



 EMBED Word.Document.8 \s [image: image1.emf]4.2:     In the new coordinates, the 120 - N force acts at an angle of 
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 EMBED Word.Document.8 \s [image: image2.emf]4.3:  The horizontal component of the force is 
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   to the right and the  vertical component is 
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 EMBED Word.Document.8 \s [image: image4.emf]4.5:  Of the many ways to do this problem, two are presented here.       Geometric: From the law of cosines, the magnitude of the resultant is    
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      Components: Taking the 
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- direction to be along dog  A ’s rope, the components of the  resultant are    
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 EMBED Word.Document.8 \s [image: image5.emf]4.6:  a) 
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 EMBED Word.Document.8 \s [image: image6.emf]4.7:  
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 (to two places).      



 EMBED Word.Document.8 \s [image: image7.emf]4.8:  
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 EMBED Word.Document.8 \s [image: image8.emf]4.9:  
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 EMBED Word.Document.8 \s [image: image9.emf]4.10:  a) The acceleration is 
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 EMBED Word.Document.8 \s [image: image10.emf]4.11:  a) During the first 2.00 s, the acceleration of the puck is 

2

m/s 563 . 1 /



m F

  (keeping an extra figure). At 

s 00 . 2



t

, the speed is 

m/s 13 . 3



at

 and the position is 

m 13 . 3 2 / 2 /

2

 

vt at

. b) The acceleration during th is period is also 

2

m/s 563 . 1

, and the  speed at 7.00 s is 

m/s 6.26 s) 00 . 2 )( m/s (1.563 m/s 13 . 3

2

 

. The position at 

s 00 . 5



t

 is 

m 125 s) 2.00 s m/s)(5.00 (3.13 m 13 . 3

   

x

, and at 

s 00 . 7



t

 is  

m, 21.89 s) )(2.00 m/s 3 (1/2)(1.56 s) m/s)(2.00 (3.13 m 12.5

2 2

  

  or 21.9 m to three places.      



 EMBED Word.Document.8 \s [image: image11.emf]4.12:  a) 
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 EMBED Word.Document.8 \s [image: image12.emf]4.13:  a) 
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 EMBED Word.Document.8 \s [image: image14.emf]4.15:  
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 EMBED Word.Document.8 \s [image: image15.emf]4.16:      
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 EMBED Word.Document.8 \s [image: image16.emf]4.17:  a)
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 b) The mass is the same, 4.49 kg, and  the weight is 
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 EMBED Word.Document.8 \s [image: image17.emf]4.18:  a) From Eq. (4.9), 
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      b) 
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 EMBED Word.Document.8 \s [image: image18.emf]4.19:  
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 The net forward force on the sprinter is  exerted by the blocks. (The sprinter exerts a backward force on the blocks.)      



 EMBED Word.Document.8 \s [image: image19.emf]4.20:  a) the earth (gravity) b) 4 N, the book c) no d) 4 N, the earth, the book, up e) 4 N,  the hand, the book, down f) second g) third h) no i) no j) yes k) yes l) one (gravity) m) no      



 EMBED Word.Document.8 \s [image: image20.emf]4.21:  a) When air resistance is not neglected, the net force on the bottle is the weight of  the bottle plus the force of air resistance. b) The bottle exerts an upward force on the  earth, and a downward force on the air.      



 EMBED Word.Document.8 \s [image: image21.emf]4.22:  The reaction to the upward normal force on the passenger is the downward normal  force, also of magnitude 620 N, that the passenger exerts on the floor. The reaction to the  passenger’s weight is the gravitational force that the passenger exerts on the  earth,  upward and also of magnitude 650 N. 
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 The passenger’s  acceleration is
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, downward.      



 EMBED Word.Document.8 \s [image: image22.emf]4.23:
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 EMBED Word.Document.8 \s [image: image23.emf]4.24:  (a) Each crate can be considered a single particle:    
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) and 
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 (the force on 
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) form  an  action - reaction pair.   (b) Since there is no horizontal force opposing  F , any value of  F , no matter how  small, will cause the crates to accelerate to the right. The weight of the two crates acts at  a right angle to the horizontal, and is in any case bal anced by the upward force of the  surface on them.      



 EMBED Word.Document.8 \s [image: image24.emf]4.25:  The ball must accelerate eastward with the same acceleration as the train. There  must be an eastward component of the tension to provide this acceleration, so the ball  hangs at an angle relative to the vertical. The net force on the ball is not zero.      



 EMBED Word.Document.8 \s [image: image25.emf]4.26:  The box can be considered a single particle.         For the truck:         The box’s friction force on the truck bed and the truck bed’s friction force on the box  form an action - reaction pair. There would also be some small air - resistance force action  t o the left, presumably negligible at this speed.      



