Chapter 39
Relativity

Conceptual Problems

*1 °
Picture the Problem The total relativistic energy E of a particle is defined to be the sum
of its kinetic and rest energies.

The total relativistic energy of a E =K +mc® = 1mu’® + mc?
particle is given by:

and | (a) is correct.

*2 °

Determine the Concept The gravitational field of the earth is slightly greater in the
basement of the office building than it is at the top floor. Because clocks run more slowly
in regions of low gravitational potential, clocks in the basement will run more slowly
than clocks on the top floor. Hence, the twin who works on the top floor will age more

quickly. | (b)is correct.

3 .
(a) True

(b) True

(c) False. The shortening of the length of an object in the direction in which it is moving
is independent of the velocity of the frame of reference from which it is observed.

(d) True

(e) False. Consider two explosions equidistant, but in opposite directions, from an
observer in the observer’s frame of reference.

() False. Whether events appear to be simultaneous depends on the motion of the
observer.

(g) True

4 .
Determine the Concept Because the clock is moving with respect to the first observer, a
time interval will be longer for this observer than for the observer moving with the
spring-and-mass oscillator. Hence, the observer moving with the system will measure a
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period that is less than 7. | (b) is correct.

5 .
Determine the Concept Although Ay = Ay, At #A¢’. Consequently,
u, = AYIAY = AY'IAY = u,).

Estimation and Approximation

6 (L]
Picture the Problem We can calculate the sun’s loss of mass per day from the number of
reactions per second and the loss of mass per reaction.

Express the rate at which the sun AM
—— = NAm
loses mass: At
where N is the number of reactions per
second and Am is the loss of mass per
reaction.

Solve for AM: AM = NAmAt (1)

Find the number of reactions per N = P
second, NV E [ reaction
4x10% /s
MeV.  160x10
reaction eV
— 1038 S—l

25

The loss of mass per reaction Am is: A = E [ reaction
CZ
MeV
e_ x1.60x107*° i
reaction

(3x10° mis
= 4.44x107% kg

25

Substitute numerical values in equation (1) and evaluate AM:

AM = (10 57)(4.44x10 kg )(1d )(86.4ks/d) =| 3.84x10" kg
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*7 (L]
Picture the Problem We can use the result from Problem 30, for light that is Doppler-
2

. . u
shifted with respect to an observer, v = c[ >

j , where u =z + 1 and z is the red-shift
u-+1

parameter, to find the ratio of v to c. In (b) we can solve Hubble’s law for x and substitute
our result from () to estimate the distance to the galaxy.

(a) Use the result of Problem 30 to v (z+1) -1
express v/c as a function of z: c (z +1)2 +1
Substitute for z and evaluate v/c: 7
N 2 = Wy
c (5+17+1
(b) Solve Hubble’s law for x: =
H
Substitute numerical values and 0.946¢ O.946(3><10 > km/s)
evaluate x: YTy T Kim/s
75—
Mpc
5 3.26x10°% c-y
= 3.78x10° Mpc x
Mpc

=[12.3Gc-y

Time Dilation and Length Contraction

8 .
Picture the Problem We can find the mean lifetime of a muon as measured in the

laboratory using ¢' = yt where y = ]/wll—(v/c)2 and ¢ is the proper mean lifetime of

the muon. The distance L that the muon travels is the product of its speed and its mean
lifetime in the laboratory.

(@) The mean lifetime of the muon, - t
as measured in the laboratory, is )2
given by: 1- (j
c
Substitute numerical values and /= 2 115 ~[6.418

evaluate #: (O 956]2
1[0
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(b) The distance L that the muon
travels is related to its mean lifetime

in the laboratory:

Substitute numerical values and
evaluate L:

9 (L]

L=vt'

L =0.95c¢t’'
= 0.95(3x10° m/s)(6.41 1)
=(1.83km

Picture the Problem The proper length L, of the beam is its length as measured in a
reference frame in which it is not moving. The proper length is related to its length in the

frame in which it is measured by L, = yL.

(a) Relate the proper length L, of
the beam to its length L in the
laboratory frame of reference:

The energy of the beam also
depends on y:

Solve for and evaluate y:

Substitute numerical values and
evaluate Ly

(b) Express the length of the
accelerator in the electron beam’s
frame of reference:

Set Lacc = Lp:

Solve for Lacp:

L, =L
E:ym&
y=E - S0CEV__q85,10"

mc?  0.511MeV

I, =(9.785x10* (Lcm) =[ 978.5m

and
The width w of the beam is
unchanged.
L — Lacc,p
acc
V4
L = Lacc,p
4
Lacc,p = 7Lp



Substitute numerical values and
evaluate Ly

(c) The length of the positron bundle

in the electron’s frame of reference
is:

Substitute numerical values and
evaluate Lpos:

*10 oo
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L., =(9.785x10*)(978.5m)
=1 9.57x10"m

pos

Ly =%
v

1cm

L o= M _[0102m
Ps = 9.785x10° -

Picture the Problem The time required for the particles to reach the detector, as
measured in the laboratory frame of reference is the ratio of the distance they must travel
to their speed. The half life of the particles is the trip time as measured in a frame
traveling with the particles. We can find the speed at which the particles must move if
they are to reach the more distant detector by equating their half life to the ratio of the
distance to the detector in the particle’s frame of reference to their speed.

(@) The time required to reach the
detector is the ratio of the distance
to the detector and the speed with
which the particles are traveling:

Substitute numerical values and
evaluate Az

(b) The half life is the trip time as
measured in a frame traveling with
the particles:

Substitute numerical values and
evaluate A

(¢) In order for half the particles to
reach the detector:

Ax . Ax
v 0.866¢

At =

1000m
~ 0.866(3x10° m/s)

z__mr

=| 3.855

=3. 85;5‘/ 0. 8GGC =[1.93

Where Ax' is the distance to the new
detector.
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Rewrite this expression to obtain: v _AY
1_(‘)]2 At'
c
Squaring both sides of the equation V2 Ax' )
yields: 1‘(vj2 lar
C
Substitute numerical values for Ax’ V2 10°m ( )2
, oo - = =(17.3c
and A¢' and simplify to obtain: . [ij 1.93 s
c
Divide both sides of the equation by ﬁ
2t in:
c” to obtain R (17.3)
1V
5
Solve this equation for v?/c*: v? (17.3Y
— =—————=0.9967
> 1+(17.3)
Finally, solving for v yields: v=|0.998¢
11 e

Picture the Problem We can use the time-dilation relationship to find the speed of the
spacecraft. The distance to the second star is the product of the new gamma factor, the
speed of the spacecraft, and the elapsed time. Finally, the time that has elapsed on earth
(your age) is the sum of the elapsed times for the three legs of the journey.

(@) From the point of view of an Af = L
observer on earth, the time for the v

trip will be:

From the point of view of an At = At _ L
observer on the spaceship, the time Yy oyv

for the trip will be:

Substitute for yto obtain: L v
v



Solve for v:

Substitute numerical values and
evaluate v:
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- Lc
IF+c*(ArY
y = (27¢-y)e -[0.914c

J@re-yf+ctzyf

Note that from the point of view of an earth observer, this part of the trip has taken 27 c-

y/0.914¢ = 29.5y.

(b) The distance the ship travels,
from the point of view of an earth
observer, in 5y is:

The gamma factor in Part () is:

Substitute numerical values and evaluate
AL

(¢) The elapsed time Az on earth
(your age) is the sum of the times
for the spacecraft to travel to the star
27 c-y away, | to the second star,
and to return home from the second
star:

The elapsed time on earth while the
spacecraft is returning to earth is:

Substitute for Atrewming home and evaluate
AV

12 -

AL" = 2yAL = 2vAt
where yis the gamma factor for the first
part of the trip.

