Chapter 37
Molecules

Conceptual Problems

*1 °

Determine the Concept Yes. Because the center of charge of the positive Na ion does
not coincide with the center of charge for the negative Cl ion, the NaCl molecule has a
permanent dipole moment. Hence, it is a polar molecule.

2 .
Determine the Concept Because a N, molecule has no permanent dipole moment, it is a
non-polar molecule.

3 °
Determine the Concept No. Neon occurs naturally as Ne, not Ne,. Neon is a rare gas
atom with a closed shell electron configuration.

4 .
Determine the Concept

(a) Because an electron is transferred from the H atom to the F atom, the bonding
mechanism is ionic.

(b) Because an electron is transferred from the K atom to the Br atom, the bonding
mechanism is ionic.

(c) Because the atoms share two electrons, the bonding mechanism is covalent.

(d) Because each valence electron is shared by many atoms, the bonding mechanism is
metallic bonding.

*5  ee
Determine the Concept The diagram would consist of a non-bonding ground state with
no vibrational or rotational states for ArF (similar to the upper curve in Figure 37-4) but
for ArF* there should be a bonding excited state with a definite minimum with respect to
inter-nuclear separation and several vibrational states as in the excited state curve of
Figure 37-13.

6 .

Determine the Concept Elements similar to carbon in outer shell configurations are
silicon, germanium, tin, and lead. We would expect the same hybridization for these as
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for carbon, and this is indeed the case for silicon and germanium whose crystal
structure is the diamond structure. Tin and lead, however, are metallic and here the
metallic bond is dominant.

7 °

Determine the Concept The effective force constant from Example 37-4 is 1.85x10°
N/m. This value is about 25% larger than the given value of the force constant of the
suspension springs on a typical automobile.

8 °

Determine the Concept As the angular momentum increases, the separation between the
nuclei also increases (the effective force between the nuclei is similar to that of a stiff
spring). Consequently, the moment of inertia also increases.

9 °
Determine the Concept For H,, the concentration of negative charge between the two
protons holds the protons together. In the H; ion, there is only one electron that is shared

by the two positive charges such that most of the electronic charge is again between the
two protons. However, the negative charge in the H; ion is not as effective as the larger

charge in the H, molecule, and the protons should be farther apart. The experimental
values support this argument. For H,, ro = 0.074 nm, while for H;, ro = 0.106 nm.

10 -

Determine the Concept The energy of the first excited state of an atom is orders of
magnitude greater than KT at ordinary temperatures. Consequently, practically all atoms
are in the ground state. By contrast, the energy separation between the ground rotational
state and nearby higher rotational states is less than or roughly equal to KT at ordinary
temperatures, and so these higher states are thermally excited and occupied.

11 e
Determine the Concept With more than two atoms in the molecule there will be more
than just one frequency of vibration because there are more possible relative motions. In
advanced mechanics these are known as normal modes of vibration.

Estimation and Approximation

12 e
Picture the Problem We can estimate the value of the quantum number v for which the
improved formula corrects the original formula by 10 percent by setting the ratio of the
correction term to the first term equal to 10 percent and solving for v.



Express the ratio of the correction
term to the first term of the
expression for E, and simplify to
obtain:

For a correction of 10 percent:

Solve for v to obtain:

Substitute numerical values and
evaluate v:

13 oo
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+1)hf
(V(v fi)hfa =i
(v+i)a=0.1
1 1
V=———
10 2
1 1

v= L -==127~[13
10(7.6x10°) 2

Picture the Problem We can solve Equation 37-12 for ¢ and substitute for the moment

of inertia and rotational kinetic energy of the baseball to estimate the quantum number ¢
and spacing between adjacent energy levels for a baseball spinning about its own axis.

The rotational energy levels are
given by Equation 37-12:

Solve for ¢(¢+1):

Factor ¢ from the parentheses to
obtain:

The result of our calculation of ¢
will show that ¢ >> 1. Assuming
for the moment that this is the case:

Because the energy of the ball is
rotational kinetic energy:

Substitute for E in the expression for
¢ to obtain:

The moment of inertia of a ball
about an axis through its diameter is
(see Table 9-1):

Substitute for | to obtain:

(0 +1)n’
21

where £ =0, 1, 2, ... is the rotational
guantum number and I is the moment of
inertia of the ball.

E =

21E

hZ

o) 2
4 h

o(r+1)=
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Substitute numerical values and evaluate ¢:

2(0.3kg)(0.03 m)z(zr?]:f]" x 2’: r\j‘d x 128'”}
[~ n_F >/ _[2.15x107
5(L.05%107*Js)
Set ¢ = 0 to express the spacing _h*_ 5’
between adjacent energy levels: ol Amr?
Substitute numerical values and 5(1_05><10-34 J .3)2
evaluate Eq;: or = 4(0.3 kg)(0.03 m)2
=]5.10x10""J

Remarks: Note that our value for £ justifies our assumption that £ >> 1.

*14 oo

Picture the Problem We can solve Equation 37-18 for v and substitute for the
frequency of the mass-and-spring oscillator to estimate the quantum number vand
spacing between adjacent energy levels for this system.

The vibrational energy levels are E, =(v+1)nf

given by Equation 37-18: where v=0. 1,2, ...

