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Chapter 37 
Molecules 
 
Conceptual Problems 
 
*1 •  
Determine the Concept Yes. Because the center of charge of the positive Na ion does 
not coincide with the center of charge for the negative Cl ion, the NaCl molecule has a 
permanent dipole moment. Hence, it is a polar molecule. 
 
2 •  
Determine the Concept Because a N2 molecule has no permanent dipole moment, it is a 
non-polar molecule. 
 
3 •  
Determine the Concept No. Neon occurs naturally as Ne, not Ne2. Neon is a rare gas 
atom with a closed shell electron configuration. 
 
4 •  
Determine the Concept 
 
(a) Because an electron is transferred from the H atom to the F atom, the bonding 
mechanism is ionic.   
 
(b) Because an electron is transferred from the K atom to the Br atom, the bonding 
mechanism is ionic.   
 
(c) Because the atoms share two electrons, the bonding mechanism is covalent.  
 
(d) Because each valence electron is shared by many atoms, the bonding mechanism is 
metallic bonding. 
 
*5 ••  
Determine the Concept The diagram would consist of a non-bonding ground state with 
no vibrational or rotational states for ArF (similar to the upper curve in Figure 37-4) but 
for ArF* there should be a bonding excited state with a definite minimum with respect to 
inter-nuclear separation and several vibrational states as in the excited state curve of 
Figure 37-13. 
 
6 •  
Determine the Concept Elements similar to carbon in outer shell configurations are 
silicon, germanium, tin, and lead. We would expect the  same hybridization for these as 
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for carbon, and this is indeed the case for silicon and germanium whose crystal 
 structure is the diamond structure. Tin and lead, however, are metallic and here the 
metallic bond is dominant. 
 
7 •  
Determine the Concept The effective force constant from Example 37-4 is 1.85×103 
N/m. This value is about 25% larger than the given value of the force constant of the 
suspension springs on a typical automobile. 
 
8 •   
Determine the Concept As the angular momentum increases, the separation between the 
nuclei also increases (the effective force between the nuclei is similar to that of a stiff 
spring). Consequently, the moment of inertia also increases. 
 
9 •  
Determine the Concept For H2, the concentration of negative charge between the two 
protons holds the protons together. In the +

2H  ion, there is only one electron that is shared 

by the two positive charges such that most of the electronic charge is again between the 
two protons. However, the negative charge in the +

2H  ion is not as effective as the larger 

charge in the H2 molecule, and the protons should be farther apart. The experimental 
values support this argument. For H2, r0 =  0.074 nm, while for +

2H , r0 = 0.106 nm. 

 
10 •   
Determine the Concept The energy of the first excited state of an atom is orders of 
magnitude greater than kT at ordinary temperatures. Consequently, practically all atoms 
are in the ground state. By contrast, the energy separation between the ground rotational 
state and nearby higher rotational states is less than or roughly equal to kT at ordinary 
temperatures, and so these higher states are thermally excited and occupied. 
 
11 ••  
Determine the Concept With more than two atoms in the molecule there will be more 
than just one frequency of vibration because there are more possible relative motions.  In 
advanced mechanics these are known as normal modes of vibration.   
 
Estimation and Approximation  
 
12 ••  
Picture the Problem We can estimate the value of the quantum number ν for which the 
improved formula corrects the original formula by 10 percent by setting the ratio of the 
correction term to the first term equal to 10 percent and solving for ν. 
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Express the ratio of the correction 
term to the first term of the 
expression for Eν and simplify to 
obtain: 
 

( )
( ) ( )αν
ν

αν
2
1

2
1

2
2
1

+=
+
+

hf
hf

 

For a correction of 10 percent: 
 

( ) 1.02
1 =+ αν  

Solve for ν  to obtain: 
 2

1
10

1
−=

α
ν  

 
Substitute numerical values and 
evaluate ν : ( ) 137.12

2
1

106.710
1

3 ≈=−
×

= −ν  

 
13 ••  
Picture the Problem We can solve Equation 37-12 for l and substitute for the moment 
of inertia and rotational kinetic energy of the baseball to estimate the quantum number l 
and spacing between adjacent energy levels for a baseball spinning about its own axis. 
 
The rotational energy levels are 
given by Equation 37-12: 
 

( )
I

E
2

1 2hll +
=  

where l = 0, 1, 2, … is the rotational 
quantum number and I is the moment of 
inertia of the ball. 
 

Solve for l(l+1): ( ) 2
21
h

ll
IE

=+  

 
Factor l from the parentheses to 
obtain: 
 

2
2 211

hl
l

IE
=⎟

⎠
⎞

⎜
⎝
⎛ +  

The result of our calculation of l  
will show that l  >> 1. Assuming 
for the moment that this is the case: 
 

2
2 2

h
l

IE
≈  and 

h
l

IE2
≈  

Because the energy of the ball is 
rotational kinetic energy: 
 

2
2
1

rot ωIKE ==  

Substitute for E in the expression for 
l to obtain: 
 

( ) ( )
hhh

l
ωωω IIII

==≈
222

2
12

 
 

The moment of inertia of a ball 
about an axis through its diameter is 
(see Table 9-1): 
 

2
5
2 mrI =  

Substitute for I to obtain: 
 

h
l

5
2 2ωmr

≈  
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Substitute numerical values and evaluate l: 
 

( )( )

( )
30

34

2

1015.2
sJ1005.15

s60
min1

rev
rad2

min
rev20m03.0kg3.02

×=
⋅×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

≈ −

π

l  

 
Set l = 0 to express the spacing 
between adjacent energy levels: 
 

2

22

r0 4
5

2 mrI
E hh

==  

Substitute numerical values and 
evaluate E0r: 
 

( )
( )( )

J1010.5

m03.0kg3.04
sJ1005.15

65

2

234

r0

−

−

×=

⋅×
=E

 

 
Remarks: Note that our value for l justifies our assumption that l >> 1. 
 
*14 ••   
Picture the Problem We can solve Equation 37-18 for ν  and substitute for the 
frequency of the mass-and-spring oscillator to estimate the quantum number ν and 
spacing between adjacent energy levels for this system. 
 
The vibrational energy levels are 
given by Equation 37-18: 
 

( )hfE 2
1+= νν  

where ν = 0, 1, 2, … 
 

Solve for ν : 
2
1

−=
hf
Eνν  

or, because ν >> 1, 

hf
Eνν ≈  

 
The vibrational energy of  the object 
attached to the spring is: 
 

2
2
1 kAE =ν  

where A is the amplitude of its motion. 

