Chapter 36
Atoms

Conceptual Problems

*1 °
Determine the Concept Examination of Figure 35-4 indicates that as » increases, the
spacing of adjacent energy levels decreases.

2 .
Picture the Problem The energy of an atom of atomic number Z, with exactly one

2
electron in its nth energy state is given by £, = —7? E—g n=1,23,...
n

Express the energy of an atom of

2
. . E =—22£,n:1,2,3,...
atomic number Z, with exactly one " n’

electron, in its nth energy state: where Ej is the atom’s ground state energy.
For lithium (Z = 3) in its first 2 E,
excited state (n = 1) this expression E, = —(3) 1 =-9E,
becomes: -
and | (a) is correct.
3 .

Determine the Concept Bohr’s postulates are 1) the electron in the hydrogen

atom can move only in certain non-radiating, circular orbits called stationary states, 2) if
Ej and E; are the initial and final energies of the atom, the frequency f of the emitted
radiation during a transition is given by f'= [E; — E¢]/h, and 3) the angular momentum of a

circular orbit is constrained by mvr = nh. | (@) is correct.

4 o0
Picture the Problem We can express the kinetic energy of the orbiting electron as well
as its total energy as functions of its radius r.

Express the total energy of an E=K+U

orbiting electron:

Express the orbital kinetic energy of kZe*

an electron: K= 1)

2r

Express the potential energy of an kZe?

orbiting electron: U=- r

Substitute and simplify to obtain: P k7t kZe:  kZe:  2kZe?
T s 2 2
___kZ'e2

2r
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Thus, as r increases, £ becomes
less negative and therefore increases.

Examination of the expression for K makes it clear that if » increases,
K decreases.

5 °
Picture the Problem We can relate the kinetic energy of the electron in the n = 2 state to
its total energy using £, = K, + U, .

Express the total energy of the E,=K,+U,=K,-2K, =-K,
hydrogen atom in its n = 2 state: or
K, =-E,

Express the energy of hydrogen in , E? , B E;

_ E =-7"20=_(1f 2 =-=0

its nth energy state: " n? n’ n’
where Ej is hydrogen’s ground state

energy and Z = 1.

Substitute to obtain: E,

E? E
K ="Yand K, =—2=-"12
"op? 222 4

(d)is correct.

6 .
Picture the Problem The orbital radius » depends on the » = 1 orbital radius aq, the
atomic number Z, and the orbital quantum number » according to » = n°ao/Z.

The radius of the n = 5 orbit is: 2 dg
7, =5 1 25a,

because Z =1 for hydrogen.
(b)is correct.

*7 Py
Determine the Concept We can find the possible values of ¢ by using the constraints on
the quantum numbers n and /.

The allowed values for the orbital n l
guantum number ¢ for 1 0
n=1,2,3,and 4 are summarized in 2 0,1
table shown to the right: 310,12

410/1,2,3
From the table it is clear that ¢ can (a) is correct.

have 4 values.
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8 °
Picture the Problem We can find the number of different values m, can have by
enumerating the possibilities when the principal quantum number »n = 4.

The allowed values for the orbital ?=0,1,2,3
quantum number ¢ and the and
magnetic quantum number m, for m,=-3,-2,-1012,3

n =4 are summarized to the right:

From this enumeration we can see (c) is correct.
that m can have 7 values.

9 .
Picture the Problem We can visualize the relationship between the quantum number /¢
and the electronic configuration as shown in the table below.

fvalue |0|1(2|31|4

Because the p state corresponds to ¢ =1, | (c) is correct.

*10 oo
Determine the Concept The s state, with ¢ =0, is a "penetrating” state in which the
probability density near the nucleus is significant. Consequently, the 3s electron in
sodium is in a region of low potential energy for a significant portion of the time. In the
state ¢ =1, the probability density at the nucleus is zero, so the 2p electron of sodium is
shielded from the nuclear charge by the 1s electrons. In hydrogen, the 3s and 2p electrons
experience the same nuclear potential.

11 oo

Determine the Concept In conformity with the exclusion principle, the total number of
electrons that can be accommodated in states of quantum number 7 is n* (see Problem
48). The fact that closed shells correspond to 2x” electrons indicates that there is another
guantum number that can have two possible values.

12 .-
Picture the Problem We can group these elements by using Table 35-1 to look for a
common outer electronic configuration in the ground states.

The following elements have an outer 4s? titanium, manganese, and calcium
configuration in the ground state:
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The following elements have an outer 4s potassium, chromium, and copper.
configuration in the ground state:

Remarks: It is to be expected that atoms of the first group will have similar
properties, and, likewise, that atoms of the second group will have similar
properties.

13 -
Picture the Problem We can use the fact that the sum of the exponents in the electronic
configuration representation is the atomic number to identify these two elements.

(a) Adding the exponents yields a sum of 15. Because this sum is the atomic
number, Z, the element must be| phosphorus.

(b) Adding the exponents yields a sum of 24. Because this sum is the atomic number, Z,
the element must be| chromium.

Remarks: Checking the electronic configurations in Table 35-1 further confirms
these conclusions.

*14 .
Picture the Problem We can apply the constraints on the quantum numbers ¢ and m, to
find the possible values for each when n = 3.

Express the constraints on the n=123,..,
quantum numbers n, ¢, and m,: (=012,..n-1,
and

m,=—0,—0+1,...,0

So, for n = 3, the constraints on ¢ ¢=]0,1and?2.
limit it to the values:

m, can take on the values: m,=|-2,-1,0,1,2

15

Determine the Concept The correspondence between the letter designations K, L, M, N,
O, and P for the shells and the principal quantum number » is summarized in the table
below.
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Shell designation L
n 1 2

l 0 0

1

N R o w<Z

W NP O NMZ

r w NP o o O

O M WNPFP OO T
o o W N ONO

While n = 2 for the L shell, £ can be either 0 or 1. | (d) is correct.

16 e
Picture the Problem The strengths and weaknesses of each model are summarized in the
following table.

Bohr Theory Schrédinger Theory
Ease of application Easy Difficult
Prediction of stationary Correct predictions Correct predictions
state energies
Prediction of angular Predicts incorrect Predicts correct results
momenta results
Spatial distribution of Predicts incorrect Predicts correct probabilistic
electrons results distribution

17 oo

Determine the Concept The optical spectrum of any atom is due to the configuration of
its outer-shell electrons. lonizing the next atom in the periodic table gives you an ion
with the same number of outer-shell electrons, and almost the same nuclear charge.
Hence, the spectra should be very similar.

*18 oo
Determine the Concept The Ritz combination principle is due to the quantization of
energy levels in the atom. We can use the relationship between the wavelength of the
emitted photon and the difference in energy levels within the atom that results in the
emission of the photon to express each of the wavelengths and then the sum of the
reciprocals of the first and second wavelengths and the sum of the reciprocals of the third
and fourth wavelengths.
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Express the wavelengths of the
spectral lines Ay, Az, A3, and A4 in
terms of the corresponding energy
transitions:

Add the reciprocals of 4; and A, to
obtain:

Add the reciprocals of 43 and A4 to
obtain:

Because the right-hand sides of
equations (1) and (2) are equal:

One possible set of energy levels is
shown to the right:

9 -

he
Ch—
3~ 2
A= he
Ez_Eo
he
Sl
37 ™M
and
A = he
El_EO

he he
1)
_ E3 — Eo
he
i 1 E-E +E1—E0
. hc hc @
_ E3 — Eo
he
1 1 1 1
=4
/12 4
E,
/\1 /\3
| E,
El
)tZ /\4
i ] Eo

Determine the Concept An allowed transition must satisfy the selection rules

Am,=0o0r+1land Al =+1.
(@) Al=-1and Am,=0:
(b) (3,0,1) does not exist.
()Al=-1land Am,=2:

(dAl=+land Am,=1:

The transition is allowed.

The transition is not allowed.

The transition is not allowed.

The transition is allowed.
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(e) Al=-1and Am,=0: The transition is allowed.

Estimation and Approximation

*20 oo
Picture the Problem The number of photons need to stop a **Rb atom traveling at 300
m/s is the ratio of its momentum to that of a typical photon.