Solve for v: Vo E, 1
hf 2
or, because v>>1,
EV
V=
hf
The vibrational energy of the object E, = 1kA®

attached to the spring is: where A is the amplitude of its motion.

Substitute for E, in the expression kA2

L VvV =
for v to obtain: ohf
The frequency of oscillation f of the 1 [k
mass-and-spring oscillator is given f=—.,—
by: 2z.\m

KA |m A
_ m_ A" Jmk
"“ThVk  h
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Substitute numerical values and evaluate v:

7(0.02mY

V= m¢(5 kg)(1500 N/m) = | 1.64x10%
0o X .

E, = —hf = K
2 47 \m

Set v=0 in Equation 37-18 to
express the spacing between
adjacent energy levels:

Substitute numerical values and E _ 6.63x10*J-s [1500 N/m
evaluate Eq,: o Ar 5kg

=19.14x107%]

Remarks: Note that our value for v justifies our assumption that v >> 1.

Molecular Bonding

15 -
Picture the Problem The electrostatic potential energy with U at infinity is given by
U =—ke?/r.

Relate the electrostatic potential U - ke

energy of the ions to their ey

separation:

Solve for r: ‘e ke?
U

Substitute numerical values and evaluate r:

__(Bo9x10’ N-mZ/cz)(l_.axlo“*c)2 _ToeaEm
(-1.52eV)(1.6x10%° J/eV)

16 -

Picture the Problem We can find the energy absorbed or released per molecule by
computing the difference between dissociation energy of Cl and the binding energy of
NaCl.
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Noting that the dissociation energy AE =1.24eV — By ing naci
per Cl atom is 1.24 eV, express the
net energy change per molecule

AE:

The binding energy of NaCl is (see 4.27 eV

page 1210):

Substitute and evaluate AE: AE =1.24eV -4.27eV =| —3.03eV
Because AE <0, energy is released. The reaction is exothermic.

17 -

Picture the Problem We can use conversion factors to convert eV/molecule into
kcal/mol.

eV N eV lkcal 6.02x10% moleculesxl.GOxlo‘ng

1 = X X
(a) Molecule  molecule 4184J mole eV
=| 23.0kcal/mol
(b) The dissociation energy of 4.27 eV/molecule
NaCl, in eV/molecule, is (see page
1205):
Using the _conversio_n factor in (a), 4.27eV  23.0kcal _ 98.2 keal/mol
express this energy in kcal/mol: molecule mol
*18 o

Picture the Problem The percentage of the bonding that is ionic is given by
100(M}
plOO

Express the percentage of the

bonding that is ionic: Proo

Percent ionic bonding = 100(—pmea5]

Express the dipole moment for Pigo =€
100% ionic bonding:
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Substitute to obtain: Percent ionic bonding = 100(—pmeasj

er

Substitute numerical values and evaluate the percent ionic bonding:

43.6%

-30 X
Percent ionic bonding =100 6'407;10 C-m _
(L.60x107° C)(0.0917 nm)

19 oo

Picture the Problem If we choose the potential energy at infinity to be AE, the total
potential energy is Ui = Ue + AE + Uy, Where Uy, is the energy of repulsion, which is
found by setting the dissociation energy equal to —Uy.

Express the total potential energy of Uy =U.+AE+U

the molecule:

The core-repulsive energy is : U = —(AE +U, + Ed)

Calculate the energy AE needed to AE =4.18eV -3.40eV =0.78eV

form Rb* and F~ ions from neutral
rubidium and fluorine atoms:

Express the electrostatic potential ke?
energy is: r

Substitute numerical values and evaluate U.:

_ (8.99x10°N-m?/C?)L.60x10*°Cf

U, = = —6.34eV
: (0.227nm)(L.60x107° J/eV ) °

Substitute numerical values and
evaluate Upg: U, =—(0.78eV -6.34eV +5.12¢V)

=| 0.44eV

20 oo
Picture the Problem The potential energy of attraction of the ionsis U, = —kez/r. We

can find the dissociation energy from the negative of the sum of the potential energy of
attraction and the difference between the ionization energy of potassium and the electron
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affinity of chlorine.

(a) The potential energy of attraction
of the ions is given by:

Substitute numerical values and
evaluate U,:

(b) Express the total potential
energy of the molecule:

The dissociation energy is the
negative of the total potential
energy:

AE is the difference between the
ionization energy of potassium and
the electron affinity of CI.

Substitute numerical values and
evaluate Egcac:

The energy due to repulsion of the
ions at equilibrium separation is
given by:

Substitute numerical values and
evaluate Uep:

21 oo

~ ke?
p
where ke? = 1.44 eV-nm

U =

e

~1.44eV-nm _
) 0.267nm

-5.39eV

Uy =U.+AE+U
or, neglecting any energy of repulsion,
U, =U,+AE

E :_Utot :_(Ue+AE)

d,calc

AE =4.34eV -3.62eV =0.72eV

Egeae = —(—5.39€6V +0.72eV)
=| 4.67eV

U, =E

rep dcalc

E

d,meas

U, = 4676V —4.49eV =| 0.18eV

Picture the Problem Assume that U(r) is of the form given in Problem 24 with

n==6.



