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Chapter 40 
Nuclear Physics 
 
Conceptual Problems 
 
1 •  
Determine the Concept Two or more nuclides with the same atomic number Z but 
different N and A numbers are called isotopes. 
 
(a) Two other isotopes of 14N are: 
 

15N, 16N 

(b) Two other isotopes of 56Fe are: 
 

54Fe, 55Fe 

(c) Two other isotopes of 118Sn are: 54Fe, 55Fe 
   

2 •  
Determine the Concept The parent of that series, 237Np, has a half-life of 2×106 y that is 
much shorter than the age of the earth. There is no naturally occurring Np remaining on 
earth. 
 
3 •  
Determine the Concept Generally, β-decay leaves the daughter nucleus neutron rich, 
i.e., above the line of stability. The daughter nucleus therefore tends to decay via β – 

emission which converts a nuclear neutron to a proton. 
 
*4 •  
Determine the Concept 14C is found on earth because it is constantly being formed by 
cosmic rays in the upper atmosphere in the reaction 14N + n → 14C + 1H. 
 
5 •  
Determine the Concept It would make the dating unreliable because the current 
concentration of 14C is not equal to that at some earlier time. 
 
6 •   
Determine the Concept An element with such a high Z value would either fission 
spontaneously or decay almost immediately by α  emission  (see Figure 40-3). 
 
7 •  
Determine the Concept The probability for neutron capture by the fissionable nucleus is 
large only for slow (thermal) neutrons. The neutrons emitted in the fission process are fast 
(high energy) neutrons and must be slowed to thermal neutrons before they are likely to be 
captured by another fissionable nucleus. 
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8 •  
Determine the Concept The process of  ″slowing down″ involves the sharing of energy 
of a fast neutron and another nucleus in an elastic collision. The fast particle will lose 
maximum energy in such a collision if the target particle is of the same mass as the 
incident particle. Hence, neutron-proton collisions are most effective in slowing down 
neutrons. However, ordinary water cannot be used as a moderator because protons will 
capture the slow neutrons and form deuterons. 
 
9 •   
Determine the Concept Beta decay occurs in nuclei that have too many or too few 
neutrons for stability. In β decay, A remains the same while Z either increases by 1 (β − 
decay) or decreases by 1 (β + decay). 
 
(a) The reaction is: β01

22
10

22
11 NeNa ++→ ⇒ +β decay 

 
(b) The reaction is: β01

24
12

24
11 MgNa −+→ ⇒ −β decay 

 
10 •  
               Advantages 

 
           Disadvantages 

The reactor uses 238U, which, by 
neutron capture and subsequent 
decays, produces 239Pu. Thus 
plutonium isotope fissions by fast 
neutron capture. Thus, the breeder 
reactor uses the plentiful uranium 
isotope and does not need a 
moderator to slow the neutrons 
needed for fission. 

The fraction of delayed neutrons 
emitted in the fission of 239Pu is very 
small. Consequently, control of the 
fission reaction is very difficult, and 
the safety hazards are more severe than 
for the ordinary reactor that uses 235U 
as fuel.  
 

 
11 •  
(a) False. The nucleus does not contain electrons. 
 
(b) True. 
 
(c) False. After two half-lives, three-fourths of the radioactive nuclei in a given sample 
have decayed. 
 
(d) True (given an unlimited supply of 238U). 
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12 •  
Determine the Concept Pressure and temperature changes have no effect on the internal 
structure of the nucleus. They do have an effect on the electronic configuration; 
consequently, they can influence K-capture processes. 
 
*13 •  
Determine the Concept Knowing the parent nucleus and one of the decay products, we 
can use the conservation of charge, the conservation of energy, and the conservation of 
the number of nucleons to identify the participants in the decay. 
 
(a) beta decay of 16N 
 

Q+++→ − νβ 0
0

0
1

16
8

16
7 ON  

(b) alpha decay of 248Fm 
 

Q++→ HeCfFm 4
2

244
98

248
100  

(c) positron decay of 12N 
 

Q+++→ + νβ 0
0

0
1

12
6

12
7 CN  

(d) beta decay of 81Se 
 

Q+++→ − νβ 0
0

0
1

81
35

81
34 BrSe  

(e) positron decay of 61Cu 
 

Q+++→ + νβ 0
0

0
1

61
28

61
29 NiCu  

(f) alpha decay of 228Th 
 

Q++→ HeRaTh 4
2

224
88

228
90  

 
*14 •  
Determine the Concept We can use the information regarding the daughter nuclei to 
write and balance equations for each of the reactions. 
 
(a) BaSrn+3Pu 147

56
90
38

1
0

240
94 +→  

 
(b) SenHeGe 75

34
1
0

4
2

72
32 +→+  

 
(c) XenHI 128

54
1
0

2
1

127
53 +→+  

 
(d) RhAgn2nU 121

45
113
47

1
0

1
0

235
92 ++→+  

 
(e) CoHLiMn 59

27
3
1

7
3

55
25 +→+  

 
(f) Pu NpNp;UU;nU 239

94
0
0

0
1

239
93

239
93

0
0

0
1

239
92

239
92

1
0

238
92 ++→++→→+ −− νβνβ  
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Estimation and Approximation  
 
15 •  
Picture the Problem There is no table of half lives in the text although the information is 
mentioned in the alpha particle discussion for alpha decay (about 15 orders of magnitude).  
Mass density in an atom ranges roughly as the cube of the radius of an atom to that of the 
nucleus, also about 15 orders of magnitude.  Nuclear masses only range 2 orders of 
magnitude.   
 

Material property 
 

Ratio (order of magnitude)

Mass density 
 

1015 

Half life 
 

1015 

Nuclear masses 2 
 
16 ••  

Picture the Problem The mass of 235U required is given by ,235
A

235 M
N
Nm =  where 

M235 is the molecular mass of 235U and N is the number of fissions required to produce 
1020 J. The mass of deuterium and tritium required can be found similarly. 
 
(a) Relate the mass of 235U required 
to the number of fissions N required: 235

A
235 M

N
Nm =                      (1) 

where M235 is the molecular mass of 235U. 
 

Determine N: 
 fissionper 

annual

E
EN =  

 
Substitute numerical values and 
evaluate N: 

30

19

20

1013.3
eV

J101.60MeV200

J10

×=

×
×

= −N
 

 
Substitute numerical values in equation (1) and evaluate m235: 
 

( ) kg1020.5g/mol235
nuclei/mol1002.6
1013.3 6

23

30

235 ×=
×

×
=m  
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(b) Relate the mass of 2H and 3H 
required to the number of fusions N 
required: 

HH
A

HH 3232 ++
= M

N
Nm                      (2) 

where 
HH 32 +

M is the molecular mass of  
2H + 3H. 
 

Determine N:  
 fissionper 

annual

E
EN =  

 
Substitute numerical values and 
evaluate N: 

31

19

20

1047.3
eV

J101.60MeV18

J10

×=

×
×

= −N
 

 
Substitute numerical values in equation (2) and evaluate 

HH 32 +
m : 

 

( ) kg1088.2g/mol5
nuclei/mol1002.6
1047.3 6

23

31

235 ×=
×

×
=m  

 
 Properties of Nuclei 
 
*17 •   
Picture the Problem To find the binding energy of a nucleus we add the mass of its 
neutrons to the mass of its protons and then subtract the mass of the nucleus and multiply 
by c2. To convert to MeV we multiply this result by 931.5 MeV/u. The binding energy 
per nucleon is the ratio of the binding energy to the mass number of the nucleus. 
 
(a) For 12C, Z = 6 and N = 6. Add the mass of the neutrons to that of the protons: 
 

u098940.12u1.0086656u007825.1666 np =×+×=+ mm  

 
Subtract the mass of 12C from this result: 

 
( ) u0.098940u12u098940.1266

Cnp 12 =−=−+ mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV2.92
u1

MeV/5.931u098940.0
2

22
b =×=∆=

cccmE  
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and the binding energy per nucleon is MeV68.7
12
MeV2.92b ==

A
E

 

 
(b) For 56Fe, Z = 26 and N = 30. Add the mass of the neutrons to that of the 
protons: 
 

u463400.56u1.00866503u007825.1263026 np =×+×=+ mm  

 
Subtract the mass of 56Fe from this result: 

 
( ) u0.528458u934942.55u463400.563026

Cnp 12 =−=−+ mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV492
u1

MeV/5.931u0.528458
2

22
b =×=∆=

cccmE  

and the binding energy per nucleon is MeV79.8
56
MeV492b ==

A
E

 

 
(c) For 238U, Z = 92 and N = 146. Add the mass of the neutrons to that of the 
protons: 
 

u984990.239u1.008665146u007825.19214692 np =×+×=+ mm  

 
Subtract the mass of 238U from this result: 

 
( ) u934207.1u050783.238u984990.23914692

Unp 238 =−=−+ mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV1802
u1

MeV/5.931u934207.1
2

22
b =×=∆=

cccmE  

and the binding energy per nucleon is MeV57.7
238

MeV1802b ==
A
E
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18 •   
Picture the Problem To find the binding energy of a nucleus we add the mass of its 
neutrons to the mass of its protons and then subtract the mass of the nucleus and multiply 
by c2. To convert to MeV we multiply this result by 931.5 MeV/u. The binding energy 
per nucleon is the ratio of the binding energy to the mass number of the nucleus. 
 