Substitute for Eν in the expression 
for ν  to obtain: 
 hf

kA
2

2

=ν  

The frequency of oscillation f of the 
mass-and-spring oscillator is given 
by: 
 

m
kf

π2
1

=  

 
mk

h
A

k
m

h
kA 22 ππν ==  
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Substitute numerical values and evaluate ν : 
 

( ) ( )( ) 32
34

2

1064.1N/m1500kg5
sJ1063.6

m02.0
×=

⋅×
= −

πν  

 
Set ν = 0 in Equation 37-18 to 
express the spacing between 
adjacent energy levels: 
 

m
khhfE

πν 42
1

0 ==  

Substitute numerical values and 
evaluate E0ν: 
 

J1014.9

kg5
N/m1500

4
sJ1063.6

34

34

0

−

−

×=

⋅×
=

πνE
 

 
Remarks: Note that our value for ν justifies our assumption that ν  >> 1. 
 
Molecular Bonding 
 
15 •  
Picture the Problem The electrostatic potential energy with U at infinity is given by 

.2 rkeU −=  

 
Relate the electrostatic potential 
energy of the ions to their 
separation: 
 

r
keU

2

e −=  

Solve for r: 
 

e

2

U
ker −=  

 
Substitute numerical values and evaluate r: 
 

( )( )
( )( ) nm0.946

J/eV106.1eV52.1
C106.1C/mN1099.8

19

219229

=
×−

×⋅×
−= −

−

r  

 
16 •  
Picture the Problem We can find the energy absorbed or released per molecule by 
computing the difference between dissociation energy of Cl and the binding energy of 
NaCl. 
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Noting that the dissociation energy 
per Cl atom is 1.24 eV, express the 
net energy change per molecule 
∆E: 
 

NaCl binding,eV24.1 EE −=∆  

The binding energy of NaCl is (see 
page 1210): 
 

4.27 eV 

Substitute and evaluate ∆E: eV03.3eV27.4eV24.1 −=−=∆E  

 
. isreaction  The released. isenergy  0,   Because exothermicE <∆  

 
17 •  
Picture the Problem We can use conversion factors to convert eV/molecule into 
kcal/mol. 
 

(a) 

kcal/mol0.23

eV
J1060.1

mole
molecules1002.6

J4184
kcal1

molecule
eV1

molecule
eV1

1923

=

×
×

×
××=

−

 

 
(b) The dissociation energy of 
NaCl, in eV/molecule, is (see page 
1205): 
 

4.27 eV/molecule 

Using the conversion factor in (a), 
express this energy in kcal/mol: 

kcal/mol2.98
mol

kcal0.23
molecule

eV27.4
=×  

 
*18 •  
Picture the Problem The percentage of the bonding that is ionic is given by 

.100
100

meas
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
p

 

 
Express the percentage of the 
bonding that is ionic: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

100

meas100bonding ionicPercent 
p
p

 

Express the dipole moment for 
100% ionic bonding: 
 

erp =100  
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Substitute to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

er
pmeas100bonding ionicPercent  

 
Substitute numerical values and evaluate the percent ionic bonding: 
 

( )( ) %6.43
nm0917.0C1060.1

mC1040.6100bonding ionicPercent 19

30

=⎥
⎦

⎤
⎢
⎣

⎡
×

⋅×
= −

−

 

 
19 ••  
Picture the Problem If we choose the potential energy at infinity to be ∆E, the total 
potential energy is Utot = Ue + ∆E + Urep, where Urep is the energy of repulsion, which is 
found by setting the dissociation energy equal to −Utot. 
 
Express the total potential energy of 
the molecule: 
 

repetot UEUU +∆+=  

The core-repulsive energy is : 
 

( )derep EUEU ++∆−=  

Calculate the energy ∆E needed to 
form Rb+ and F− ions from neutral 
rubidium and fluorine atoms: 
 

eV78.0eV3.40eV18.4 =−=∆E  

Express the electrostatic potential 
energy is: 
 

r
keU

2

e −=  

Substitute numerical values and evaluate Ue: 
 

 
( )( )

( )( ) eV34.6
J/eV1060.1nm227.0

C1060.1C/mN1099.8
19

219229

e −=
×

×⋅×
−= −

−

U  

 
Substitute numerical values and 
evaluate Urep: 

 
( )

eV44.0

eV12.5eV34.6eV78.0rep

=

+−−=U
 

 
20 ••  
Picture the Problem The potential energy of attraction of the ions is .2

e rkeU −=  We 

can find the dissociation energy from the negative of the sum of the potential energy of 
attraction and the difference between the ionization energy of  potassium and the electron 
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affinity of chlorine. 
 
(a) The potential energy of attraction 
of the ions is given by: r

keU
2

e −=  

where ke2 = 1.44 eV⋅nm 
 

Substitute numerical values and 
evaluate Ue: 
 

eV39.5
nm267.0

nmeV44.1
e −=

⋅
−=U  

(b) Express the total potential 
energy of the molecule: 
 

repetot UEUU +∆+=  

or, neglecting any energy of repulsion, 
EUU ∆+= etot  

 
The dissociation energy is the 
negative of the total potential 
energy: 
 

( )EUUE ∆+−=−= etotcalcd,  

∆E is the difference between the 
ionization energy of  potassium and 
the electron affinity of Cl: 
 

eV0.72eV3.62eV34.4 =−=∆E  

Substitute numerical values and 
evaluate Ed,calc: 

( )
eV67.4

eV72.0eV39.5calcd,

=

+−−=E
 

 
The energy due to repulsion of the 
ions at equilibrium separation is 
given by: 
 

measd,calcd,rep EEU −=  

Substitute numerical values and 
evaluate Urep: 

eV18.0eV49.4eV67.4rep =−=U  

 
21 ••   
Picture the Problem Assume that U(r) is of the form given in Problem 24 with  
n = 6.   
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The potential energy curve is shown in the 
figure. The turning points for vibrations of 
energy E1 and E2 are at the values of r, 
where the energies equal U(r). It is 
apparent that the average value of r 
depends on the energy and that r2,av is 
greater than r1,av. 

 
 
22 ••   
Picture the Problem We can use 0

2
e rkeU −= to calculate the potential energy of 

attraction between the Na+ and Cl− ions at the equilibrium separation  
r0  = 0.236 nm. We can find the energy due to repulsion of the ions at the equilibrium 
separation from ( )EEUU ∆++−= derep . 

 
The potential energy of attraction 
between the Na+ and Cl− ions at the 
equilibrium separation r0 is given 
by: 
 

0

2

e r
keU −=  

where ke2 = 1.44 eV⋅nm. 
 