 EMBED Word.Document.8 \s [image: image26.emf]4.27:  a)            b) For the chair, 
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 EMBED Word.Document.8 \s [image: image27.emf]4.28:  a)         b)                                            
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 EMBED Word.Document.8 \s [image: image28.emf]4.29:  tricycle and Frank           T  is the force exerted by the rope and 
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 is the force the ground exerts on the tricycle.       spot and the wagon           
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 EMBED Word.Document.8 \s [image: image29.emf]4.30:  a) The stopping time is 
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 EMBED Word.Document.8 \s [image: image30.emf]4.31:  Take the 
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 EMBED Word.Document.8 \s [image: image31.emf]4.32:  Get  g  on X:  
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 EMBED Word.Document.8 \s [image: image32.emf]4.33:  a) The resultant must have no  y - component, and so the child must push with a force  with  y - component 
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 EMBED Word.Document.8 \s [image: image33.emf]4.34:  The ship would go a distance    
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  so the ship would hit the reef. The speed when the tanker hits the reef is also found from    
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 EMBED Word.Document.8 \s [image: image34.emf]4.35:  a) Motion after he leaves the floor: 
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 EMBED Word.Document.8 \s [image: image35.emf]4.36:    
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 EMBED Word.Document.8 \s [image: image36.emf]4.37:  a)                                     
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 EMBED Word.Document.8 \s [image: image37.emf]4.38:  a) 
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 EMBED Word.Document.8 \s [image: image38.emf]4.39:  a) Both crates moves together, so 
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 EMBED Word.Document.8 \s [image: image39.emf]4.40:  a) The force the astronaut exerts on the rope and the force that the rope exerts on  the astronaut are an action - reaction pair, so the rope exerts a force of 80.0 N on the  astronaut.    b) The cable is under tension. c) 
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 EMBED Word.Document.8 \s [image: image40.emf]4.41:  a) 
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 EMBED Word.Document.8 \s [image: image41.emf]4.42:  a) The velocity of the spacecraft is downward. When it is slowing down, the  acceleration is upward. When it is speeding up, the acceleration is downward.              b)     speeding up: 
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  In this form, it does not matter which thrust and acceleration are denoted by 1 and which  by 2, and the acceleration due to gravity at the surface of Mercury need not be found.  Substituting the given numbers, with 
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  upward, gives    
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 is negative.  Also note that although 
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 is known to two places, the sums in both num erator and  denominator are known to three places.      



 EMBED Word.Document.8 \s [image: image42.emf]4.43:                   a) The engine is pulling four cars, and so the force that the engine exerts on the first car  is 
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. e) The direction of the acceleration, and hence the direction of  the forces, would change but the magnitudes would not; the answers are the same.      



 EMBED Word.Document.8 \s [image: image43.emf]4.44:  a) If the gymnast climbs at a constant rate, there is no net force on the gymnast, so  the tension must equal the weight; 
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 EMBED Word.Document.8 \s [image: image44.emf]4.45:  a)          The maximum acceleration would occur when the tension in the cables is a maximum,      
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 EMBED Word.Document.8 \s [image: image45.emf]4.46:  a) His speed as he touches the ground is        
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          c)            The net force that the feet exert on the ground is the force that the ground exerts  on the  feet (an action - reaction pair). This force is related to the weight and acceleration by 
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 so
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 (keeping an extra figure in the  intermediat e calculation of  a ). Note that this result is the same algebraically as 
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 EMBED Word.Document.8 \s [image: image46.emf]4.47:  a)            b) The acceleration of the hammer head will be the same as the nail, 
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. The mass of the hammer head is  its weight divided by 
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, and so the net force on the hammer  head is 
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  This is the sum of the forces on the hammer  head; the upward force that the nail exerts, the downward weight and the downward 15 - N  force. The force that the nail exerts is then 590 N, and this must be the magnitude of the  force that the hammer head exerts  on the nail. c) The distance the nail moves is .12 m, so  the acceleration will be 

2

s / m 4267

, and the net force on the hammer head will be 2133  N. The magnitude of the force that the nail exerts on the hammer head, and hence the  magnitude of t he force that the hammer head exerts on the nail, is 2153 N, or about 2200  N.      



 EMBED Word.Document.8 \s [image: image47.emf]4.48:           a) The net force on a point of the cable at the top is zero; the tension in the cable must  be equal to the weight  w .       b) The net force on the cable must be zero; the difference between the tensions at the  top and bottom must be equal to the  weight  w , and with the result of part (a), there is no  tension at the bottom.       c) The net force on the bottom half of the cable must be zero, and so the tension in the  cable at the middle must be half the weight, 

2 / w

. Equivalently,  the net force on the  upper half of the cable must be zero. From part (a) the tension at the top is  w , the weight  of the top half is 

2 / w

 and so the tension in the cable at the middle must be 

2 / 2 / w w w
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.       d) A graph of  T  v s. distance will be a negatively sloped line.            



 EMBED Word.Document.8 \s [image: image48.emf]4.49:    a)          b) The net force on the system is 
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.  Equivalently, the tension at the top of the rope causes the upward acceleration of the rope  and the bottom block, so 
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 EMBED Word.Document.8 \s [image: image49.emf]4.50:  a)            b) The athlete’s weight is 
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  The force n eeded to lift the barbell is given by:    
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  The barbell’s mass is 
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 EMBED Word.Document.8 \s [image: image50.emf]4.51:     a)          L  is the lift force           b)
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 EMBED Word.Document.8 \s [image: image51.emf]4.52:   a) 
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 mass of one link                       The downward forces of magnitude 2 ma  and  ma  for the top and middle links are the  reaction forces to the upward force needed to accelerate the links below.       b)  (i) The weight of each link  is 
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      (ii) The second link also accelerates at 
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 EMBED Word.Document.8 \s [image: image52.emf]4.53:  Differentiating twice, the acceleration of the helicopter as a function of time is    
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 EMBED Word.Document.8 \s [image: image53.emf]4.54:  The velocity as a function of time is 
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 EMBED Word.Document.8 \s [image: image55.emf]4.56:  a) The equation of motion, 
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 is part of the integrand. The equation must be  separated   before integration; that is,    
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  To obtain  x  as a function of  v , the time  t  must be eliminated in favor of  v ; from the  expression obtained after the first integration, 
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 EMBED Word.Document.8 \s [image: image56.emf]4.57:  In this situation, the  x - component of force depends explicitly on the  y - component of  position. As the  y - component of force is given as an explicit function of time, 
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