(a) For 6Li, Z = 3 and N = 3. Add the mass of the neutrons to that of the protons: 
 

u049470.6u1.0086653u007825.1333 np =×+×=+ mm  

 
Subtract the mass of 6Li from this result: 

 
( ) u0.034348u015122.6u049470.633

Lnp 6 =−=−+
i

mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV0.32
u1

MeV/5.931u0.034348
2

22
b =×=∆=

cccmE  

and the binding energy per nucleon is MeV33.5
6
MeV0.32b ==

A
E

 

 
(b) For 39K, Z = 19 and N = 20. Add the mass of the neutrons to that of the 
protons: 
 

u321975.39u1.00866502u007825.1192019 np =×+×=+ mm  

 
Subtract the mass of 39K from this result: 

 
( ) u0.358268u963707.38u321975.392019

Knp 39 =−=−+ mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV334
u1

MeV/5.931u0.358268
2

22
b =×=∆=

cccmE  

and the binding energy per nucleon is MeV56.8
39
MeV334b ==

A
E

 

 
(c) For 208Pb, Z = 82 and N = 126. Add the mass of the neutrons to that of the 
protons: 
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u733440.209u1.008665126u007825.18212682 np =×+×=+ mm  

 
Subtract the mass of 208Pb from this result: 

 
( ) u756804.1u976636.207u733440.20912682

Pbnp 208 =−=−+ mmm  

 
Multiply the mass difference by c2 and convert to MeV: 
 

( ) ( ) MeV1636
u1

MeV/5.931u756804.1
2

22
b =×=∆=

cccmE  

and the binding energy per nucleon is  MeV87.7
208

MeV1636b ==
A
E

 

 
19 •  
Picture the Problem The nuclear radius is given by 31

0 ARR = where R0 = 1.2 fm. 

 
(a) The radius of 16O is: ( )( ) fm02.316fm2.1 31

O16 ==R  

 
(b) The radius of 56Fe is: ( )( ) fm59.456fm2.1 31

Fe56 ==R  

 
(c) The radius of 197Au is: ( )( ) fm98.6197fm2.1 31

Au197 ==R  

 
20 •  
Picture the Problem The nuclear radius is given by 31

0 ARR = where R0 = 1.2 fm. 
 
The radii of the daughter nuclei are 
given by: 
 

31
0 ARR =                                (1) 

Because the ratio of the mass 
numbers of the daughter nuclei is 3 
to 1: 
 

(239)
4
3

1 =A and A2 =
1
4

(239)  

Substitute in equation (1) to obtain: 
 ( ) fm77.6

4
2393fm1.2

1/3

1 =⎟
⎠
⎞

⎜
⎝
⎛ ×

=R  

and 

( ) fm69.4
4

239fm1.2
1/3

2 =⎟
⎠
⎞

⎜
⎝
⎛=R  

 
*21 ••  
Picture the Problem The speed of the neutrons can be found from their thermal energy. 
The time taken to reduce the intensity of the beam by one-half, from I to I/2, is the half-
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life of the neutron. Because the beam is monoenergetic, the neutrons all travel at the same 
speed. 
 
(a) The thermal energy of the 
neutron is: ( )( )

meV7.25

J101.60
eV1J1011.4

J1011.4

K27325J/K1038.1

19
21

21

23
thermal

=

×
××=

×=

+×=

=

−
−

−

−

kTE

 

 
(b) Equate Ethermal and the kinetic 
energy of the neutron to obtain: 
 

2
n2

1
thermal vmE =  

Solve for v to obtain: 

n

thermal2
m

Ev =  

 
Substitute numerical values and 
evaluate v: 

( ) km/s22.2
kg101.67

J104.112
27

21

=
×
×

= −

−

v  

 
(c) Relate the half-life, ,21t to the 
speed of the neutrons in the beam: 
 

v
xt =21  

Substitute numerical values and 
evaluate :21t  

min1.10

s60
min1s086

km/s2.22
km 1350

1/2

=

×==t
 

 
22 •  
Picture the Problem We can use the definition of density, the equation for the volume of 
a sphere, and the given approximation to calculate the density of nuclear matter in grams 
per cubic centimeter. 
 
Express the density of a spherical 
nucleus: 
 

V
m

=ρ  

The approximate mass is: 
 

( )Am kg1066.1 27−×=  

Express the volume of the nucleus: 
 

( ) ARARV 3
03

4331
03

4 ππ ==  
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Substitute for m and V to obtain: ( )

( )
3
0

27

3
03

4

27

4
kg1066.13

kg1066.1

R

AR
A

π

π
ρ

−

−

×
=

×
=

 

 
Substitute numerical values and 
evaluate ρ: 

( )
( )

314

317

3

27

g/cm1029.2

kg/m1029.2
fm2.14

kg1066.13

×=

×=

×
=

−

π
ρ

 

 
23 ••  
Picture the Problem The separation of the nuclei when they are just touching is the sum 
of their radii, which is given by .31

0 ARR =  
 
The electrostatic potential energy of 
the system is given by: 
 

( )( )
LaMo

LaMo21

RR
eZeZk

R
qqkU

+
==  

where R is the distance from the center of 
the 95Mo nucleus to the center of the 139La 
nucleus. 
 

The radii of the nuclei are: 1/3
MooMo ARR =  and 1/3

LaoLa ARR =  
 

Substitute for RMo and RLa and 
simplify to obtain: 
 

( )( )

( )( )
( )1/3

La
1/3
Mo

LaMo

o

2

1/3
Lao

1/3
Moo

LaMo2

AA
ZZ

R
ke

ARAR
ZZkeU

+
=

+
=

 

 
Substitute numerical values and evaluate U: 
 

( )( )
( )

( )( )
( )
MeV295

J101.60
eV1J1071.4

39159
5742

m101.2
C101.60/CNm108.99

19
11

1/31/315

219229

=
×

××=

+×
××

=

−
−

−

−

U
 

 
*24 ••  
Picture the Problem The Heisenberg uncertainty principle relates the uncertainty in 

position, ∆x, to the uncertainty in momentum, ∆p, by 
 
∆x∆p ≥ 1

2
h. 

 
Solve the Heisenberg equation for 
∆p: 
 

x
p

∆
≈∆

2
h
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Substitute numerical values and 
evaluate ∆p: ( )

m/skg1025.5
m10102

sJ1005.1

21

15

34

⋅×=

×
⋅×

≈∆

−

−

−

p
 

 
The kinetic energy of the electron is 
given by:  
 

pcK =  
 

Substitute numerical values and 
evaluate K: 
 

( )( )

MeV88.9
J101.60

eV1J1058.1

m/s103m/skg1025.5

19
12

821

=
×

××=

×⋅×=

−
−

−K

 

 
This result contradicts experimental observations that show that the energy of electrons in 
unstable atoms is of the order of 1 to 1000 eV. 
 
Radioactivity 
 
25 •   
Picture the Problem The counting rate, as a function of the number of half-lives n, is 
given by ( ) 02

1 RR n= . 

 
(a) The counting rate after n half-
lives is: 

( ) 02
1 RR n=  

 
Solve for n to obtain: ( )

( )2
1

0

ln
ln RRn =  

 
Substitute numerical values and 
evaluate n: 
 ( ) 2

ln
counts/s4000
counts/s1000ln

2
1

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=n  

 
Because there are two half-lives in 
10 min: 

min521 =t  

 
(b) At the end of 4 half-lives: ( ) ( ) Bq250counts/s40004

2
1 ==R  

 
26 •   
Picture the Problem The counting rate, as a function of the number of half-lives n, is 
given by ( ) .02

1 RR n=  

 
(a) When t = 4 min, two half-lives 
will have passed and n = 2: 

( ) ( ) Bq500counts/s20002
2
1 ==R  
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(b) When t = 6 min, three half-lives 
will have passed and n = 3: 
 

( ) ( ) Bq250counts/s20003
2
1 ==R  

(c) When t = 8 min, four half-lives 
will have passed and n = 4: 

( ) ( ) Bq125counts/s20004
2
1 ==R  

 
27 •  
Picture the Problem The counting rate, as a function of the number of half-lives n, is 
given by ( ) 02

1 RR n= and the decay constant λ is related to the half-life by .2ln21 λ=t  

 
(a) Relate the counting rate at time  
t = 10 min to the counting rate at  
t = 0: 
 

( ) 02
1

min10 RR n=  

Solve for n: 
 

( )
( )2

1
0min 10

ln
ln RRn =  

 
Substitute numerical values and 
evaluate n: 
 ( ) 3

ln
counts/s8000
counts/s1000ln

2
1

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=n  

 
Therefore, 3 half-lives have passed 
in 10 min: 
 

min103 21 =t ⇒ s20021 =t  

(b) The decay constant λ is related 
to the half-life by: 
 

λ
2ln

21 =t ⇒
21

2ln
t

=λ  

Substitute for t1/2 and evaluate λ: 13 s1047.3
s200

2ln −−×==λ  

 
(c) Six half-lives will have passed in 
20 min: 

( ) ( ) Bq125Bq80006
2
1

min20 ==R  

 
28 •  
Picture the Problem We can use teNR λλ −= 0 to show that the disintegration rate is 

approximately 1 Ci. 
 
The decay rate is given by: 
 

teNR λλ −= 0  

where N0 is the number of nuclei at  
t = 0. 
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The decay constant λ is related to 
the half-life by: 
 

λ
2ln

21 =t ⇒
21

2ln
t

=λ  

Substitute for t1/2 and evaluate λ: 
 

111

14

s10356.1
Ms31.56

yy1028.4
y1620

2ln

−−

−−

×=

××==λ
 

 
The number of nuclei at  
t = 0 is given by: 
 

N0 = NA/M 
where M is the atomic mass of radium and 
NA is Avogadro’s number. 
 

Substitute numerical values and evaluate 
N0: 
 

21
23

0 10664.2
226

1002.6
×=

×
=N  

 
Substitute numerical values for λ and N0 and evaluate R: 
 

( )( ) ( )( )

Ci1s107.3

s1061.310664.2s10356.1
110

110s1200s10356.121111 111

=×≈

×=××=
−

−×−−− −−

eR
 

 
29 •  
Picture the Problem We can use ( ) 02

1 RR n= to relate the counting rate R to the number 

of half-lives n that have passed since t = 0. The detection efficiency depends on the 
probability that a radioactive decay particle will enter the detector and the probability 
that upon entering the detector it will produce a count. If the efficiency is 20 percent, the 
decay rate must be 5 times the counting rate. 
 