Substitute numerical values and 
evaluate Ue: 
 

eV10.6
nm236.0

nmeV44.1
e −=

⋅
−=U  

From Figure 37-1: 
 

eV27.4d =E  

The ratio of the magnitude of the 
potential energy of attraction to the 
dissociation energy is: 
 

43.1
eV4.27
eV10.6

d

e ==
E
U

 

Urep is related to Ue, Ed, and ∆E 
according to: 
 

( )EEUU ∆++−= derep  

From Figure 37-1: 
 

eV52.1=∆E  

 
Substitute numerical values and 
evaluate Urep: 

( )
eV310.0

eV52.1eV27.4eV10.6rep

=

++−−=U
 

 
23 ••  
Picture the Problem The potential energy of attraction of the ions is .2

e rkeU −=  We 

can find the dissociation energy from the negative of the sum of the potential energy of 
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attraction and the difference between the ionization energy of potassium and the electron 
affinity of fluorine. 
 
(a) The potential energy of 
attraction between the K+ and F− 
ions at the equilibrium separation r0 
is given by: 
 

0

2

e r
keU −=  

where ke2 = 1.44 eV⋅nm. 
 

Substitute numerical values and 
evaluate Ue: 
 

eV64.6
nm217.0

nmeV44.1
e −=

⋅
−=U  

(b) Express the total potential 
energy of the molecule: 
 

repetot UEUU +∆+=  

or, neglecting any energy of repulsion, 
EUU ∆+= etot  

 
The dissociation energy is the 
negative of the total potential 
energy: 
 

( )EUUE ∆+−=−= etotcalcd,  

∆E is the difference between the 
ionization energy of  potassium and 
the electron affinity of fluorine: 
 

eV0.94eV3.40eV34.4 =−=∆E  

Substitute numerical values and 
evaluate Ed,calc: 

( )
eV70.5

eV94.0eV64.6calcd,

=

+−−=E
 

 
The energy due to repulsion of the 
ions at equilibrium separation is 
given by: 
 

measd,calcd,rep EEU −=  

Substitute numerical values and 
evaluate Urep: 

eV63.0eV07.5eV70.5rep =−=U  

 
*24 •••  
Picture the Problem U(r) is the potential energy of the two ions as a function of 
separation distance r.  U(r) is chosen so U(∞) = −∆E, where ∆E is the negative of the 
energy required to form two ions at infinite separation from two neutral atoms also at 
infinite separation. Urep(r) is the potential energy of the two ions due to the repulsion of 
the two closed-shell cores. Ed is the disassociation energy, the energy required to separate 
the two ions plus the energy ∆E required to form two neutral atoms from the two ions at 
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infinite separation. The net force acting on the ions is the sum of Frep and Fe. We can find 
Frep from Urep and Fe from Coulomb’s law and then use dU/dr  = Fnet = 0 at r = r0 to solve 
for n.  
 
Express the net force acting on the 
ions: 
 

erepnet FFF +=                    (1) 

Find Frep from Urep: 
 

[ ]

1

1rep
rep

+

−−−

−=

−===

n

nn

r
nC

nCrCr
dr
d

dr
dU

F
 

 
The electrostatic potential energy of 
the two ions as a function of 
separation distance is given by: 
 

r
keU

2

e −=  

Find the electrostatic force of 
attraction Fe from Ue: 
 

2

22
e

e r
ke

r
ke

dr
d

dr
dUF =⎥

⎦

⎤
⎢
⎣

⎡
−==  

 
Substitute for Frep and Fe in equation 
(1) to obtain: 
 

2

2

1net r
ke

r
nCF n +−= +  

Because dU/dr  = Fnet = 0 at  
r = r0: 
 

2
0

2

1
0

0
r
ke

r
nC

n +−= +  

 
Multiply both sides of this equation 
by r0 to obtain: 
 

( ) ( )0e0rep
0

2

0

0 rUrnU
r

ke
r
nC

n +−=+−=  

Solve for n to obtain: 
 

( )
( )0rep

0e

rU
rU

n =  

 
25 •••  
Picture the Problem Urep at r = r0 is related to Ue, Ed, and ∆E through 

( )EEUU ∆++−= derep . The net force is the sum of Frep and Fe. We can find Frep from 

Urep and Fe from Coulomb’s law. Because Fnet = 0 at r = r0, we can obtain simultaneous 
equations in C and n that we can solve for each of these quantities. 
 
(a) Urep is related to Ue, Ed, and ∆E 
according to: 
 

( )EEUU ∆++−= derep  

where ∆ENaCl = 1.52 eV 
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Ue(r0) is given by: 
 

0

2

e r
keU −=  

where ke2 = 1.44 eV⋅nm 
 

Substitute numerical values and 
evaluate Ue: 

eV10.6
nm236.0

nmeV44.1
e −=

⋅
−=U  

 
Substitute numerical values and 
evaluate Urep: 

( )
eV31.0

eV52.1eV27.4eV10.6rep

=

++−−=U
 

 
(b) Express the net force acting on 
the Na+ and Cl− ions: 
 

erepnet FFF +=                    (1) 

Find Frep from Urep: 
 

[ ]

1

1rep
rep

+

−−−

−=

−===

n

nn

r
nC

nCrCr
dr
d

dr
dU

F
 

 
The electrostatic force of attraction 
is: 
 

2

2

e r
keF =  

Substitute for Frep and Fe in equation 
(1) to obtain: 
 

2

2

1net r
ke

r
nCF n +−= +  

Because Fnet = 0 at r = r0: 
 2

0

2

1
0

0
r
ke

r
nC

n +−= +  

or 

( ) ( )0rep
0

0e rnU
r
CnrU n ==  

 
Solve for n and C to obtain: 
 

( )
( )0rep

0e

rU
rU

n =  

and  
( ) nrrUC 00rep=  

 
From (a): ( ) eV10.60e −=rU   

( ) eV31.00rep =rU  

and, from Figure 37-1, 
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nm236.00 =r  

 
Substitute for Ue(r0) and Urep(r0) and 
evaluate n and C: 

7.19
eV31.0
eV10.6

==n  

and 
( )( )

19.713

7.19

nmeV1037.1

nm236.0eV31.0

⋅×=

=
−

C
 

 
Energy Levels of Spectra of Diatomic Molecules 
 
26 •  
Picture the Problem We can relate the characteristic rotational energy E0r to the moment 
of inertia of the molecule and model the moment of inertia of the N2 molecule as two 
point objects separated by a distance r. 
 