=2.46

AL' = 2(2.46)(0.914c¢)(5y)
=| 22.5¢-y

At =29.5y+225y+ At

returning home

At = 27/Atship'stime
=2(2.46)(10y)

=492y

returning home

At =29.5y+225y+49.2y
=|101y

Picture the Problem We can use At = L/v, where L is the distance to the star and v is the
speed of the spaceship to find the time At for the trip as measured on earth. The travel
time as measured by a passenger on the spaceship can be found using A¢' = Adly.

(@) The travel time as measured on
earth is the ratio of the distance

a=Z
v
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traveled L to speed of the spaceship:

Substitute numerical values and ‘o 3¢y  _ 35y
evaluate Ar: 2.7x10°m/s  2.7x10°m/s
c
35y
=——=138.9

0.9 Y
(a) The travel time as measured by a At )
passenger on the spaceship is given At' = 7 = At |1- (;j
by:
Substitute numerical values and At = (38.9y) /1_ (0.9)2 =[17.0y
evaluate A¢'":
13 -

Picture the Problem We can use the definition of yand the binomial expansion of (1 +
x)" to show that each of these relationships holds provided v << c.

(@) Express the gamma factor: 1 V2 Y2
v c
s
Expand the radical factor binomially V2 2
to obtain: V= 1_?
1 V2 .
=1+ (— Ej —— |+ higher order terms
C
Forv<<c: 1 112
~l1+——
4 2c°
(b) Express the reciprocal of y: 1 1 V2
y ¢
Expand the radical binomially to 1_(, 2\
obtain: ; |2
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Forv<<eg: 1 1 112
y c?
(c) Express the gamma factor: 1 V2 2
= = l——
v } 2 2
CZ
Subtract one from both sides of the 2\
equation to obtain: y-1= 1_0_2 -1
Expand the radical binomially to 1 V2
in- y=1l=1+|—=| -——|-1
obtain: 2| 2
+ higher order terms
Forv<<c: 112
r=1=|-—
2¢
14 e

Picture the Problem We can express the fractional difference in your time-interval
measurements as a function of yand solve the resulting equation for the relative speed of
the two spaceships.

Express the fractional difference in At=Ar AT o1
the time-interval measurements of At At
the two observers:

Since Ar'/At = 11y. At — At :1_1 —0.01
At 4
From Problem 13(b) we have: 1 1_11;_2
¥ 2 c?
Substitute to obtain: 2
1-1s 1—[1—1%J 001
V4 C
or
2
1Y oo
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Solve for v to obtain: v =+/0.02¢ = 0.141c =| 4.23x10" m/s

15 e
Picture the Problem We can use the time dilation equation to relate the time lost by the
clock to the speed of the plane and the time it must fly.

Express the time ¢ lost by the St— Af—Ar :At—E:At 1_3
clock: P y y
Because V' << ¢, we can use part (b) 1 1- 1172
of Problem 13: y 2t
Substitute to obtain: 2 2
ot=Atl1- 1—1V—2 :EV—ZAt
2c¢c 2 ¢
Solve for Ar: 20t c?
A==
Substitute numerical values and A 2(15)(3><108 m/s)2
. t=
evaluate Ar: (2000km/h x1h/3600s)’
_5.83x10Msx— Y
31.56 Ms
=|1.85x10%y

The Lorentz Transformation, Clock Synchronization, and
Simultaneity

16 e
Picture the Problem We can use the inverse Lorentz transformations and the result of
Problem 13(c) to show that when u << ¢ the transformation equations for x, 7, and u
reduce to the Galilean equations.

The inverse transformation for x is: x'= 7/(x - vt)

From Problem 13(c): _ 1+1v_2
4 2c?



Substitute for yand expand to
obtain:

When v << ¢:

The inverse transformation for ¢ is:

Substitute for yand expand to
obtain:

When v << ¢:

The inverse velocity transformation
for motion in the x direction is:

When v << ¢:

The inverse velocity transformation
for motion in the y direction is:

Substitute for yand expand to
obtain:

When v << ¢:

Proceed similarly to show that:

*17 oo

Relativity

=f— P e p——
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2
c
u'~u_ —v
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vu
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c c
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'~

u'=u_

1311

Picture the Problem Let S be the reference frame of the spaceship and S’ be that of the
earth (transmitter station). Let event 4 be the emission of the light pulse and event B the

reception of the light pulse at the nose of the spaceship. In (a) and (c) we can use the
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classical distance, rate, and time relationship and in (») and (d) we can apply the inverse

Lorentz transformations.

(@) In both S'and S’ the pulse travels
at the speed c. Thus:

(c) The elapsed time, according to
the clock on the ship is:

Find the time of travel of the pulse
to the nose of the ship:

Substitute numerical values and
evaluate 7z

(b) The inverse time transformation
is:

Substitute numerical values and
evaluate ¢',:

(d) The inverse transformation for x
is:

Substitute numerical values and evaluate x':

x' = (1.54)[400m — (— 0.76)(3x10° m/s)(3.09x10° s )| = [ 1.70km

18 oo

L, 400m _

4y 0.76¢

1.76 15

tB = tpulse to travel length of ship + Z‘A

B 400m
pulse to travel length of ship 2998 % 108 m/S

=133

!

t, =1.3315+1.76 15 = | 3.09.8

where
4 1 2 (1 7 =1.54
v 0.76¢
\/1 2 \/1—02
t, = (1.54)(3,09 15— (—0.76cc)2(400 m)j
(~0.76)(400m)
=(1.54) 3.09 15—
( )( T i
=|6.328
x'=y(x—wvt)

Picture the Problem We can use Equation 39-12, the inverse time transformation
equation, to find the required speed of the observer.



Use Equation 39-12 to obtain:

Events A and B are simultaneous if:

Solve for v:

Substitute numerical values and
evaluate v:

19 e
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1y —t, = 7{(13 _tA)_clz(xB _xA)}

vAx
{2
c

where At = tg — ta and Ax = xg — xa.

VR
C
c*At
v =
Ax
~ (3x10° misf(2.s)
- 1.5km

=1.20x10®m/s =| 0.4c

Yes, t,' will belessthan ¢, if 1 > 0.4c.

Picture the Problem We can use Equation 39-12, the inverse time transformation
equation, to express the separation in time between the two explosions as measured in '
as a function of the speed of the observer and Equation 39-11, the inverse position
transformation equation, to find the speed of the observer.

Use Equation 39-12 to obtain:

From Equation 39-11:

Because the explosions occur at the
same point in space, Ax’ = 0:

Solve for v:

At = 7[At—12Ax}
C

At -2 Ax o
I G
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Substitute numerical values and - 1200m —480m
evaluate v: Sus

=1.44%x10° m/s

Substitute numerical values in equation (1) and evaluate Az

8
5 15— A L0MS (1500 m —agom)

AL (3><108 m/s)2 (4398

L [(1:44x10° mis )’
3x10°m/s
20 (1 1]

Picture the Problem We can use Equation 39-12, the inverse time transformation
equation, to establish the results called for in this problem.

(@) Use Equation 39-12 to obtain: ., \
Ly—t =y ( )__2(x2_x1)

where 7=t —t; and D = x; — x1.

(b) Events 1 and 2 are simultaneous t, =t
inS'if: or
D T
T-2-0=D=""~
c v
Because v < ¢: D2>|cT

(¢) | If D<cT,thent, > t'and the events are not simultaneous in S".