The potential energy curve is shown in the
figure. The turning points for vibrations of
energy E; and E; are at the values of r,
where the energies equal U(r). It is
apparent that the average value of r
depends on the energy and that r, ,, is
greater than ry 4.

22 oo
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ui)

(] h Aav ) :\.u- r

Picture the Problem We can use U, = —kez/r0 to calculate the potential energy of

attraction between the Na* and CI™ ions at the equilibrium separation
ro =0.236 nm. We can find the energy due to repulsion of the ions at the equilibrium

separation from U, = —(Ue +E4+ AE).

The potential energy of attraction
between the Na* and CI™ ions at the
equilibrium separation ry is given
by:

Substitute numerical values and
evaluate Ue:

From Figure 37-1:
The ratio of the magnitude of the
potential energy of attraction to the

dissociation energy is:

Urep IS related to U, Eq, and AE
according to:

From Figure 37-1:

Substitute numerical values and
evaluate Uyep:

23 oo

ke?
rO

where ke? = 1.44 eV-nm.,

U =

e

= _Ll4devVi.nm ooy
0.236nm
E, =4.27eV
Y. _6.10ev _ WE
E, 4.27eV

U, =—(U,+E, +AE)

rep

AE =1.52eV

U, =—(-6.10eV+4.27eV +152eV)

=| 0.310eV

re,

Picture the Problem The potential energy of attraction of the ionsis U, = —kez/r. We

can find the dissociation energy from the negative of the sum of the potential energy of
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attraction and the difference between the ionization energy of potassium and the electron

affinity of fluorine.

(a) The potential energy of
attraction between the K" and F~
ions at the equilibrium separation r
is given by:

Substitute numerical values and
evaluate Ue:

(b) Express the total potential
energy of the molecule:

The dissociation energy is the
negative of the total potential
energy:

AE is the difference between the
ionization energy of potassium and
the electron affinity of fluorine:

Substitute numerical values and
evaluate Egcac:

The energy due to repulsion of the
ions at equilibrium separation is
given by:

Substitute numerical values and
evaluate Uep:

*24 (X1}

ke?
rO

where ke? = 1.44 eV-nm.,

U =

e

e :_1.44eV-nm _[ 6640V
0.217nm
U, =U,+AE +Urep
or, neglecting any energy of repulsion,
U, =U,+AE
Ed,calc =-U tot — _(Ue + AE)

AE =4.34eV -3.40eV =0.94eV

Eyeac = —(—6.64eV +0.94eV)
=| 5.70eV

Urep = Ed,calc ~ bd,meas

U, =5.70eV-5.07eV =| 0.63eV

Picture the Problem U(r) is the potential energy of the two ions as a function of
separation distance r. U(r) is chosen so U(x) = —AE, where AE is the negative of the
energy required to form two ions at infinite separation from two neutral atoms also at
infinite separation. U,(r) is the potential energy of the two ions due to the repulsion of
the two closed-shell cores. Eg4 is the disassociation energy, the energy required to separate
the two ions plus the energy AE required to form two neutral atoms from the two ions at
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infinite separation. The net force acting on the ions is the sum of F, and F.. We can find
Frep from U, and Fe from Coulomb’s law and then use dU/dr = F =0 at r = ry to solve
for n.

Express the net force acting on the Fe = Fep t R (1)
ions:
Find Frep from Urep: - _ dUrep _ i[cr_n]z _nCr—n—l
dr dr

. nC

- r.n+1
The electrostatic potential energy of U = ke?
the two ions as a function of ey
separation distance is given by:
Find the electrostatic force of _du, d| ke*| ke?
attraction Fe from U, e~ dr drl r | r?2
Substitute for Fr, and Fe in equation E o nC N ke
(1) to obtain: 2
Because dU/dr = Fpe; = 0 at 0 nC ke
r=ro - ron+1 r02
Multiply both sides of this equation nC ke

. O=—+—=-nU_ (p)+U.(r
by r, to obtain: oo rep(‘)) | e(°)|
Solve for n to obtain: o u.(r,)
Urep (rO)

25 00
Picture the Problem U, at r = 1y is related to Ue, Eg, and AE through
U = —(U, + E, + AE). The net force is the sum of Fe, and F.. We can find Fe, from

Urep and F from Coulomb’s law. Because Fne: = 0 at r = 1o, we can obtain simultaneous
equations in C and n that we can solve for each of these quantities.

(@) Uy is related to Ue, Eq4, and AE U = —(Ue +E, + AE)

according to: where AEy,c = 1.52 eV
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Uc(ro) is given by:

Substitute numerical values and
evaluate U,:

Substitute numerical values and
evaluate Uyep:

(b) Express the net force acting on
the Na" and CI” ions:

Find Frep from Urep:

The electrostatic force of attraction
is:

Substitute for F, and F, in equation
(1) to obtain:

Because Fet=0atr =rg:

Solve for n and C to obtain:

From (a):

_ke*
rO
where ke? = 1.44 eV-nm

U =

e

U, =144V _ 606y
0.236nm
U, =—(-6.10eV+4.27eV +152eV)
=| 0.31eV
Fnet = Frep + Fe (1)
A
nC
== rn+l
ke?
Fe = 7
nC ke?
Fnet = rn+l r_2
2
rO r0
or
C
|Ue(r0)| = nr_n = nUrep(rO)
0
n= |Ue(r0)|
Urep(rO)
and

U,(r,)=-6.10eV
U, () =0.31eV
and, from Figure 37-1,
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r, =0.236nm
Substitute for Ue(ro) and Uyep(ro) and N 6.10eV _M97
evaluate n and C: 0.31eV :
and

C =(0.31eV)(0.236 nm )’
=[1.37x10"eV-nm™’

Energy Levels of Spectra of Diatomic Molecules

26

Picture the Problem We can relate the characteristic rotational energy Eq, to the moment
of inertia of the molecule and model the moment of inertia of the N, molecule as two
point objects separated by a distance r.