(@) The number N of photon-atom ADyom MV mvc
collisions needed to bring an atom N=—""0=—1r=
to rest is the ratio of the change in
the momentum of the atom as it
stops to the momentum brought to
the collision by each photon:

The kinetic energy of an atom
o 1.2 3 3kT
whose temperature is 7'is: smv° =3kl = v=,|—
m

Substitute for v to obtain:
y=me 3K € kT
E m E

pphoton E E
c
where m is the mass of the atom.

For an atom use mass is 50 u:

8 27
v 3x10 m/s_lg o 5oy x 166310 kg (1.38x10% J/K (500K ) ~ [ 10°
Loy x 18X107°3 !

eV

(b) The number N of ping-pong ball-
bowling ball collisions needed to
bring the bowling ball to rest is the Pring-pongbait - Mppb Vb
ratio of the change in the

momentum of the bowling ball as it

stops to the momentum brought to

the collision by each ping-pong ball:

p i
bowling ball my,Vv
N g bb * bb

Provided the speeds of the
approaching bowling ball and ping-
pong ball are approximately the Pring-pong ball
same:

N = AP powting ball ~ M 6kg ~[10°
49

M

(¢) The number of photons N needed
to stop a **Rb atom is the ratio of the
change in the momentum of the
atom to the momentum brought to
the collision by each photon:

mv  mvA

N — Apatom —

p photon ﬁ h
A

Substitute numerical values and evaluate N:
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85(1.66 x10?' kg (300 m/s)(780.24 nm)

N =

6.63x107**J-s

21 oo

=|4.98x10*

Picture the Problem We can use the relationship between the kinetic energy of an atom

and its momentum, together with the de Broglie equation, to derive the expression for the

thermal de Broglie wavelength. In Part (5), we can use the definition of the number

density of atoms and the result from Part (@), with the interatomic spacing set equal to the

thermal de Broglie wavelength, to estimate the temperature needed to create a Bose

condensate.

(a) Express the kinetic energy of an
atom in terms of its momentum:

Use the de Broglie relationship to

express the atom’s momentum in
terms of its de Broglie wavelength:

Substitute for p to obtain:

The kinetic energy of an atom is
also a function of its temperature 7:

Equate these expressions for K to
obtain:

Solve for Ay

(b) The number density of atoms p
is given by:

Assume that the atoms are arrayed
on a cubic lattice of lattice spacing d
to obtain:

Solve for d to obtain:

Setting d = Ay yields:

where A7 is the thermal de Broglie
wavelength.

2
2mA;
K=—kT
2
Sy
2 2mAi;
2
2
3mkT
N
P=—

V
where N is the number of atoms and V' is
the volume they occupy.

N 1
V =Nd® and p = =
PENG &
d=p™?
p¥e= |
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Solve for T to obtain: h2p2/3

Substitute numerical values and evaluate T

6 3 2/3
012 atoms 10°cm
mS

(6.63x10* -s)2£1 o

T = =] 75.2nK

3(85 u)(1.66 x107% kg] (1.38 x107% |J<j
u

The Bohr Model of the Hydrogen Atom

22 .
2
Picture the Problem The radius of the first Bohr orbit is given by a, = 7 .
mee
Equation 36-12 is: h*
Clo = >
mke
Substitute numerical values and evaluate aq:
_34 2
ay = (L05x10*3-s) - =526x10"Mm
(9.11x10kg)(8.99x10° N - m*/kg? )(1.60x10™ C)
=| 0.0526 nm
23 -

Picture the Problem We can use the equation relating the wavelength of the radiation
emitted during a transition between two energy states to find the wavelengths for the
transitions specified in the problem statement.

Express the wavelength of the . 1240eV-nm _1240eV-nm
radiation emitted during an energy AE E —E;
transformation from one energy provided the energies are expressed in eV.
state to another: Note that this relationship tells us that the

longest wavelength corresponds to the
smallest energy difference.

Because E; = -13.6 eV: A= 1240eV-nm
E, +13.6eV
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Express the energy of the nth energy
state of the atom:

Substitute to obtain:

(a) Evaluate equation (1) for
n=n;=3:

(b) Evaluate equation (1) for
n=n;=4:

24 .

1240eV -nm
_136eV 13 6ev

2
n

_1240eV-nm
13.6ev(1— L ]

1)

2
n

. 1240eV -nm _103nm

13.6eV(1—312j

1= 1240eV -nm _973nm

13.6eV(1—j'2]

Picture the Problem For the Balmer series, Es= E; = —3.40 eV. The wavelength
associated with each transition is related to the difference in energy between the states

by 4 = 1240eV-nm '

E -E;
Express the wavelength of the
radiation emitted during an energy
transformation from one energy state
to another:

Evaluate AE for the transition
n=3ton=2:

Because E; = E, = -3.40 eV and
Ey=-13.6eV:

Evaluate equation (2) for n = 3:

_ 1240eV-nm 1)
AE

provided the energies are expressed in eV.

Note that this relationship tells us that the

longest wavelength corresponds to the

smallest energy difference.

A

AE, ,, = E, - L, :%_Ez
n
AE, ,=-B%V sa0ev ()
n
b B9V 5 oy

=|1.89eV




Atoms 1183

Substitute in equation (1) to obtain: 4 _1240evVenm oo
1.89eV

Evaluate equation (2) for n = 4: AE. . = _13.6eV +3.40eV

452 2 '

=| 2.55eV

Substitute in equation (1) to obtain: P 1240eV-nm _ 486nm
2.55eV

Evaluate equation (2) for n = 5: 13.6eV

q ) Ay, === +340eV

=| 2.86eV

Substitute in equation (1) to obtain: . 1240eV-nm _ 23410m
2.86eV

25 oo

Picture the Problem We can use Bohr’s second postulate to relate the photon energy to

its frequency and use A = M to find the wavelengths of the three longest

i~

wavelengths in the Paschen series.

(a) Use Bohr’s second postulate to hf =AE = E, - E;
express the energy of the photons in
the Paschen series:

For the series limit: n=c and E, =0
Substitute to obtain: E E
AE = —E, =—[——§]:—§ D
n, n,
Evaluate the photon energy for W = 13-62€V _[151ev
Ny = 3: 3
Express the wavelength of the . 1240eV-nm @
radiation resulting from an energy AE

transition AE = hf: provided the energies are expressed in eV.
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Evaluate Ay, for the transition L 1240eV-nm _821nm
n=owton,=3: mn 1.51eV
(b) For the three longest n, =4,5,and6
wavelengths:
Equation (1) becomes: E E
quation (1) hf:E.—Ef:——g—(——gj
i n,

Evaluate equation (3) for n = 4:

16
=| 0.661eV
Evaluate equation (2) for . 1240eV-nm _[1876nm
AE =0.661 eV: 0.661eV

Evaluate equation (3) for n = 5:

AE, ,=(13.6 ev)[é —ij

25
=(0.967eV
Evaluate equation (2) for Ay = 1240eV-nm _ 1282nm
AE = 0.967 eV: > 0.967eV

Evaluate equation (3) for n = 6:

AE, , = (13.6 ev)(l _ i)

9 36
=|1.13eV
Evaluate equation (2) for = M =11097 nm
AE =113 eV: 1.13eV

The positions of these lines on a horizontal linear scale are shown below with the
wavelengths and transitions indicated.

6—3 5—-3 4—3

-] | |-+
1097 nm 1282 nm 1876 nm
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*26 oo
Picture the Problem We can use Bohr’s second postulate to relate the photon energy to
. 1240eV-nm

its frequency and use A = ———— to find the wavelengths of the three longest

i~ f
wavelengths in the Brackett series.