T-—5=T|1--=

(d) If D=c'T>cT, then: vD ve' Yy
c cc z

In this case, #, — ¢, could be negative;i.e., z,’ could be less than z,’, or the effect
could precede the cause.

21 00
Picture the Problem Let S be the ground reference frame, S’ the reference frame of the
rocket, and v = 0.9¢ be the speed of the rocket relative to S. Denote the tail and nose of
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the rocket by 7'and N, respectively. The initial conditions in S" are #,,'=0, x,'=0,

x;'=0,and x,'=-L'=-700m.
(a) The reading of the tail clock is

given by:

We can find x7 using the length
contraction equation:

Substitute to obtain:

Substitute numerical values and
evaluate #,.":

(b) The time for the rocket to move
a distance L' is given by:

Substitute numerical values and
evaluate #,".

(c) As seen by an observer on the
ground:

() Because the clocks are
synchronized in §':

(e) The time the signal is received
on the ground is the sum of the time
when the signal is sent and the time
for it to travel to the ground:

Find A¢, the time the signal is sent:

Find Atyave, the time for the signal to
travel to the ground:

VX VX
i = 7/(tr _C_er = _c_zT

because /=0

L!
X, =——

/4
, VL'
tT :—2

C

(0.9)(700m)
)=~ ) 1210
T 3%10®m/s 15
ok L
r v 0.9¢

700m

(= _[259
T 0.0Bx10° mis) s

t, = At'=2.59 15— 2.10 15 =] 0.49 155

ty' =t,' = 2.59 ss

1 5o0n
(0.9¢)

2
C

At = yAt, =
1—

Ax (2.294h)(0.9
Al‘travel = 7 = ( C)( C)

=2.065h
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Substitute for Az and Atiave and
evaluate #ec:

(/) Find Ax when the signal is sent:

In S, the signal arrives at 0.1¢
relative to the rocket. The time
required for the signal to travel to
the rocket is:

Find the time when the signal
reaches the rocket:

Finally, use the time dilation
equation to find #\':

*22 (X1

t.. =2.294h+2.065h = 4.36h

Ax =(4.36h)(0.9¢) = 3.924¢-h

_ Ax _3.924c-h
0l 0l

At =39.24h

t =39.24h +3.924h = 43.16h

2
(/=L =(43.16h) 1—@

¥ c
=118.8h

Picture the Problem We can use the inverse time dilation equation to derive an
expression for the elapsed time between the flashes in S’ in terms of the elapsed time
between the flashes in S, their separation in space, and the speed v with which §" is

moving.

From the inverse time
transformation we have:

Set A¢ = —Ar to obtain:

Square both sides of the equation:

2

At = 7[At—l2Ax}
C

where A¢' is the time between the flashes in
S" and At and Ax are the elapsed time
between the flashes and their separation in

2

(Arf =2 (ae = (Aef -2 Axar+ - (Ax)

c

C C
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Simplify to obtain: —v(At)2 _ —2AxAt+L2(Ax)2

c
Solve for v: o AX
_ At
2
1+ (1 ij

c At
Substitute numerical values and 5 2400 m
evaluate v: 518

1 (2400m\]
1+ o
3x10°m/s\ 5us

=2.697x10°m/s =| 0.899c

Because v is positive, S'is moving in the positive x direction.

The Velocity Transformation

23 oo
Picture the Problem We can make the substitutions given in the hint in Equation 39-18a
and simplify the resulting expression to show that u, < c.

Equation 39-18a gives the x y =t +v or x _ u,+v
direction relativistic velocity 14 W; C a4 vu,
transformation: c c
Make the substitutions given in the U, _ (1— 81)6’ + (1— 82)0
hint to obtain: c L (1—52)0(1—31)0
c
__ 2= (e.+&,)
1+(1-¢,)1-¢)
__ 2~ (6, +2,)

2—(31 +52)+ €&,

Because & and &, are small positive u
adidl & P ~<l=lu <c
numbers that are less than 1: c
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*D) oo
Picture the Problem We’ll let the velocity (in S) of the spaceship after the ith boost be v;
and derive an expression for the ratio of v to c after the spaceship’s

(i + D)th boost as a function of N. We can use the definition of y, in terms of v/c to plot »
as a function of V.

(a) and (b) The velocity of the v, +0.5¢
spaceship after the (i + 1)th boost is Vi = - (05c),
given by relativistic velocity 1+~
addition equation: ¢
Factor ¢ from both the numerator v,
and denominator to obtain: —++05
vi+l = = v
1+05-+%
c
7 is given by: 1
Vi T~

A spreadsheet program to calculate v/c and yas functions of the number of boosts N is
shown below. The formulas used to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A3 0 N
B2 0 Vo
B3 (B2+0.5)/(1+0.5*B2) Vist
Cl 1/(1-B2"2)"0.5 ¥

A B C

1 boost v/c gamma
2 0 0.000 1.00
3 1 0.500 1.15
4 2 0.800 1.67
5 3 0.929 2.69
6 4 0.976 4.56
7 5 0.992 7.83
8 6 0.997 13.52
9 7 0.999 23.39
10 8 1.000 40.51
11 9 1.000 70.15
12 10 1.000 121.50
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A graph of v/c as a function of & is shown below:

1.0

0.8 1

0.6

vic
N

0.4

0.2 4

0.0

N

A graph of yas a function of N is shown below:

120

100 -

80 -
60

40 | /
20 - ’,/’///

0———(/

0 2 4 6 8 10

gamma

Examination of the spreadsheet or of the graph of v/c as a function of
(c) | N indicates that, after 8 boosts, the velocity of the spaceshipis
greater than 0.999c.

(d) After 5 boosts, the spaceship has traveled a distance Ax, measured in the earth frame
of reference (S), given by:

Ax =Axp ) +Ax, 3+ A, +AX, 5
=(0.5¢)(20s)y, ,, +(0.8¢)(10s)y,_, +(0.929¢)(10s)y, ,, +(0.976¢)(10s)y, .
+(0.992¢)(10s )y,
=(0.5¢)(10s)(1.15)+(0.8¢)(10s)(1.67)+(0.929¢)(10s)(2.69)
+(0.976¢)(10s)(4.56)+(0.992¢)(10s)(7.83)

=|166¢-s
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The average speed of the spaceship, Ax
between boost 1 and boost 5, as measured Vav = Ar
in S'is given by:

where At is the travel time as measured in
the earth frame of reference.

Express At as the sum of the times the spaceship travels during each 10-s interval
following a boost in its speed:

At=At ,+At, ;+At, ,, +AL,

= (105)71—>2 + (105)72—>3 + (105)7394 + (103)74—>5 + (105)75—»3
= (103)(7’1»2 tVosztVastVass T 75»6)

Substitute numerical values and evaluate At

At =(10s)(1.15+1.67 +2.69 + 4.56 + 7.83)=179s

Substitute for Ax and Ar and _166¢-s

. = 0.927
evaluate vy Vav 179 ¢

Remarks: This result seems to be reasonable. Relativistic time dilation implies that
the spacecraft will be spending larger amounts of time at high speed (as seen in
reference frame S).

The Relativistic Doppler Shift

25
Picture the Problem We can substitute, using v = £4, in the relativistic Doppler shift
equation and solve for the speed of the source.