(a) When t = 2.4 min, n = 1 and: 
 

( ) ( ) Bq500counts/s10001
2
1

min4.2 ==R  

When t = 4.8 min, n = 2 and: 
 

( ) ( ) Bq250counts/s10002
2
1

min8.4 ==R

(b) The number of radioactive 
nuclei is related to the decay rate R, 
and the decay constant λ: 
 

NR λ= ⇒ 
λ
RN =                (1) 

The decay constant is related to the 
half-life: 
 13

21

s10813.4

s144
693.0

min4.2
693.0693.0

−−×=

===
t

λ
 

 
Calculate the decay rate at t = 0 1

0 s5000counts/s10005 −=×=R  
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from the counting rate: 
 
Substitute in equation (1) and 
evaluate N0 at t = 0: 
 

6
13

1
0

0 1004.1
s104.813

s5000
×=

×
== −−

−

λ
RN

Calculate the decay rate at  
t = 2.4 min from the counting rate: 
 

1
min4.2 s0052counts/s5005 −=×=R  

Substitute in equation (1) and 
evaluate N2.4 min at t = 0: 
 5

13

1
min4.2

min4.2

1019.5

s104.813
s2500

×=

×
== −−

−

λ
R

N
 

 
(c) The time at which the counting 
rate will be about 30 counts/s is the 
product of the number of half-lives 
that will have passed and the half-
life:  
 

21ntt =                             (2) 

The counting rate R after n half-
lives is related to the counting rate 
at t = 0 by: 
 

( ) 02
1 RR n=  

Solve for n: 
 

( )
( )2

1
0

ln
ln RRn =  

 
Substitute numerical values and 
evaluate n: 
 

( )
( )

059.5
ln

counts/s1000counts/s30ln

2
1

=

=n
 

 
Substitute numerical values for n 
and t1/2 in equation (2) and evaluate 
t: 

( )( ) min1.12min4.2059.5 ==t  

 
30 •   
Picture the Problem Knowing each of these reactions, we can use Table 40-1 to find the 
differences in the masses of the nuclei and then convert this difference into the energy 
released in each reaction. 
 
(a) Write the reaction: 
 

HeRnRa 4222226 +→  
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Use Table 40-1 to find ∆E: 
 

( ) MeV87.4u002603.4u017571.222u025403.226
u1

MeV/5.931 2
2

=−−=∆ ccE  

 
(b) Write the reaction: 
 

HeUPu 4238242 +→  

Use Table 40-1 to find ∆E: 
 

( ) MeV98.4u002603.4u050783.238u058737.242
u1

MeV/5.931 2
2

=−−=∆ ccE

 
*31 ••  
Picture the Problem Each 239Pu nucleus emits an alpha particle whose activity, A, 
depends on the decay constant of 239Pu and on the number N of nuclei present in the 
ingested 239Pu. We can find the decay constant from the half-life and the number of nuclei 
present from the mass ingested and the atomic mass of 239Pu. Finally, we can use the 
dependence of the activity on time to find the time at which the activity be 1000 alpha 
particles per second. 
 
(a) The activity of the nuclei present 
in the ingested 239Pu is given by: 
 
 

NA λ=                                      (1) 

Find the constant for the decay of 
239Pu: 
 

( )( )
113

2/1

s1002.9

Ms/y56.31y24360
693.02ln

−−×=

==
t

λ
 

 
Express the number of nuclei 
present in the quantity of  239Pu 
ingested: Pu

A
Pu M

NmN =  

where MPu is the atomic mass of 239Pu. 
 

Substitute numerical values and 
evaluate N: 
 

( )

nuclei1004.5

g/mol239
nuclei/mol1002.6g0.2

15

23

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
= µN

 

 
Substitute numerical values in 
equation (1) and evaluate A: 

( )( )
/s1055.4

1004.5s1002.9
3

15113

α

α

×=

××= −−A
 

 
(b) The activity varies with time 
according to: 
 

A = Aoe
−λt  
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Solve for t to obtain: 

λ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= oA
A

t
ln

 

 
Substitute numerical values and 
evaluate t: 

( )

y1032.5

y1
Ms56.31s1002.9

s/1055.4
s/101ln

4

113

3

3

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×

=
−−

α
α

t
 

 
32 ••  
Picture the Problem We can use conservation of energy and conservation of  linear 
momentum to relate the momenta and kinetic energies of the nuclei to the decay’s Q 
value 
 
(a) Express the kinetic energies of 
the alpha particle and daughter 
nucleus: 
 

α

α
ααα m

pvmK
2

2
2

2
1 ==                (1) 

and 

Y

2
Y2

YY2
1

Y 2m
pvmK ==               (2) 

 
Solve equations (1) and (2) for 2

αp  

and :2
Dp  

 

ααα Kmp 22 =  
and  

YY
2
Y 2 Kmp =  

 
From the conservation of linear momentum 
we have: 

fi pp rr
=  

or, because the parent is initially at rest, 
Y0 pp −= α and Ypp =α  

 
Because the momenta are equal: 

αα KmKm 22 YY =  
 

Solve for KY: 
αα

α K
A

K
m
mK

4
4

Y
Y −

==  

 
Because the daughter nucleus and 
the alpha particle share the Q-value: 

α

ααα

α

K
A

A

K
A

KK
A

KKQ

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎟
⎠
⎞

⎜
⎝
⎛ +

−
=+

−
=

+=

4

1
4

4
4

4
Y
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Solve for Kα: 
Q

A
AK ⎟

⎠
⎞

⎜
⎝
⎛ −

=
4

α  

 
(b) Substitute for Kα in the 
expression for Q to obtain: 
 

Q
A

AKQ ⎟
⎠
⎞

⎜
⎝
⎛ −

+=
4

Y  

Solve for KY: 

A
QQ

A
AQK 44

Y =⎟
⎠
⎞

⎜
⎝
⎛ −

−=  

 
*33 ••  
Picture the Problem We can write the equation of the decay process by using the fact 
that the post-decay sum of the Z and A numbers must equal the pre-decay values of the 
parent nucleus. The Q value in the equations from Problem 32 is given by Q = −(∆m)c2. 
 
239Pu undergoes alpha decay 
according to: 
 

Q++→ α42
235
92

239
94 UPu  

The Q value for the decay is given 
by: ( ) ( )[ ] ⎟

⎠
⎞

⎜
⎝
⎛+−=

1u
MeV931.5

UPu αmmmQ  

 
Substitute numerical values and evaluate Q: 
 

( ) ( )[ ] MeV24.5
1u

931.5MeVu4.002603u235.043923u239.052156 =⎟
⎠
⎞

⎜
⎝
⎛+−=Q  

 
From Problem 32, the kinetic energy 
of the alpha particle is given by: 
 

Q
A

AK ⎟
⎠
⎞

⎜
⎝
⎛ −

=
4

α  

Substitute numerical values and 
evaluate Kα: 
 

( )

MeV5.15

MeV5.24
239

4239

=

⎟
⎠
⎞

⎜
⎝
⎛ −

=αK
 

 
From Problem 32, the kinetic energy 
of the 239U is given by: 
 A

QK 4
U =  

Substitute numerical values and 
evaluate KU: 

( ) keV7.87
239

MeV24.54
U ==K  

 
34 •   
Picture the Problem We can find the age of the sample using ( ) 02

1 RR n
n = to find n  and 

then applying .21ntt =            

 
Express the age of the bone in terms 
of the half-life of 14C and the 

21ntt =                            (1) 
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number n of half-lives that have 
elapsed: 
 
The decay rate Rn after n half-lives 
is related to the counting rate R0 at  
t = 0 by: 
 

( ) 02
1 RR n

n =                       

Solve for n: ( )
( )2

1
0

ln
ln RRn =  

 
Because there are 15.0 decays per 
minute per gram of carbon in a 
living organism: 
 

Bq75.43

g175
s60

min1
gmin

decays15.00

=

××
⋅

=R
 

 
Substitute numerical values for R 
and R0 and evaluate n: 

( ) 433.2
ln

Bq43.75
Bq1.8ln

2
1

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=n  

 
Substitute numerical values in 
equation (1) and evaluate t: 
 

( )( ) y940,13y5730433.2 ==t  

 
35 •  
Picture the Problem We can solve teRR λ−= 0 for λ to find the decay constant of the 

sample and use 
λ

2ln
21 =t to find its half-life. The number of radioactive nuclei in the 

sample initially can be found from 00 NR λ= . 

 
(a) The decay rate is given by: teRR λ−= 0  

 
Solve for λ to obtain: 
 

t
R
R

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= 0

ln
λ  

 
Substitute numerical values and 
evaluate λ: 
 

1h133.0
h25.2

Bq115
Bq2.85ln

−=
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=λ  
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The half-life is related to the decay 
constant: 
 

h20.5
h133.0

2ln2ln
121 === −λ

t  

(b) The number N0 of radioactive 
nuclei in the sample initially is 
related to the decay constant λ and 
the initial decay rate R0: 
 

00 NR λ=  ⇒ 
λ

0
0

RN =  

Substitute numerical values and 
evaluate N0: 

6

1
0 1011.3

s3600
h1h133.0

Bq115
×=

×
=

−
N  

 
*36 ••  
Picture the Problem We can use NR λ=0  to find the initial activity of the sample and 

teRR λ−= o to find the activity of the sample after 1.75 y. 
 