The characteristic rotational energy B h?
of a molecule is given by: oo
Express the moment of inertia of the r\? )
, | =2M | = | =i Mr
molecule: N 277N
Substitute for | to obtain: h? h? h?

E. = =
or 2(%MNr2) Myr®  14mr?

Solve forr; 1
r=h|———
14E0rmp

Substitute numerical values and evaluate r:

1
r=(1.055x10"*1J-s
( )\/ 14(2.48x107 eV J1.602x107° J/eV |1.673x 107 kg)
=(0.109nm
7

Picture the Problem We can relate the characteristic rotational energy Eor to the moment
of inertia of the molecule and model the moment of inertia of the O, molecule as two
point objects separated by a distance .
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The characteristic rotational energy E h?
of a molecule is given by: oo
Express the moment of inertia of the r\ )
. | =2My| = | =3Mgr
molecule: ° 270
Substitute for | to obtain: E - o n n’

Solve forr: A 1

Substitute numerical values and evaluate r:

o _[1085x10*J-s 1
- 4 (1.78x10*eV){1.6x107° J/eV ){1.67x10%" kg )

=(0.121nm

28 e
Picture the Problem We can use the definition of the reduced mass to show that the
reduced mass is smaller than either mass in a diatomic molecule.

Express the reduced mass of a two- = m,m,
body system: m, +m,
Divide the numerator and . m
: : : H“= 1)
denominator of this expression by 14 M
m, to obtain: m,
Divide the numerator and U= m, )
denominator of this expression by 14 m,
m; to obtain: m,
Because the denominator is greater g<m land | gz<m,
than 1 in equations (1) and (2):
a)ForH,, my=m,=1u: 1u)l
(@) 2, My =My Hz:—( )( )= 0.500u
lu+1u
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(b) For Np, m; = m, = 14 u: - (14u)(4u) _ = 004

? 14u+14u
(c) For CO, m; = 12 u and ley = (12u)(26u) _6.86u
m, = 16 u: 12u+16u
(d) For HCI, m; = 1 u and o = (Lu)(35.5u) _ 09730
m, = 35.5 u: lu+35.5u
29 oo

Picture the Problem We can solve Equation 37-18 for v and substitute for the
frequency of the CO molecule (see Example 37-4) and its binding energy to estimate the
guantum number v.

The vibrational energy levels are E, =(v+1)hf

given by Equation 37-18: where v=0 1,2, ...

Solve for v: _ E, 1
hf 2

Substitute numerical values and 1.60x107*J

lleVx—/———— °

evaluate v: . e 1

(6.63x10% 3 5)(6.42x10" Hz) 2
=408~=| 41
*30 oo

Picture the Problem We can use the expression for the rotational energy levels of the
diatomic molecule to express the energy separation AE between the ¢ =3 and

¢ = 2 rotational levels and model the moment of inertia of the LiH molecule as two point
objects separated by a distance r,.

The energy separation between the AE=E,_,-E,
¢ =3 and ¢ = 2 rotational levels of
this diatomic molecule is given by:

Express the rotational energy levels E,, =3(3+1)E, =12E,,
E,-3and E, -, in terms of Ey,: and

E,, =2(2+1)E,, =6E,,

Substitute for E,-zand E, -, to AE =12E, —6E,, =6E,,
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obtain: or
Eor =35AE
The characteristic rotational energy h? 3n°
. . 0r=—:%AE:>AE=_
of a molecule is given by: 21
Express the moment of inertia of the |l =u r02
molecule: where x is the reduced mass of the
molecule.
Substitute for | to obtain: AE = 3n® 3n?
M r02 m;my r2
0
my; +my
3n*(my; +m,)
- 2
mLimH r-0

Substitute numerical values and evaluate AE:

3(1.055x10* J-s) (6.94u +1u)

—[5.61mev
(6.94u)(1u)(0.16nm Y (1.602x 10 J/eV )(1.660 x 10 kg/u) ik

AE =

*31 ee

Picture the Problem Let the origin of coordinates be at the point mass m; and point mass
m, be at a distance r, from the origin. We can express the moment of inertia of a diatomic
molecule with respect to its center of mass using the definitions of the center of mass and
the moment of inertia of point particles.

Express the moment of inertia of a I =mr” +m,r} 1)
diatomic molecule:

The r_coordinate of the center of [y = m, r,
mass is: m, +m,
The distances of m; and m, from the L ="Tem
center of mass are: and
=1 —ry, =" m, I
m, +m,
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Substitute for r;and r, in equation m 2 m 2
(1) to obtain: =m —l | +m, T
m, +m, m, +m,
Simplifying this expression leads to: | — m,m, r2
- 0
m, +m,
or
| = ur? 36-14
where
m,m
L2 36-15
m, +m,
32 e

Picture the Problem We can relate the characteristic rotational energy Eq, to the moment
of inertia of the molecule and model the moment of inertia of the KCl molecule as two
point objects of reduced mass  separated by a distance r.