(a) Use Bohr’s second postulate to hf =AE =E, - E;
express the energy of the photons in
the Paschen series:

For the series limit: n=c and E, =0
Substitute to obtain: E E
AE = —E; :_[__gj:_g 1)
n, n,
Evaluate the photon energy for W = 13.6eV _ 0.850eV
ny = 4: 42 :
Express the wavelength of the . 1240eV-nm )
radiation resulting from an energy AE
transition AE = hf: provided the energies are expressed in eV.
Evaluate A, for the transition P 1240eV-nm _ 1459m
n=oton,=4: mn 0.850eV
(b) For the three longest n, =5,6,and7
wavelengths:
Equation (1) becomes: AE<E —E. = E, [ E
C ”iz ”22
@)

Evaluate equation (3) for n = 5: AE. = (13 6eV) 1 1
. 16 25
=1 0.306eV
Evaluate equation (2) for A, = 1240eV-nm _ 4052 nm
AE = 0.306 eV: >t 0.306eV
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Evaluate equation (3) for n = 6: AE, , —(13 6eV)[i—ij
e 16 36
=1 0.472eV
Evaluate equation (2) for _1240eV-nm _ 2627 nm
AE = 0.472 eV: 4 0472eVv
Evaluate equation (3) forn=7: AE. = (13 6eV) 1 1
e 16 49
=10.572eV
Evaluate equation (2) for A= 1240eV-nm _ 5168nm
AE = 0572 eV: >t 0.572eV

The positions of these lines on a horizontal linear scale are shown below with the
wavelengths and transitions indicated.

7—4 64 54

o a— -
2168 nm 2627 nm 4052 nm

27 e
Picture the Problem We can use the grating equation to find the wavelength of the given
spectral line and the Rydberg-Ritz formula to evaluate R.

(a) The grating equation is: mA=dsing
wherem =1, 2, 3, ...

Solve for 4: P dsin@
m
Substitute numerical values and (3.377 um)sin11.233°
evaluate A for m = 1: A= 1
=| 657.8nm

(b) The Rydberg-Ritz formula is: 1 ( 1 1 J

n, m



Solve for R to obtain:

Substitute numerical values and evaluate R:

Remarks: The data used here came from a real experiment.

Atoms

1 1
=1 1
-
R 1 1
0.6578um| 1 1

2 3

1187

=10.946 um™ =[ 1.0946 10" m

-1

by approximately 0.2% from the commonly accepted value.

28 (11}

The value for R differs

Picture the Problem This is an extreme value problem in which we need to identify the

relationship between E and r, differentiate it with respect to r, and set that derivative

equal to zero. Solving the latter expression for » will give us 7,,.

Express the total energy of the
electron:

Differentiate this expression with
respect to » to obtain:

Solve for r to obtain:

Differentiate £ a second time to
obtain:

Evaluate @Eldr* at r to obtain:

2 2
g " _ke&

- 2
2mr r

E_E_Zmrz r

d ] dke
_E_Zmrz}_;{T}
ke

I’I’ll"3 7’2

= 0 for extreme values

dE _d| n? kez}

d’E B k*e®m?
dr? L K®

ke?m

>0

Therefore, our extreme value is a minimum

and the value for » that minimizes the
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energy is r =

2
ke“m

Note that this is just the Bohr radius E. =|13.6eV
ao. Consequently, the energy is the

ground state energy of the hydrogen

atom and:

*29 (1 1]
Picture the Problem We can express the total kinetic energy of the electron-nucleus
system as the sum of the kinetic energies of the electron and the nucleus. Rewriting these
kinetic energies in terms of the momenta of the electron and nucleus will lead to K =

2
p2m;.

(@) Express the total kinetic energy K=K ,+K,
of the electron-nucleus system:

Express the kinetic energies of the
electron and the nucleus in terms of ) 2M
their momenta:

Substitute to obtain: P +p_2_p_2[ 1 l]
2

provided we define u = mMI(M + me).

(b) From Equation 36-14 we have:
_mklet ol ™

= = e 1
Amch® 14" @
where
2 4
C= ke :
dch

Use the Table of Physical Constants at the ~ C =1.204663x10*" m™/kg
end of the text to obtain:
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For H:

Substitute numerical values and evaluate Ry:

=31
R, = (1204663107 m™* fkg)| 110 K91 _ 506850107 m?
. 911x10 kg

1.67x107 kg

Let M — oo in equation (1) to obtain Ry, qoprox = €

RH,approx:

Substitute numerical values and evaluate Ry zpprox:

Riyaprox = (1:204663x10% m™/kg)(9.11x10* kg )= [ 1.097448 10" m*
Ry and Ry, . agree to three significant figures.
(c) Express the ratio of the kinetic P’
energy K of the electron in its orbit K 2m, u 1|[ mym,
about a stationary nucleus to the K p om m, m, +m,
Kinetic energy of the reduced-mass om
tem K':
system Com 1
I’I’lp + m, 14+ e
mp
Substitute numerical values and K _ 1
evaluate the ratio of the kinetic K 9.11x10* kg
energies: 1.67x107% kg
= 0.999455
or
K =0.999455K"

and the correction factor is the ratio of the
masses or | 0.0545%
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Remarks: The correct energy is slightly less than that calculated neglecting the
motion of the nucleus.

*30 e

Picture the Problem We can use Equation 36-15 with Z = 2 to explain how it is that
every other line of the Pickering series is very close to a line in the Balmer series. We can
use the relationship between the energy difference between two guantum states and the
wavelength of the photon emitted during a transition from the higher state to the lower
state to find the wavelength of the photon corresponding to a transition from the n = 6 to
the n = 4 level of He".

(@) From Equation 36-15, the energy , E,
levels of an atom are given by: E,=-Z n_z
where Ej is the Rydberg constant
(13.6 eV).
For He", Z=2 and:
£ =4t
n

Because of this, an energy level with even principal quantum number # in He" will have
the same energy as a level with quantum number »/2 in H. Therefore, a transition
between levels with principal quantum numbers 2m and 2p in He" will have almost the
same energy as a transition between level m and p in H. In particular, transitions from
2m 1o 2p = 4 in He" will have the same energy as transitions from m to n = 2 in H (the
Balmer series).

(b) Transitions between these energy he

levels result in the emission or A= 7 _E @)
absorption of a photon whose 6 T4

wavelength is given by:

Evaluate E¢ and Ey:
P E, = —4(13'229\/) ——151eV
and
E, = _4(13'626\/} — -3.40eV
4
Substitute for E¢ and E4 in equation B 1240eV-nm _656
(1) and evaluate A: - ~1.51eV —(-3.40eV) a nm

which is the sameasthen=3ton =2
transition in H.

Quantum Numbers in Spherical Coordinates

31 -
Picture the Problem We can use the expression relating L to ¢ to find the magnitude of
the angular momentum and the constraints on the quantum numbers to determine the
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allowed values for m.

(a) Express the angular momentum L=,\0l+1)n
as a function of /:

Substitute numerical values and L=Jl1+1)h = \/Eh

evaluate L: =/2(1.055x107*Js)
=11.49x10*J-s

(b) Because m, =/, ...,0,..., ¢ m, =] -10,+1
the allowed values for ¢ =1 are:

(¢) The vector diagram is shown on
the right. Note that because
L.=mjiand L = \/Eh , the vectors
for m, =1 and m,= 1 must make
angles of 45° with the z axis.

32 .

Picture the Problem We can use the expression relating L to ¢ to find the magnitude of
the angular momentum and the constraints on the quantum numbers to determine the
allowed values for m.

(@) Express the angular momentum L=.0l+1)h
as a function of 7:

Substitute numerical values and L= 1/3i3+1ih = 2\/§h
evaluate L: _ 2\/5(1.055”0-34 ] -s)
=|3.65x107*J.s

(b) Because m, =/, ...,0,..., / m,=|-3-2-1,0+1+2,+3
the allowed values for ¢ =1 are:
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(¢) The vector diagram is shown on
the right. Note that because
L.=mgiand L = 2\/§h , the angles
between the vectors and the z axis are
determined by cosé, = ma/Z\/g.
Thus & = 30°, & =54.7°, and

6y = 73.2°. The spacing between the
allowed values of L, is constant and
equal to 7.

3 -

_.m =3
am=2

m=1

m=0

m= —1

Sm= =2
m= -3

Picture the Problem We can find the possible values of ¢ by using the constraints on
the quantum numbers. A more analytical solution is to first derive the number of electron
states for an arbitrary value of » and then substitute the specific value of n.