The characteristic rotational energy 
of a molecule is given by: I

E r 2

2

0
h

=  

 
Express the moment of inertia of the 
molecule: 
 

2
N2

1
2

N 2
2 rMrMI =⎟

⎠
⎞

⎜
⎝
⎛=  

Substitute for I to obtain: 
 ( ) 2

p

2

2
N

2

2
N2

1

2

0 142 rmrMrM
E r

hhh
===  

 
Solve for r: 

p014
1

mE
r

r

h=  

 
Substitute numerical values and evaluate r: 
 

( ) ( )( )( )
nm109.0

kg10673.1J/eV10602.1eV1048.214
1sJ10055.1 27194

34

=

×××
⋅×= −−−

−r
 

 
*27 •  
Picture the Problem We can relate the characteristic rotational energy E0r to the moment 
of inertia of the molecule and model the moment of inertia of the O2 molecule as two 
point objects separated by a distance r. 
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The characteristic rotational energy 
of a molecule is given by: I

E r 2

2

0
h

=  

 
Express the moment of inertia of the 
molecule: 
 

2
O2

1
2

O 2
2 rMrMI =⎟

⎠
⎞

⎜
⎝
⎛=  

Substitute for I to obtain: 
 ( ) 2

p

2

2
O

2

2
O2

1

2

0 162 rmrMrM
E r

hhh
===  

 
Solve for r: 

p0

1
4 mE

r
r

h
=  

 
Substitute numerical values and evaluate r: 
 

( )( )( )
nm121.0

kg1067.1J/eV106.1eV1078.1
1

4
sJ10055.1

27194

34

=

×××⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅×
= −−−

−

r
 

 
28 ••   
Picture the Problem We can use the definition of the reduced mass to show that the 
reduced mass is smaller than either mass in a diatomic molecule. 
 
Express the reduced mass of a two-
body system: 
 

21

21

mm
mm
+

=µ  

Divide the numerator and 
denominator of this expression by 
m2 to obtain: 
 

2

1

1

1
m
m

m

+
=µ                 (1) 

Divide the numerator and 
denominator of this expression by 
m1 to obtain: 
 

1

2

2

1
m
m

m

+
=µ                 (2) 

Because the denominator is greater 
than 1 in equations (1) and (2): 
 

1m<µ  and 2m<µ  

(a) For H2, m1 = m2 = 1 u: 
 

( )( ) u500.0
u1u1
u1u1

2H =
+

=µ  
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(b) For N2, m1 = m2 = 14 u: 
 

( )( ) u00.7
u14u14
u14u14

2N =
+

=µ  

 
(c) For CO, m1 = 12 u and  
m2 = 16 u: 
 

( )( ) u86.6
u16u12
u16u12

CO =
+

=µ  

 
(d) For HCl, m1 = 1 u and  
m2 = 35.5 u: 

( )( ) u973.0
u5.35u1
u5.35u1

HCl =
+

=µ  

 
29 ••  
Picture the Problem We can solve Equation 37-18 for ν  and substitute for the 
frequency of the CO molecule (see Example 37-4) and its binding energy to estimate the 
quantum number ν . 
 
The vibrational energy levels are 
given by Equation 37-18: 
 

( )hfE 2
1+= νν  

where ν = 0, 1, 2, … 
 

Solve for ν : 
2
1

−=
hf
Eνν  

 
Substitute numerical values and 
evaluate ν : 

( )( )
418.40

2
1

Hz1042.6sJ1063.6
eV

J101.60eV11
1334

19

≈=

−
×⋅×

×
×

= −

−

ν  

 
*30 ••   
Picture the Problem We can use the expression for the rotational energy levels of the 
diatomic molecule to express the energy separation ∆E between the 3=l  and 

2=l rotational levels and model the moment of inertia of the LiH molecule as two point 
objects separated by a distance r0. 
 
The energy separation between the 

3=l  and 2=l rotational levels of 
this diatomic molecule is given by: 
 

23 == −=∆ ll EEE  

Express the rotational energy levels 
El = 3 and El = 2 in terms of E0r: 
 

( ) rr EEE 003 12133 =+==l  

and 
( ) rr EEE 002 6122 =+==l  

 
Substitute for El = 3 and El = 2 to rrr EEEE 000 6612 =−=∆  
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obtain: 
 

or 
EE r ∆= 6

1
0  

 
The characteristic rotational energy 
of a molecule is given by: 

E
I

E r ∆== 6
1

2

0 2
h

 ⇒ 
I

E
23h

=∆  

 
Express the moment of inertia of the 
molecule: 
 

2
0rI µ=  

where µ is the reduced mass of the 
molecule. 
 

Substitute for I to obtain: 
 

( )
2

0HLi

HLi
2

2
0

HLi

HLi

2

2
0

2

3

33

rmm
mm

r
mm

mmr
E

+
=

+

==∆

h

hh

µ
 

 
Substitute numerical values and evaluate ∆E: 
 

( ) ( )
( )( )( ) ( )( ) meV61.5

kg/u10660.1J/eV10602.1nm16.0u1u94.6
u1u94.6sJ10055.13

27192

234

=
××

+⋅×
=∆

−−

−

E  

 
*31 ••  
Picture the Problem Let the origin of coordinates be at the point mass m1 and point mass 
m2 be at a distance r0 from the origin. We can express the moment of inertia of a diatomic 
molecule with respect to its center of mass using the definitions of the center of mass and 
the moment of inertia of point particles. 
 
Express the moment of inertia of a 
diatomic molecule: 
 

2
22

2
11 rmrmI +=                 (1) 

The r coordinate of the center of 
mass is: 
 

0
21

2
CM r

mm
mr
+

=  

The distances of m1 and m2 from the 
center of mass are: 
 

CM1 rr =  

and  

0
21

1

0
21

2
0CM02

r
mm

m

r
mm

mrrrr

+
=

+
−=−=
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Substitute for r1 and r2 in equation 
(1) to obtain: 

2

0
21

1
2

2

0
21

2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= r
mm

mmr
mm

mmI  

 
Simplifying this expression leads to: 
 

2
0

21

21 r
mm

mmI
+

=  

or 
2

0rI µ=                                  36-14 

where  

21

21

mm
mm
+

=µ                           36-15 

 
32 ••  
Picture the Problem We can relate the characteristic rotational energy E0r to the moment 
of inertia of the molecule and model the moment of inertia of the KCl molecule as two 
point objects of reduced mass µ separated by a distance r. 
 