(a) The initial activity of the sample 
is the product of the decay constant 
λ for 60Co and the number of atoms 
N of 60Co initially present in the 
sample: 

NR λ=0                               (1) 
 
 
 
 
 

Express N in terms of the mass m of 
the sample, the molar mass M of 
60Co, and Avogadro’s number NA: 
 

AN
M
mN =  

Substitute numerical values and evaluate N: 
 

( ) nuclei 101.00nuclei/mol106.02
g/mol60

g101.00 1623
6

×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
=

−

N  

 
The decay constant is given by: 
 

1/2

ln2
t

=λ  

 
Substitute numerical values and 
evaluate λ: 
 

( )( )
19 s104.17

Ms/y.5613y 5.27
0.693

−−×=

=λ
 

 
Substitute numerical values in 
equation (1) and evaluate A0: 
 

( )( )

mCi13.1

s103.7
Ci 1s104.17

nuclei101.00s104.17

110
17

1619
0

=

×
××=

××=

−
−

−−R

 



Chapter 40    
 

 

1374 

(b) The activity varies with time 
according to: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

− == 5.27y
0.693

oo

t
t eReRR λ  

 
Evaluate R at t = 1.75 y: 
 ( )

mCi898.0

 mCi 1.13 5.27y
1.75y0.693

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

eR  

 
37 ••   
Picture the Problem The following graph was plotted using a spreadsheet program. 
Excel’s ″Add Trendline″ feature was used to determine the equation of the line. 

ln(R ) = -0.0771t  + 8.3395

3

4

5

6

7

8

9

0 10 20 30 40 50 60

t  (min)

ln
(R

)

 
The linearity and negative slope of this graph tell us that it represents an exponential 
decay.  
 
The decay rate equation is: teRR λ−= 0  

 
Take the natural logarithm of both 
sides of the equation to obtain: 
 

0

0

ln
lnlnln
Rt

ReR t

+−=
+= −

λ

λ

 

This equation is of the form: bmxy +=  

where y = ln R, x = t, m = −λ, and  
b = lnR0. 
 

The decay constant is the negative of 
the slope of the graph: 
 

1min0771.0 −=λ  
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The half-life of the radioisotope is: min99.8
min0771.0
2ln2ln

121 === −λ
t  

 
38 ••  
Picture the Problem We can solve Equation 40-7 for λ to show that  
λ = t1

−1ln(R0/R1). 
 
(a)  Express the half-life as a 
function of the decay constant λ: λ

2ln
21 =t                          (1) 

 
From Equation 40-7 it follows that: te

R
R λ=

1

0  

 
Solve for λ: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= −

1

011

0

ln
ln

R
Rt

t
R
R

λ  

 
(b) Substitute numerical values for t, 
R1, and R0 and evaluate λ: 
 

1s00676.0
Bq800
Bq1200ln

s60
1 −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=λ  

Use the decay constant to find the 
half-life: 

s103
s00676.0

2ln2ln
121 === −λ

t  

 
39 ••   
Picture the Problem The required mass is given by M = (5 counts/min)/R, where R is the 
current counting rate per gram of carbon. We can use the assumed age of the casket to 
find the number of half-lives that have elapsed and ( ) 02

1 RR n= to find the current 

counting rate per gram of 14C. 
 
The mass of carbon required is: 
 R

M counts/min5
=                (1) 

 
Because there were about 15.0 
decays per minute per gram of the 
living wood, the counting rate per 
gram is: 
 

( ) ( ) ( )gcounts/min152
1

02
1 ⋅== nn RR  

We can find n from the assumed age 
of the casket and the half-life of 14C: 
 

141.3
y5730
y000,18
==n  
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Substitute for n and evaluate R: 
 

( ) ( )
gcounts/min70.1

gcounts/min15141.3
2
1

⋅=
⋅=R

 

 
Substitute for R in equation (1) and 
evaluate M: 

g94.2
gcounts/min70.1

counts/min5
=

⋅
=M  

 
40 ••   
Picture the Problem The decay constant λ can be found from the decay rate R and the 
number of radioactive nuclei N at the moment of interest and the half-life, in turn, can be 
found from the decay constant. 
 
The decay rate R is related to the 
decay constant λ and the number of 
radioactive nuclei N at the moment 
of interest: 
 

NR λ=  ⇒ 
N
R

=λ              (1) 

The number of radioactive nuclei N 
at the moment of interest can be 
found from Avogadro’s number, the 
mass m of the sample, and the molar 
mass M of the sample: 
 

M
mNN A=  

Substitute numerical values and evaluate N: 
 

( ) 19
3

23 10004.1
mol/g59.934

g10nuclei/mol1002.6 ×=×=
−

N  

 
Substitute numerical values in 
equation (1) and evaluate λ: 

19

19

10

s1017.4
10004.1

Ci
Bq103.7Ci131.1

−−×=

×

×
×

=λ  

 
Find the half-life from the decay constant: 

y27.5

Ms31.56
y1s1067.1

s1017.4
2ln2ln

8

1921

=

××=

×
== −−λ

t
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*41 ••  
Picture the Problem The following graph was plotted using a spreadsheet program. 
Excel’s ″Add Trendline″ feature was used to determine the equation of the line. 
  

ln(R ) = -0.198t  + 6.9076

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

0 1 2 3 4 5 6 7

t  (min)

ln
(R

)

 
 

The linearity and negative slope of this graph tells us that it represents an exponential 
decay.  
 
The decay rate equation is: teRR λ−= 0  

 
Take the natural logarithm of both 
sides of the equation to obtain: 
 

0

0

ln
lnlnln
Rt

ReR t

+−=
+= −

λ

λ

 

This equation is of the form: bmxy +=  

where y = ln R, x = t, m = −λ, and  
b = lnR0. 
 

The half-life of the radioisotope is: min50.3
min198.0
2ln2ln

121 === −λ
t  

42 ••  
Picture the Problem We can use the decay rate equation teRR λ−= 0 and the expression 

relating the half-life of a source to its decay constant to find the half-life of the sample. 
Solving the decay-rate equation for t will yield the time at which the activity level drops 
to any given value. 
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(a) The half-life of the material is 
given by: 
 

λ
2ln

21 =t                         (1) 

The decay rate is given by: teRR λ−= 0                        (2)           

 
Solve for λ: 

t
R
R

⎟
⎠
⎞

⎜
⎝
⎛

=

0ln
λ  

 
Substitute for λ in equation (1) to 
obtain: 
 

t

R
R

t
R
R

t
⎟
⎠
⎞

⎜
⎝
⎛

=
⎟
⎠
⎞

⎜
⎝
⎛

=
00

21

ln

2ln

ln

2ln
 

 
Substitute numerical values and 
evaluate t1/2: 
 

( )

h156

h101

decays/min5.73
decays/min115ln

2ln
21

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=t

 

 
(b) Solve equation (2) for t: 
 

λ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= 0

ln
R
R

t  

 
Express λ in terms of t1/2: 
 21

2ln
t

=λ  

 
Substitute for λ in the expression for 
t to obtain: 
 21

0

2ln

ln
t

R
R

t
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  

 
Substitute numerical values and 
evaluate t: 

( )

d9.22
h24

d1h550

h156
2ln

decays/min115
decays/min10ln

=×=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=t  

 
43 ••   
Picture the Problem We can use the decay rate equation teRR λ−= 0 and the expression 

relating the half-life of a source to its decay constant to find the age of the fossils. 
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The decay rate is given by: teRR λ−= 0                         

 
Solve for t to obtain: 
 

λ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= 0

ln
R
R

t  

 
Express λ in terms of t1/2: 
 21

2ln
t

=λ  

 
Substitute for λ in the expression for 
t to obtain: 
 21

0

2ln

ln
t

R
R

t
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  

or, because the activity at any time is 
proportional to the number of radioactive 
nuclei present, 

21
Rb0,

Rb

2ln

ln
t

N
N

t
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=                   (1) 

 
The number of 87Sr nuclei present in 
the rocks is given by: 
 

RbRb,0Sr NNN −= ⇒ RbSrRb,0 NNN +=  

We’re given that: 
 RbSr 01.0 NN =  ⇒ 01.0

Rb

Sr =
N
N

 

 
Express the ratio of N0,Rb to NRb: 
 

01.1101.0

1
Rb

Sr

Rb

RbSr

Rb

Rb,0

=+=

+=
+

=
N
N

N
NN

N
N

 

 
Substitute numerical values in 
equation (1) and evaluate the age of 
the fossils: 

( )
y1003.7

y109.4
2ln

01.1
1ln

8

10

×=

×
−

⎟
⎠
⎞

⎜
⎝
⎛

=t  

 
44 •••  
Picture the Problem We can evaluate this integral by changing variables to obtain a 
form that we can find in a table of integrals. 
 
Change variables by letting: tx λ=  
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Then: dtdx λ= , 
λ
dxdt = , and 

λ
xt =  

 
Substitute to obtain: 

∫∫∫
∞

−
∞

−
∞

− ===
000

1 dxxedxexdtet xxt

λλ
λ

λ
λτ λ

 
From integral tables: 
 1

0

=∫
∞

− dxxe x  

 
Substitute in the expression for τ to 
obtain: λ

τ 1
=  

 
Nuclear Reactions 
 
45 •  
Picture the Problem We can use ( ) 2cmQ ∆−= to find the Q values for these reactions. 

 
(a) Find the mass of each atom from 
Table 40-1: 

u1.007825
H1 =m  

u016049.3
H3 =m  

u016029.3
He3 =m  

u008665.1n =m  

 
Calculate the initial mass mi of the 
incoming particles: 
 

u023874.4
u016049.3u1.007825i

=
+=m

 

Calculate the final mass mf: 
u024694.4

u008665.1u016029.3f

=
+=m

 

 
Calculate the increase in mass: 
 

u000820.0
u023874.4u024694.4

if

=
−=

−=∆ mmm
 

 
Calculate the Q value: 
 

( )

( )

MeV764.0

MeV/5.931u000820.0
2

2

2

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∆−=

u
cc

cmQ
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(b) Proceed as in (a) to obtain: ( )

MeV27.3

u
MeV/5.931u003510.0 2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ccQ

 

 
Remarks: Because Q < 0 for the first reaction, it is endothermic. Because Q > 0 for 
the second reaction, it is exothermic. 
 
