



 EMBED Word.Document.8 \s [image: image1.emf]5.2:   In all cases, each string is supporting a weight  w  against gravity, and the tension in  each string is  w . Two forces act on each mass :   w  down and
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 EMBED Word.Document.8 \s [image: image2.emf]5.3:   a) The two sides of the rope each exert a force with vertical component  T  
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, and  the sum of these components is the hero’s weight. Solving for the tension  T ,  
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 EMBED Word.Document.8 \s [image: image3.emf]5.4:   The vertical component of the force due to the tension in each wire must be half of  the weight, and this in turn is the tension multiplied by the cosine of the angle each wire  makes with the vertical, so if the weight is 
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 EMBED Word.Document.8 \s [image: image4.emf]5.5:   With the positive  y - direction up and the positive  x - direction to the right, the free - body diagram of Fig. 5.4(b) will have the forces labeled  n  and  T  resolved into  x -  and  y - components, and setting the net force equal to zero,  
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 as in Example 5.4.      
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   N.    10 4.10 17.5 sin    ) s m   (9.80   kg)   1390 (   sin    sin   

3 2

    

α mg α w

     



 EMBED Word.Document.8 \s [image: image6.emf]5.7:  a) 
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 EMBED Word.Document.8 \s [image: image8.emf]5.9:  The resistive force is 
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 EMBED Word.Document.8 \s [image: image9.emf]5.10:  The magnitude of the force must be equal to the component of the weight along the  incline, or
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 EMBED Word.Document.8 \s [image: image10.emf]5.11:    a) 
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 EMBED Word.Document.8 \s [image: image11.emf]5.12:    If the rope makes an angle 



 with the vertical, then 
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 EMBED Word.Document.8 \s [image: image12.emf]5.13:    a) In the absence of friction, the force that the rope between the blocks exerts on  block  B  will be the component of the weight along the direction of the incline, 
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 EMBED Word.Document.8 \s [image: image13.emf]5.14:    a) In level flight, the thrust and drag are horizontal, and the lift and weight are  vertical. At constant speed, the net force is zero, and so 
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 c) In order to  increase the magnitude of the drag force by a factor  of 2, the speed must increase by a  factor of 
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 EMBED Word.Document.8 \s [image: image14.emf]5.15:  a)     The tension is related to the masses and accelerations by  
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        c) The result of part (b) may be substituted into either of the above expressions to find  the tension 
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this must be the case, since the load of bricks rises and the  counterweight drops.      



 EMBED Word.Document.8 \s [image: image15.emf]5.16:     Use Second Law and kinematics :  
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 EMBED Word.Document.8 \s [image: image16.emf]5.17:   a)             b) In the absence of friction, the net force on the 4.00 - kg block is the tension, and so  the acceleration will be 
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 EMBED Word.Document.8 \s [image: image17.emf]5.18:   The maximum net force on the glider combination is    
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 Note that this is  exactly half of the maximum tension in the towrope between the plane and the first  glider.      



 EMBED Word.Document.8 \s [image: image18.emf]5.19:   Denote the scale reading as  F , and take positive directions to be upward. Then,    
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 EMBED Word.Document.8 \s [image: image19.emf]5.20:    Similar to Exercise 5.16, the angle is 
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 EMBED Word.Document.8 \s [image: image20.emf]5.21:       



 EMBED Word.Document.8 \s [image: image21.emf]5.22:         



 EMBED Word.Document.8 \s [image: image22.emf]5.23:     a) For the net force to be zero, the applied force is    
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 EMBED Word.Document.8 \s [image: image23.emf]5.24:    a) If there is no applied horizontal force, no friction force is needed to keep the  box in equilibrium.  b) The maximum static friction force is, from Eq. (5.6), 
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 EMBED Word.Document.8 \s [image: image24.emf]5.25:   a) At constant speed, the net force is zero, and the magnitude of the applied force  must equal the magnitude of the kinetic friction force,  
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 EMBED Word.Document.8 \s [image: image25.emf]5.26:   The coefficient of kinetic friction is the ratio 
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 EMBED Word.Document.8 \s [image: image26.emf]5.27:  As in Example 5.17, the friction force is 
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 so the friction force holds the safe back,  and another force is needed to move the safe down the skids.         b) The difference between the downward component of gravity and the kinetic  friction force is  
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 EMBED Word.Document.8 \s [image: image27.emf]5.28:  a) The stopping distance is  
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      b) The stopping distance is inversely proportional to the coefficient of friction and  proportional to the square of the speed, so to stop in the same distance the initial speed  should not exceed  
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 EMBED Word.Document.8 \s [image: image28.emf]5.29:    For a given initial speed, the distance traveled is inversely proportional to the  coefficient of kinetic friction. From Table 5.1, the ratio of the distances is then 
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 EMBED Word.Document.8 \s [image: image29.emf]5.30:     (a) If the block descends at constant speed, the tension in the connecting string  must be equal to the hanging block’s weight, 
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 EMBED Word.Document.8 \s [image: image30.emf]5.31:         a) For the blocks to have no acceleration, each is subject to zero net force. Considering  the horizontal components,  
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  where  L  is the distance covered before the wheel’s speed is reduced to half its original  speed. Low pressure, 