The characteristic rotational energy 
of a molecule is given by: I

E r 2

2

0
h

=  

 
Express the moment of inertia of the 
molecule: 
 

2
0rI µ=  

where 
ClK

ClK

mm
mm
+

=µ  

 
Substitute for I to obtain: 
 

( )
2

0Clk

ClK
2

2
0

2

0 22 rmm
mm

r
E r

+
==
hh

µ
 

 
Substitute numerical values and evaluate E0r: 
 

( ) ( )
( )( )( ) ( )

meV0158.0
J/eV101.602

1J1053.2

kg/u10660.1nm267.0u35.5u1.392
u35.5u1.39sJ10055.1

19
24

272

234

0

=
×

××=

×
+⋅×

=

−
−

−

−

rE
 

 
33 ••  
Picture the Problem We can use the expression for the vibrational energies of a 
molecule to find the lowest vibrational energy. Because the difference in the vibrational 
energy levels depends on both ∆f and the moment of inertia I of the molecule, we can 
relate these quantities and solve for I. Finally, we can use 2rI µ= , with µ representing 
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the reduced mass of the molecule, to find the equilibrium separation of the atoms.  
 
(a) The vibrational energy levels are 
given by: 
 

( ) ...,2,1,02
1 =+= ννν hf,E  

The lowest vibrational energy 
corresponds to ν = 0: 
 

hfE 2
1

0 =  

Substitute numerical values and evaluate E0: 
 

( )( )

eV179.0

J/eV101.6
1J1087.2Hz1066.8sJ1063.6 19

201334
2
1

0

=

×
××=×⋅×= −

−−E
 

 
(b) For ∆l = ±1: 

fh
I

E ∆==∆ l
lh

l

2

 

 
Solve for I: 
 f

h
fh

h
fh

I
∆

=
∆

=
∆

= 22

22

44 ππ
h

 

 
Substitute numerical values and 
evaluate I: ( )

247

112

34

mkg1080.2

Hz1064
sJ1063.6

⋅×=

×
⋅×

=

−

−

π
I

 

 
(c) The moment of inertia of a HCL 
molecule is given by: 
 

2rI µ=  

Replace µ by the reduced mass of a 
HCl molecule and r by r0 to obtain: 
 

2
0

ClH

ClH r
mm

mmI
+

=  

 
Solve for r0: 
 I

mm
mmr
ClH

ClH
0

+
=  

 
Substitute numerical values and evaluate r0: 
 

( )( )
( ) nm0.132

kg/u1066.1
mkg1080.2

u453.34u1
u453.34u1

27

247

0 =
×

⋅×
⎥
⎦

⎤
⎢
⎣

⎡ +
= −

−

r  

 



Molecules 
            

 

1243

34 ••  
Picture the Problem Let the numeral 1 refer to the H+ and the numeral 2 to the Cl− ion. 
For a two-mass and spring system on which no external forces are acting, the center of 
mass must remain fixed. We can use this condition to express the net force acting on 
either the H+ or Cl− ion. Because this force is a linear restoring force, we can conclude 
that the motion of the object whose mass is m1 will be simple harmonic with an angular 
frequency given by 1eff mK=ω . Substitution for Keff  will lead us to the result given 

in (b). 
 
If the particle whose mass is m1 
moves a distance r1 from (or 
toward) the center of mass, then the 
particle whose mass is m2 must 
move a distance: 
 

1
2

1
2 r

m
mr ∆=∆  from (or toward) the center 

of mass. 

Express the force exerted by the 
spring: 
 

( )21 rrKrKF ∆+∆−=∆−=  

Substitute for ∆r2 to obtain: 
 

1
2

21

1
2

1
1

r
m

mmK

r
m
mrKF

∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+∆−=

 

 
A displacement ∆r1 of m1 results in 
a restoring force: 
 

1eff1
2

21 rKr
m

mmKF ∆−=∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

2

21
eff m

mmKK  

 
Because this is a linear restoring 
force, we know that the motion will 
be simple harmonic with: 
  

1

eff

m
K

=ω  

or 

1

eff

2
1

2 m
Kf

ππ
ω

==  

 
Substitute for Keff and simplify to 
obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
==

21

21

2
1

2 mm
mmKf

ππ
ω

 

or, because 
21

21

mm
mm
+

=µ is the reduced 
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mass of the two-particle system,  

µπ
Kf

2
1

=  

 
Solve for K: 
 ClH

ClH2222 44
mm

mmffK
+

== πµπ  

 
Substitute numerical values and evaluate K: 
 

( ) ( )( )( )
( ) N/m478

u453.35u1
kg/u1066.1u453.35u1Hz1066.84 272132

=
+

××
=

−πK  

 
35 ••  
Picture the Problem 
 
We’re given the population of rotational 
states function: 

( ) ( )  12 / kTElef −+= ll  

where 

rEE 0)1( += lll and 
I

E
2

2

r0
h

=  

 
The moment of inertia I of an 
oxygen molecule is given by: 

2
02

1 mrI =  

where m is the reduced mass and r0 is the 
separation of the atoms in a molecule. 
 

We’ll assume, as in Example  
37-3, that: 
 

nm1.00 =r  

A spreadsheet program to plot f(l) is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
B1 1.00E−10 r0 
B2 16 m (u) 
B3 2.66E−26 m (kg) 
B4 1.05E−34 h 
B5 1.38E−23 k 
B6 4.15E−23 E0r 
B7 100 T (K) 
B8 200 T (K) 
B9 300 T (K) 

B10 500 T (K) 
A13 0 l 
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B13 A13*(A13+1)*$B$6 ( ) 0r1 E+ll  
C13 (2*A13 + 1)*EXP(−B13/($B$5*$B$7)) f(l, T = 100 K) 
D13 (2*A13 + 1)*EXP(−B13/($B$5*$B$8)) f(l, T = 200 K) 
E13 (2*A13 + 1)*EXP(−B13/($B$5*$B$9)) f(l, T = 300 K) 
F13 (2*A13 + 1)*EXP(−B13/($B$5*$B$10)) f(l, T = 500 K)  

 
 A B C D E F 

1 r_0= 1.00E−10 m    
2 m= 16 u    
3 m= 2.656E−26 kg    
4 h_bar= 1.05E−34 J.s    
5 k= 1.38E−23 J/K    
6 E_0r= 4.15E−23 eV    
7 T= 100 K    
8 T= 200 K    
9 T= 300 K    
10 T= 500 K    
11       
12 l E_l E_100 K E_200 K E_300 K E_500 K
13 0.0 0.00E+00 1.00 1.00 1.00 1.00 
14 0.5 3.11E−23 1.96 1.98 1.99 1.99 
15 1.0 8.30E−23 2.82 2.91 2.94 2.96 
16 1.5 1.56E−22 3.57 3.78 3.85 3.91 
17 2.0 2.49E−22 4.17 4.57 4.71 4.82 
       

29 8.0 2.99E−21 1.95 5.76 8.26 11.02 
30 8.5 3.35E−21 1.59 5.34 8.01 11.07 
31 9.0 3.74E−21 1.27 4.91 7.71 11.06 
32 9.5 4.14E−21 1.00 4.46 7.36 10.98 
33 10.0 4.57E−21 0.77 4.02 6.97 10.83  
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The following graph shows f(l) as a function of temperature. 