The characteristic rotational energy E - h?

of a molecule is given by: oo

Express the moment of inertia of the | =u ro2

molecule: m.m

where p = —X-C
m, +mg,
Substitute for I to obtain: £ n* _n*(me+mg)
or

21 r02 2m,m, ro2
Substitute numerical values and evaluate Eq,:

(1.055x10 J-s) (39.1u +35.5u)
2(39.1u)(35.5u)(0.267 nm )’ (1.660x 10" kg/u)
1
1.602x10% J/eV

or

=253x10% Jx 0.0158 meV

33 e
Picture the Problem We can use the expression for the vibrational energies of a
molecule to find the lowest vibrational energy. Because the difference in the vibrational
energy levels depends on both Af and the moment of inertia | of the molecule, we can
relate these quantities and solve for I. Finally, we canuse | = u r?, with z representing
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the reduced mass of the molecule, to find the equilibrium separation of the atoms.

(a) The vibrational energy levels are E, =(v+ihf, v=012,.
given by:
The lowest vibrational energy E, =1Nf

corresponds to v=0:

Substitute numerical values and evaluate E:

1

E, = 1(6.63x10°* J-5)(8.66x10* Hz) = 2.87x10 ®Jx
1.6x10™ J/eV

=(0.179eV
b) For A¢ = +1; 2
(b For AE, = _ s
Solve for I: | < R h*  h
hAf  4z°hAf  4Az2Af
Substitute numerical values and _ 6.63x10*J-s
evaluate I B 47r2(6><1011 HZ)
=| 2.80x107* kg-m?
(c) The moment of inertia of a HCL | = ur?

molecule is given by:

Replace u by the reduced mass of a | = m,Mme, 2
HCI molecule and r by r, to obtain: m,, +mg, °

Solve for ry: [ m, + Mg I
)= /—
My Mg,

Substitute numerical values and evaluate ry:

1u)(34.453u)| 1.66x107% kg/u
(Lu)(

—47 2
roz\/{lu +34.453u)} (2.80x10 " kg-m?) _ ST



34 e
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Picture the Problem Let the numeral 1 refer to the H" and the numeral 2 to the CI ion.
For a two-mass and spring system on which no external forces are acting, the center of
mass must remain fixed. We can use this condition to express the net force acting on
either the H™ or CI™ ion. Because this force is a linear restoring force, we can conclude
that the motion of the object whose mass is m; will be simple harmonic with an angular
frequency given by @ = /K 4 /m1 . Substitution for K¢ will lead us to the result given

in (b).

If the particle whose mass is m;
moves a distance r; from (or
toward) the center of mass, then the
particle whose mass is m, must
move a distance:

Express the force exerted by the
spring:

Substitute for Ar,to obtain:

A displacement Ar; of m; results in
a restoring force:

Because this is a linear restoring
force, we know that the motion will
be simple harmonic with:

Substitute for Keg and simplify to
obtain:

m
Ar, = —L Ar, from (or toward) the center
m2

of mass.

F = —KAr = —K(Ar, +Ar,)

F=-K Ar1+ﬂAr1j
m2
_ k| Mmtm, Ar
m2
F=—K| DM zr - K Ar
m2
where K = K[mﬁmzj
m2
o = Keff
ml
or

fo@ L [ mom,
2r 27 mm,

mm, .
or, because 1 = —2—2—is the reduced
m, +m,
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mass of the two-particle system,

LS
27\ 1
Solve for K: K = 472f Z,U — A% f2 m,me,
m, + Mg
Substitute numerical values and evaluate K:
2 13 2 —27
« _ 47°(8.66x10° HzJ (1u)(35.453u)(1.66x10°" kglu) _ =eri
(1u+35.453u)
35 (1]
Picture the Problem
We’re given the population of rotational f(¢)=(20+1) '
states function: where
2
E, =/(/+1)E, and E,, = Zl_l
The moment of inertia | of an | =1imr}
oxygen molecule is given by: where m is the reduced mass and ry is the

separation of the atoms in a molecule.

We’ll assume, as in Example r,=0.1nm
37-3, that:

A spreadsheet program to plot f(¢) is shown below. The formulas used to calculate the
guantities in the columns are as follows:

Cell Formula/Content Algebraic Form
Bl 1.00E-10 lo
B2 16 m (u)
B3 2.66E-26 m (kg)
B4 1.05E-34 h
BS 1.38E-23 k
B6 4.15E-23 Eor
B7 100 T (K)
B8 200 T (K)
B9 300 T (K)
B10 500 T (K)

Al13 0 /
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B13 A13*(A13+1)*$B$6 o0 +1)E,,
C13 | (2*A13 + 1)*EXP(-B13/($B$5*$B$7)) f(¢, T =100 K)
D13 | (2*Al13 + 1)*EXP(-B13/($B$5*$B$8)) | f(¢, T = 200 K)
E13 | (2*Al13 + 1)*EXP(-B13/($B$5*$B$9)) | f(¢, T = 300 K)
F13 | (2*Al13 + 1)*EXP(-B13/($B$5*$B$10)) f(¢, T =500 K)

