



 EMBED Word.Document.8 \s [image: image1.emf]2.2:   a) The magnitude of the average velocity on the return flight is            
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          b)  Because the bird ends up at the starting point, the average velocit y for the round  trip is  0 .      



 EMBED Word.Document.8 \s [image: image2.emf]2.3:   Although the distance could be found, the intermediate calculation can be avoided  by considering that the time will be inversely proportional to the speed, and the extra time  will be   
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 EMBED Word.Document.8 \s [image: image3.emf]2.4:     The eastward run takes 
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 EMBED Word.Document.8 \s [image: image4.emf]2.5:   In time  t  the fast runner has traveled 200 m farther than the slow runner:  
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 EMBED Word.Document.8 \s [image: image5.emf]2.6 :   The s - waves travel slower, so they arrive 33 s after the p - waves.    
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 EMBED Word.Document.8 \s [image: image6.emf]2.7:   a) The van will travel 480 m for the first 60 s and 1200 m for the next 60 s, for a  total distance of 1680 m in 120 s and an average speed of 
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 and the second stage  of the journey takes 
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 so the time for the 480 - m trip is 42 s, for an average speed of 
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 c) The first case (part (a));  the average speed will be the numerical average  only if the time intervals are the same.      



 EMBED Word.Document.8 \s [image: image7.emf]2.8:  From the expression for  x ( t ) , x (0) = 0,  x (2.00 s) = 5.60 m and  x (4.00 s) = 20.8 m. a)  
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 EMBED Word.Document.8 \s [image: image8.emf]2.9:    a) At 
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         b) From Eq. (2.3), the instantaneous velocity as a function of time is    
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 EMBED Word.Document.8 \s [image: image9.emf]2.10:   a) IV:  The curve is horizontal; this corresponds to the time when she stops. b)  I:   This is the time when the curve is most nearly straight and tilted upward (indicating  postive velocity). c) V:  Here the curve is plainly straight, tilted downward  (negative  velocity). d) II:  The curve has a postive slope that is increasing. e) III:  The curve is still  tilted upward (positive slope and positive velocity), but becoming less so.      



 EMBED Word.Document.8 \s [image: image10.emf]2.11:   Time (s)      0   2   4   6   8   10   12   14   16   Acceleration (m/s 2 )      0        1          2          2          3          1.5    1.5       0           a) The acceleration is not constant, but is approximately constant between the times 
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 EMBED Word.Document.8 \s [image: image11.emf]2.12:   The cruising speed of the car is 60 
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c) No change in speed, so the acceleration  is zero. d) The final speed is t he same as the initial speed, so the average acceleration is  zero.      



 EMBED Word.Document.8 \s [image: image12.emf]2.13:   a) The plot of the velocity seems to be the most curved upward near  t  = 5 s.   b) The only negative acceleration (downward - sloping part of the plot) is between  t  = 30 s  and  t  = 40 s.  c) At  t  = 20 s, the plot is level, and in Exercise 2.12 the car is s aid to be  cruising at constant speed, and so the acceleration is zero.  d) The plot is very nearly a  straight line, and the acceleration is that found in part (b) of Exercise 2.12, 
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 EMBED Word.Document.8 \s [image: image13.emf]2.14 :   (a) The displacement vector is:    
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    (b) The velocity in both the  x -  and the  y - directions is constant and nonzero; thus  the overall velocity can never  be zero.   (c) The object's acceleration is constant, since  t  does not appear in the acceleration  vector.      
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 EMBED Word.Document.8 \s [image: image15.emf]2.16:   Use of Eq. (2.5), with   t  = 10 s in all cases,   a)  
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.     In all cases, the negative acceleration indicates an acceleration to the left.      



 EMBED Word.Document.8 \s [image: image16.emf]2.17:   a) Assuming the car comes to rest from 65 mph (29 m/s) in 4 seconds, 
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        b) Since the car is coming to a stop, the acceleration is in the direction opposite  to the  velocity. If the velocity is in the positive direction, the  acceleration is  negative; if the  velocity is in the negative direction, the acceleration is positive.      



