.281 
4 −0.158 
5 −0.101  

Relate the wavelength of the emitted 
photons to the energy-level 
differences:  
 

EE
hc

∆
⋅

=
∆

=
nmeV 1240λ  

Solve for ∆E: 
 λ

nmeV 1240 ⋅
=∆E  

 
Evaluate ∆E for λ = 400 nm and  
λ = 700 nm: 
 

eV10.3
nm400

nmeV 1240
nm 400 =

⋅
=∆E  

and 
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eV77.1
nm700

nmeV 1240
nm 700 =

⋅
=∆E  

 

hs. wavelengtof range  visiblein the are ns transitiono eV, 3.10  toeV 1.77
interval in the are aboveshown   tablein the energies  theof none Because

 

 
77 ••  
Picture the Problem We can use the definition of the Rydberg constant and the equation 
for the reduced mass from Problem 29 to calculate the Rydberg constant for hydrogen, 
tritium, and deuterium. We can find the wavelength difference between the longest 
wavelength Balmer lines of tritium and deuterium and tritium and hydrogen by finding 
the longest wavelengths from the Rydberg-Ritz equation, using the appropriate value for 
R, and taking their difference. 
 
(a) From Problem 29 we have: 
 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
==

M
m

mC
c

ekmR
e

e
3

42
r

14 hπ
 

where  

kg/m10204662.1
4

137
3

42
−×==

hc
ekC

π
 

 
For tritium: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
+

=

np

e

e
T

2
1

mm
m

mCR  

 
Evaluate the expression in 
parentheses to obtain: 
 

kg10107738.9 31−×=rm  

Substitute numerical values and 
evaluate RT: 

( )
( )

17

31

137
T

m10097175.1

kg10107738.9

kg/m10204662.1

−

−

−

×=

××

×=R

 

 
For deuterium: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

p

e

e
D

2
1

m
m

mCR  
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Substitute numerical values and 
evaluate RD: 

( )

( )
17

27

31

31

137
D

m10097075.1

kg10672623.12
kg10109390.91

kg10109390.9

kg/m10204662.1

−

−

−

−

−

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+

×
×

×=R

 

 
(b) Express the wavelength 
difference between the longest 
wavelength Balmer lines of 
hydrogen and deuterium: 
 

T longest,D longest, λλλ −=∆  

Use the Rydberg-Ritz formula to 
express the reciprocal wavelength:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

1
2
2

111
nn

R
λ

 

where n1 and n2 are integers and  
n1 > n2. 
 

Solve for λ to obtain: 
 ( )2

2
2
1

2
2

2
1

nnR
nn
−

=λ  

 
The longest wavelength in the 
Balmer series corresponds to a 
transition from n1 = 3 to n2 = 2. Use 
R = RT to evaluate λlongest, T: 
 

( )
( )( )

nm231.656
23m10097175.1

23
2217

22

T longest,

=
−×

= −λ
 

Find λlongest,D using  R = RD: 
 

( )
( )( )

nm291.656
23m10097075.1

23
221-7

22

D longest,

=
−×

=λ
 

 
Substitute to obtain: 

nm0600.0

nm231.656nm291.656

=

−=∆λ
 

 
Proceed similarly to show that for 
hydrogen and hydrogen: nm238.0

nm2314.656nm4695.656

=

−=∆λ
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