. 0259 . 0   m;   1 . 18

) s m   m)(9.80   (18.1

s) m   50 . 3 (

8

3

2

2

 

L

 High pressure, 

. 00505 . 0   m;   9 . 92

) s m m)(9.80 9 . 92 (

) s m   50 . 3 (

8

3

2

2

 

L

     



 EMBED Word.Document.8 \s [image: image32.emf]5.33:  Without the dolly: 
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 EMBED Word.Document.8 \s [image: image33.emf]5.34:  Since the speed is constant and we are neglecting air resistance, we can ignore the  2.4 m/s, and 
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 EMBED Word.Document.8 \s [image: image34.emf]5.35:    First, determine the acceleration from the freebody diagrams.         There are two equations and two unknowns,  a  and  T :  
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 EMBED Word.Document.8 \s [image: image35.emf]5.36:    a) The normal force will be 
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θ

 so slipping occurs at 
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 to two figures.       b) When moving, the friction force along the ramp is 

θ wcos

k



, the component of the  gravitational force along the ramp is 

θ wsin

, so the acceleration is  
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
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 EMBED Word.Document.8 \s [image: image36.emf]5.37:  a) The magnitude of the normal force is 
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 The horizontal component  of 
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 must balance the frictional force, so  
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  solving for 
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

         b) If the crate remains at rest, the above expression, with 

s



 instead of 

k



, gives the  force that must be applied in order to start the crate moving. If 

, cot

s
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θ

 the needed  force is infinite, and so  the critical value is 
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 EMBED Word.Document.8 \s [image: image37.emf]5.38:    a) There is no net force in the vertical direction, so 
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 The friction force is 
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  or 290 N to two figures.      



 EMBED Word.Document.8 \s [image: image38.emf]5.39:  a)              b) The blocks move with constant speed, so there is no net force on block  A ; the  tension in the rope connecting  A  and  B  must be equal to the frictional force on block  A , 

N.    9 N)   0 . 25 (   ) 35 . 0 (

k

  

  c) The weight of block  C  will be the tensi on in the rope  connecting  B  and  C ; this is found by considering the forces on block  B . The components  of force along the ramp are the tension in the first rope (9 N, from part (a)), the  component of the weight along the ramp, the friction on block  B  and th e tension in the  second rope. Thus, the weight of block  C  is  
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  or 31 N to two figures. The intermediate calculation of the first tension may be avoided to  obtain the answer in terms of the common weight  w  of blocks  A  and  B ,  
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  giving the same result.           (d) Applying Newton’s Second Law to the remaining masses ( B  and  C ) gives :  
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 EMBED Word.Document.8 \s [image: image39.emf]5.40:   Differentiating Eq. (5.10) with respect to time gives the acceleration  
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 EMBED Word.Document.8 \s [image: image40.emf]5.41:    a) Solving for  D  in terms of 

t

v

,  
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 EMBED Word.Document.8 \s [image: image41.emf]5.42:  At half the terminal speed, the magnitude of the frictional force is one - fourth the  weight.   a) If the ball is moving up, the frictional force is down, so the magnitude of the  net force is (5/4) w  and the acceleration is (5/4) g , down.   b) While movi ng down, the  frictional force is up, and the magnitude of the net force is (3/4) w  and the acceleration is  (3/4) g , down.      



 EMBED Word.Document.8 \s [image: image42.emf]5.43:   Setting 
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F

 equal to the maximum tension in Eq. (5.17) and solving for the speed  v   gives  
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  or 26 m/s to two figures.      



 EMBED Word.Document.8 \s [image: image43.emf]5.44:    This is the same situation as Example 5.23. Solving for 
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  yields  
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 EMBED Word.Document.8 \s [image: image44.emf]5.45:  a) The magnitude of the force  F  is given to be equal to 3.8 w . “Level flight” means  that the net vertical force is zero, so 
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.         (b) The angle does not depend on speed.      



 EMBED Word.Document.8 \s [image: image45.emf]5.46:  a) The analysis of Example 5.22 may be used to obtain 
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 Solving for the period  T ,  

s.   19 . 6

30  tan  ) s m   (9.80

) 30 m)sin    (5.00 m   00 . 3 ( 4

tan

) sin ( 4

2

2 2





  





  



g

l r

T

  Note that in the analysis of Example 5.22,

β

 is the angle that the support (string or cable)  makes with the  vertical (see Figure 5.30(b)).   b) To the extent that the cable can be  considered massless, the angle will be independent of the rider’s weight. The tension in  the cable will depend on the rider’s mass.      