 EMBED Word.Document.8 \s [image: image17.emf]2.18:   a) The velocity at  t  = 0 is           (3.00 
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 EMBED Word.Document.8 \s [image: image18.emf]2.19:   a)                  b)          



 EMBED Word.Document.8 \s [image: image19.emf]2.20:   a)  The bumper’s velocity and acceleration are given as functions of time by        
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 EMBED Word.Document.8 \s [image: image20.emf]2.21:   a) Equating Equations (2.9) and (2.10) and solving for  v 0 ,  
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 EMBED Word.Document.8 \s [image: image21.emf]2.22:   a) The acceleration is found from Eq. (2.13), which 
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 EMBED Word.Document.8 \s [image: image22.emf]2.23:    From Eq. (2.13), with 
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 EMBED Word.Document.8 \s [image: image23.emf]2.24:   In Eq. (2.14), with  x  –  x 0  being the length of the runway, and  v 0 x  = 0 (the plane    starts from rest),  
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 EMBED Word.Document.8 \s [image: image24.emf]2.25:    a) From Eq. (2.13), with 
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 EMBED Word.Document.8 \s [image: image25.emf]2.26:   a)   x 0   < 0,  v 0 x  < 0,  a x   < 0         b)   x 0  > 0,  v 0 x  < 0,  a x  > 0         c)   x 0  > 0,  v 0 x  > 0,  a x  < 0    



 EMBED Word.Document.8 \s [image: image26.emf]2.27:    a) speeding up:    
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 EMBED Word.Document.8 \s [image: image27.emf]2.28:   a) Interpolating from the graph:    
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 EMBED Word.Document.8 \s [image: image28.emf]2.29:   a)                b)        
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 EMBED Word.Document.8 \s [image: image30.emf]2.31:   a) At  t  = 3 s the graph is horizontal and the acceleration is 0.  From  t  = 5 s to     t  =  9 s, the acceleration is constant (from the graph) and equal to 
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      b) In the first five seconds, the area under the graph is the area of the rectangle, (20  m)(5 s) = 100 m.  Between  t  = 5 s and  t  = 9 s, the area under the trapezoid is (1/2)(45 m/s  + 20 m/s)(4 s) = 130 m (compare to Eq. (2.14)), and  so the total distance in the first 9 s is  230 m.  Between   t  = 9 s and  t  = 13 s, the area under the triangle is 
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 EMBED Word.Document.8 \s [image: image31.emf]2.32:              
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 EMBED Word.Document.8 \s [image: image33.emf]2.34:   After the initial acceleration, the train has traveled    
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  The total distance covered in then 156 .8 m + 1568 m + 71.7 m  = 1.8 km.     In terms of the initial acceleration  a 1 ,   the initial acceleration time  t 1 , the time  t 2  during  which the train moves at constant speed and the magnitude  a 2  of the final acceleration,  the total distance   x T   is given by   whi ch yields the same result.      
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 EMBED Word.Document.8 \s [image: image34.emf]2.35:   a)              b) From the graph (Fig. (2.35)), the curves for  A  and  B  intersect at  t  = 1 s and  t  = 3 s.        c)           d) From Fig. (2.35), the graphs have the same slope at  t  = 2 s .  e) Car  A  passes car  B   when they have the same position and the slope  of curve  A  is greater than that of  curve  B   in Fig. (2.30);  this is at  t  = 3 s.  f) Car  B  passes car  A  when they have the same position  and the slope of curve  B  is greater than that of curve  A ; this is at  t  = 1 s.      



 EMBED Word.Document.8 \s [image: image35.emf]2.36:   a) The truck’s position as a function of time is given by  x T  = v T t ,   with  v T  being the  truck’s constant speed, and the car’s position is given by  x C  = (1/2)  a C t 2 .   Equating the  two expressions and dividing by a factor of  t  (this reflects the fact tha t the car and the  truck are at the same place at  t  = 0) and solving for  t  yields  
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  and at this time     x T  =  x C  = 250 m.         b)  a C t  = (3.20 m/s 2 )(12.5 s) = 40.0 m/s (See Exercise 2.37 for a discussion of why the  car’s speed at this time  is twice the truck’s speed.)      c)          d)          



 EMBED Word.Document.8 \s [image: image36.emf]2.37:  a)       The car and the motorcycle have gone the same distance during the same time, so their  average speeds are the same.  The car's average speed is its constant speed  v C , and for  constant acceleration from rest, the motorcycle's speed is always twic e its   average, or 2 v C .  b) From the above, the motorcyle's speed will be  v C  after half the time  needed to catch the car.  For motion from rest with constant acceleration, the distance  traveled is proportional to the square of the time, so for half the time   one - fourth of the total distance has been covered, or 

. 4 d

   



 EMBED Word.Document.8 \s [image: image37.emf]2.38:       a) An initial height of 200 m gives a speed of 60 

s m

 when rounded to one  significant figure.  This is approximately 200 km/hr or approximately 150 

hr mi

.   (Different values of the approximate height will give  different answers; the above may be  interpreted as slightly better than order of magnitude answers.) b) Personal experience  will vary, but speeds on the order of one or two meters per second are reasonable. c) Air  resistance may certainly not be neglected .      