Using the expression for the 1+v/c

relativistic Doppler shift, express /" f=r 1

as a function of v: —ve

Substitute using v = f4 and simplify v v [1+v/c

to obtain: T Al

0 obtain 2 V1o ve
A [1+y/e
A 1-v/c
or




Solve for v to obtain:

Substitute numerical values and
evaluate v:

26 -

2.22x10" m/s

Relativity 1321

x10° m/s)

Picture the Problem We can use the relativistic Doppler shift, when the source and the
receiver are receding, to relate the frequencies of the two wavelengths and ¢ = fA to
express the ratio of the wavelengths as a function of the speed of the galaxy.

When the source and receiver are
moving away from each other, the

relativistic Doppler shift is given by:

Use the relationship between the

wavelength and frequency to obtain:

Solve for A’/ Ay:

Express the fractional redshift:
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Substitute numerical values and 1.85x10" m/s
evaluate (1'—A4o)/ Ao: A=A i 2.998x10° m/s
Jy g 185x10"mis
2.998x10% m/s
=1| 0.0637
27 o0

Picture the Problem We can begin the derivation by expressing the number of waves
encountered by the observer, in the rest frame of the source, in a time interval Az. We can
then relate this time interval to the time interval in the rest frame of the observer to
complete the derivation of Equation 39-16a.

Express the number of waves n "= (C + V)Afs _ (C + V)foAfs
encountered by the observer, in the A c
rest frame of the source, in a time V
: = fo| 1+— |At,
interval Az:
This time interval in the rest frame AVA
. . Ato -
of the observer is given by: 4

Express the frequency heard by the observer and simplify to obtain:

Picture the Problem We can use the expression for the relativistic Doppler shift to show
that, to a good approximation, Aflf ~tv/c.

Express the fractional Doppler shift AN S _ S
in terms of fand f;: fo Jo Jo

When the source and receiver are
approaching each other, the i
relativistic Doppler shift is given by:




Substitute in the expression for Aflf,
to obtain:

Keeping just the lowest order terms
in v/c, expand binomially to obtain:

Relativity 1323

ﬁ:(uﬂj(uﬂj—l
fo 2c 2c

~1+Y-1=
C

o<

The sign depends on whether  the source and receiver are approaching or receding.
Here we have assumed that they are approaching.

*20 oo

Picture the Problem Due to its motion, the orbiting clock will run more slowly than the
earth-bound clock. We can use Kepler’s third law to find the radius of the satellite’s orbit
in terms of its period, the definition of speed to find the orbital speed of the satellite from
the radius of its orbit, and the time dilation equation to find the difference &in the

readings of the two clocks.

Express the time Jlost by the clock:

Because v << ¢, we can use part (b)
of Problem 13:

Substitute to obtain:

Express the square of the speed of
the satellite in its orbit:

Use Kepler’s third law to relate the
period of the satellite to the radius
of its orbit about the earth:

5:At—Atp =At—£:At[l—£]

Y Y
2
izl_lv_z
14 2c
1+° 1v°
O=Afl1-|1-——||===A¢t (1
[ [ ZCZH 2 ¢? @)
27zr2 A7?r?
vzz( Jz - @)
T T

where T is its period and 7 is the radius of
its (assumed) circular orbit.

47’ Ar?
2 3 3
T° = = ng r

e

GM

e
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Solve for r: o [gResz
Ar?

Substitute numerical values and evaluate 7;

2 2 - - 2
o i/(9.81m/s )(6370km) 590 minx60s/minf _ . o 206
4
Substitute numerical values in 2 6 e )2
equation (2) and evaluate v*: . (6'65X10 m)

(90min x 60s/min)’
=5.99x10" m* /s’

Finally, substitute for v* in equation (1) and evaluate &

5.99x107 m? /s )(Ly x 31.56 Ms/y)

1 _
°7 (3x10° m/s)f Loms

30 oo

Picture the Problem We can use the definition of the redshift parameter and the
2

relativistic Doppler shift equation to show that v = c(uz

],whereu=z+1.

u°+1
The red-shift parameter is defined to =1
be: =T
A
The relativistic Doppler shift is 1+
given by: f'=f /l
1-v/c
Substitute to obtain: 1+v/c 1+v/c
f=r -
3 1-vje 1-v/c
7 1+v/c 1+v/c
1-v/c 1-v/c
_ [1+v/e 1
1-v/c

Lettingu =z + 1: 1+v/c
u=z+1l= |——
1-v/c
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Solve for v to obtain: 2
u -1
v=|c —
(u +lj
31 -
Picture the Problem We can use the y
velocity transformation equations for the x v
and y directions to express the x and y
components of the velocity of the light 3 *
beam in frame §S.
(@) The x and y components of the u = u+v
velocity of the light beam in frame S ST
are: c?
and
u !
— Y
= vu,'
7|1+—;
C
Because u,’ = 0:
! “X= and u, = ;
(b) The magnitude of the velocity of c?
. . . . u= u2 +u2 = VZ + —
the light beam in S is given by: VT Hy },2

= \/vz +{l—‘c)—z]cz =

32

Picture the Problem Let S be the earth reference frame and S’ be that of the ship
traveling east (positive x direction). Then in the reference frame 5, the velocity of S'is
directed west, i.e., v = —u,. We can apply the inverse velocity transformation equation to
express u'_in terms of u,.

Apply the inverse velocity 0= u,—v
transformation equation to obtain: * 1— sz
c
Substitute for v: uw'= u,+ L;x _ 2”x2
1+ u—; 1+ u—’z‘
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Because u, = 0.90c: ,__2(090c) _ 0.994¢

u, 2
s (0.9(2)0)
C

Picture the Problem We can apply the inverse velocity transformation equation to
express the speed of the particle relative to both frames of reference.

(a) Express u,"interms of u " : - u' +v
X vu "
1+—
C
where V of S’, relative to S”, is 0.8c.

Substitute numerical values and , 0.8c+0.8c 16c
, u'= = =1 0.976¢
evaluate u ': (0.8¢c) 1.64
1+-—;
c
(b) Express u, in terms of u ': y = u'+v
x vu!
1+ —
CZ

where v of S, relative to S, is 0.8¢c.

Substitute numerical values and "y = 0.976¢ +0.8¢ :1.7760
evaluate u,: N (0.8¢)(0.976¢)  1.781
cZ
=|0.997¢

Relativistic Momentum and Relativistic Energy

*34 .

Picture the Problem We can use the relation for the total energy, momentum, and rest
energy to find the momentum of the proton and Equation 39-26 to relate the speed of the
proton to its energy and momentum.

Relate the gnergy of the proton to its E2=pict+ (mc2)2
momentum:

b) Solve for p to obtain:

) P E* —(mc? i



Substitute numerical values and
evaluate p:

(@) From Equation 39-26 we have:

Solve for v to obtain:

Substitute numerical values and
evaluate v:

35
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J(2200MeVY’ — (938 MeV )

c
19958V
c
y_prc
E
v:ﬁc
E
V:MCZ 0.905¢
2200 MeV

Picture the Problem We can use E° = p*c? +(mc2)2 (from Problem R-37) to find the

relativistic momentum of the particle in terms of yand the fact that the kinetic energy of
the particle equals twice its rest energy to find the error made in using mv for the

momentum of the particle.

Express the error e in using
p' = my for the momentum of the
particle:

From Problem R-37, the
relationship between the total
energy E, momentum p, and rest
energy mc? of the particle is:

Solve for p to obtain:

Because E = ymc”:

Substitute for p and p’ in equation
(1) to obtain:

From the definition of .

e:ﬂzl_ﬂ (1)
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Eliminate v/c in equation (2) to
obtain:

The kinetic energy of the particle is
related to its rest energy:

Solve for y to obtain:

Because the kinetic energy of the
particle is twice its rest energy:

Substitute for yin equation (3) and
evaluate e:

36 oo

e=1- L /1—%:1—l 3)
Vri-1 v /4
2

K =(y —1)me

y=1+

e=1--=0.667 =| 66.7%

Picture the Problem We can use the result of Problem R-37 to find the energy of the
particle and its energy in a reference frame in which its momentum is
4 MeV/c. We can apply the inverse velocity transformation equation to find the relative

velocities of the two reference frames.