(@) Whenn =3:

(b) For ¢ =0:

For ¢ =1:

For ¢ =2:

(¢) We can find the total number of
electron states by enumerating the
possibilities as shown in the table.

0=

0,12

0]

-1,0,+1

-2,-1,0+1,+2

NINININRRFPIRPROIS
-

WWWWWWwWwWww|w|s

N
N

Note that there are 9 m states. Because N, the number of electron states is
twice the number of m, states, the number of electron states is 18.

Alternatively, we can derive an expression for the number of electron states for an
arbitrary value of » and then substitute specific values of #:

The number of m, states for a given
n is given by:

N,

,_\

n—. n—1 n-1

= 2€+1 =2) I+

W?
o

(=0

o~

-0
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Express the sum of all integers from p
0t0p: Y t=%p(p+1)
(=0

n—1 n-1
Use this result to evaluate 2"/ 2> 0 =2%(n-1)n]=n"—n

=0 =0
Evaluate the second term to obtain: o (

1) =n

Substitute to obtain: N, =n"-n+n=n’

and, because N, the number of electron
states is twice the number of m states, the
number of electron states is N = 2x°.

Hence, for n = 3, the number of electron N=2n%= 2(3)2 =118
states is:

34 -

Picture the Problem While we could find the number of electron states by finding the
possible values of ¢ from the constraints on the quantum numbers and then enumerating
the states, we’ll take a more analytical approach by deriving an expression for the number
of electron states for an arbitrary value of » and then substitute specific values of ».

n—1 n—1 n-1

?I'he_ number of m states for a given n N = (2€ +1) _ ZZE + Z(l)
is given by: =0 =0 =0
Express the sum of all integers from p
0to p: Y r=%p(p+1)
(=0

n—-1 n-1
Use this result to evaluate 2 ¢ 2> 0 =2%(n-1)n]=n"—n

(=0 (=0
Evaluate the second term to obtain: & (

1)=n

Substitute to obtain: N, =n"-n+n=n’

and, because N, the number of electron
states is twice the number of m states, the
number of electron states is N = 2x°.
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(a) For n = 4, the number of electron N =2n% = 2(4)2 =32
states is:

(b) For n = 2, the number of electron states N = 2x% = 2(2)2 = E
is:

*35 oo
Picture the Problem The minimum angle between the z axis and L is the angle between
the L vector for m = ¢ and the z axis.

Express the angle @as a function of 4 L,
0 =cos | —

L.and L:

Relate the z component of L to m, L. =mh="Ih

and /:

Express the angular momentum L: L=.0¢+1)n

Substitute to obtain: ) /h ) ¢
0 =C0S" | ————|=C0S | ,[—

W0 +1)h (+1
(a) For ¢ = 1.

1+1

b) For ¢ = 4:
©) 6 =cos™ ‘/i = 26.6°
4+1
For ¢ = 50:
© 6 =cos™ ‘/ 0 |_ 8.05°
50+1

36 e
Picture the Problem We can use constraints on the quantum numbers in spherical
coordinates to find the possible values of n and m, for each of the values of /.

0= cos‘l( ij =1 45.0°

The constraints on n, m,, and ¢ are: n=1273, ..
?=012..,n-1
m[ = _f y (_g + 1), 0, 1, 2, E
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(a) For £ =3: n>4andm, =-3,-2,-1,0,1,2,3
(b) For £ =4: n>5andm, = -4,-3,-2,-1,01,2,3 4
(c) For £ =0: n>landm, =0

37 e

Picture the Problem The magnitude of the orbital angular momentum L of an electron is
related to orbital quantum number ¢ by L = «/ﬁ(ﬁ +1)h and the z component of the

angular momentum of the electron is given by L = mh.

(@) Fo_r the ¢ = 2 state, the square I2 = 2(2 +1)h2 —| 672

magnitude of the angular

momentum is:

(b) For thezé = 2 state, the maximum I? = 2°hn® =| 4n?

value of L is:

(c¢) The smallest value of Li + Li is Li +Li _J? —Li — 62— 45 =| 212
given by:

Quantum Theory of the Hydrogen Atom

38 -

3/2
: 1(Z Zrla .
Picture the Problem We can use w(r) = —(—] e to evaluate the normalized

A

ground-state wave function and its square at » = ap and P(r) = 47zr2|1//|2 to find the radial

probability density at the same location.

(a) Noting that Z = 1 for hydrogen, 1 (17
evaluate y/(ao) to obtain: l,//(ao) = | = | %
Jr\ a,
1

(b) Square w(a, ) to obtain: 2 LY -
4 (ao): —| =

2 3
e‘ayr
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(¢) Use the result from part (») to evaluate B 2 2 of 1
Plao) P(ao) =4y |ly| =4 —ezagiz'
4
B €2a
0
*39 -

Picture the Problem We can use the constraints on #, ¢, and m to determine the number

of different wave functions, excluding spin, corresponding to the first excited energy state
of hydrogen.

Forn=2: ¢=0o0rl
(@) For £=0, m=0 and we have: 1 state
For /=1,m,=-1,0, +1 and we 3 states
have:

Hence, for n = 2 we have: 4 states

(b) The four wave functions are m, | (n, 0, m,)

n| ¥t
summarized to the right. 21010 (2,0,0)
211 |-1] (21,-1)
21110 (2,1,0)
2111 (2,1,1)
40 e
1 Z 3/2
Picture the Problem We can use w(r) =——|Z | &% tg evaluate the normalized
Jr\ q,

ground-state wave function and its square and P(r) = 47zr2|1//|2 to find the radial

probability density at the same location. Because the range Ar is so small, the variation in
the radial probability density P(7) can be neglected. The probability of finding the
electron in some small range Ar is then P(r) Ar.

Express the probability of finding Probability = J.P(r)dr 1)

the electron in the range Ar: where P(r) is the radial probability density

function.

The radial probability density P(,») = 47172|1//|2 2)
function is:



Express the normalized ground-state
wave function:

Evaluate the normalized ground-
state wave function evaluated at
r = aqp to obtain:

Square 1//(a0) to obtain:

Substitute in equation (2) to obtain:

(@) Substitute in equation (1) to find
the probability of finding the
electron in the small range

Ar =0.03a:

() Evaluate the normalized ground-
state wave function at » = 2a, to
obtain:

Square (24, ) to obtain:

Substitute in equation (2) to obtain:

Substitute in equation (1) to find the
probability of finding the electron in
some small range

Ar =0.03ao:

Atoms 1197

ay
1(1)" 1
N —ap/aq
W(aO) 7 [GOJ €dy+/ 7y

eay+| 7,

v ar)=| — ]2= -

4

2
e‘a,

1
P(a,)= 47TG§|‘//|2 = 4m§[7] =

e‘aym

Probability = [ Pay )dr ~ P(ay)Ar
4

2
e‘a,

(0.034,)=| 0.0162

3/2
1 1 —2aq/a 1
2 - | o/ — T
l//( aO) NTT [aO] ¢ ezamurao

‘//2(2‘10):£ ! jz = :

ezao\/mo e4a§7r
P(2a,) = 47(2a, f |://|2 =167m? (%j
e ayw
16
- e4a0

Probability = jP(ZaO )dr =~ P(2a,)Ar

16
= (0.034,)=| 0.00879

Remarks: There is about a 2% chance of finding the electron in this range at r = ay,
but at r = 2a,, the chance is only about 0.9%.
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41 e

Picture the Problem We can use Equation 36-36 and the given expression for Cp o to
evaluate the spherically symmetric wave function wforn=2, ¢ =0,

m, =0, and Z = 1 and then use this result to evaluate :/ and P(r) for r = aj.