 EMBED Word.Document.8 \s [image: image38.emf]2.39:   a) From Eq. (2.13), with 
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  which is probably too precise for the speed of a flea;  rounding down, the speed is about 

s m 9 . 2

.      b) The time the flea is risin g is the above speed divided by  g , and the total time is twice  this; symbolically,        
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  or about 0.60 s.      



 EMBED Word.Document.8 \s [image: image39.emf]2.40:   Using Eq. (2.13), with downward velocities and accelerations being positive,
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 (keeping extra significant figures), so  v y   =  4.1 
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 EMBED Word.Document.8 \s [image: image40.emf]2.41:   a) If the meter stick is in free fall, the distance  d  is related to the reaction time  t  by 
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 If  d  is measured in centimeters, the reaction time is      
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 EMBED Word.Document.8 \s [image: image41.emf]2.42:   a)  
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 EMBED Word.Document.8 \s [image: image42.emf]2.43:  a) Using the method of Example 2.8, the time the ring is in the air is  
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  keeping an extra significant figure.  The average velocity is then 
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,   down.   As an alternative to using the  quadratic formula, the speed of the ring when it hits the  ground may be obtained from 
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;  this is algebraically identical to the result obtained by the quadratic formula.       b) While the ring is in free fall, the average acceleration is the constant acceleration due  to gravity, 
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  Solve this quadratic as in part a) to obtain  t  = 2.156 s.        d)  
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 EMBED Word.Document.8 \s [image: image43.emf]2.44:   a) Using  a y  =  – g, v 0 y  = 5.00 

s m

 and  y 0  = 40.0 m in Eqs. (2.8) and (2.12) gives    i)  at   t  = 0.250 s,     y  = (40.0 m) + (5.00 

s m

)(0.250 s)  –  (1/2)(9.80 
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)(0.250 s) 2  = 40.9 m,    v y  = (5.00 
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      and ii) at  t  = 1.00 s,      y  = (40.0 m) + (5.00 m/s)(1.00 s)  –  (1/2)(9.80 m/s 2 )(1.00 s) 2  = 40.1 m,     v y  = (5.00 
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)  –  (9.80 
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)(1.00 s) =  –  4.80 
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.     b)   Using the result derived in Example 2.8, the time is     t  = 
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= 3.41 s.        c) Either using the above time in Eq. (2.8) or avoiding the intermediate calculation by  using Eq. (2.13),  
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.         d)   Using  v y  = 0 in Eq. (2.13) gives    
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 EMBED Word.Document.8 \s [image: image44.emf]2.45:   a) 
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with the  minus sign indicating that the balloon has indeed fallen.       c) 

. s m 2 . 15 so , s m 232 m) 0 . 10 )( s m 80 . 9 ( 2 s) m 00 . 6 ( ) ( 2

2 2 2 2

0

2

0

2

       

y y y

v y y g v v

 



 EMBED Word.Document.8 \s [image: image45.emf]2.46:   a) The vertical distance from the initial position is given by     
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        solving for  v 0 y ,      
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        b)  The above result could be used in 
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 with  v  = 0, to solve for  y   –   y 0   = 10.7 m (this  requires retention of two extra significant figures in the calculation  for  v 0 y ).  c) 0  d) 9.8 
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s m

, down.        e) Assume the top of the building is 50 m above the ground for purposes of graphing:            



 EMBED Word.Document.8 \s [image: image46.emf]2.47:   a) 
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 EMBED Word.Document.8 \s [image: image47.emf]2.48:   a) From Eq. (2.8), solving for  t  gives (40.0 

s m

  –  20.0 

s m

)/9.80 

2

s m

 = 2.04 s.       b) Again from Eq. (2.8),    
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            c) The displacement will be zero when the ball h as returned to its original vertical  position, with velocity opposite to the original velocity.  From Eq. (2.8),    
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) = 4.08 s.  This is, of course, half the  time found in part (c).       e) 9.80 
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, down, in all cases.       f)         



 EMBED Word.Document.8 \s [image: image48.emf]2.49:   a) For a given initial upward speed, the height would be inversely proportional to  the magnitude of  g , and with  g  one - tenth as large, the height would be ten times higher,  or 7.5 m.  b) Similarly, if the ball is thrown with the same upward speed, it  would go ten  times as high, or 180 m.  c) The maximum height is determined by the speed when hitting  the ground; if this speed is to be the same, the maximum height would be ten times as  large, or 20 m.                  