(@) From Problem R-37 we have:

Solve for Ey:

Substitute numerical values and
evaluate Ej:

(b) Because Ej is independent of the
reference frame:

Substitute numerical values and

evaluate E:

(¢) The inverse velocity
transformation is:

2 2.2 2 4 2.2 2
E°=p°c"+mjc” = p°c” + E

E, = /Ez_pzcz

E, =/8BMeV) — (6 MeVic)'c?

= JBMeV) — (6 MeV)?
- [5.29MeV

E =q/p202 +E02

E =+/(4MeVic) ¢ +(5.29MeV Y
~[6.63MeV

where the subscripts refer to the velocities
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in parts («) and () of the problem.

Solve for v to obtain: b= u,—u, 1)
1_ uaub
C2
Relate the relativistic energy of the E E)?
_ 0 _ 0
particle in (a) to its velocity: E= > — U, =¢ 1—(—j
u
1-"a
C2
Substitute numerical values and 529 MeV 2
evaluate u,: u,=c,|1- [mj =0.750¢
Relate the relativistic momentum of myl,

p=——= DU, = N

icle i i ity - b 2 2

the particle in (b) to its velocity: /1_ ug /p + myc
c

Substitute numerical values and _ (4MeVic)e
evaluate b 2 2
b J(@MeVic) +(5.29MeVic)
=0.603c
Substitute in equation (1) and v 0.750c —0.603¢  _ 0.268¢
evaluate V: ‘1 (0.750¢)(0.603¢) L=
cz
37 e

Picture the Problem We can use the rule for the derivative of a quotient to establish the
result given in the problem statement.

Use the expression for the derivative of a quotient to obtain:

u? mu? 1
1- gm+—;
c c A u?
i[ | &
dul \[1—u?/c? - u’
\/ u?/e 1_072

Multiply the numerator and denominator of the right-hand side of this expression by
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2
l—c—2 and simplify to obtain:

1_u2 1_u2 mu’® 1_02
2 2 2 > 2 2
c c c u 1 U mu
1-— T2 Mt
d mu 2 c c
du 2/ 2 2 2 B 232
c c c
) \-3/2
u
=m|l-—
and
mu u’ e
d ———|=|\m1l-——| du
l—uz/c2 ¢’
38 e

Picture the Problem We will first consider the decay process in the center of mass
reference frame and then transform to the laboratory reference frame in which one of the

pions is at rest.

Apply energy conservation in the
center of mass frame of reference to
obtain:

Solve for y:

Substitute numerical values and
evaluate y:

Because one of the pions is at rest in
the laboratory frame,

y =1.78 for the transformation to
the laboratory frame. The Kinetic
energy of the K° particle is:

The total initial energy in the
laboratory frame is:

2 2
my ¢ =2m,yc

= KO
4 2m,
2
. 497.7|v|eV/c2 178
2(139.6 MeV/c?)
K. =(y-1)E
= (1.78-1)(497.7MeV)
=| 388.2MeV

E =497.7MeV +388.2MeV
=885.9MeV



Express the energy of the other
pion:

Substitute numerical values and
evaluate £ .

*30 oo
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E_=E-2m,c’

E, =885.9MeV - 2(139.6 MeV)
=| 607 MeV

Picture the Problem The total kinetic energy of the two protons in part () is the sum of
their kinetic energies and is given by K = 2(7/ —l)E0 . Part (b) differs from part (@) in

that we need to find the speed of the moving proton relative to frame S.

(@) The total kinetic energy of the
protons in frame S’ is given by:

Substitute for yand E, and evaluate
K:

(b) The kinetic energy of the
moving proton in frame S is given

by:

Express the speed u« of the proton in
frame S:

Substitute numerical values and
evaluate u:

Evaluate y.

K =2(y-1)E,
K=2—1 4 (938.28MeV)
(0.5¢)
1-—=5+
c
=| 290 MeV
K =(7-1)E, (1)
where
1
= uy
1-22
CZ
"y u'+v
vu '
l X
+ 2
0.5¢+0.5¢
u= =0.800c¢
1+ (0.50)20.50)
C
y = L =1.67

\/1_ (0.80)50.80)

(4
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~

Substitute numerical values in =(1.67-1)(938.28 MeV)
equation (1) and evaluate K: —| 629 MeV

40 e
Picture the Problem We can find the speed of each proton by equating their total
relativistic kinetic energy to 2mc?. In (b) we can use the inverse velocity transformation
with V' =wu and u, = —u to find «,’. In part (c) we’ll need to evaluate y' for the kinetic
energy transformation K, = (7 ~1)E, .

(@) Set the relativistic kinetic energy 2(7/—1)E0 =2mc* = y=2
of the protons equal to 2mc” to
obtain:
Substitute for y: 1 5
2
u
1--"
CZ

Solve for u to obtain:

U= —Sc =| 0.866¢
2

() Use the inverse velocity
transformation with v =  and , U, —v

3
—c
2
u, = —u to find u,”: * 1_V”x [_\ECJ 3]
2
1- 2

= =] —0.990c
7
(¢) The kinetic energy of the moving K, =(y-1)E,
proton in the laboratory’s frame is where
iven by:
g y 7/: 1 — = ! - =7
\/1 (1)) NG
N
cZ
Substitute for ' and E, and evaluate K, = (7 - 1)mc2 =| 6mc?

K.
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41 [ L 1]
Picture the Problem (a) and (») The initial speed of the particle can be found from its

total energy and its total energy found using £ = K + E, = yE,. (c) We can solve
E* =p°c®+ (mcz)2 for the initial momentum of the system. In (d) and (e) we can use

conservation of energy and conservation of momentum to find the total kinetic energy
after the collision and the mass of the system after the collision.

(a) Express the total energy of the E=K+E,=yE,
particle:
Because the kinetic energy of the 2E,+E,=yE, and y =3

particle is twice its energy:

Solve the factor yfor u: 1
u=c|l-—
V4
Substitute for yand evaluate u: 1 8
u=cl-—=c|=-=|0943c
3 9
(b) The total energy of the particle E=K+E,=yk,=3E,
is:
Substitute for £, and evaluate E: E = 3(1 MeV) =| 3MeV
(c) The initial momentum of the E? = p*ct+ (mCZ)2

incoming particle is related to its
energy and mass according to:

Solve for p: b= 1/ _(mcz)z
c

Substitute for £ and mc?® and 1 5 ) \/§EO

- - p="NBE) ~(E) =~
simplify to obtain: c c
Substitute for Ey and evaluate p: 1MeV

° P » :M: 2.83MeV/c

(d) and (e) From conservation of E; = E, =5MeV

energy we have:
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From conservation of momentum
we have:

The final momentum of the system
is related to its energy and mass

according to:

Solve for Ex:

Substitute numerical values and
evaluate Ef:

Because E, = mc”

The total Kinetic energy after the
collision is given by:

General Relativity

*42 e

Dy = Di

2 22 2
Ef = pic” + Ey

Eq =\/Ef2_pf262

Ep =+/(5EMeV) —(2.83MeVic ) c?