A B C D E F
1 r 0=| 1.00E-10 | m
2 m=| 16 u
3 m= | 2.656E-26 | kg
4 | h bar=| 1.056E-34 |J.s
5 k=1 1.38E-23 | J/JK
6 | E Or= | 415E-23 |eV
7 = 100 K
8 =1 200 K
9 =1 300 K
10 = | 500 K
11
12 [ E | E 100K | E 200K | E_ 300 K | E_500 K
13 0.0 0.00E+00 1.00 1.00 1.00 1.00
14 0.5 3.11E-23 1.96 1.98 1.99 1.99
15 1.0 8.30E-23 2.82 2.91 2.94 2.96
16 15 1.56E-22 3.57 3.78 3.85 3.91
17 2.0 2.49E-22 4.17 457 471 4.82
29 8.0 2.99E-21 1.95 5.76 8.26 11.02
30 8.5 3.35E-21 1.59 5.34 8.01 11.07
31 9.0 3.74E-21 1.27 491 7.71 11.06
32 9.5 4.14E-21 1.00 4.46 7.36 10.98
33| 10.0 4 57E-21 0.77 4.02 6.97 10.83

1245
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The following graph shows f(¢) as a function of temperature.

12 7o T=100K
— =T =200K /."_"
10 —= = =T=300K -
—_— = T=500K '/
- -y
8 - /, < S -
e 7 —_— ~
A — .
N S
) > \
4 A
2 /
0 .
0 2 4 6 8 10
rotational quantum number ¢

*36

Picture the Problem For a two-mass and spring system on which no external forces are
acting, the center of mass must remain fixed. We can use this condition to express the net
force acting on either object. Because this force is a linear restoring force, we can
conclude that the motion of the object whose mass is m; will be simple harmonic with an

. /k N .
angular frequency given by @ = _|—". Substitution for ke will lead us to the result
ml

given in (b).

(a) If the particle whose mass is m;
moves a distance Ar; from (or
toward) the center of mass, then the
particle whose mass is m, must
move a distance:

Express the force exerted by the
spring:

Substitute for Ar,to obtain:

m

Ar, = —L Ar, from (or toward) the center
m2

of mass.

F = —kKAr = —k(Ar, +Ar,)

F= —k(Ar1 +ﬂAr1j
m

2
jArl

[ mm,
m2




(b) A displacement Ar; of m; results
in a restoring force:

Because this is a linear restoring
force, we know that the motion will
be simple harmonic with:

Substitute for kess and simplify to
obtain:

37 (1 1]
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F - k(ujA e
m2

where K = k(MJ

m,
o = keff
m,
or
fo@ 1 [k

fo@ 1 | mtm,
2r  2x m,m,

m,m,

or, because u = is the reduced

m, + m,
mass of the two-particle system,
L
2\ u

Picture the Problem We can use the definition of the reduced mass to find the reduced
mass for the H*CI and H¥CI molecules and the fractional difference Az/u . Because the

rotational frequency is proportional to 1/1, where | is the moment of inertia of the system,
and I is proportional to g, we can obtain an expression for f as a function of x that we
differentiate implicitly to show that Af /f = —Au/u .

For H*CI:

For H¥'CI:

The fractional difference is:

_ (35u)(tu) 35

37 35
—Uu-—u
Ap_ 33" 36
u 1[35u+37
236 38

!

= = =| 0.9722u

35u+lu 36
_@7u)tv) 37, roe7ary
37u+1u 38
36x37-35x38
____36x38 _
= 35x38+36x37 00150
2(36)(38)
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The rotational frequency is fo E

proportional to 1/1, where | is the i

moment of inertia of the system. and

Because | is proportional to s df = _Cﬂ—zdﬂ

Divide df by f to obtain: daf __dw AT L _Au
f 7, f y7,

From Figure 36-17: Af ~0.01x10" Hz =10" Hz

For f = 8.40x10" Hz: H

o Sadiie At _10Hz 501t

f 8.40x10" Hz

This result is in fair agreement (about 21% difference) with the calculated
result. Note that Af is difficult to determine precisely from Figure 36 -17.

General Problems

38 o

Picture the Problem We can use the definition of the reduced mass to show that when
one atom in a diatomic molecule is much more massive than the other the reduced mass
is approximately equal to the mass of the lighter atom.

Express the reduced mass of a two- = m,m,
body system: m, +m,
Divide the numerator and y= m,
denominator of this expression by 1+ﬂ
m, to obtain: m,

If m, >> m,, then:

m2
39 (L]
Picture the Problem The rotational energy levels are given by
2
UG AP
Express the energy difference AE,,=E,-E,

between these rotational energy



Molecules
levels:
Express E; and E;: E _ 22+1n*  3n°
, = =
21 I
and
11+2)n>  »?
El = =
21 |
Substitute to obtain: AE,, = 3n® :Z_hz
’ | | |
The moment of inertia of the | =ur!
molecule is: where 4 is the reduced mass of the
molecule.
Substitute for | to obtain: AE. . 2n*  2n°
" M r02 _McMo r2
0
me + Mg
_2n*(mg +mg)
mCmO r-02
Substitute numerical values and evaluate AE; ,:
_ 2(.055x10*J-sf(12u+16u)  153x10°%J
"2 (16u)(12u)(0.113nm)’(1.66 x10 % kg/u)  1.6x107° JfeV

=| 0.955 meV

*40 e
Picture the Problem We can use the result of Problem 36 to find the frequency of
vibration of the HF molecule.