(a) Express the spherically B F | 24

symmetric wave function for V200 = Cano| 2 _a_o ¢

n=2/¢=0,m=0,andZ=1 32

(Equation 35-36): _ 1 (i] (2 _ L]e—r/zao
NGY a, a,

Evaluate this expression for

1 (1Y)”

a, | _
— . a.)=——| — 2 0 690/290
r=ag V’z,o,o( 0) 4 /_Zﬁ[aJ [ aoj

1 _[00605
4 2emal’ ay’?
(b) Square v, 4.5(a, ) to obtain: , (0.0605) [0.00366
[‘/’z,o,o(ao )] = PR = a2
0 0

(c) Express the radial probability density: ~ P(r) = 42y *(r)

Substitute to obtain: »0.00366 | 0.0460

P(ao) = 477a0 613

0 ay

42 00

Picture the Problem We can use the definition of the radial probability density and the
wave function (Equation 35-37) for the state (2, 1, 0) to obtain the result given in the
problem statement.

- - _ Z _
Using Eque_ltlon 35-37, express the '//2,1,0(’”)= CM’O_I”e 7r/2a0 y0s )
wave function for the state a,
(2,1,0):

Square ,, ,(r) to obtain: , ,
[Wz,l,o(r)] ‘= (CZ,LO a_re—Zr/Zuo cos (9]

0

ZZrZ —4r/a
=Cl o, —5e " cos’ 0
0
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Express the radial probability P(r)=4m*y’(r)
density:
Substitute and simplify to obtain: Pr)=4m7C2,, 22:2 10 cog? g
0
=| Ar®cos? @ e
where
4nC}, 2%
A= 2,;,0
4y

43 o000
Picture the Problem In this instance, J-P(r)dr extends over a sufficiently narrow

interval Ar << 0.02a, that we can neglect the dependence of P(#) on ». Hence, we can
set'[P(r)dr = P(r)Ar and use the wave function (Equation 36-36) for the state

(2, 0, 0) and the expression for Cy0o from Problem 41 to find 5,00, 1//2210'0 , P(r), and the

probability of finding the electron in the range specified at » = ao and
7 = 2ay.

(a) Express the probability of Probability = jP(r)dr (1)

finding the electron in the range Ar- where P(r) is the radial probability density

function.

The radial probability density P(,») = 4m2|w|2 (2)
function is:

The normalized wave function for ( ) C o I |,
. r)= —— e

the (2, 0, 0) state of hydrogen is V200 2,00 ay

given by Equation 36-36:

From Problem 41 we have, for 1 1 92
hydrogen: Cono = 427 a_o

Substitute to obtain: 7| 24,
Wz,o,o(r): Cz,o,o[z__Je 2

dgy

3/2
1 1 r -r/2a,
= =] |2-L |ee
427 \ a, a,




1200 Chapter 36

Evaluate the normalized ground-
state wave function at » = ag to
obtain:

Square ‘//z,o,o(ao) to obtain:

Substitute in equation (2) to obtain:

Substitute in equation (1) to find the
probability of finding the electron in
some small range

Ar=0.02 ag:

32
1 (1) e
Wz,o,o(ao): 4\/5(;0} e

3 1 _0.0605
4\/ 27zea§/ 2 ag/ 2

., (0.0605)° 0.00366
[‘//z,o,o(ao)] :( PR J -

3
0 ay

ay

P(ao): 477”5‘//2(5’0): 4”"5(

47(0.00366) _ 0.0460

dy dy

o.ooseej
3

Probability = [ P(a, )dr ~ P(a, )Ar
_ 0.0460

a

=19.20x10™*

(0.024,)

() Evaluate the normalized ground-state wave function at » = 2a, to obtain:

V00(200) = ﬁ(

Square z//zyo’o(ZaO) to obtain:

Substitute in equation (2) to obtain:

Substitute in equation (1) to find the
probability of finding the electron in
some small range

Ar=0.02 aq:

*44 oo

3/2
2_% e—ZaO/Zao -0
ay

[V/z,o,o(ao )] *=0
P(2a,)=0

Probability = [ P(2a, Jdr ~ P(2a,)Ar

[0

32
. . 1(Z7 _ iy -
Picture the Problem We wish to show that y, , , = —(—] e 7% =Ce”"isa

solution to —

2mr? E or

j+U(r)y/ = Ey, where U(r):—

N

ay

kZée?

. Because the

r
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ground state is spherically symmetric, we do not need to consider the angular partial
derivatives in Equation 36-21.

The normalized ground-state wave 1 (7 32
function is: Wigo = ——| — e 2% — o

1,0,0 \/; (a()]
Differentiate this expression with W00 0 [ _Zr/ao] Z e
respect to r to obtain: 2 Ca e = —Ca—e

0

Mul'giply both sides of this equation . W00 B —cirze*”/“o
by o 4

Differentiate this expression with respect to » to obtain:

2
92 rz_a%,o,o :—Céi(rze_zr/%)z —£+r2 z Ce 7
or or a, or a, a,

Substitute in Schrddinger’s equation to obtain:

2 2 2
N h B 2Zr +r2(£j Ce—Zr/aO B kze Ce—Zr/ao _ ECe—Zr/aO

2
2mr a, a, r

Solve for E:

2
Because a; = ——:
mke

Fe_ h? B 2mke*Zr 2 Zmke* ’ B kZe* 3 kZe* B Z%k%e* m B kZe*
2mr h? h? r r 2h? r
| Z%k%e* m
2h*

Because this is the correct ground state energy, we have shown that Equation
36-33, is a solution to Schrédinger’s Equation 36-21 with the potential energy function
Equation 36-26.

45 oo

Picture the Problem We can substitute the dimensions of the physical quantities for the
physical quantities in Equation 36-28 and simplify the resulting expression to show that it
has dimensions of energy.
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Equation 36-28 is: mh2e®
" on?
The units of this equation are: N-m21°
ko] =2 [cff T
c [kg][N - m?]

46 oo
2

Picture the Problem The Bohr radius is a, = Pk We can substitute the dimensions
mke

of the physical quantities for the physical quantities in this equation and simplify the
resulting expression to show that it has dimensions of length.

Because the Sl units of 7z are J-s, its M - L2 M - L2
dimensions are: T2 -T= T
Because the Sl units of k are M- L 2 1 M- L3

N-m*C?, its dimensions are: T T

where Q is the dimension of charge.

Substitute the dimensions 2
2 {'V' ' '—2} M2 L
ina, = to obtain: T
% mkez = -|2-2 3 = L
M * L3 2 M * L
R R &
47 e

Picture the Problem This is an extreme value problem. We'll begin its solution with the
radial probability distribution function, differentiate it with respect to its independent
variable r, set this derivative equal to zero, and solve for the value for an extreme value
for ». We can show that this value corresponds to a maximum by evaluating the second
derivative of P(r) at the location found from the first derivative.



Differentiate the radial probability
distribution function with respect to
r to obtain:

Solve for r to obtain:

To show that this value for »
corresponds to a maximum,
differentiate dP(r)/dr to obtain:

Evaluate this derivative at
r=adlZ:

48 00
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dp(’”) _ Ci[rzefzzr/ao]

dr dr
2
_ C Zre—ZZr/aO _ er 672Zr/a0
aqy
_ 2CZr o2 (@_’”j
a, VA
= 0 for extrema
Y
V4

dP(r) __2CZr Lo, , ( % _ rj

2
dr a,

2
a dy

2
§ (_ 4czt | 2Cz Je_zz,/,,o

d*P(r)
dr?

=-2Ce?<0

because C is a positive constant. Hence,

%

P(r) has its maximum value at » = 7

Picture the Problem We can double the sum of the number of m states for a given n to
show that the number of states in the hydrogen atom for a given » is 2n°.

The number of m, states for a given
n is:

The sum of all integers from 0 to p
is:

The second term is:

N, = "i(zz +1)= zniuni(l)
=0 (=0 =0
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Substitute to obtain:

Because N, the number of electron
states, is twice the number of m,
states, the number of electron states
is:

49 00

Picture the Problem The ground state of a hydrogen atom is the state described by » = 1,

2
N/:n —n+n=n

N=2N_=|2n®

my

¢ =0, m,=0. We can calculate the probability that the electron in the ground state of the

hydrogen atom is in the region 0 < » < a, by evaluating the integral J.47z7f2w12’0’0 (r)dr.