=4.122 MeV
My, = E—‘;O =| 4.12MeV/c*
c

K, = E;, — E, =5MeV —4.122 MeV
=| 0.878 MeV

Picture the Problem Let m represent the mass equivalent of a photon. We can equate the
change in the gravitational potential energy of a photon as it rises a distance L in the
gravitational field to 2Afand then express the wavelength shift in terms of the frequency

shift.

The speed of the photons in the light
beam are related to their frequency
and wavelength:

Differentiate this expression with
respect to A to obtain:

Approximate dfldA by AfIAL and
solve for Af:

Divide both sides of this equation by
f'to obtain:

C
= ﬂ = —
c=fA=f P
ﬂz 172 _c
dl A
C
Af:—?Ai
C
N M m
S ¢ A
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Solve for AZ: A= 1)

A
The change in the energy of the AE =AU =mgL
photon as it rises a distance L in a
gravitational field is given by:
Because AE = hAf: hAf = mgL )
Letting m represent the mass E=mc* =hf (3)
equivalent of the photon:
Divide equation (2) by equation (3) hAf _mgl  Af _ gL
to obtain: hf  mc? f
Substitute for Aflfin equation (1): A= _8LA

- 2
c

Substitute numerical values and Ad—— (9.81m/82)(100 m)(632.8nm)
evaluate AZ: - (3 %108 m /S)Z

=| -6.90x10? nm

43 oo

Picture the Problem In a freely falling reference frame, both cannonballs travel along
straight lines, so they must hit each other, as they were pointed at each other when they
were fired.

A4 eee

Picture the Problem Consider the turntable to be a giant hollow cylinder in space that is
spinning about its axis. Someone on the inside surface of the cylinder would experience
a centripetal acceleration caused by the normal force of the surface pushing them toward
the rotation axis. Alternatively, they can consider that they are not accelerating but a
gravitational field g = @’sf is pushing them away from the axis (T is away from the

axis). This is the principle of equivalence. From this perspective, up is toward the axis
and the points closer to the axis are at the higher gravitational potential. (Just like the
electric field points in the direction of decreasing electric potential, the gravitational field
points in the direction of decreasing gravitational potential.)

(@) From the time dilation equation
we have: 4
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At —At, 1 1
At, /4
Because ralc << 1 (see Problem 1 1_1£ 1 r’w®
14): y 2 ¢? 2¢?
Substitute to obtain: At — At 1 22 . 2 0?
At, T2 T2
(b) The pseudoforce is given by: I, =—-ma

where «a is the acceleration of the non-
inertial reference frame.

In this case a is the centripetal a=—-ro= F,=F = mro?®
acceleration:

To relate this problem to Equation 39-31, point 2 is a distance » from the axis and
point 1 is on the axis. The term in parentheses on the right hand side of Equation
2 is ¢ — ¢, Which translates to ¢ — ¢. Because ¢ is at a lower potential than ¢,
this term is negative. Hence:

@, — b, :—jg-dﬁ = —j-a)zrf-d? :—ja)zrdr = —1r’e’
0 0 0

From Equation 39-31: At — At 1
! S = 4)
0
1
=7(—%r ‘o’
r’o’
L2

General Problems

45
Picture the Problem We can use the definition of yand the time dilation equation to find
the speed of the muon.



(@) From the definition of ywe
have:

Solve for u/c:

Relate the mean lifetime of the
muon to its proper lifetime:

Substitute in the expression for u/c
to obtain:

Substitute numerical values and
evaluate u/c:

46 .

Relativity

1337

Picture the Problem We can use the relativistic Doppler shift, when the source and the

receiver are receding, to relate the frequencies of the two wavelengths and ¢ = fA to

express the ratio of the wavelengths as a function of the speed of the galaxy.

When the source and receiver are
moving away from each other, the

relativistic Doppler shift is given by:

Use the relationship between the

wavelength and frequency to obtain:

Because ' = 24,:
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Solve for v/c:

*47 e

v_3 . ,-[0600c
c 5

Picture the Problem We can use Equation 39-12, the inverse time transformation
equation, to relate the elapsed times and separations of the events in the two systems to
the velocity of S’ relative to S. We can use this same relationship in (b) to find the time at

which these events occur as measured in S'.

(@) Use Equation 39-12 to obtain:

Because the events occur
simultaneously in frame 5,
At =0 and:

Solve for v to obtain:

Substitute for Ar and Ax and
evaluate V:

Because At =t,—t, =-0.5y:
() Use the inverse time

transformation to obtain:

Substitute numerical values and
evaluate £’ and #':

At'=t,—t= 7[02 _tl)_clz(xz _xl):|

=y[At—l2Ax}
C
0=Ar——Ax
C
c*At
V=
Ax
2 —
o (0.5y-1y) ey
20¢-y-1.0c-y

S'movesin the negative x direction.

VX,
' V.Xz tz_ C2
Ly=7yt~— 2 >
\%
1-=
C

0.5y (- 0.50)(22.06 -y)
tz, — tlf — C

sy

2
C
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48  ee
Picture the Problem We can use the relationship between distance, speed, and time and
the length contraction relationship to find the speed of the ship relative to the earth. The
elapsed time between the departure of the spaceship and the receipt of the signal at earth
is the sum of the travel time to the distant star system and the time it takes the signal to
return to earth.

(a) Express the travel time as A = L'_L
measured on the spaceship: u
Solve for yu: _ L

" At'
Substitute numerical values and _12c-y

= =0.8¢
evaluate yu: 15y

or

1 08¢
L
C2

Solve for u to obtain: u=|0.625¢
(b) The elapsed time 7 before earth T L N L
receives the signal is the sum of the u c
travel time to the distant star system
and the time it takes the signal to
return:
Substitute numerical values and pol2cy l12cy 312y
evaluate T 0.625¢ c
49 e

Picture the Problem We can use conservation of energy to find yin the CM frame of
reference and then use the definition of yto find the speed u of the projectile proton. We
can then use the velocity transformation equation to find the speed and kinetic energy of
this proton in the laboratory frame of reference.

E
VE = E; :>7’:Ff

Use conservation of energy to find »
in the CM frame of reference:

E;and E; are: E, =938Mev +938MeV =1876 MeV
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Substitute Ej and Ef and evaluate y:

Express yas a function of the speed
u of the projectile proton:

Solve for u to obtain:

Substitute for yand evaluate u:

Transform to the laboratory frame
and find u":

The kinetic energy of the moving
proton in the laboratory’s frame is
given by:

Substitute for 1 and Ey and evaluate
K.

and
E; =938Mev +938MeV +135MeV
= 2011 MeV
y = 2011MeV _1072
1876 MeV
y= 1
2
-5
C
u=c /1—i2
YV

u=c /1— (1 0]%2)2 =0.360c¢

u—v _ 0.360c—(-0.360c)

YT v T (0.360c)(—0.360c)
-7 1- Z
C C
—0.637¢
K, :(7|_ l)Eo
where
oo 1
Wy
6’2
= ! =1.30
(0.637¢)
1- 2
C

K, =(1.30-1)(938MeV)=| 281MeV

Remarks: In Problem 55 we show that the threshold kinetic energy of the projectile

is given by K, =

= (Zm"‘ +mein )(Z M _Zmin )CZ :

2m



50 o0

Relativity 1341

Picture the Problem We can use A7, =L /u , where u is the speed of the bullet relative

to the rocket, to find the elapsed time in the frame of the rocket. In (») and (c) we can
proceed similarly, finding the speed of the bullet relative to the rocket as seen from the
ground frame in (b) and, in (c), using the speed of the bullet relative to the rocket.