 EMBED Word.Document.8 \s [image: image49.emf]2.50:   a) From Eq. (2.15), the velocity  v 2  at time  t                
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  to two significant figures.       b) F rom Eq. (2.16), the position  x 2  as a function of time is           
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  At  t  = 2.0 s, and with  t 1  = 1.0 s,     x  = (6.0 m) + (4.40 

s m

)((2.0 s)  –  (1.0 s)) + (0.20 

3
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)((2.0 s) 3  –  (1.0 s) 3 )        = 11.8 m.       c)          



 EMBED Word.Document.8 \s [image: image50.emf]2.51:   a) From Eqs. (2.17) and (2.18), with  v 0 =0 and  x 0 =0,    
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              b) For the velocity to be a maximum, the acceleration must be zero; this occurs at  t =0  and 
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. At  t =0 the velocity is a  minimum, and at  t =12.5 s the velocity is    

s. m 1 . 39 s) 5 . 12 )( s m 040 . 0 ( s) 5 . 12 )( s m 75 . 0 (

3 4 2 3

  

x

v

     



 EMBED Word.Document.8 \s [image: image51.emf]2.52:   a) 
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 EMBED Word.Document.8 \s [image: image52.emf]2.53:   a) The change in speed is the area under the  a x  versus  t  curve between   vertical lines at 
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  This acceleration is positive so the change in velocity is positive.     b ) Slope of  v x  versus  t  is positive and increasing with  t .          



 EMBED Word.Document.8 \s [image: image53.emf]2.54:   a) To average 4 

hr mi

, the total time for the twenty - mile ride must be five    hours, so the second ten miles must be covered in 3.75 hours, for an average of 2.7 

. hr mi

 b) To average 12 

hr mi

, the s econd ten miles must be covered in 25 minutes and  the average speed must be 24 

. hr mi

 c) After the first hour, only ten of the twenty miles  have been covered, and 16 

hr mi

 is not possible as the average speed.      



 EMBED Word.Document.8 \s [image: image54.emf]2.55:   a)         The velocity and acceleration of the particle as functions of time are    
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    b) The particle is at rest when the velocity is zero; setting  v  = 0 in the above expression  and using the quadratic formula to solve for the time  t ,    
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    and the times are 0.63 s and 1.60 s.  c) The acceleration is negative at the earlier time and  positive at the later time.  d) The velocity is instantaneously not changing when the  acceleration is zero; solving the above express ion for 
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  Note that this time is the numerical average of the times found in part (c).  e) The greatest  distance is the position of the particle when the velocity is zero and the acceleration is  negative;  this occurs at 0.63 s, and at that time the particle is at     
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    (In this case, retaining extra significant figures in evaluating the roots of the quadratic  equation does not change the answer in the third place.) f) The acceleration  is negative at  t  = 0 and is increasing, so the particle is speeding up at the greatest rate at   t  = 2.00 s and  slowing down at the greatest rate at  t  = 0.  This is a situation where the extreme values of  a function (in the case the acceleration) occur not  at times when 
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but  at the  endpoints of the given range.  



 EMBED Word.Document.8 \s [image: image55.emf]2.56:   a) 
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      c)  Her net displacement is zero, so the average velocity has zero magnitude.     d) 
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 Note that the answer to part (d) is the  harmonic  mean, not the  arithmetic mean, of the a nswers to parts (a) and (b).  (See Exercise 2.5).        



 EMBED Word.Document.8 \s [image: image56.emf]2.57:    Denote the times, speeds and lengths of the two parts of the trip as  t 1  and  t 2 ,  v 1  and  v 2 , and  l 1  and  l 2.           a) The average speed for the whole trip is    
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    or 82.3 km/h, keeping an extra significant figure.     b) Assuming nea rly straight - line motion (a common feature of Nebraska  highways), the total distance traveled is  l 1 – l 2  and    
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to three significant figures.)      