46 •   
Picture the Problem We can use ( ) 2cmQ ∆−= to find the Q values for these reactions. 

 
(a) Find the mass of each atom from 
Table 40-1: 

u014102.2
H2 =m  

u016049.3
H3 =m  

u007825.1
H1 =m  

 
Calculate the initial mass mi of the 
incoming particles: 
 

( )
u028204.4

u014102.22i

=
=m

 

Calculate the final mass mf: 
u023874.4

u007825.1u016049.3f

=
+=m

 

 
Calculate the increase in mass: 
 

u004330.0
u028204.4u023874.4

if

−=
−=

−=∆ mmm
 

 
Calculate the Q value: 
 

( )

( )

MeV03.4

MeV/5.931u004330.0
2

2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∆−=

u
cc

cmQ

 

 
(b) Proceed as in (a) to obtain: ( )

( )

MeV4.18

u
MeV/5.931u019703.0 2

2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∆−=

cc

cmQ
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(c) Proceed as in (a) to obtain:  ( )

( )

MeV78.4

u
MeV/5.931u005135.0 2

2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∆−=

cc

cmQ

 

 
*47 ••  
Picture the Problem We can use ( ) 2cmQ ∆−= to find the Q values for this reaction. 

 
(a) The masses of the atoms are: u242003.14

C14 =m  

u074003.14
N14 =m  

 
Calculate the increase in mass: 
 

u000168.0
u242003.14u074003.14

if

−=
−=

−=∆ mmm
 

 
Calculate the Q value: 
 

( )

( )

MeV156.0

u
MeV/5.931u000168.0

2
2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∆−=

cc

cmQ

 

 
(b)  

 

equation.  theof sideright   thefrom 1 gsubtractin explicitly
  toequivalentally mathematic is (electron) particle beta  theof mass the

includingNot  right. on the masselectron  extraan  leavesequation reaction  the
of sidesboth  from 6 gSubtractin .7by  large  toois atomnitrogen   theof
mass  theand 6by  large  toois atomcarbon   theof mass  thereaction,nuclear 
given For the electron.an  of mass  theesnumber tim atomic by the large  tooare

masses  themassesnuclear for  so nuclei,not  atoms,for  aregiven  masses The

e

ee

e

m

mm
m

 

 
48 ••  
Picture the Problem We can use ( ) 2cmQ ∆−= to find the Q values for this reaction. 

 
(a) The masses of the atoms are: u738005.13

N13 =m  

u354003.13
C13 =m  
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For β+ decay: ( )
( ) 2

e
2

fi

2
efi

2

2

cmcmm

cmmmQ

−−=

−−=
 

 
Calculate mi − mf: 
 u384002.0

u354003.13u738005.13fi

=
−=−mm

 

 
Calculate the Q value: 
 

( ) ( ) MeV20.1MeV511.02MeV/5.931u384002.0
2

2 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

u
ccQ  

 

(b) 

. gcalculatin when mass atomicdaughter   theofenergy 
rest   the toelectrons  twoof energiesrest   theaddmust  one ly,Consequent

 created. iselectron an  of that  toequal mass ofpositron  a masses,
atomic in the includednot electron  one oaddition tin  Moreover, electrons. 6
hasonly  atom final  theand electrons 7 has atom initial hereaction t In this

atoms. neutral  theof electrons  theof masses  theinclude masses atomic The

Q

 

 
Fission and Fusion 
 
*49 •  
Picture the Problem The power output of the reactor is the product of the number of 
fissions per second and energy liberated per fission. 
 
Express the required number N of 
fissions per second in terms of the 
power output P and the energy 
released per fission Eper fission: 
 

fissionper E
PN =  

Substitute numerical values and 
evaluate N: 

119

19
8

s1056.1

MeV200
J101.60

eV1
s
J105

MeV200
MW500

−

−

×=

×
××

=

=N
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50 •   
Picture the Problem If k = 1.1, the reaction rate after N generations is 1.1N. We can find 
the number of generations by setting 1.1N equal, in turn, to 2, 10, and 100 and solving for 
N. The time to increase by a given factor is the number of generations N needed to 
increase by that factor times the generation time. 
 
(a) Set 1.1N equal to 2 and solve for 
N: 

( ) 21.1 =N  
2ln1.1ln =N  

27.7
1.1ln

2ln
==N  

 
(b) Set 1.1N equal to 10 and solve for 
N: 

( ) 101.1 =N  
10ln1.1ln =N  

2.24
1.1ln

10ln
==N  

 
(c) Set 1.1N equal to 100 and solve 
for N: 

( ) 1001.1 =N  
100ln1.1ln =N  

3.48
1.1ln

100ln
==N  

 
(d) Multiply the number of 
generations by the generation time: 

( )( ) ms27.7ms127.712 === Ntt  

( )( ) ms2.24ms12.24110 === Ntt  

( )( ) ms3.48ms13.481100 === Ntt  

 
(e) Multiply the number of 
generations by the generation time: 

( )( ) s727.0ms10027.712 === Ntt  

( )( ) s42.2ms1002.24110 === Ntt  

( )( ) s83.4ms1003.481100 === Ntt  

 
*51 ••  
Picture the Problem We can use  Q = −(∆m)c2, where ∆m = mf − mi,    to calculate the Q 
value. 
 
The Q value is given by: 
 ( )

1u
MeV/c931.5 2

2 ×∆−= cmQ  

 
Calculate the change in mass ∆m: 
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( ) ( )
u223068.0

u1.008665u235.043923u1.0086652u138.906348u905842.94
if

−=
+−++=

−=∆ mmm

 
 

Substitute for ∆m and evaluate Q: 
 ( )

MeV208
1u

MeV931.5u223068.0

=

×−−=Q
 

 
The ratio of Q to U found in 
Problem 23 is: %1.88

MeV236
MeV208

==
U
Q

 

 
52 ••  
Picture the Problem We can find the number of neutrons per second in the generation of 
4 W of power from the number of reactions per second. 
 
The number of neutrons emitted per 
second is: 
 

NN 2
1

n =  

where N is the number of reactions per 
second. 
 

The number of reactions per second 
is: 
 

112

19

s1085.6

MeV4.03MeV27.3
J1060.1

eV1
s
J4

2

−

−

×=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
×

×
=N

 

 
Substitute for N and evaluate Nn: ( )

neutrons/s1043.3

s1085.6
12

112
2
1

n

×=

×= −N
 

 
53 ••   
Picture the Problem We can use the energy released in the reactions of Problem 50, 
together with the 17.6 MeV released in the reaction described in this problem, to find the 
energy released using 5 2H nuclei. Finding the number of D atoms in 4 L of H2O, we can 
then find the energy produced  if all of the 2H nuclei undergo fusion. 
 
Find the energy released using 5 2H 
nuclei: 
 

MeV9.24
MeV17.6MeV4.03MeV27.3

=
++=Q
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The number of H atoms in 4 L of 
H2O is: 
 

A
OH

H g/mol18
2 2 N

m
N ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Substitute numerical values and evaluate NH: 
 

( ) 2623
H 10676.2atoms/mol1002.6

g/mol18
kg42 ×=×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=N  

 
The number of D atoms in 4 L of 
H2O is: 
 

( )
( )( )

22

264
H

4
D

1001.4
10676.2105.1

105.1

×=

××=

×=
−

− NN

 

 
The energy produced is given by: QNE

5
D=  

 
Substitute numerical values and 
evaluate E: 

( )

J1020.3
eV

J101.60MeV10997.1

MeV9.24
5

1001.4

10

19
23

22

×=

×
××=

×
=

−

E

 

 
*54 •••   
Picture the Problem We can use the conservation of momentum and the given Q value 
to find the final energies of both the 4He nucleus and the  neutron, assuming that the 
initial momentum of the system is zero.  
 
Apply conservation of energy to 
obtain: 
 

nHe

2
nn2

12
HeHe2

1MeV6.18
KK

vmvm
+=

+=
       (1) 

Apply conservation of momentum 
to obtain: 
 

0nnHeHe =+ vmvm                            (2) 

Solve equation (2) for vHe: 

He

nn
He m

vmv −=  ⇒ 2
n

2

He

n2
He v

m
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Substitute for 2

Hev in equation (1): 
2
nn2

12
n

2

He

n
He2

1MeV6.18 vmv
m
mm +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

or 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

He

n
n

He

n2
nn2

1

1

1MeV6.18

m
mK

m
mvm

 

 
Solve for Kn: 

He

n
n

1

MeV6.18

m
mK

+
=  

 
Substitute numerical values for mn 
and mHe and evaluate Kn: 
 

MeV86.14

u002603.4
u008665.11

MeV6.18
n =

+
=K  

 
Use equation (1) to find KHe: 

MeV74.3

MeV86.14MeV6.18
MeV6.18 nHe

=

−=
−= KK

 

 
55 •••  
Picture the Problem Adding the three reactions will yield their net effect. We can use 
(∆m)c2 to find the rest energy released in the cycle and find the rate of proton 
consumption from the ratio of the sun’s power output to the released per proton in fusion. 
 