0

2

4

6

8

10

12

0 2 4 6 8 10

rotational quantum number l

f (
l )

T = 100 K
T = 200 K
T = 300 K
T = 500 K

 
 
*36 ••  
Picture the Problem For a two-mass and spring system on which no external forces are 
acting, the center of mass must remain fixed. We can use this condition to express the net 
force acting on either object. Because this force is a linear restoring force, we can 
conclude that the motion of the object whose mass is m1 will be simple harmonic with an 

angular frequency given by 
1

eff

m
k

=ω . Substitution for keff  will lead us to the result 

given in (b). 
 
(a) If the particle whose mass is m1 
moves a distance ∆r1 from (or 
toward) the center of mass, then the 
particle whose mass is m2 must 
move a distance: 
 

1
2

1
2 r

m
mr ∆=∆  from (or toward) the center 

of mass. 

Express the force exerted by the 
spring: 
 

( )21 rrkrkF ∆+∆−=∆−=  

Substitute for ∆r2 to obtain: 
 

1
2

21

1
2

1
1

r
m

mmk

r
m
mrkF

∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+∆−=
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(b) A displacement ∆r1 of m1 results 
in a restoring force: 
 

1eff1
2

21 rkr
m

mmkF ∆−=∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

2

21
eff m

mmkk  

 
Because this is a linear restoring 
force, we know that the motion will 
be simple harmonic with: 
  

1

eff

m
k

=ω  

or 

1

eff

2
1

2 m
kf

ππ
ω

==  

 
Substitute for keff and simplify to 
obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
==

21

21

2
1

2 mm
mmkf

ππ
ω

 

or, because 
21

21

mm
mm
+

=µ is the reduced 

mass of the two-particle system,  

µπ
kf

2
1

= . 

  
37 •••  
Picture the Problem We can use the definition of the reduced mass to find the reduced 
mass for the H35Cl and H37Cl molecules and the fractional difference µµ∆ . Because the 

rotational frequency is proportional to 1/I, where I is the moment of inertia of the system, 
and I is proportional to µ, we can obtain an expression for f as a function of µ that we 
differentiate implicitly to show that µµ∆−=∆ ff . 

 
For H35Cl: 
 

( )( ) u9722.0u
36
35

u1u35
u1u35

==
+

=µ  

 
For H37Cl: 
 

( )( ) u9737.0u
38
37

u1u37
u1u37

==
+

=µ  

 
The fractional difference is: 
 

( )( )
00150.0

u
38362

37363835

u
3836

38353736

u
38
37u

36
35

2
1

u
36
35u

38
37

=
×+×

×
×−×

=
⎟
⎠
⎞

⎜
⎝
⎛ +

−
=

∆
µ
µ
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The rotational frequency is 
proportional to 1/I, where I is the 
moment of inertia of the system. 
Because I is proportional to µ: 
 

µ
Cf =  

and 
µµ dCdf 2−−=  

Divide df by f to obtain: 
 µ

µd
f

df
−=  and 

µ
µ∆

−≈
∆
f
f

 

 
From Figure 36-17:   Hz10Hz1001.0 1113 =×≈∆f  

 
For f = 8.40×1013 Hz: 

00119.0
Hz1040.8

Hz10
13

11

=
×

≈
∆
f
f

 

 

17.-36 Figure fromprecisely  determine todifficult  is  that Note result.
calculated  with the)difference 21%(about agreement fair in  isresult  This

f∆
 

 
General Problems 
 
38 •   
Picture the Problem We can use the definition of the reduced mass to show that when 
one atom in a diatomic molecule is much more massive than the other the reduced mass 
is approximately equal to the mass of the lighter atom. 
 
Express the reduced mass of a two-
body system: 
 

21

21

mm
mm
+

=µ  

Divide the numerator and 
denominator of this expression by 
m2 to obtain: 
 

2

1

1

1
m
m

m

+
=µ                  

If m2 >> m1, then: 1
2

1 <<
m
m

 and 1m≈µ                  

 
39 ••  
Picture the Problem The rotational energy levels are given by 

( ) ....,2,1,0,
2

1 2

=
+

= l
hll

I
E  

 
Express the energy difference 
between these rotational energy 

122,1 EEE −=∆  
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levels: 
 
Express E2 and E1: 
 

( )
II

E
22

2
3

2
122 hh

=
+

=  

and 
( )

II
E

22

1 2
111 hh

=
+

=  

 
Substitute to obtain: 
 III

E
222

2,1
23 hhh

=−=∆  

 
The moment of inertia of the 
molecule is: 
 

2
0rI µ=  

where µ is the reduced mass of the 
molecule. 
 

Substitute for I to obtain: 

( )
2

0OC

OC
2

2
0

OC

OC

2

2
0

2

2,1

2

22

rmm
mm

r
mm

mmr
E

+
=

+

==∆

h

hh

µ
 

 
  
Substitute numerical values and evaluate ∆E1,2: 
 

( ) ( )
( )( )( ) ( )

meV955.0

J/eV101.6
J1053.1

kg/u1066.1nm113.0u12u16
u16u12sJ10055.12

19

22

272

234

2,1

=

×
×

=
×
+⋅×

=∆ −

−

−

−

E
 

 
*40 ••   
Picture the Problem We can use the result of Problem 36 to find the frequency of 
vibration of the HF molecule. 
 
In Problem 36 it was established 
that: 
 

µπ
kf

2
1

=  

 
The reduced mass is: 

FH

FH

mm
mm
+

=µ  
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Substitute for µ to obtain: 
 

( )
FH

FH

FH

FH 2
1

2
1

mm
mmk

mm
mm

kf +
=

+

=
ππ

 

 
Substitute numerical values and evaluate f: 
 

( )( )
( )( )( ) Hz1025.1

kg/u1066.1u19u1
u19u1N/m970

2
1 14

27 ×=
×
+

= −π
f  

 
41 ••  
Picture the Problem We can use the result of Problem 36 to find the effective force 
constant for NO. 
 