 EMBED Word.Document.8 \s [image: image57.emf]2.58:   a) The space per vehicle is the speed divided by the frequency with which the cars  pass a given point;  
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              An average vehicle is given to be 4.5 m long, so the average spacing is 40.0 m  –  4.6 m    = 35.4 m.     b) An average spac ing of 9.2 m gives a space per vehicle of 13.8 m, and the traffic  flow rate is   
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 EMBED Word.Document.8 \s [image: image58.emf]2.59:   (a) Denote the time for the acceleration (4.0 s) as  t 1  and the time spent running at  constant speed (5.1 s) as  t 2 . The constant speed is then  at 1 , where  a  is the unknown  acceleration. The total  l  is then given in terms of  a ,  t 1  and  t 2  by    
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    (b) During the 5.1 s interval, the runner is not accelerating, so  a  = 0.     (c) 
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    (d) The runner was moving at constant velocity for the last 5.1 s.      



 EMBED Word.Document.8 \s [image: image59.emf]2.60:   a) Simple subtraction and division gives average speeds during the 2 - second    intervals as 5.6, 7.2 and 8.8 

s m

.   b) The average speed increased by 1.6 
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.   c) From Eq. (2.13), with  v 0  =  0 , 
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 Or,  recognizing that for constant acceleration the average speed of 5.6 m/s is the speed one  second after passing the 14.4 - m mark, 5.6 
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  –  (0.8 
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)(1.0 s) = 4.8 
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.   d) With both the acceleration and the speed at the 14.4 - m known, either Eq. (2.8)  or Eq. (2.12) gives the time as 6.0 s.   e) From Eq. (2.12),  x   –   x 0  = (4.8 
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) times the time interval of    1.0 s.      



 EMBED Word.Document.8 \s [image: image60.emf]2.61:   If the driver steps on the gas, the car will travel  
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  so the driver should apply the brake.      
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 EMBED Word.Document.8 \s [image: image62.emf]2.63:   a) 
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        c) Let  c  be the speed of light, then in one second light travels a distance 
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 EMBED Word.Document.8 \s [image: image63.emf]2.64:   Taking the start of the race as the origin, runner A's speed at the end of 30 m can  be found from:    
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    A’s time to cover the first 30 m is thus:    
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 EMBED Word.Document.8 \s [image: image64.emf]2.65 : For the first 5.0 s of the motion, 
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 EMBED Word.Document.8 \s [image: image65.emf]2.66:   a) The simplest way to do this is to go to a frame in which the freight train (which  moves with constant velocity) is stationary.  Then, the passenger train has    an initial relative velocity of  v rel,0  = 10 
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.  This relative spee d would be decreased to  zero after the relative separation had decreased to 
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 Since this is larger in  magnitude than the original relative separation of 200 m, there will be a collision.  b) The  time at which the relative separation g oes to zero ( i.e. , the collision time) is found by  solving a quadratic (see Problems 2.35 & 2.36 or Example 2.8).  The time is given by   
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.     Substitution of this time into Eq. (2.12) , with  x 0  = 0, yields 538 m as the distance the  passenger train moves before the collision.      



 EMBED Word.Document.8 \s [image: image66.emf]2.67:   The total distance you cover is 
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 EMBED Word.Document.8 \s [image: image67.emf]2.68:   One convenient way to do the problem is to do part (b) first; the time spent  accelerating from rest to the maximum speed is 
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 where  t 1  is the time found for the acceleration.   At this time the car has moved (15 
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)(8.0 s) = 120 m, so the officer is 40 m behind the  car.     a)   The remaining distance to be covered is 300 m  –  x 1   and the average speed is  (1/ 2)( v 1  + v 2 ) = 17.5 
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 EMBED Word.Document.8 \s [image: image68.emf]2.69:   a) 
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 EMBED Word.Document.8 \s [image: image69.emf]2.70:   The position of the cars as functions of time (taking  x 1  = 0 at  t  = 0) are          
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 EMBED Word.Document.8 \s [image: image70.emf]2.71:   a) Travelling at 
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 EMBED Word.Document.8 \s [image: image71.emf]2.72:   a) There are many ways to find the result using extensive algebra, but the most    straightforward way is to note that between the time the truck first passes the police car  and the time the police car catches up to the truck, both the truck and the ca r have  travelled the same distance in the same time, and hence have the same average velocity  over that time.  Since the truck had initial speed 
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 EMBED Word.Document.8 \s [image: image72.emf]2.73:   a) The most direct way to find the time is to consider that the truck and the car are  initially moving at the same speed, and the time of the acceleration must be that which  gives a difference between the truck's position and the car's position as  
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 EMBED Word.Document.8 \s [image: image73.emf]2.74:   a) From Eq.  (2.17 ), x ( t )  =    t   –
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 EMBED Word.Document.8 \s [image: image74.emf]2.75:   a) The particle's velocity and position as functions of time are    
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    where  x 0  has been set to 0.  Then,  x (0) = 0, and to have  x (4 s) = 0,    
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 EMBED Word.Document.8 \s [image: image75.emf]2.76:   The time needed for the egg to fall is          

, s 00 . 3

) s m 80 . 9 (

) m 80 . 1 m 0 . 46 ( 2

9

2

2











h

t

    and so the professor should be a distance  v y t  = (1.20 
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)(3.00 s) = 3.60 m.          