(a) Add the three reactions to obtain: 
 
1H + 1H + 1H + 2H + 1H + 3He →  2H + β +  + νe + 3He  + γ + 4He +  β  +  + νe 
 
Simplify to obtain: γνβ +++→ +

e
41 22HeH4  

 
(b) Express the rest energy released 
in this cycle: 
 

( ) ( ) 2
ep

2 44 cmmmcm −−=∆ α  

Use Table 40-1 to find the masses of the participants in the reaction and evaluate (∆m)c2: 
 

( ) ( )[ ] ( )

MeV7.24

MeV511.04
u
MeV/5.931u002603.4u007825.14

2
22

=

−×−=∆
cccm
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(c) Express the rate R of proton 
consumption: E

PR =                               (1) 

where E is the energy released per proton 
in fusion. 
 

Find N, the number of protons in the 
sun: 
 

( )

56

27

30
2
1

p

sun2
1

1096.5

kg101.67
kg1099.1

×=

×
×

== −m
mN

 

where we have assumed that protons 
constitute about half of the total mass of 
the sun. 
 

The energy released per proton in 
fusion is: 
 

( )

J1007.1
eV

J101.60MeV675.6

MeV675.6MeV7.26

12

19
4
1

−

−

×=

×
×=

==E

 

 
Substitute numerical values in 
equation (1) and evaluate R: 
 

138
12

26

s1074.3
J1007.1

W104 −
− ×=

×
×

=R  

The time T for the consumption of 
all protons is: 

y1004.5

Ms31.56
y1s1059.1

s1074.3
1096.5

10

18

138

56

×=

××=

×
×

== −R
NT

 

 
General Problems 
 
56 •  
Picture the Problem We can use the values of k, e, h, and c and the appropriate 
conversion factors to show that ke2 = 1.44 MeV⋅fm and hc = 1240 MeV⋅fm 
 
(a) Evaluate ke2 to obtain: 
 

( )( )

fmMeV44.1
eV10

MeV1
m10

fm1meV1044.1

meV1044.1
J1060.1

eV1mJ10307.2

mN10307.2C1060.1C/mN1099.8

615
9

9
19

28

2282192292

⋅=××⋅×=

⋅×=
×

×⋅×=

⋅×=×⋅×=

−
−

−
−

−

−−ke
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(b) Evaluate hc to obtain: 
 

( )( )

fmMeV1240
eV10

MeV1
m10

fm1meV101240

meV101240
J101.60

eV1mJ1099.1

mJ1099.1m/s103sJ1063.6

615
9

9
19

25

25834

⋅=××⋅×=

⋅×=
×

×⋅×=

⋅×=×⋅×=

−
−

−
−

−

−−hc

 

 
*57 •  
Picture the Problem We can use the given information regarding the half-life of the 
source to find its decay constant. We can then plot a graph of the counting rate as a 
function of time. 
 
The decay constant is related to the 
half-life of the source: 
 

1

21

s0693.0
s10
2ln2ln −===

t
λ  

The activity of the source is given 
by: 
 

( ) ( )tt eeRR
1s0693.0

0 Bq6400
−−− == λ  

The following graph of ( ) ( )teR
1s0693.0Bq6400
−−= was plotted using a spreadsheet 

program. 
 

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60

t  (s)

R
 (B

q)

 
 
58 •   
Picture the Problem The energy needed to remove a neutron is given by 

( ) 2cmQ ∆= where ∆m is the difference between the sum of the masses of the reaction 

products and the mass of the target nucleus. 
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(a) The reaction is: 
 

nHeQHe 34 +=+  

The masses are (see Table 40-1): u002603.4
He4 =m  

u016029.3
He3 =m  

u1.008665n =m  

 
Calculate the final mass: 
 u024694.4

u1.008665u016029.3f

=
+=m

 

 
Calculate the increase in mass: 
 

u022091.0
u002603.4u024694.4

if

=
−=

−=∆ mmm
 

 
Calculate the energy Q needed to 
remove a neutron from 4He: 
 

( )

( )

MeV6.20

u
MeV/5.931u022091.0

2
2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆=

cc

cmQ

 

 
(b) The reaction is: 
 

nLiQLi 67 +=+  

The masses are (see Table 40-1): u016004.7
Li7 =m  

u015122.6
Li6 =m  

u1.008665n =m  

 
Calculate the final mass: 
 u023787.7

u1.008665u015122.6f

=
+=m

 

 
Calculate the increase in mass: 
 

u007783.0
u016004.7u023787.7

if

=
−=

−=∆ mmm
 

 
Calculate the energy Q needed to 
remove a neutron from 4He: 
 

( )

( )

MeV25.7

u1
MeV/5.931u007783.0

2
2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆=

cc

cmQ
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59 •   
Picture the Problem The maximum kinetic energy of the electron is given 
by ( ) .2

NCmax 1414 cmmQK −==  

 
The maximum kinetic energy of the 
electron is the Q value for the 
reaction: 
 

( ) 2
NCmax 1414 cmmQK −==  

Find the mass of each atom from 
Table 40-1: 
 

u14.003242
C14 =m  

u14.003074
N14 =m  

Calculate :
NC 1414 mmm −=∆  

 u000168.0
u14.003074u14.003242

=
−=∆m

 

 
Calculate the maximum kinetic 
energy of the electron: 

( )

( )

keV156

u
MeV/5.931u000168.0

2
2

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆=

cc

cmQ

 

 
60 •   
Picture the Problem We can use the definition density to find the radius of the neutron 
star. 
 
Relate the mass of the neutron star 
to the mass of  the sun M, the 
volume V of the star and the nuclear 
density ρ: 
 

3
3
4 RVM πρρ ==  

where R is the radius of the star. 

Solve for R: 
 3

4
3
πρ
MR =  

 
In Problem 20 it was established 
that: 
 

317 kg/m10174.1 ×=ρ  

 

Substitute numerical values and 
evaluate R: 

( )
( )
km9.15

kg/m10174.14
kg1099.13

3
317

30

=

×
×

=
π

R
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*61 ••  
Picture the Problem We can show that 109Ag is stable against alpha decay by 
demonstrating that its Q value is negative. 
 
The Q value for this reaction is: 
 

( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

u
MeV/ 5.931

2
2

AgRh
ccmmmQ α  

 
Substitute numerical values and evaluate Q: 
 

( )[ ]( )
MeV88.2

MeV/u5.931u904756.108u905250.104u002603.4

−=

−+−=Q
 

 
Remarks: Alpha decay occurs spontaneously and the Q value will equal the sum of 
the kinetic energies of the alpha particle and the recoiling daughter nucleus, 

DKKQ α += . Kinetic energy cannot be negative; hence, alpha decay cannot occur 
unless the mass of the parent nucleus is greater than the sum of the masses of the 
alpha particle and daughter nucleus, DP mmm α +> . Alpha decay cannot take 
place unless the total rest mass decreases. 
 
62 ••  
Picture the Problem We can use thresholdthresholdthreshold λhchfE == , where Ethreshold is 
the binding energy of the deuteron, to find the threshold wavelength for the given nuclear 
reaction. 
 
Express the threshold energy of the 
photon: 
 threshold

thresholdthreshold λ
hchfE ==  

Solve for the threshold wavelength: 

threshold
threshold E

hc
=λ                (1) 

 
The threshold energy equals the binding energy of the deuteron: 
 

( )[ ]
u
MeV/5.931 2

2
npDBthreshold

ccmmmEE ×+−==  

 
Substitute numerical values and evaluate Eth, the energy that must be added to the 
deuteron that will cause it to fission: 
 

( )[ ]( )

J1055.3
eV

J101.60MeV22.2

MeV/u 5.931u008665.1u007825.1u014102.2

13
19

threshold

−
−

×−=
×

×−=

+−=E
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Substitute numerical values in 
equation (1) and evaluate λthreshold: 

( )( )

pm560.0m1060.5
J1055.3

m/s1000.3sJ1063.6

13

13

834

threshold

=×=
×

×⋅×
=

−

−

−

λ
 

 
63 •  
Picture the Problem The activity of a radioactive source is the product of the number of 
radioactive nuclei present and their decay constant. 
 
The activity of the isotope 40K in the 
student is: 
 

21

40
40

2ln
t

NNR == λ            (1) 

Find N, the number of K nuclei in 
the student: 
 

M
mNN A0036.0=  

where m is the mass of the student and M 
is the atomic mass of K. 
 

Substitute numerical values and evaluate N: 
 

( )( ) 24
23

10326.3
g/mol098.39

nuclei/mol1002.6kg600036.0 ×=
×

=N  

 
The number N40 of 40K nuclei in the 
student is the product of the relative 
abundance and the number of K 
nuclei in the student: 
 

( )( )
20

244
40

10991.3
10326.3102.1

abundance Relative

×=

××=

×=
−

NN

 

Substitute numerical values in 
equation (1) and evaluate R: 

( )

Bq1074.6

y
Ms31.56y103.1

2ln10991.3

3

9

20

×=

××

×
=R

 

 
64 ••  
Picture the Problem We can find the energy released in the reaction Q→+ −+ ββ  by 
recognizing that a total of 2 electron masses are converted into energy in this 
annihilation. 
 
The energy released when a 
positron-electron pair annihilate is 
given by: 
 

2
e2 cmEQ ==   

Substitute numerical values and evaluate Q: 
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( )( ) MeV02.1
J101.60

eV1J1064.1m/s103kg1011.92 19
132831 =

×
××=××= −

−−Q  

 
65 ••  
Picture the Problem We can use the fact that, after n half-lives, the decay rate of the 24Na 
isotope is ( ) 02

1 RR n= , where R0 is its decay rate at t = 0. 

 
The counting rate after n half-lives is 
related to the initial counting rate: 
 

( ) 02
1 RR n=  

Divide both sides of the equation by 
the volume V of blood in the patient: 
 

( )
V
R

V
R n 0

2
1=  

We’re given that n = 2/3,  
R0 = 600 kBq, and, after n half-lives, 
the decay rate per unit volume is 60 
Bq/mL: 
 

( )
V
kBq600Bq/mL60 32

2
1=  

Solve for and evaluate V: ( )

L30.6

mL1030.6
Bq/mL60

kBq600 332
2
1

=

×==V
 

 
*66 ••   
Picture the Problem We can solve this problem in the center of mass reference frame for 
the general case of an α  particle in a head-on collision with a nucleus of atomic mass M u 
and then substitute data for a nucleus of 197Au and a nucleus of 10B. 
 
