37.74:
a) The speed 
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is measured relative to the rocket, and so for the rocket and its occupant, 
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 The acceleration as seen in the rocket is given to be 
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 and so the acceleration as measured on the earth is
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b) With 
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c) 
 EMBED Equation.3  
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so the relation in part (b) between dt and du, expressed in terms of 
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and du, is
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Integrating as above (perhaps using the substitution 
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) gives
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 EMBED Equation.3  [image: image13.wmf].
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For those who wish to avoid inverse hyperbolic functions, the above integral may be done by the method of partial fractions;
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which integrates to
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d) Solving the expression from part (c) for 
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in terms of 
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using the appropriate indentities for hyperbolic functions. Using this in the expression found in part (b),
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which may be rearranged slightly as
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If hyperbolic functions are not used, 
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 in terms of 
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 is found to be
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which is the same as tanh(
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). Inserting this expression into the result of part (b) gives, after much algebra,
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which is equivalent to the expression found using hyperbolic functions.

e) After the first acceleration period (of 5 years by Stella’s clock), the elapsed time on earth is
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The elapsed time will be the same for each of the four parts of the voyage, so when Stella has returned, Terra has aged 336 yr and the year is 2436. (Keeping more precision than is given in the problem gives February 7 of that year.)
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