 EMBED Word.Document.8 \s [image: image76.emf]2.77:   Let  t 1  be the fall for the watermelon, and  t 2  be the travel time for the sound to  return. The total time is 
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 EMBED Word.Document.8 \s [image: image77.emf]2.78:   The elevators to the observation deck of the Sears Tower in Chicago move from  the ground floor to the 103 rd  floor observation deck in about 70 s.  Estimating a single  floor to be about 3.5 m (11.5 ft), the average speed of the elevator is 
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 EMBED Word.Document.8 \s [image: image78.emf]2.79:   a) 
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    which is not possible for a leaping diver.      



 EMBED Word.Document.8 \s [image: image79.emf]2.80:   If the speed of the flowerpot at the top of the window is  v 0 , height  h  of the    window is          
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      An alternative but more complicated algebr aic method is to note that  t  is the difference  between the times taken to fall the heights  l  +  h  and  h , so that          
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 EMBED Word.Document.8 \s [image: image80.emf]2.81:   a) The football will go an additional 
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 above the window, so  the greatest height is 13.27 m or 13.3 m to the given precision.           b) The time needed to reach this height is 
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 EMBED Word.Document.8 \s [image: image81.emf]2.82:   a)               



 EMBED Word.Document.8 \s [image: image82.emf]2.83:   a) From Eq. (2.14), with  v 0 =0,     
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 

g

2

s m   45

.The h eight above the ground is then 5.14 m.          c) See Problems 2.46 & 2.48 or Example 2.8: The shot moves a total distance  2.20 m  – 1.83 m = 0.37 m, and the time is    
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m) 37 . 0 ( ) s m 80 . 9 ( 2 ) s m 59 . 7 ( ) s m 59 . 7 (
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 EMBED Word.Document.8 \s [image: image83.emf]2.84:   a) In 3.0 seconds the teacher falls a distance    

m 1 . 44 ) s 0 . 9 )( s m 8 . 9 (
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2 2 2
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gt y

  To reach her ears after 3.0 s, the sound must therefore have traveled a total distance of  

m 1 . 44 2 m ) 1 . 44 (

   

h h h

,where  h  is the height of the cliff. Given 340 m/s for the  speed  of sound:

m 1020 s) 0 3 )( s m (340 m 1 . 44 2

  

. h

, which gives 
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

h

to the given precision.         b) We can use 
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y y g v v

y y
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 to find the teacher's final velocity. This gives 
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y
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 EMBED Word.Document.8 \s [image: image84.emf]2.85:  a) Let + y  be upward.   At ceiling, 
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0

s m 80 . 9 m, 0 . 3 , 0

    

y y

a y y v

. Solve for  v 0 y .  
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0 0

2

0

2

   
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v y y a v v

       b) 

t a v v

y y y

 

0

  with the information from part (a) gives 

s 78 . 0



t

.        c) Let the first ball travel downward a distance  d  in time  t .  It starts from its maximum  height, so 

. 0
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) s m 9 . 4 ( gives t d t a t v y y
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   

  The second ball has 

s m 5.1 s) m 7 . 7 (

3

1

0

 

y

v

.  In time  t  it must travel upward  

d



m 0 . 3

to be at the same place as the first ball.  

. ) s m 9 . 4 ( ) s m 1 . 5 ( m 0 . 3 gives
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t t d t a t v y y
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     

  We have two equations in two unknowns,  d  and  t .  Solving gives 

s 59 . 0



t

and 
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d

       d) 
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 
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 EMBED Word.Document.8 \s [image: image85.emf]2.86:   a) The helicopter accelerates from rest for 10.0 s at a constant 

2

s m 5.0

. It thus  reaches an upward velocity of   

s m 50.0 s) 0 . 10 )( s m 0 . 5 (
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  and a height of 

m 250 s) 0 . 10 )( s m 0 . 5 (

2 2

2

1

2

2

1
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t a y

y

at the moment the engine is shut  off. To find the helicopt er's maximum height use    