(@) In the rocket frame:
Substitute numerical values and
evaluate Az

(b) In the ground frame of reference,
the elapsed time is given by:

The speed of the ground is given by:

Substitute for uoet and ¥ and
evaluate uground:

The speed of the bullet relative to
the rocket as seen from the ground
is:

Substitute for L, and ugoung and
evaluate Lground:

Substitute numerical values in
equation (1) and evaluate Atgroung:

L L
At=At) =+ =2
u 0.8c
1000m
At = =|4.17
0.8(2.998x10° ms) a
L
Atground = (1)
u

where u' is the speed of the bullet relative
to the rocket as seen from the ground.

u _ urocket + V
ground Vu ound
1+ 972
C
0.6¢ + 0.8¢
Uground = =0.946¢
1. (O.8c)£0.60)
C

1u'=0.946¢ —0.6¢ = 0.346¢

_L uzround

Lground = }/p =Lp 1-— gcz
0.6¢c)
Lground = (1000m 1_((:—2)

=800m

N 800m
o 0,346(2.998x10° m/s )

=[7.71.s
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(¢) In the bullet’s frame of L
. .. Al‘bullet - 2
reference, the elapsed time is given Upyiiet
by:
The length L’ of the rocket in the L u’
A i L'=—p=L 1— bullet
bullet’s frame is given by: ¥ p 2

Substitute in equation (2) to obtain: L u?
Aty = — 1= buya
Upyitet ¢

Substitute numerical values and evaluate Atyyet:

1000m (0.8¢)
Al = 1- = 2.50
ot 0.8(2.998x10° m/s) c? o

*5]  ese
Picture the Problem We can use conservation of energy to express the recoil velocity of
the box and the relationship between distance, speed, and time to find the distance
traveled by the box in time As = L/c. Equating the initial and final locations of the center
of mass will allow us to show that the radiation must carry mass m = Elc”.

i E
(a) Apply conserva_tlon of L My=p =0
momentum to obtain: c
Solve for v - E
Mc
(b) The distance traveled by the box d = vAf = vL
intime At = Llc is: c
Substitute for v from (a): J L E ) LE
c\ Mc Mc?
(c) Let x = 0 be at the center of the v _—amL
box and let the mass of the photon M Mim

be m. Then initially the center of
mass is at:



When the photon is absorbed at the
other end of the box, the center of
mass is at:

Because no external forces act on
the system, these expressions for
xcm Must be equal:

Solve for m to obtain:

Because Mc? is of the order of 10™° J
and E = hf'is of the order of 1 J for
reasonable values of £, E/Mc* << 1
and:

52 o00

~MEL (,
MCZ +m >
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2]
Mc

CM

-MEL
~imL | Mc®

M+m

EL
m(%L - Ve ﬂ

M+m

Picture the Problem We can apply a velocity transformation equation to find the speed
of the particle and use the distance and time transformation equations to find the distance
and direction the particle traveled from ¢/, to ¢, and the time the particle traveled as

observed in frame S.

(@) The velocity transformation
equation for motion at speed v along
the x axis is:

Evaluate u, for u,’ = —c/3 and
v =0.6c:

(b) The distance traveled by the
particle from ¢, to 7' is given by:

To find x,, we must first find x,’ and
At

u'+v
Y
1+—
2
1 3
-—c+—c
u, = 5 =|ic
sl
gc —50
1+ —F———=
cZ
Ax =x; —x 1)

x, =10m—(60 m/c)(%j =-10m

and

At'=t,'—t'=60m/c = 200ns
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X is related to x,’ through the
relativistic transformation:

Substitute numerical values and
evaluate x:

x1 IS given by:

Substitute numerical values and
evaluate x1:

Substitute numerical values in
equation (1) and evaluate Ax:

(c) The time the particle traveled is
given by:

Express and evaluate #:

Express and evaluate #,:

Substitute in equation (2) and
evaluate Az

x, = 7(x, +vAt') = Xyt VA;’
1Y
C2
%z—wm+®6demQ=%5m
J (0.6¢)
1- 2
C
X = = 1 >
1-V
cZ
v =M _1o5m
(0.6¢)
1- 2
C

Ax=325m-12.5m=| 20.0m

At=t,—t, @)

=—————  =7.50m/c =25.0ns

At =225ns—-25ns =| 200ns
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53 o000
Picture the Problem We can evaluate the differentials of Equations 39-19¢, b, and ¢
and 39-10 and express their ratio to obtain expressions for a,’, a,’, and a.".

From Equation 39-19a we have:

From Equation 39-10:

dt' = 7d(t—v—fj =yt -2 ax =2 L 7(1_ Vil jdt
C c

¢t dt

Divide du,’ by dt' to obtain:

2 ux 2
vu v
1-— -
,_du/ ( ¢ j [ ¢ ) du, 1
a, = a . = oy dt = y353ax
1-—x |dt _
7( 02 j ]/(1 c2 j
where 6 =1— w;x
c
Proceeding in exactly the same , |1 v,
manner, one obtains: a, = 252 a,+ o a,

and an identical expression for a.” with z
replacing y.

54 oo

Picture the Problem Without loss of generality, we’ll consider the absorption case.
We’ll assume that the electron is initially at rest and that it travels with a speed v after it
absorbs the photon. Applying the conservation of energy and the conservation of
momentum will lead us to an absurd conclusion that, in turn, will force us to abandon our
initial assumption that an electron can absorb a photon. Such an argument is known as a
reductio ad absurdum argument.



1346  Chapter 39

When the electron absorbs a photon, p=ymy
the conservation of relativistic

momentum requires that its

momentum become:

From the conservation of energy: mc? + pe = yme® = p=(y—Dme
Equate these expression for p to ymy = (;/ — 1)mc
obtain:
Solving for v yields: -1

V= [—7 jc @

v
Square both sides of the equation to 1\ 2 _
obtain: V2= (7_1) 2=r 227/+102 (2)
e v

From the definition of y: ) 1 c?

Vo= 2= "2 2

1V v
C‘2

Solve for v* to obtain: ¥ -1

V2 = > 02

v
Substitute for v in equation (1) and -1, p2-2y+l,
simplify to obtain: > € = 2 ¢
v e
or

-1=-"2y+1=y=1

Substitute for yin equation (1) and 1-1
evaluate v: V= c=0

Our assumption that an electron can absorb a photon has led to the
contradictory conclusion that its speed after the absorption is zero. Hence,
we must conclude that the electron cannot absorb a photon.

*B5  eee

Picture the Problem Let m; denote the mass of the incident (projectile) particle. Then
2min = mj + mrger aNA We can use this expression to determine the threshold kinetic
energy of protons incident on a stationary proton target for the production of a proton—
antiproton pair.



Consider the situation in the center
of mass reference frame. At
threshold we have:

In the laboratory frame, the target is
at rest so:

We can, therefore, write:

For the incident particle:

Express Ky, in  terms of the rest
energies:

Substitute to obtain:

Solve for K, to obtain:

Relativity 1347

E? _pzcz _ Zmﬁncz
Note that this is a relativistically invariant

expression.

Ewer = E = Ey,

target

(Ei +Et,0)2 - pict = (meincz)z

Ei2 - pizc2 = Ei?o

and
E, = E,+ K,

where Ky, is the threshold kinetic energy of tt
incident particle in the laboratory frame.