Express the probability that the
electron in the ground state of a
hydrogen atom is in the region
O<r<ag:

Express the ground-state wave
function for hydrogen:

Square the wave function to obtain:

Substitute to obtain:

Use a table of integrals to find:

Use this integral to show that:

0

Probability = [ 472y o(r)dr
0

1 (1)
Wl,o,o(r):ﬁ[a_) el
0

1 -2r/a,
‘//12,0,0(’”): —3¢€ o
T

Probability = J.47zr{ ! e‘zr/“"]dr
0

3
a

0

4%, ,
:—J-r e % gy
0

bx

szebxdx = e—(bzxz —2bx + 2)

Z73

)

2
Probability = —e 27 (ZLZ L2 +1J

ayg 4y

0

=1-5¢72 =|0.323
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The Spin-Orbit Effect and Fine Structure

*50 e

Picture the Problem The energy difference between the two possible orientations of an
electron in a magnetic field is 2.B and the wavelength of the photons required to induce
a spin-flip transition can be found from Ac/AE. The magnetic moment z4 associated with
the spin of an electron is 5.79x107° eV/T.

(a) Relate the difference in energy AE =2uB
between the two spin orientations in = 2(5.79 x107° eV/T)(O.GT)
terms .Of the dlfference in the _[6.95x10° eV
potential energies of the two states:
(b) Relate the wavelength of the . he
photon needed to induce such a AE
transition to the energy required:
Substitute numerical values and . 1240 eV_'Snm —1.78x10"nm
evaluate A 6.95x107 eV
=| 1.78cm

51 -
Determine the Conceptj and ¢ are constrained according to j = /£ For

j=%, l=%%x%torl=|0orl|.

52 -
Determine the Conceptj and / are constrained according to j = ¢+ 1. For

0 =2, j=2x%orj=|30r3

53
Picture the Problem The total angular

momentum vector J is the sum of the ﬁ
orbital momentum vector L and the spin

orbital angular momentum vector S .The
quantum number ; can be either /+% or

‘h"l

¢—%, where ¢ # 0. Hence, j can take on

the values 3+ 1/2=7/2and 3 - 1/2 =5/2.
The scaled vector diagrams are shown to i=%
the right.
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The Periodic Table

54 .
Determine the Concept The total number of quantum states of hydrogen with quantum

number # is 2n%. For n =4, we have 2(4)? = 32. | (c) is correct.

55 .
Determine the Concept From Table 36-1, oxygen’s electronic configuration is

1s?2s°2p”. Because there are 4 electrons in the p state, | (c) is correct.

*56

Determine the Concept We can use the atomic numbers of carbon and oxygen to
determine the sum of the exponents in their electronic configurations and then use the
rules for the filling of the shells to find their electronic configurations.

(@) The atomic number Z of carbon 1s?2s%2p®
is 6. So we must fill the subshells of
the electronic configuration until we
have placed its 6 electrons. This is
accomplished by writing:

(b) The atomic number Z of oxygen 1s*2s%2p*
is 8. So we must fill the subshells of
the electronic configuration until we
have placed its 8 electrons. This is
accomplished by writing:

57

Determine the Concept We can find the z component of the orbital angular momentum
using L. = mh and the relationship between the quantum numbers ¢ (which we know from
the state of the electrons) and m, (which is related to ¢ through m, = -¢, (¢ + 1), ..., 0, 1,
2,...0).

() For ap electron ¢ = 1. For L =|—-2h,—1,0h 2"
f=1,m,=-1,0,or 1. Because
L,=-mh, ..., mh:

(b) For an f electron, £ = 4. L =|—4h,—3h,—2h,—h,0,h,2h,3h, 4%
For/=4,m,=-4,-3,-2,-1,0, 1,
2,3, 4. Because L,=-mh#, ..., mh:
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Optical Spectra and X-Ray Spectra

58 -

Determine the Concept Lithium, sodium, potassium, chromium, and cesium have one
outer s electron and hence belong in the same group. Beryllium, magnesium, calcium,
nickel, and barium have two outer s electrons and, hence, belong in the same group.

59 -
Determine the Concept We can use Table 35-1 to find the electronic configurations for
the first excited states of these elements.

(@) For H, E depends only on » and 2s0r 2p
the lowest excited state is:

(b) For Na, the 3p state is higher 1s°2s°2p°3p
energy than the 3s state and the
lowest excited state is:

(c) For He, the lowest excited state 1s2s
has one electron in the 2s state and
the lowest excited state is:

60

Determine the Concept Atoms with one outer electron have spectra similar to H: Li, Rb,
Ag, Fr. Atoms with two outer electrons have spectra similar to He: Ca, Ti, Hg, Cd, Ba,
Ra. Therefore, the table should be completed as shown below:

Optical Spectra Optical Spectra
Similar to Hydrogen Similar to Helium
Li, Rb, Ag, Fr Ca, Ti, Hg, Cd, Ba, Ra

*61 .

Picture the Problem When an electron from state » drops into a vacated state in the n =
1 shell, a photon of energy AE = E, — E; is emitted. We can find the wavelength of this
photon using A = hc/AE . The second and third longest wavelengths in the K series
correspond to transitions fromn =3ton=1and n =4 to n = 1 and the shortest
wavelength to the transition fromn = ton =1.

Express the wavelength of the A= hc _ 1240eV-nm

emitted photon in terms of the E, - E E —-E
energy transition within the atom:
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Express the energy of the nth energy B E
_ E, =—(z-1y=¢
state: n

wheren=1, 2, ...

Substitute to obtain: 4= he
En _El
B 1240eV-nm
- E ) E
—(z-1f 22| —(z-1f =2
(227 (-2 )
_1240eV-nm
-1 ]
n
(a) Evaluate this expression with n = A= 1240eV-nm
3 and Z = 42 to obtain: (42_1)2(13 6eV) 1_i
. 3
=| 0.0610nm
Use n =4 and Z = 42 to obtain: P 1240eV-nm
=
(42-1Y(13.6 ev)(l—jzj
=1 0.0578nm
(b) The shortest wavelength in the _ 1240eV-nm
series corresponds to the largest “ (42-1/(13.6eVv)(1-0)
energy difference between the initial —10.0542nm

and final states. Repeat the
calculation in part (a) with n = o to
obtain:

62 -
Picture the Problem When an electron from state » drops into the vacated state in the n

= 1 shell, a photon of energy E, — E; is emitted. The wavelength of this photon

isA = ¢ . Hence, if we know the wavelength of the K, line we

(z —1)2(13.6ev)(1—12j

n

can solve for the atomic number of the element and use its value to identify the element.



Express the wavelength of the K,
line as a function of the atomic
number of the element:

Solve for Z:

Substitute numerical values and
evaluate Z:

Atoms 1209

he

(z —1)2(13.6ev)(1—12j

n

Z{:

he

2(13.6 ev)(l—nlzj

Z =1+

1240eV -nm

Z =1+ 1
(0.3368nm)(13.6 ev){l—zzj

=20

The element whose atomic number is 20 is calcium.

63 -

Picture the Problem The K, corresponds to a transition from » = 2 to » = 1. Equation
36-16 relates the atomic number Z to the wavelength of the emitted photon When an
electron from state » drops into a vacated state in the » = 1 shell, a photon of energy
E, — E; is emitted. We can find the wavelength of this photon using 4 = hc/(En — El)

and E, fromE, = —ZZ(EO/n2> :

Express the wavelength of the K,
line:

Express the energy of the atom’s
nth energy state:

Substitute and simplify to obtain:

(a) Substitute n =2, Z=12, and
Ey=13.6 eV to obtain:

hc  1240eV-nm

A=
En _El En _El
E, = —Zzig
n
. 1240eV-nm  1240eV-nm
n n
. 1240eV -nm _[1.00nm

11°(13.6 ev)(l— le

2
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(b) Substitute n =2, Z=29, and 4= 1240eV-nm
Eo=13.6 eV to obtain: 282(13.6€V)(1—212j
=| 0.155nm

General Problems

64 -

Picture the Problem The energy associated with a transition from an initial state to some
final state is given by  AE = E; — Ef and the wavelength A of a photon emitted in such a
transition is given by A = hc/AE. Hence, the shortest wavelength corresponds to the
largest energy difference.