) ( 2
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2

y y a v v

y y y

  

  Taking 

m 250

0



y

, where the engine shut off, and since 

0
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

y

v

 at the maximum height:    
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) s m 8 . 9 ( 2
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  or 380 m to the given precision.           b)  The time for the helic opter to crash from the height of 250 m where Powers  stepped out and the engine shut off can be found from:   

0 ) s m 8 . 9 ( s) m 0 . 50 ( m 250

2

1
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       
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   where we now take the ground as 

0



y

. The quadratic formula gives solutions of 

s 67 . 3



t

a nd 13.88 s, of which the first is physically impossible in this situation. Powers'  position 7.0 seconds after the engine shutoff is given by:     

m 9 . 359 ) s 0 . 49 )( s m 8 . 9 (
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s) 0 . 7 )( s m 0 . 50 ( m 250
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    
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  at which time his velocity is  
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  Powers thus has 

s 88 . 6 0 . 7 88 . 13

 

 more time to fall before the helicopter crashes, at his  constant downward acceleration of 

2

s m 2.0

. His position at crash time is thus:  
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    or 180 m to the  given precision.      



 EMBED Word.Document.8 \s [image: image86.emf]2.87:  Take + y  to be downward.   Last 1.0 s of fall:  
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  v 0 y  is his speed at the start of this time interval.   Motion from roof to 
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  This is  v y  for the last 1.0 s of fall .  Using this in the equation for the first 1.0 s gives  
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 
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 EMBED Word.Document.8 \s [image: image87.emf]2.88:     a)   
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          (2)     Combine (1) and (2): 
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s s

  
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        b) You would think that the rock fell f or 10 s, not 8.84 s, so you would have  thought  it fell farther. Therefore your answer would be an  overestimate  of the cliff's height.      



 EMBED Word.Document.8 \s [image: image88.emf]2.89:   a) Let + y  be upward.  
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  Use this  v 0 y   in

s m 5 . 20 : for    solve    to
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          b) Find the maximum height of the can, above the point where it falls from the  scaffolding:  
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  The can will pass the location of the other painter.  Yes, he gets a chance.      



 EMBED Word.Document.8 \s [image: image89.emf]2.90:   a) Suppose that Superman falls for a time  t , and that the student has been    falling for a time  t 0  before Superman’s leap (in this case,  t 0  = 5 s).  Then, the height  h  of  the building is related to  t  and  t 0  in two different ways:          
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    where  v 0 y  is Superman’s initial velocity.  Solving the second  t  gives 
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   Solving the first for  v 0 y  gives  v 0 y   = 

,

2

t

g

t

h

 

 and substitution of numerical values gives  t  = 1.06 s an d  v 0 y  =  – 165 

s m

, with the minus sign indicating a downward initial velocity.       b)              c)  If the skyscraper is so short that the student is already on the ground, then 
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 EMBED Word.Document.8 \s [image: image90.emf]2.91:   a) The final speed of the first part of the fall (free fall) is the same as the initial  speed of the second part of the fall (with the Rocketeer supplying the upward  acceleration), and assuming the student is a rest both at the top of the tower and a t the  ground, the distances fallen during the first and second parts of the fall are 
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v

g

v

10

  and

2

2

1

2

1

,  where  v 1  is the student's speed when the Rocketeer catches him.  The distance fallen in  free fall is then five times the distance from the ground  when caught, and so the distance  above the ground when caught is one - sixth of the height of the tower, or 92.2 m.  b) The  student falls a distance 

6 5H

 in time 

, 3 5 g H t



 and the Rocketeer falls the same  distance in time  t – t 0 , where  t 0 =5.00 s (assigning three significant figures to  t 0  is more or  less arbitrary).  Then,      
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   

  At this point, there is no great advantage in expressing  t  in terms of  H  and  g  algebraically;  

s 698 4 s 00 . 5 s m 29.40 m) 553 ( 5
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. t t
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, from which 
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    c)      



 EMBED Word.Document.8 \s [image: image91.emf]2.92:   a) The time is the initial separation divided by the initial relative speed, H/ v 0 .      More precisely, if the positions of the balls are described by           
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gt H y gt t v y
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  setting y 1  = y 2   gives  H = v 0 t .  b)  The first ball will be at the highest  point of its motion if  at the collision time  t  found in part (a) its velocity has been reduced from  v 0  to 0, or  gt  =   gH/v 0  = v 0 , or 
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 EMBED Word.Document.8 \s [image: image92.emf]2.93:   The velocities are 
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B A