In Problem 36 it was established . 1 [k
that: A
The reduced mass is: m,,me

m,, + M,

1249
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Substitute for 4 to obtain:

Substitute numerical values and evaluate f:

" (970N/m)(Lu+19u) L2510 iz
27\ (Lu)(29u)(L.66 %107 kg/u)

41 e
Picture the Problem We can use the result of Problem 36 to find the effective force
constant for NO.

In Problem 36 it was established ¢ 1 |k
that: 2 Y7,
Solve for k: k=47f%u
The reduced mass is: = MyMg

m,, + Mg
Substitute for 4 to obtain: Az’ f?mym,

my + Mgy

Substitute numerical values and evaluate k:

 47°(5.63x10°sf (14u)(16u)(1.66 x10 7 kg/u)
- 14u+16u

k =| 1.55kN/m

42 oo

Picture the Problem We can use the expression for the vibrational energy levels of a
molecule and the expression for the frequency of oscillation from Problem 36 to find the
four lowest vibrational levels of the given molecules.

The vibrational energy levels are E,=(v+i)hfy=0,12,..
given by:
In Problem 36 we showed that the ‘¢ 1 |k

frequency of oscillation is: 27\ 1
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where
— mlmZ
m, +m,
Substitute for f and x to obtain: £ _ (v+ih [(m +m,k
Y2 m,m,
_ v+i)h\/E m, +m,
2 mm,
Substitute numerical values to obtain:
e (e 1)(4.136x10™eVs) [ 580N/m m, +m,)
Y 27 1.661x10% kg/u\| mm,
= (v+1)(0.389¢eV -u) /—(mﬁmzj
m1m2
Substitute for m; and m, and evaluate E, for H,:
E, = (0.389eV.u) [ SU L) _ ¢ 5750y
(1u)@u)

Proceed similarly to complete the H. HD D,
table to the right: (eV) (eV) (eV)

0 0.275 0.238 0.195

1 0.825 0.715 0.584

2 1.375 1.191 0.973

3 1.925 1.667 1.362
The energies of the photons AE = hf = E
resulting from transitions between A
adjacent vibrational levels of these
molecules are given by:
Solve for A P hc

AE
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Evaluate A(H,): /”L(H )= 1240eV-nm =|2.25um
2 0.550eV
Evaluate A(HD): /1(HD) = 1240eV-nm =| 2.60 um
0.477eV :
Evaluate A(Dy): AD.)= 1240eV-nm =13.19
(D) 0.389eV ekl
43 e

Picture the Problem We can set the derivative of the potential energy function equal to
zero to find the value of r for which it is either a maximum or a minimum. Examination
of the second derivative of this function at the value for r obtained from setting the first
derivative equal to zero will establish whether the function is a relative maximum or
relative minimum at this point.

Differentiate the potential energy du d a2 a)
function with respect to r: W = a U, (?j - 2[?)
11
skt
r r r
Set the derivative equal to zero: - 1 5
dU_ U fa) 2
dr I I A
= 0 for extrema
Solve for r, to obtain, as our r,=|a

candidate for r that minimizes the
Lenard-Jones potential:

minimum, differentiate U a second dr? - d

To show that ro = a corresponds to a dUu d U
- - r -
time to obtain:

Evaluate this second derivative of du
the potential at rp = a: dr?

72U,

2

=%[132—6o]= R

>0

r=a

Therefore, we can conclude that rp, = a
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minimizes the potential function.

Evaluate U min: 12 6
Umin =U (a) = Uol:[gj - 2(%) :l

= -U,
From Figure 37-4: r, =| 0.074nm
and
U, =| 4.52eV

44 oo

Picture the Problem We can use Equation 21-10 to establish the dependence of E on x
and the dependence of an induced dipole on the field that induces it to establish the
dependence of p and U on x.

(a) In terms of the dipole moment, E = 2_k|0

the electric field on the axis of the |x|3
dipole at a point a great distance

or
|X| away has the magnitude (see 1
Equation 21-10): E o W
(b) Because the induced dipole o« 1
moment is proportional to the field P X3
that induces it: and
L= 1

U = — p . E oC F
(c) Differentiate U with respect to x F_ du « 1
to obtain: T dx X

45 e
Picture the Problem the case of two polar molecules, p does not depend on the field E.

Because p does not depend on the U o i
electric field in which the polar X3
molecules find themselves:
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Differentiate U with respect to x to E du o 1
obtain: T dx X
46 e

Picture the Problem We can use the expression for the vibrational and rotational
energies of a molecule, in conjunction with Figure 37-17 to find Eg,, f, and hf.