In Problem 36 it was established 
that: 
 

µπ
kf

2
1

=  

 
Solve for k:  
 

µπ 224 fk =  

The reduced mass is: 

ON

ON

mm
mm
+

=µ  

 
Substitute for µ to obtain: 
 

ON

ON
224

mm
mmfk

+
=

π
 

 
Substitute numerical values and evaluate k: 
 

( ) ( )( )( ) kN/m55.1
u16u14

kg/u1066.1u16u14s1063.54 2721132

=
+

××
=

−−πk  

 
42 ••   
Picture the Problem We can use the expression for the vibrational energy levels of a 
molecule and the expression for the frequency of oscillation from Problem 36 to find the 
four lowest vibrational levels of the given molecules. 
 
The vibrational energy levels are 
given by: 
 

( ) ...,2,1,02
1 =+= ννν hf,E  

In Problem 36 we showed that the 
frequency of oscillation is: µπ

kf
2
1

=  
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 where 

21

21

mm
mm
+

=µ  

 
Substitute for f and µ to obtain: ( ) ( )

( ) ( )
21

212
1

21

212
1

2

2

mm
mmkh

mm
kmmhE

++
=

++
=

π
ν

π
ν

ν

 

 
Substitute numerical values to obtain: 
 

( )( ) ( )

( )( ) ( )
21

21
2
1

21

21
27

15
2
1

ueV389.0

kg/u10661.1
N/m580

2
seV10136.4

mm
mm

mm
mmE

+
⋅+=

+
×

⋅×+
= −

−

ν

π
ν

ν

 

 
Substitute for m1 and m2 and evaluate E0 for H2: 
 

( ) ( )
( )( ) eV275.0

u1u1
u1u1ueV389.02

1
0 =

+
⋅=E  

 
Proceed similarly to complete the 
table to the right: 

 H2 HD D2 
 (eV) (eV) (eV) 

0 275.0 238.0  195.0  

1 825.0 715.0  584.0

2 375.1  191.1  973.0  

3 925.1  667.1  362.1  
 

  
The energies of the photons 
resulting from transitions between 
adjacent vibrational levels of these 
molecules are given by: 
 

λ
hchfE ==∆  

Solve for λ: 
E

hc
∆

=λ  
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Evaluate λ(H2): ( ) m25.2
eV550.0

nmeV1240H2 µλ =
⋅

=  

 
Evaluate λ(HD): ( ) m60.2

eV477.0
nmeV1240HD µλ =
⋅

=  

 
Evaluate λ(D2): ( ) m19.3

eV389.0
nmeV1240D2 µλ =
⋅

=  

 
43 ••  
Picture the Problem We can set the derivative of the potential energy function equal to 
zero to find the value of r for which it is either a maximum or a minimum. Examination 
of the second derivative of this function at the value for r obtained from setting the first 
derivative equal to zero will establish whether the function is a relative maximum or 
relative minimum at this point. 
 
Differentiate the potential energy 
function with respect to r: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

511
0

612

0

1212

2

r
a

r
a

r
U

r
a

r
aU

dr
d

dr
dU

 

 
Set the derivative equal to zero: 

extremafor  0

1212
5

0

11

00

0

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

r
a

r
a

r
U

dr
dU

 

 
Solve for r0 to obtain, as our 
candidate for r that minimizes the 
Lenard-Jones potential: 
 

ar =0  

To show that r0 = a corresponds to a 
minimum, differentiate U a second 
time to obtain: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

410

2
0

511
0

2

2

60132

1212

r
a

r
a

r
U

r
a

r
a

r
U

dr
d

dr
Ud

 

 
Evaluate this second derivative of 
the potential at r0 = a: [ ] 07260132 2

0
2
0

2

2

>=−=
=

a
U

a
U

dr
Ud

ar

 

Therefore, we can conclude that r0 = a 
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minimizes the potential function. 
 

Evaluate Umin: ( )

0

612

0min 2

U

a
a

a
aUaUU

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛==

 

 
From Figure 37-4: nm074.00 =r  

and  
eV52.40 =U  

 
44 ••  
Picture the Problem We can use Equation 21-10 to establish the dependence of E on x 
and the dependence of an induced dipole on the field that induces it to establish the 
dependence of p and U on x. 
 
(a) In terms of the dipole moment, 
the electric field on the axis of the 
dipole at a point a great distance 
x away has the magnitude (see 

Equation 21-10): 
 

3
2
x
kpE =  

or 

3
1
x

E ∝  

 
(b) Because the induced dipole 
moment is proportional to the field 
that induces it: 
 

3
1
x

p ∝  

 and  

6
1
x

U ∝⋅−= Ep
rr

 

 
(c) Differentiate U with respect to x 
to obtain: 7

1
xdx

dUFx ∝−=  

 
45  ••   
Picture the Problem the case of two polar molecules, p does not depend on the field E. 
 
Because p does not depend on the 
electric field in which the polar 
molecules find themselves: 
 

3
1
x

U ∝  
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Differentiate U with respect to x to 
obtain: 4

1
xdx

dUFx ∝−=  

 
46  ••  
Picture the Problem We can use the expression for the vibrational and rotational 
energies of a molecule, in conjunction with Figure 37-17 to find E0r, f, and hf. 
 
(a) Except for a gap of 4E0r/h at the 
vibrational frequency f, the 
absorption spectrum contains 
frequencies equally spaced at: 
 

h
Ef r02

=  

 
 

Solve for E0r: 
 

hfE r 2
1

0 =  

From Figure 37-17: Hz1066.8 13×=f  

 
Substitute numerical values and evaluate E0r: 
 

( )( )

eV179.0

J/eV101.6
1J1087.2Hz1066.8sJ1063.6 19

201334
2
1

0

=

×
××=×⋅×= −

−−
rE

 

 
(b) The vibrational energy levels are 
given by: 
 

( ) ...,2,1,02
1 =+= ννν hf,E  

The lowest vibrational energy 
corresponds to ν = 0: 

hfE 2
1

0 =  

and 
02Ehf =                              (1) 

 
Determine f  from Figure 37-17: 
 

Hz1066.8 13×=f  

Substitute for f and h and evaluate E0: 
 

( )( )
eV179.0

J/eV101.6
1J1087.2Hz1066.8sJ1063.6 19

201334
2
1

0

=
×

××=×⋅×= −
−−E

 

 
Substitute in equation (1) and 
evaluate hf: 

( ) eV358.0eV179.02 ==hf  
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*47 ••  
Picture the Problem We can find the reduced mass of CO and the moment of inertia of a 
CO molecule from their definitions. The energy level diagram for the rotational levels for 

0=l  to 5=l  can be found using .2 01, rEE lll =∆ −  Finally, we can find the wavelength 

of the photons emitted for each transition using 
rE

hc
E
hc

01,
1, 2 ∆

=
∆

=
−

−
lll

llλ . 