Express the Wa\{elength of the aothe oap 2t
emitted photon in terms of the AE A
energy difference AE between the

atom’s initial and final states:

For Am [ hc

Amin, AE V\{I|| be the energy AE,. = —136eV
required to ionize a hydrogen atom: Aein
65 o

Picture the Problem This spectral line is due to a transition from some initial state »; to a
final state ns (we’re given that the final state is the ground state). The wavelength of the
spectral line is related to the difference in energy AE between these states according to

A =1240eV-nm/AE and the energy of the nth state is given (for hydrogen, Z = 1) by

E,= (19(-13.6 eV)/r*

Relate the wavelength of a spectral q= 1240eV-nm

1
line to the energy transition within AE @
the atom:

; : 2 2
Express the energy difference AE in AE=E —E, = Z°E, N Z°E,

a transition: n® nfz

ForZ=1and £, = 13.6 eV:



Substitute in equation (1) to obtain:

For A =97.254 nm and »; = 1 this
expression simplifies to:

Solve for n; to obtain:

Atoms
q= 1240eV-nm
csﬁao(i—li
e 1
_91.2nm
Y
oo
or
1 1 912nmm
n n’ A
-1 o 9120 _ 4938
n;  97.254nm
n=4

n,=4ton, =1.

The transition that produced the given wavelength was from

66 -

1211

Picture the Problem This spectral line is due to a transition from some initial state »; to a
final state ns (we’re given that the final state is the ground state). The wavelength of the
spectral line is related to the difference in energy AE between these states according to

A =1240eV-nm/AE and the energy of the nth state is given (for hydrogen, Z = 1) by

E,= (19(~13.6 eV)/r*
Relate the wavelength of a spectral
line to the energy transition within

the atom:

Express the energy difference AE in
a transition:

ForZ=1and £, = 13.6 eV:

q= 1240eV-nm 1)
AE
AE = E,— E,
_ 7Z°E, Z°E,
ni2 nf2
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Substitute in equation (1) to obtain:

For 4 =1093.8 nm this expression
simplifies to:

d= 1240eV-nm
(13.6ev)(12—12J
e 1
_91.2nm
11
n’ n
or
1 1 912nmm
n n’ A
Lol lamm ) hg34
ne n- 1093.8nm

Because the only constraints on »s and #; are that they be integers, we can solve this
equation by trial and error. One way to do this is to plot a graph of »; as a function of »¢
and look for integer solutions visually or with a trace of the trajectory of the curve. The
following graph was plotted using a spreadsheet program. Note that a solution to our

equation is #; = 6 and ns = 3.

35
/_
) //
2.5
ng
2.0
1.5
1.0 ,
0 1 2 5 6 7 8 9 10
n

n,=6ton, =3.

Thus, the transition that producesthe given wavelength is from
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Picture the Problem These spectral lines are due to transitions in singly ionized helium
from some initial state »; to a final state n;. The wavelengths of the spectral lines are
related to the difference in energy AE between these states according to

A =1240eV-nm/AE and the energy of the nth state is given (for helium, Z = 2) by

E, = (2%)(-13.6 eV)/n’.

Relate the wavelength of a spectral . 1240eV-nm 1)
line to the energy transition within AE
the atom:
Express the energy difference AE in AE = E; - E;
a transition: ZZEO ZZEO
=TTt
n; g
1 1
2
ForZ=2and E; = 13.6 eV:
" AE =2%(13 6ev)(i2—i2j
ng n
= (54 4ev)(i2—i2]
ng n
Substitute in equation (1) to obtain: . 1240eV-nm _ 22.8nm
1 1) 1 1
(54.4eV) pr S B
or
1 1 228nm
nl n A
For A =164 nm this expression 1 1 228nm _ 0.139
. 2 2 -
becomes: ng n; 164nm

Because the only constraints on »s and #; are that they be integers, we can solve this
equation by trial and error. One way to do this is to plot a graph of »; as a function of »¢
and look for integer solutions visually or with a trace of the trajectory of the curve. The
following graph was plotted using a spreadsheet program. Note that a solution to our
equation is #; = 3 and ns = 2.



1214 Chapter 36

2.6

2.2 1

2.0 1

n 1.8

1.6

14 /
1.2

ol

n =3t0n, =2.

Thus, the transition that produces the given wavelength is from

Similarly, for A =230.6 nm:

For 2 =541 nm:

*B8 e

Picture the Problem We can show that ke® =

ground state energy of an atom for ke’.

Express the ground state energy of
an atom as a function of %, e, and aq:

Solve for ke*:

Substitute for E, and aq to obtain:

The transition that produces
the given wavelength is from
nm=9ton, =3.

The transition that produces
the given wavelength is from
n,=7ton, =4.

1.44 eV-nm by solving the equation for the

2
E, = ke
2a,

ke* = 2E,a,

ke® = 2(13.6eV)(0.0529nm)
=|1.44eV-nm
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Picture the Problem Because the energies of the photons emitted by potassium

during these transitions are related to their wavelengths through

hf'= (1240 eV- nm/4) eV where A is in nm, we can use this relationship to find the
energies of the given photons. The difference in energy between these states can be found
using its definition and is related to the magnetic field through AE =24, B .

(a) For A =766.41 nm: B = 1240eV-nm _ oo
766.41nm

For A =769.90 nm: W = 1240eV-nm _eroe ey
769.90nm

(b) Using its definition, express the AE =1.6179eV -1.6106 eV

difference in energy between these =1 0.00730eV

two states:

(¢) Relate the energy difference AE =2u,B

between these states AE to the

magnetic field B and the quantum

unit of magnetic moment (a Bohr

magneton) ug:

Solve for B: B AE

24ty
Substitute numerical values and B 0-0073_56V _630T
evaluate B: 2(5.79 x10 eV/T)

Remarks: This magnetic field is about 42 times that of commercial magnetic
resonance imagers.

70 (1]

Picture the Problem One 1s electron must be released from the atom. It is shielded from
the nuclear charge Z by one other 1s electron. Thus, the effective charge is Z — 1, and the
ionization energy for that 1s electron is Enin = (Z — 1)%E.

(a) For tungsten, Z = 74, and: E . =73%(13.6eV)=| 72.5keV

(b) For molybdenum, Z = 42, and: E,. =41*(13.6eV)=| 22.9keV
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(c) For copper, Z = 29, and: E,. =28%(13.6eV)=|10.7keV

*71  ee

Picture the Problem We can show that « is dimensionless by showing that it has no
units. In part () we can use Bohr’s 3" postulate and the expression for the radii of the
Bohr orbits, together with the definition of ¢, to show that the speed of the electron in a
stationary state of quantum number # is related to « according to v, = ca /n.

(a) Express the units of oz N- m?
C* ) N-m’ _1

(J-S)r: J-m

Because « is unitless, it is also dimensionless.

() Apply the quantization of . :ﬂ
angular momentum postulate to " omr,
obtain:
The radii of the Bohr orbits are . n?
given by: " mkZe?
or, because Z = 1 for hydrogen,
. I
r,=n 2
mke
Substitute and simplify to obtain: nh ke?
Vy =F—/m— = —
" , B° nh
mn 2
mke
Divide this expression by the ke*
definition of « to obtain: Yo _ nh _ €
a &k n
hc
Solve for v,: ac
v, =|—
" n
72 e

Picture the Problem We can use Problem 29 to express the energy levels of positronium
in terms of the reduced mass of the electron-positron system. In part (») we can find the
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energies corresponding to 400 nm and 700 nm to decide whether the transitions between
any of the levels found in (a) fall in the visible range of wavelengths

Express the energy of positronium
as a function of the quantum number
n:

From Problem 29 we have:

Because me = mpos:

Substitute and simplify to obtain:

(a) Evaluate E, forn =1, 2, 3, 4,
and 5 to obtain:

Relate the wavelength of the emitted
photons to the energy-level
differences:

Solve for AE:

Evaluate AE for A =400 nm and
A=700 nm:

_ m k’e* Z_2
! 2h%  n?
m.m
M,. _ e"""pos
me + M,
meme me
m, =
m,+m, 2
__mekze‘li__i
! 4n* n® 2n?
n E,
(eV)
1| -6.80
2| -1.70
3| -0.756
4| -0.425
51-0.272
i_ﬁ_lMOeV-nm
AE AE
AE - 1240eV-nm
A
AE,, = 1240eV-nm _ 544y
400nm
and
AE,, = 1240eV-nm _177eV
700nm

Because none of the energies in the table shown above are in the interval
1.77eV 10 3.10eV, no transitions are in the visible range of wavelengths.
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73 e
Picture the Problem We can use E = Afto find the frequency of the photon and
A = hcelE to find its wavelength.