(a) Except for a gap of 4E,/h at the £ ﬁ
vibrational frequency f, the h
absorption spectrum contains

frequencies equally spaced at:

Solve for Eg;: E, =4hf

From Figure 37-17: f =8.66x10" Hz

Substitute numerical values and evaluate Eg,:

E,, = 1(6.63x10%J.5)(8.66x10° Hz) = 2.87x10 @I+
1.6x107 J/eV
=(0.179eV
(b) The vibrational energy levels are E, =(v+ihf, v=012..
given by:
The lowest vibrational energy E, =4hf
corresponds to v= 0: and
hf = 2E, 1)
Determine f from Figure 37-17: f =| 8.66x10" Hz

Substitute for f and h and evaluate Ey:

E, = 3(6.63x10% J5)(3.66x10 Hz) = 2.87x10 ®Jx— =
1.6x107" J/eV
=0.179 eV
Substitute in equation (1) and hf = 2(0.179 eV) —[ 0.358eVv

evaluate hf;
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AT e

Picture the Problem We can find the reduced mass of CO and the moment of inertia of a

CO molecule from their definitions. The energy level diagram for the rotational levels for

¢=0to /=5 can be found using AE, , , = 2/E,. Finally, we can find the wavelength
hc hc

of the photons emitted for each transition using 4, , ; = = :
T AE,,,  20AE,,

(a) Express the moment of inertia of | =ur}

CO: where u is the reduced mass of the CO
molecule.

Find 2 U= MMy _ (12U)(16U) —6.86U

" mg+m, 12u+16u

In Problem 39 it was established that ro = 0.113 nm. Use this result to evaluate I:

| =(6.86u)(1.66x10% kg/u)(0.113nm Y =[1.45x10 * kg -m?

The characteristic rotational energy _ h?
Eor is given by: D)

Substitute numerical values and evaluate Eq,:

6.58x10" eV s (1.6x10™ J/eV)

For = 2(1.45x10 “ kg-m’) =[0.239mev
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{=5E=214 meV

(b) The energy level diagram is
shown to the right. Note that AE,, 4,
the energy difference between

adjacent levels for A¢ = -1, is
AE,, , =2/E,,.

|

f{=4,E =476 meV

\
{ =23 E =286 meV L

{=2,E =143 meV

£ =1,E = 0476 meV

t=0,E=0

(c) Express the energy difference AE,,,=hf,
AE, ,_, between energy levels in

terms of the frequency of the
emitted radiation:

Because c=f,,,4,,,: P hc _ he
"UAE,,,  20AE,

Substitute numerical values to obtain:

(4.136x10*° eV -5)(3x10° mis) _ 2596 um

A= 20(0.239meV) (
For ¢ =1: A{):@: 2596 ym
For ¢ = 2: ,121:@: 1298 um
For ¢/ =3: ﬂﬂ:@: 865 um




For ¢ = 4:

For ¢ =5:

/14,3 =

ﬂ5,4 =

Molecules 1257

259%64m _rerg m
4
2592,um [0

These wavelengths fall in the microwave region of the spectrum.

*48 eoo

Picture the Problem The wavelength resulting from transitions between adjacent

. . . o 2z C .
harmonic oscillator levels of a LiCl molecule is given by 4 = ——. We can find an

(0

expression for by following the procedure outlined in the problem statement.

The wavelength resulting from
transitions between adjacent
harmonic oscillator levels of this
molecule is given by:

From Problem 24 we have:

The Taylor expansion of U(r)
aboutr =rgis:

Because U(ro) is a constant, it can
be dropped without affecting the
physical results and because

(d_Uj _0
dr J.
Differentiate U(r) twice to obtain:

Because dU/dr = Fp =0 at
r=ro

hc hc 2xc
AE  ho @
ke?

u(r)

=———+—, where AE is constant.
r r

il

dr?

2
r zi(d U] (r-r) )
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Solving for C yields:
Substitute for C and evaluate

dau .
> to obtain:
dr .

2
Substitute for (?j Y } in

r2

equation (2):
Because the potential energy of a
simple harmonic oscillator is given

by Ugro = ima(r—r, ) :

Solve for wto obtain:

Substitute z4 ic; for m to obtain:

From Problem 24:

Uy is related to Ue, Eg, and AE
according to:

The energy needed to form Li* and
CI™ from neutral lithium and

chlorine atoms is:

Ue(ro) is given by:

C 0
nry n
2 2 2,n-1
) ot
r* ). ry ry n
ke’
=—-(n-1)

®)
— (n _1)(mLi + Mg, )kez
Iq’]LimCIrOa
U.(r,
RG] “
Urep(ro)
U, =—(U, +E;+AE) (5)
AE = Eionization - Eelectronaffinity
=5.39eV -3.62eV =1.77eV
2
U - ke __1l44eV-nm

e

o To
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Substitute ro and evaluate U.: u, - _1.44eV -nm _ _713eV
0.202nm

Substitute numerical values in U = —(— 7.13eV +4.86eV +1.77 eV)

equation (5) and evaluate U: —0.500eV

Substitute for Uyey(ro) and Ug(r) in o -7.13ev|

equation (4) and evaluate n: ©0.500eV

Substitute numerical values in equation (3) and evaluate @:

. (14.3-1)(6.941u +35.453u)(L.44eV - nm)(1.60x 107 J/eV))
(6.941u)(35.453u)(1.66 x10 %" kg/u)(0.202nm )’

=[1.96x10"s™

Substitute numerical values in _ 27(3x10°mis) .62 2m
equation (1) and evaluate A: T 106x10%st  L22H
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