In the CM frame, the kinetic energy 
is: 
 M

K

M
m

KK u411

lablab
CM

+
=

+
=

α
 

 
At the point of closest approach: 
 

( )( )
min

2

minmin

21
CM

22
R

Zke
R

Zeek
R

qkqK ===  

or, because ke2 = 1.44 MeV⋅fm, 
( )( )

min
CM

2fmMeV44.1
R

ZK ⋅
=  

 
Solve for Rmin to obtain: 
 

( )( )
CM

min
2fmMeV44.1

K
ZR ⋅

=          (1) 
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(a) Neglecting the recoil of the 
target nucleus is equivalent to 
replacing KCM by Klab. Evaluate 
equation (1) for 197Au: 
 

( )( )

fm4.28

MeV8
792fmMeV44.1

min

=

×⋅
=R

 

 

Evaluate equation (1) for 10B: 
 

( )( )

fm80.1

MeV8
52fmMeV44.1

min

=

×⋅
=R

 

 
(b) Find KCM for the 197Au nucleus: 
 

MeV841.7

u197
u41

MeV8
CM =

+
=K  

 
Substitute numerical values in 
equation (1) and evaluate Rmin: 

( )( )

fm0.29

MeV841.7
792fmMeV44.1

min

=

×⋅
=R

 

Note that this result is about 2% greater that 
Rmin calculated ignoring recoil. 
 

Find KCM for the 10B nucleus: 
 

MeV714.5

u10
u41

MeV8
CM =

+
=K  

 
Substitute numerical values in 
equation (1) and evaluate Rmin: 

( )( )

fm52.2

MeV714.5
52fmMeV44.1

min

=

×⋅
=R

 

Note that this result is about 40% greater 
that Rmin calculated ignoring recoil. 

 
67 ••   
Picture the Problem The allowed energy levels in a one-dimensional infinite square well 

are given by Equation 35-13: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2
2

8mL
hnEn .  
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(a) The lowest energy of a nucleon 
of mass 1 u in the well corresponds 
to n = 1:  
 

( )
( )( )( )

MeV0.23

J101.60
eV1J10678.3

fm3kg/u1066.1u18
sJ1063.6

19
12

227

234

1

=

×
××=

×
⋅×

=

−
−

−

−

E

 

 
(b) Because neutrons are fermions, there can be only two per state: 
 

( ) ( )
( ) GeV19.4MeV0.23182182

6543222

1

1
2

1
2

1
2

1
2

1
2

1654321

===

+++++=+++++=

E

EEEEEEEEEEEEE
 

 
(c) Find E for 4 protons and 4 neutrons: ( ) ( )

( ) GeV29.1MeV0.235656

3244

1

1
2

1
2

1321

===

++=++=

E

EEEEEEE

 
68 ••  
Picture the Problem We can apply BE = (∆m)c2 to the model to find the binding 
energies and the binding energies/bond. 
 
(a) Find the binding energy BE for 
this model: 
 

( )
( )[ ]

( ) 2

2

2
O

u015497.0
u15.994915u002603.44

4BE 16

c
c

cmm

=

−=

−= α

 

 
There are 6 bonds for the regular 
tetrahedron: 
 

( )

( )

MeV406.2

MeV/u5.931u015497.0

u015497.0BE
bond
BE

2
2

6
1

2
6
1

6
1

=

×=

==

c
c

c

 
(b) 12C has 3 pairwise α particle 
bonds. Find the total BE for 12C 
with this model: 
 

( ) ( ) ( )MeV406.23HeBE3CBE 412 +×=  

Calculate BE(4He): 
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( ) ( )[ ]
( )[ ]

MeV30.28
u
MeV/5.931u002603.4u008665.1u007825.12

2HeBE
2

2

2
Henp

4
4

=

×−+=

−+=

cc

cmmm

 

 
Substitute numerical values and evaluate ( ):CBE 12  
 

( ) ( ) ( ) MeV1.92MeV406.23MeV30.283CBE 12 =+=  

 
Use Table 40-1 to find ( ):CBE 12  
 

( ) ( )[ ]
( )[ ]

MeV2.92
u
MeV/5.931u000000.12u008665.1u007825.16

6CBE
2

2

2
Cnp

12
12

=

×−+=

−+=

cc

cmmm

 

Note that this result is good agreement with the model. 
 
69  ••  
Picture the Problem We can separate the variables in the differential equation dN/dt = 
Rp – λN and integrate to express N as a function of t. When dN/dt ≈ 0, Rp – λN∞ = 0, a 
condition we can use to find N∞. 
 
(a) Separate the variables in the 
differential equation to obtain: 

dt
NR

dN
=

−λp

 

 
Integrate the left side of the equation 
from 0 to N and the right side from 
0 to t to obtain: 
 

∫∫ =
−

tN

dt
NR

dN

00 p

'
'

'
λ

 

 

Let u = Rp − λN′. Then: 
 

'dNdu λ−=  
and 

( )

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

+−−=

−−=

−=−=
− ∫∫

NR
R

RNR

NR

u
u
du

N'R
dN'

N

N

λλ

λ
λ

λ

λ
λ

λλλ

p

p

pp

0
p

0 p

ln1

ln1ln1

'ln1

ln11 2

1

2

1

l

l

l

l
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Because :'
0

tdt
t

=∫  t
NR

R
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

− λλ p

pln1
 

 
Solve for N to obtain: 
 

( )te
R

N λ

λ
−−= 1p  

 
The following graph of N(t) = (Rp/λ)(1 −e−λt) was plotted using a spreadsheet 
program. Note that N(t) approaches Rp/λ in the same manner that the charge on a 
capacitor approaches the value CV.  
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4

λ t 

N
 

 
 

(b) When dN/dt = 0: 
 

0p =− ∞NR λ  ⇒ 
λ

pR
N =∞  

 
The decay constant is: 
 21

2ln
t

=λ  

 
Substitute for λ to obtain: 
 21

p

2ln
t

R
N =∞  

 
Substitute numerical values and 
evaluate N∞: 

4

1

1066.8

min
s60min10

2ln
s100

×=

⎟
⎠
⎞

⎜
⎝
⎛ ×=

−

∞N
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*70 ••  

Picture the Problem The mass of 235U required is given by ,235
A

235 M
N
Nm =  where 

M235 is the molecular mass of 235U and N is the number of fissions required to produce 
7.0×1019 J. 
 
Relate the mass of 235U required to 
the number of fissions N required: 235

A
235 M

N
Nm =                      (1) 

where M235 is the molecular mass of 235U. 
 

Determine N: 
 fissionper 

annual

E
EN =  

 
Substitute numerical values and 
evaluate N: 

30

19

19

1018.2
eV

J101.60MeV200

J100.7

×=

×
×

×
= −N

 

 
Substitute numerical values in equation (1) and evaluate m235: 
 

( ) kg1051.8g/mol235
nuclei/mol1002.6
1018.2 5

23

30

235 ×=
×

×
=m  

 
71 ••   
Picture the Problem In the ground state of a one-dimensional infinite square well of 
length L the wavelength of a particle is 2L. We can use de Broglie’s equation to find p for 
the particle and the relationship 222

0
2 cpEE += with E0 << pc to show that E ≈ pc. 

 
(a) In the ground state of a one-
dimensional infinite square well of 
length L: 
 

( ) fm00.4fm222 === Lλ  

(b) Use de Broglie’s relation to 
obtain: 
  

c
hchp
λλ

==  

Substitute numerical values and 
evaluate p: 
 

( ) c
c

p MeV/310
fm4

nmeV1240
=

⋅
=  

(c) Relate the total energy of the 
electron to its rest energy and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+= 22

2
022222

0
2 1

cp
EcpcpEE  
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momentum: 
 
Because E0 << pc: 222 cpE ≈  ⇒ pcE ≈  

 
(d) The kinetic energy of an electron 
in the ground state of this well is 
given by: 

( ) MeV310MeV/310
0

==

=≈−=

cc

pcEEEK
 

 
72 ••  
Picture the Problem When a single proton is removed from a 12C nucleus, a 11B nucleus 
remains and we can use 2mcQ ∆= to determine the minimum energy required to remove 
a proton. 
 
The nuclear reaction is: HBC 1

1
11
5

12
6 +→+Q  

 
The minimum energy Q required is: 
 

( ) 2
CHB 12111 cmmmQ −+=  

Substitute numerical values and evaluate Q: 
 

( )[ ] MeV0.16
u
MeV 931.5u12.000000u1.007825u11.009306 =⎟

⎠
⎞

⎜
⎝
⎛−+=Q  

 
*73 •••  
Picture the Problem The momentum of the electron is related to its total energy through 

2
0

222 EcpE +=  and its total relativistic energy E is the sum of its kinetic and rest 

energies. 
 