 
(a) Express the moment of inertia of 
CO: 

2
0rI µ=  

where µ is the reduced mass of the CO 
molecule. 
 

Find µ: ( )( ) u86.6
u16u12
u16u12

OC

OC =
+

=
+

=
mm

mmµ  

 
In Problem 39 it was established that r0 = 0.113 nm. Use this result to evaluate I: 
 

( )( )( ) 246227 mkg1045.1nm113.0kg/u1066.1u86.6 ⋅×=×= −−I  

 
The characteristic rotational energy 
E0r is given by: 
 

I
E r 2

2

0
h

=  

Substitute numerical values and evaluate E0r: 
 

( ) ( )
( ) meV0.239

mkg1045.12
J/eV106.1seV1058.6

246

19216

0 =
⋅×
×⋅×

= −

−−

rE  
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(b) The energy level diagram is 
shown to the right. Note that ∆El,l−1, 
the energy difference between 
adjacent levels for ∆l = −1, is 

.2 01, rEE lll =∆ −  

 
 

(c) Express the energy difference 
1. −∆ llE between energy levels in 

terms of the frequency of the 
emitted radiation: 
 

1,1, −− =∆ llll hfE  

Because :1,1, −−= llll λfc  

rE
hc

E
hc

01,
1, 2 ∆

=
∆

=
−

−
lll

llλ  

 
Substitute numerical values to obtain: 
 

( )( )
( ) ll

ll

m2596
meV239.02

m/s103seV10136.4 815

1,
µλ =

×⋅×
=

−

−  

 
For l = 1: m2596

1
m2596

0,1 µµλ ==  

 
For l = 2: m1298

2
m2596

1,2 µµλ ==  

 
For l = 3: m865

3
m2596

2,3 µµλ ==  
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For l = 4: m649
4

m2596
3,4 µµλ ==  

 
For l = 5: m519

5
m2596

4,5 µµλ ==  

 
spectrum.  theofregion  microwave in the fall hs wavelengtThese  

 
*48 •••  
Picture the Problem The wavelength resulting from transitions between adjacent 

harmonic oscillator levels of a LiCl molecule is given by .2
ω
πλ c

= We can find an 

expression for ω by following the procedure outlined in the problem statement. 
 
The wavelength resulting from 
transitions between adjacent 
harmonic oscillator levels of this 
molecule is given by: 
 

ω
π

ω
λ chc

E
hc 2

==
∆

=
h

               (1) 

From Problem 24 we have: 
 

( ) nr
C

r
kerU +−=

2

, where ∆E is constant. 

 
The Taylor expansion of U(r) 
about r = r0 is: 
 

( ) ( ) ( )

( ) ...
2
1 2

02

2

00

0

0

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟
⎠
⎞

⎜
⎝
⎛+=

rr
dr

Ud

rr
dr
dUrUrU

r

r
 

 
Because U(r0) is a constant, it can 
be dropped without affecting the 
physical results and because 

:0
0

=⎟
⎠
⎞

⎜
⎝
⎛

rdr
dU

 

 

( ) ( )202

2

0
2
1 rr

dr
UdrU

r

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈          (2) 

Differentiate U(r) twice to obtain: 
 

( ) 23

2

2

2

12 +−+−= nr
Cnn

r
ke

dr
Ud

 

Because dU/dr  = Fnet = 0 at  
r = r0: 
 

2
0

2

1
0

0
r
ke

r
nC

n +−= +  
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Solving for C yields: 
 n

rke
nr

rkeC
nn 1

0
2

2
0

1
0

2 −+

==  

 
Substitute for C and evaluate 

0

2

2

rdr
Ud
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
to obtain: 

 

( ) ( )

( )1

112

3
0

2

1
0

2

2
0

3
0

2

2

2

0

−=

−
+−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

+

n
r
ke

n
rke

r
nnn

r
ke

dr
Ud n

n
r  

 

Substitute for 
0

2

2

rdr
Ud
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
in 

equation (2): 
 

( ) ( ) ( )203
0

2

1
2
1 rrn

r
kerU −⎥

⎦

⎤
⎢
⎣

⎡
−≈  

Because the potential energy of a 
simple harmonic oscillator is given 
by ( ) :2

0
2

2
1

SHO rrmU −= ω  

 

( ) ( ) ( )203
0

2
2

0
2 1

2
1

2
1 rrn

r
kerrm −⎥

⎦

⎤
⎢
⎣

⎡
−≈−ω  

Solve for ω to obtain: 
 

( )
3

0

21
mr

ken −
≈ω                          

 
Substitute µLiCl for m to obtain: 
 

( )

( )( )
3

0ClLi

2
ClLi

3
0

ClLi

ClLi

2

1

1

rmm
kemmn

r
mm

mm
ken

+−
=

+

−
≈ω

      (3) 

 
From Problem 24: 

 
)(

)(

0rep

0e

rU
rU

n =                              (4) 

 
Urep is related to Ue, Ed, and ∆E 
according to: 
 

( )EEUU ∆++−= derep              (5) 

 

The energy needed to form Li+ and 
Cl− from neutral lithium and 
chlorine atoms is: 
 

eV1.77eV3.62eV39.5
affinityelectron ionization

=−=

−=∆ EEE
 

Ue(r0) is given by: 
 

00

2

e
nmeV44.1

rr
keU ⋅

−=−=  
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Substitute r0 and evaluate Ue: eV13.7

nm202.0
nmeV44.1

e −=
⋅

−=U  

 
Substitute numerical values in 
equation (5) and evaluate Urep: 

( )
eV500.0

eV77.1eV86.4eV13.7rep

=

++−−=U
 

 
Substitute for Urep(r0) and Ue(r0) in 
equation (4) and evaluate n: 

3.14 
eV500.0
eV13.7

=
−

=n  

 
Substitute numerical values in equation (3) and evaluate ω: 
 

( )( )( )( )
( )( )( )( )

114

327

19

s1096.1

nm202.0kg/u1066.1u453.35u941.6
J/eV1060.1nmeV44.1u453.35u941.613.14

−

−

−

×=

×
×⋅+−

≈ω
 

 
Substitute numerical values in 
equation (1) and evaluate λ: 

( ) m62.9
s1096.1

m/s1032
114

8

µπλ =
×
×

= −  
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