(a) The energy of the photon whose E=hf
energy is equal to the Lamb shift
energy is given by:

Solve for f'to obtain: E

f=7

h
Substitute numerical values and 4.372x10°% eV
: =— =|1.06 GHz

evaluate f. /= 4 1ax105ev s
(b) The wavelength of this photon is P he
given by: T E
Substitute numerical values and P 1240eV -nm _28.4em
evaluate A: - 4372 Xlo—6 eV - '

This wavelength is in the microwave portion of the electromagnetic spectrum.

*74

Picture the Problem The ionization energy of the electron is the magnitude of the
energy of the atom in the given state. We can use E = —Eq/n?, where Eq is the ground-state
energy, to find the energy levels in the 44" and 45" states and, hence, the energy level
separation between the states. The wavelength of a photon resonant with this transition
can be found from A = hc/AE. We’ll approximate the size of the atom in the n = 45 state
by finding the radius of the outer-shell electron.

(@) The energy of the atom in its nth E,
state is: E, =-—
n
The energy of the atom in the 13.6eV
n = 45 state is: Ep=— (45)2 =—-6.72meV
The ionization energy is the E  —_FE_ =|672meV
negative of the energy in the state » tonizing 45 :
=45:
(b) The energy level separation [13.6 eV 136 eVJ
between the n = 45 and »n = 44 state a1 = -
is: e Ly ey
=[3.09x10™* eV
(¢) The photon wavelength is: P he



Substitute numerical values and
evaluate A:

(d) The radii of the Bohr orbits are given
by:

Substitute numerical values and evaluate
the radius of the 45th Bohr orbit;

75 oo
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_1240eV-nm

=——————={4.01x10° nm
3.09x10“ eV
r=ne
Z
r = (45 —0'05?””‘ ~[107nm

Picture the Problem We can use the definition of the Rydberg constant and the equation
for the reduced mass from Problem 29 to calculate the Rydberg constant for hydrogen
and for deuterium. We can find the wavelength difference between the longest
wavelength Balmer lines of hydrogen and deuterium by finding the longest wavelengths
from the Rydberg-Ritz equation, using the appropriate value for R, and taking their

difference.

(@) From Equation 36-14 we have:

For H:

Substitute numerical values and
evaluate Ry:

B m k*e* B m,
= — =
47ch 14"
M
where
k*e
C=1"3 =1.204662x10°" m™/kg
JiC
R, =C]
1+ M
m

R, =(1.204662x10% m™ /kg)

9.109390x10* kg
. 9.109390% 10" kg
1.672623x107* kg

=11.096776x10' m™
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For deuterium:

Substitute numerical values and
evaluate Rp:

(b) Express the wavelength
difference between the longest
wavelength Balmer lines of
hydrogen and deuterium:

Use the Rydberg-Ritz formula to
express the reciprocal wavelength:

Solve for A to obtain:

The longest wavelength in the
Balmer series corresponds to a
transition from ny = 3 to n, = 2. Use
R = Ry to evaluate Ajongest, H:

Find Ajongestp USING R = Rp:

Substitute to obtain:

e

R, = (1.204662x10% m™ /kg)

9.109390 x 10~ kg
. 9.109390x 10" kg
2(1.672623x107 kg)

=11.097075x10" m™

AL =21 A

longest, H — ““ongest, D

1 1 1
- = R(_z - _2j
A n, n

where n; and n, are integers and

ni > ny.

2.2
_ . hm
A= R\n} —nl
P 3(2?)
ot (1.096776x10” m™ (3% - 22)
=656.470nm
e = 3(2?)
Mot (1.097075x107 m)(3% - 2°)
= 656.291nm

AA =656.470nm —656.291nm
=|0.179nm
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Picture the Problem We can use Problem 29 to express the energy levels of muonium in
terms of the reduced mass of the muonium-proton system. In Part (b) we can find the
energies corresponding to 400 nm and 700 nm to decide whether the transitions between
any of the levels found in (a) fall in the visible range of wavelengths

Express the energy of muonium as a
function of the quantum number »:

From Equation 35-47 in Problem 17
we have:

Becausem , =207m,:
)7

Because mjp = 1836m:

Substitute in equation (1) and
simplify to obtain:

(a) Evaluate £, forn=1, 2, 3, 4,
and 5 to obtain:

Relate the wavelength of the emitted
photons to the energy-level
differences:

Solve for AE:

Evaluate AE for A =400 nm and
A=700 nm:

m ket 7°
E =——~ — 1
" 2n°  n? @
. My
" my+m
207mpme 207m,
m = =
Tomy+20Tm, o7 Me
m
p
207m,
m, = —207 = :|.86l’l’le
1+ —
1836
g . 186mki’e’ 1 _ 186F,
n 2h2 n2 n2
n E,
(keV)
1| -253
2| —0.633
3| -0.281
4| -0.158
5| -0.101
p) _ he _1240eV-nm
AE AE
AE = 1240eV -nm
A
= 12808Vm 66y
400nm

and



1222 Chapter 36

_ 1240eV-nm _177eV

700mm 700nm

Because none of the energies in the table shown above are in the interval
1.77 eV t0 3.10 eV, no transitions are in the visible range of wavelengths.

77 oo

Picture the Problem We can use the definition of the Rydberg constant and the equation
for the reduced mass from Problem 29 to calculate the Rydberg constant for hydrogen,
tritium, and deuterium. We can find the wavelength difference between the longest
wavelength Balmer lines of tritium and deuterium and tritium and hydrogen by finding
the longest wavelengths from the Rydberg-Ritz equation, using the appropriate value for

R, and taking their difference.

(@) From Problem 29 we have:

For tritium:

Evaluate the expression in
parentheses to obtain:

Substitute numerical values and
evaluate Ry:

For deuterium:

R m k’e" m,
Ach® 1+%

where

2 4
- 4"—23 =1.204662x10% m™/kg
JiC

my +2m,
m, =9.107738x10"* kg
R, =(1.204662x107 m™ /kg)

x(9.107738x10"* kg)
1.097175%x10" m™




Substitute numerical values and
evaluate Rp:

(b) Express the wavelength
difference between the longest
wavelength Balmer lines of
hydrogen and deuterium:

Use the Rydberg-Ritz formula to
express the reciprocal wavelength:

Solve for A to obtain:

The longest wavelength in the
Balmer series corresponds to a
transition from n; = 3 to n, = 2. Use
R = Ry to evaluate Ajongest, T:

Find Ajongestp USING R = Rp:

Substitute to obtain:

Proceed similarly to show that for
hydrogen and hydrogen:

Atoms 1223

R, = (1.204662x10” m™ /kg)

9.109390x10"*" kg
. 9.109390x 10" kg
2(1.672623x10 7 kg)

=1.097075x10" m™

AL=21 A

longest,D ~ ““ongest, T

1
Lfa
A n, n

where n; and n, are integers and

ni > ny.

2.2
__
A= R\n} —nl
o 3(2?)
0T (1.097175%10" m)(32 - 2?)
= 656.231nm
e = 3(2?)
MoeP T (1.097075x107 m*)(3° - 2°)
= 656.291nm

AA =656.291nm —-656.231nm
=] 0.0600nm

A =656.4695nm —656.2314nm
=| 0.238nm
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