       

a) Since  v B  is zero at  t  = 0, car  A  takes the early lead.  b) The cars are both at the origin at  t  = 0.  The non - trivial solution  is found by setting  x A  =  x B , cancelling the common factor of  t , and solving th e quadratic  for    

 

. 4 ) ( ) (

2
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    



    

t

    Substitution of numerical values gives 2.27 s, 5.73 s.  The use of the term “starting point”  can be taken to mean that negative times are to be neglected.  c) Setting  v A  =  v B  leads to a  different quadratic, the pos itive solution to which is    

 
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    
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    Substitution of numerical results gives 1.00 s and 4.33 s.           d) Taking the second derivative of  x A  and  x B  and setting them equal, yields, 

t

  

6 2 2
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. Solving, 
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 EMBED Word.Document.8 \s [image: image93.emf]2.94:   a)   The speed of any object falling a distance  H   –   h  in free fall is   
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b) The acceleration needed to bring an object from speed  v  to rest over a    distance  h  is 
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 EMBED Word.Document.8 \s [image: image94.emf]2.95:   For convenience, let the student's (constant) speed be  v 0  and the bus's initial  position be  x 0 . Note that these quantities are for separate objects, the student and the bus.   The initial position of the student is taken to be zero, and the initial ve locity of the bus is  taken to be zero.  The positions of the student  x 1  and the bus  x 2  as functions of time are  then       
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          a) Setting 
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and solving for the times  t  gives     
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    The student will be likely to hop on the bus the first time she passes it (see part (d) for a  discussion of the later time).  During this time, the student has run a distance 

m. 8 47 s) 55 . 9 )( s m 5 (
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. t v
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         b) The speed of the bus is 

. s m 1.62 s) 55 . 9 )( s m 170 . 0 (
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

         c) The results can be verified by noting that the  x  lines for the student and the bus  intersect at two points:                            d) At the later time, the student has passed the bus, mai ntaining her constant speed,  but the accelerating bus then catches up to her. At this later time the bus's velocity is 
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 EMBED Word.Document.8 \s [image: image95.emf]2.96:   The time spent above  y max /2 is 
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the total time spent in the air, as the time is  proportional to the square root of the change in height.  Therefore the ratio is          
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 EMBED Word.Document.8 \s [image: image96.emf]2.97:   For the purpose of doing all four parts with the least repetition of algebra,  quantities will be denoted symbolically.  That is,  let
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 In this case, 
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.  Setting 
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expanding the binomial 
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and eliminating the common term 
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which can be solved for  t ;  
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  Substitution of this into the expression for 
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and solving for  h  as a  function of  v 0  yields, after some algebra,  

 

.

2

1

2

1

2

0 0

2

0 0

2

0

v gt

v gt

gt h



















         a) Using the given value 
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    This has two  solutions, one of which is unphysical (the first ball is still going up when  the second is r eleased; see part (c)).  The physical solution involves taking the negative  square root before solving for 

0

v

, and yields 

s. m   2 . 8

           b) The above expression gives for i), 0.411 m and for ii) 1.15 km.  c) As  v 0  appr oaches 

s m   8 . 9

, the height  h  becomes infinite,  corresponding to a relative velocity at the time  the second ball is thrown that approaches zero.  If 

, s m   8 . 9

0



v

 the first ball can never  catch the second ball.  d) As  v 0  approache s 4.9 m/s, the height approaches zero.  This  corresponds to the first ball being closer and closer (on its way down) to the top of the  roof when the second ball is released.  If 

, s m   9 . 4

0



v

 the first ball will already have  passed the roof on th e way down before the second ball is released, and the second ball  can never catch up.      



 EMBED Word.Document.8 \s [image: image97.emf]2.98:   a) Let the height be  h  and denote the 1.30 - s interval as 

 t ; the simultaneous  equations  h =
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  can be solved for  t.  Eliminating  h  and taking the  square root, 
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 and substitution into 
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gives  h  = 246 m.    This method avoids use of the quadratic formula; the quadratic formula is  a  generalization of the method of “completing the square”, and in the  above form,  
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 the square is already completed.            b)  The above method assumed that  t > 0 when the square root was taken. The  negative root (with   t  = 0) gives an answer of 2.51 m, clearly not a “cliff”. This would  correspond to an object that was initially near the bottom of this “cliff” being thrown  upward and taking 1.30 s to rise to the top and fall to the bottom. Although physically  possible, the conditions of the problem preclude this answer.  