(a) Relate the total energy of the 
electron to its momentum and rest 
energy: 
 

2
0

222 EcpE +=                  (1) 

The total relativistic energy E of the 
electron is the sum of its kinetic 
energy and its rest energy: 
 

0EKE +=  

Substitute for E in equation (1) to 
obtain: 
 

( ) 2
0

222
0 EcpEK +=+  

Solve for p: 
 

( )
c

EKK
p 02+
=  

 
Substitute numerical values and evaluate p: 
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( )( )
c

c
p MeV/188.1

MeV511.02MeV782.0MeV782.0
=

×+
=  

 
(b) Because pp = −pe: 

p

2
p

p 2m
p

K =  

 
Substitute numerical values (see 
Table 7-1 for the rest energy of a 
proton) and evaluate Kp: 
 

( )
( ) eV752

MeV/28.9382
MeV/188.1

2

2

p ==
c

cK  

(c) The percent correction is: %0962.0
MeV0.782
eV752p ==

K
K

 

 
74 •••  
Picture the Problem Conservation of momentum and conservation of energy allow us to 
find the final velocities. Because the initial kinetic energy of the nucleus is zero, its final 
kinetic energy equals the energy lost by the neutron. 
 
(a) Apply conservation of 
momentum to the collision to 
obtain: 

( ) LmvVMm =+  

 
 
 

Solve for V: 
Mm

mvV
+

= L  

 
(b) In the CM frame, VMi = V and so: 
 

VVM =i  

In the CM frame, Vf = −Vi and so: 
 

VVM −=f  

(c) Use conservation of momentum 
to obtain one relation for the final 
velocities: 
 

ffL MMVmvmv +=               (1) 

The equality of the initial and final 
kinetic energies provides a second 
equation relating the two final 
velocities. This is implemented by 
equating the speeds of recession and 
approach: 
 

( ) LLiff 0 vvVvV MM +=−−=−  

and so 
Lff vVv M −=  
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To eliminate vf, substitute in 
equation (1) : 
 

( ) fLfL MM MVvVmmv +−=  

Solve for VMf: 
Lf

2 v
mM

mVM +
=  

 
(d) The kinetic energy of the 
nucleus after the collision in the 
laboratory frame is: 
 

2
f2

1
MM MVK =  

Substitute for VMf and simplify to 
obtain: 
 

( )
( )2

L2
1

2

2

L2
1

f

4

2

mv
mM

mM

v
mM

mMK M

+
=

⎟
⎠
⎞

⎜
⎝
⎛

+
=

 

 
(e) The fraction of the energy lost by the neutron in the elastic collision is given 
by: 
 

( )
( )

( ) 22
2

22
L2

1

2
L2

1
2

2
L2

1
f

1

4

1

44
4

⎟
⎠
⎞

⎜
⎝
⎛ +

=

⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

=+=
−

=
∆

M
m

M
m

M
mM

mM
mM

mM
mv

mv
mM

mM

mv
K

E
E M  

 
75 •••  
Picture the Problem We can use the result of Problem 74, part (e), to find the fraction 

0f EEf = of its initial energy lost per collision and then use this result to show that, 

after N collisions, E = (0.714)NE0. 
 
(a) Determine 0f EEf = per 

collision: 
 

00

0 1
E
E

E
EEf ∆

−=
∆−

=  

From Problem 74, part (e): 
2

0 1

4

⎟
⎠
⎞

⎜
⎝
⎛ +

=
∆

M
mM

m
E
E

 

 
Substitute for ∆E/E0 in the 
expression for f to obtain:  
 

2

1

41
⎟
⎠
⎞

⎜
⎝
⎛ +

−=

M
mM

mf  
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Substitute numerical values and 
evaluate f: 

( )

714.0
u000000.12

u008665.11u000000.12

u008665.141 2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=f
 

 
After N collisions: 
 

( ) 00 714.0 EEfE NN
fN ==         (1) 

(b) Solve equation (1) for N: 

( )714.0ln

ln
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
E
E

N

fN

 

 
Substitute numerical values and 
evaluate N: 
 ( ) 7.54

714.0ln
MeV2

eV02.0ln
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=N  

 

eV. 0.02  toMeV 2 from
neutron   theofenergy   thereduce  torequired are collisionson -head 55

 

 
76 •••  
Picture the Problem We can use the result of Problem 74, part (e), to find the fraction 

0f EEf = of its initial energy lost per collision. Note the difference between the energy 

loss per collision specified here and that of the preceding problem. In the preceding 
problem it was assumed that all collisions are head-on collisions. 
 
(a) Determine 0f EEf = per 

collision: 
 

00

0 1
E
E

E
EEf ∆

−=
∆−

=  

In a collision with a hydrogen atom: 
 

63.0
0

=
∆
E
E

 

and so 
37.0=f  

 
After N collisions: 
 

( ) 00 37.0 EEfE NN
fN ==         (1) 

Solve equation (1) for N: 

( )37.0ln

ln
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
E
E

N

fN

                          (2) 
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Substitute numerical values and 
evaluate N: 
 ( ) 5.18

37.0ln
MeV2

eV02.0ln
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=N  

 

eV. 0.02  toMeV 2 fromneutron   theofenergy 
  thereduce  torequired arehydrogen  of atoman  with collisionson -head 19

 

 
(b) In a collision with a carbon 
atom: 
 

11.0
0

=
∆
E
E

 

and so 
89.0=f  

 
Equation (2) becomes: 
 

( )89.0ln

ln
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
E
E

N

fN

 

 
Substitute numerical values and 
evaluate N: 
 ( ) 158

89.0ln
MeV2

eV02.0ln
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=N  

 

eV. 0.02  toMeV 2 fromneutron   theofenergy 
  thereduce  torequired arecarbon  of atoman  with collisionson -head 158

 

 
*77 •••  

Picture the Problem We can differentiate ( ) ( )tt eeNtN BA

AB

AA0
B

λλ

λλ
λ −− −
−

=  with respect 

to t to show that it is the solution to the differential equation  
dNB/dt = λANA  −  λBNB.  
 
(a) The rate of change of NB is the rate of generation of B nuclei minus the rate of decay 
of B nuclei. The generation rate is equal to the decay rate of A nuclei, which equals 
λANA. The decay rate of B nuclei is λBNB. 
 
(b) We’re given that: 
 BBAA

B NN
dt

dN λλ −=                     (1) 

( ) ( )tt ee
N

tN BA

AB

AA0
B

λλ

λλ
λ −− −
−

=    (2) 

teNN A
A0A

λ−=                                 (3) 
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Differentiate equation (2) with respect to t to obtain: 
 

( )[ ] ( )[ ] [ ]tttt eeNee
dt
dNtN

dt
d

BABA
BA

AB

AA0

AB

AA0
B

λλλλ λλ
λλ
λ

λλ
λ −−−− +−

−
=−

−
=  

 
Substitute this derivative in equation (1) to get: 
 

[ ] ( )⎥
⎦

⎤
⎢
⎣

⎡
−

−
−=+−

−
−−−−− ttttt eeNeNeeN

BAABA

AB

AA0
BA0ABA

AB

AA0 λλλλλ

λλ
λλλλλ

λλ
λ

 

 

Multiply both sides by
AB

AB

λλ
λλ −

 and simplify to obtain: 

 

[ ] ( )

[ ]tt

tt

tttt

ttttt

eeN

eNeN

eNeNeNeN

eeNeNeeN

BA

BA

BAAA

BAABA

BA
B

A0

A0
B

AA0

A0A0
B

AA0
A0

A0A0
B

AB
BA

B

A0

λλ

λλ

λλλλ

λλλλλ

λλ
λ

λ
λ

λ
λ

λ
λλλλ

λ

−−

−−

−−−−

−−−−−

+−=

+−=

+−−=

−−
−

=+−

 

which is an identity and confirms that equation (2) is the solution to equation (1). 
 

(c) 

0.  for  positiveboth  are sparenthese
 in the expression  theandr denominato  the If 0.  for  negative

both are sparenthese in the expression  theandr denominato  the If

BA

BA

>
<>

>

t
t λλ

λλ
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(d) The following graph was plotted using a spreadsheet program. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20
Time, arbitrary units

Number of parent (A) nuclei
Number of daughter ( B) nuclei

 
 
78 •••   
Picture the Problem We can express the time at which the number of isotope B nuclei 
will be a maximum by setting dNB/dt equal to zero and solving for t. 
 
From Problem 77 we have: 
 

0BBAA
B =−= NN

dt
dN λλ for extrema 

 
Replace λANA by teN A

A0A
λλ − and 

NB by ( )tt eeN
BA

AB

AA0 λλ

λλ
λ −− −
−

: 

 

( ) 0BAA

AB

AA0
BA0A =−

−
− −−− ttt eeNeN λλλ

λλ
λλλ

Simplify to obtain: ( ) 0BAA

AB

B =−
−

− −−− ttt eee λλλ

λλ
λ

 

( ) ( ) 0BAA
BAB =−−− −−− ttt eee λλλ λλλ  

 
Remove the parentheses and 
combine like terms to obtain: 
 

tt ee BA
BA

λλ λλ −− =  

 

Solve for t: ( )
AB

ABln
λλ
λλ

−
=t  
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Remarks: Note that all we’ve shown is that an extreme value exists at 
( )

AB

AB

λλ
λλt

−
=

ln
. To show that this value for t maximizes NB, we need to either  

1) examine  the second derivative at this value for t, or 2) plot a graph of NB as a 
function of time (see Problem 77) . 
 
79 •••   
Picture the Problem We can show that, provided ,BA ττ >> 1BA ≈− −− tt ee λλ  and 

B

A

AB

A

λ
λ

λλ
λ

≈
−

 and, hence, that NB = (λA/λB)NA. 

 
We have, from Problem 77 (b): ( ) ( )tt eeNtN BA

AB

AA
B

λλ

λλ
λ −− −
−

=     (1) 

 
Because :BA ττ >>  BA λλ <<  

 
When several years have passed, 
because 1A <<tλ : 

 

1BA ≈− −− tt ee λλ                             (2) 
 

Also, when BA λλ << : 

B

A

AB

A

λ
λ

λλ
λ

≈
−

                           (3) 

 
Substitute (2) and (3) in (1) to 
obtain: 

( ) A
B

A
B NtN

λ
λ

=  
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