(Et,O + Ei.0)2 +2KE, = (Zmﬁncz)z
where
E,+E,= Zmﬁncz

and
_ 2
E t0 — mtargetc

22 2 _ 2)2
(Zmﬁnc ) +2Kthmtargetc _(Zmﬁnc )

K, = (Z m;, + Zmﬁn )(Z Mg, — zmin )02

tharget

For the creation of a
proton - antiproton pair in a proton -
proton collision:

Substitute to obtain:

me =2m,
zmﬁn = 4mp
and

Mygrger = My

3 (2mp + 4mp )(4mp - 2mp )02

th —

Zmp

o en)et —
2m, P
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56 00

in agreement with Problem 40.

Picture the Problem We’ll solve the problem for the general case of a particle of rest
mass M decaying into two identical particles each of rest mass m.

In the center of mass reference
frame:

Solve for u/c to obtain:

Next we determine the speed v of
the laboratory frame relative to the
CM frame. The energy of the
particle of rest mass M is:

Use Equation 39-18a to express uap,
the speeds of the decay products in
the laboratory reference frame:

In this problem we have:

Substitute to obtain:

Mc? = 2mc? = 2ymc?

u_ 1_(2_"4j2
c M

where u is the speed of each of the decay
particles in the CM frame.

7CMM02

where

Yem = >

where + refers to the fact that one of the
decay particles will travel in the direction
of M, and the other in the direction

opposite to that of M.
2my,
Yom =4, Pow =0.968, =0.6,
0
and £ =0.8
C
4y = 0.968+0.8 -~ 0.99%c
1+(0.968)(0.8)

and
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0.968-0.8

He =1 (0.968)(0.8)
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=| 0.745¢

Picture the Problem We can write the components of the stick in its reference frame and
then apply the Lorentz length contraction equation to obtain the given result.

In its reference frame, the stick has x

and y components:

Only Ly, is Lorentz contracted to:

Hence, the length in the reference

frame S’ is:

The angle that L' makes with the x’

axis is given by:

58 o00

L, =L,cos6®

and

L, :Lpsme

L' :&
4

bl el )

2

2
= Lp[cos 4 +sin

1/2
2 HJ

7
L' i
tang = 2 — sin@ _
L' cosd
Y

ytan@

Picture the Problem We can express the tangent of the angle »" makes with the x’ axis
and then use the velocity transformation equations to obtain the given result.

Express the tangent of the angle '

makes with the x’ axis:

Substitute for u,” and u,":

Substitute for u, and u«, and simplify

to obtain:

!

u,
tanH’z—),
ux
uy
vu
%)
u
tan@ = € /- 4
ux -V y(ux _V)
vux
1- 7
tan g — usingd sing

y(ucos6—v)

y(cos@—v/u)
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*59 e00
Picture the Problem We can use the expressions for P and £ in S together with the

relations we wish to verify and the inverse velocity transformation equations to establish
2
the condition u'? = (u')* + (uy')z +(.) =v2 + — and then use this result to verify

the given expressions for p.’, p,/, p." and E'/c.

In any inertial frame the momentum - mu mc®
. p=—and £ =——
and energy are given by: u? u?
1-2 -2
C2 C2
where U is the velocity of the particle and
u is its speed.
The components of pin S are: mu mu
po=T—= P~ — , and
-4 1-4
c c
J— muZ
pz - uz
1-=
c
Because u, = u. =0 and u, = u: p.=p,=
and
_ mu
py - uz
e
Substituting zeros for p, and p. in , vE vE ,
: : p/=y70-—|=-r—=.p'=p,
the relations we are trying to show
yields: p.'=0,and
E' E E
— =y —- 0= y—
c c c
In S’ the momentum components , mu ' , mu
p)=—F—=.,p/=—F—=, and
are: w2 0
1- 2 1- 2
c c
I __ muz’
p. = 2
1-—
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The inverse velocity transformations , u,.—v , u,
. U, =—F———,u, = , and
are: Vid i
1-— 1-—2
C cz
! uZ
u' =
vu
l_ z
cZ
Substitute u, = u. = 0 and u, = u to u'=-v,u/=m, andu'=0
obtain:
: 2 _ r\2 )2 2
Thus: u = (ux ) + (uy ) + (uz )
2
u
= V2 + —
v
First we verify that p.' = p. = 0: , m0)
P.=—F/—>=P:-=
u!
1- 2
c

Next we verify that p,’ = p,:

2
C

Next we verify that p "= y(px —Ej :
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C v u v VZ u2 v
=212 =212
C C C C C C
»w
=|-=F
02
E'’ E E
Finally, we verify that — = y(——ﬂj =y—,0rE'=yE:
C C C C

2
v ou v v oou v
1-——-—1-— l1-———|1-—
c® c c c® c c
The x, y, z, and ¢ transformation equations ~ x' = y(x — v;)
are:
y'=y
z'=z
and
t'=y t—E
02
The x, y, z, and ct transformation equations v
are: x'=y| x——ct
c
y'=y
z'=z
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The p,, p,, p-, and E/c transformation ! v E
equations are: p =7\ p,———
Cc C
p,=p,
p.'=p.
and
E' [E v ]
—_— }/ —_— __px
C C C

Note that the transformation equations for x, y, z, and ct and the transformation equations
for p., p,, p-, and E/c are identical.

60  eee

Picture the Problem The Lorentz transformation was derived on the basis of the
postulate that the speed of light is ¢ in any inertial reference frame. Thus, if the clocks in
Sand S’ are synchronized at 7 = ¢ = 0, then it follows from the Einstein postulate that 7% =
A2 and 2 = Pt or P — ¢ = 0 = 2 — %% In other words, the quantity s*> = #* — ¢%* = 0
is a relativistic invariant, which can also be written as x* + 1 + z* — ¢%* = 0.

Using the Lorentz transformation equations for x, y, z, and ¢ we have:
X2+ y2+ 2% = (cf)? = y AP = 2vxt + v + P + 22— p AP - 2vxt + v

The terms linear in x cancel and the terms ~ y%*(1 —v%c?) = x°
in x* combine to give:

The coefficients of the terms in (c?)® give:  y*(v¥c® —1)=-1

"2 _ ¢*r'* as required by the Einstein postulate.

Thus, #* — ¢ = r
61 00

Picture the Problem We’ll use Equation 39-27 to show that this quantity has the value
—mc” in both the S and S’ reference frames.

From Equation 39-27, the E? = p*c?+ (mcz)z
relationship between total energy E,
momentum p, and rest energy mc?
is:

or
Pt —E? = —(mcz)z
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Divide both sides of this equation by
¢’ to obtain:

We can relate p to p,, p,, and p.:

Substitute for p? in equation (1) to
obtain:

Because m is the mass of the
particle in its rest frame, it is
constant. Hence:

2
E
pz—[—] = —(mc)* 1)
p?=pi+pi+p:

2
o ere(E] e
C

, (EY o
p° —| — | must be a relativistic invariant.
c

Also, in Problem 59 we saw that the components of p and the quantity E/c transform like
the components of » and the quantity cz. In Problem 60 we demonstrated that * — (c)? is
a relativistic invariant. Consequently, p> — (E/c)* must also be relativistically invariant.

*62 (Y1}

Picture the Problem We can use the inverse Lorentz transformation for time to show
that the observer will conclude that the rod is bent into a parabolic shape.

In frame .S where the rod is not
moving along the x axis, the height
of the rod at time ¢ is:

The inverse Lorentz time
transformation is:

Express y'(¢) in the moving frame of
reference:

Evaluate y'(¢) at #/ = 0 to obtain:

V(e) =25 ®

Because equation (1) is the equation of a parabola, we've shown that the
moving observer will conclude that the rod is bent into a parabolic shape.

Because the coefficient of x° is negative, the parabola is concave downward.