 EMBED Word.Document.8 \s [image: image46.emf]5.47:   This is the same situation as Example 5.22, with the lift force replacing the tension  in the string. As in that example, the angle 
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 is related to the speed and the turning  radius by 
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 EMBED Word.Document.8 \s [image: image47.emf]5.48:   a) This situation is equivalent to that of Example 5.23 and Problem 5.44, so 
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 A platform speed  of 40.0 rev/min corresponds to a period  of 1.50 s, so  
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        b) For the same coefficient of static friction, the maximum radius is proportional to  the square of the period (longer periods mean slower speeds, so the button may be moved  further out) and so is inversely propo rtional to the square of the speed. Thus, at the higher  speed, the maximum radius is (0.150 m) 
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 EMBED Word.Document.8 \s [image: image48.emf]5.49:  a) Setting 

rad
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  in Eq. (5.16) and solving for the period  T  gives  
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  so the number of revolutions per minute is 

min rev   1.5 s)   1 . 40 ( min) s   60 (



.         b) The lower acceleration corresponds to a longer period, and he nce a lower rotation  rate, by a factor of the square root of the ratio of the accelerations, 
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 EMBED Word.Document.8 \s [image: image49.emf]5.50:  a) 
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   b) The magnitude of the radial force  is 
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 (to the nearest Newton), so the apparent  weight at the top is 
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 and at the bottom is 
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.    c) For apparent weightle ssness, the radial acceleration at the top is equal to  g  in  magnitude. Using this in Eq. (5.16) and solving for  T  gives  
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        d) At the bottom, the apparent weight is twice the weight, or 1760 N.      



 EMBED Word.Document.8 \s [image: image50.emf]5.51:   a) If the pilot feels weightless, he is in free fall, and 
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  or 3580 N to three places.      



 EMBED Word.Document.8 \s [image: image51.emf]5.52:   a) Solving Eq. (5.14) for  R ,  
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        b) The apparent weight will be five times the actual weight,  
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  to three figures.    



 EMBED Word.Document.8 \s [image: image52.emf]5.53:   For no water to spill, the magnitude of the downward (radial) acceleration must be  at least that of gravity; from Eq. (5.14), 
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 EMBED Word.Document.8 \s [image: image53.emf]5.54:  a) The inward (upward, radial) acceleration will be 

. s m   64 . 4

2

m)   (3.80

s) m   2 . 4 (

2

2

 

R

v

 At the  bottom of the circle, the inward direction is upward.         b) The forces on the ball are tension and gravity, so 
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 EMBED Word.Document.8 \s [image: image54.emf]5.55:   a)                  
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 EMBED Word.Document.8 \s [image: image55.emf]5.56:             The tension in the lower chain balances the weight and so is equal to  w . The lower  pulley must have no net force on it, so twice the tension in the rope must be equal to  w ,  and so the tension in the rope is 

2 w

. Then, the  downward force on the upper pulley due  to the rope is also  w , and so the upper chain exerts a force  w  on the upper pulley, and the  tension in the upper chain is also  w .      



 EMBED Word.Document.8 \s [image: image56.emf]5.57:   In the absence of friction, the only forces along the ramp are the component of the  weight along the ramp, 
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 along the ramp, 
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. These forces must sum to zero,  so 
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.       Considering horizontal and vertical components, the normal force must have horizontal  component equal to 
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sin n

, which must be equal to  F ; the vertical component must  balance the weight, 
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cos

. Eliminating  n  gives the same result.      



 EMBED Word.Document.8 \s [image: image57.emf]5.58:  The hooks exert forces on the ends of the rope. At each hook, the force that the  hook exerts and the force due to the tension in the rope are an action - reaction pair.    The vertical forces that the hooks exert must balance the weight of the rope, so e ach hook  exerts an upward vertical force of 

2 w

 on the rope. Therefore, the downward force that  the rope exerts at each end is 
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    b) Each half of the rope is itself in equilibrium, so th e tension in the middle must balance  the horizontal force that each hook exerts, which is the same as the horizontal component  of the force due to the tension at the end; 
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    (c) Mathematically speaking, 
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 because this would cause a division by zero in the  equation for 
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. Physically speaking, we would need an infinite tension to  keep a non - massless rope perfectly straight.      



 EMBED Word.Document.8 \s [image: image58.emf]5.59:  Consider a point a distance  x  from the top of the rope. The forces acting in this  point are  T  up and 
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 EMBED Word.Document.8 \s [image: image59.emf]5.60:  a) The tension in the cord must be 
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 in order that the hanging block move at  constant speed. This tension must overcome friction and the component of the  gravitational force along the incline, so 
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 EMBED Word.Document.8 \s [image: image60.emf]5.61:   For an angle of 

 0 . 45

, the tensions in the horizontal and vertical wires will be the  same. a) The tension in the vertical wire will be equal to the weight 
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; this must  be the tension in the horizontal wire, an d hence the friction force on block  A  is also 12.0 
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. b) The maximum frictional force is 
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; this will be the  tension in both the horizontal and vertical parts of the wire, so the maximum weight is 15  N.      



 EMBED Word.Document.8 \s [image: image61.emf]5.62:  a) The most direct way to do part (a) is to consider the blocks as a unit, with total  weight 4.80 N. Then the normal force between block  B  and the lower surface is 4.80 N,  and the friction force that must be overcome by the force  F  is 
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 to three figures. b) The normal force  between block  B  and the lower surface is still 4.80 N, but since block  A  is moving  relative to block B , there is a friction force between the blocks, of magnitude 
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 so the total friction  force that the force  F  must overcome is 
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. (An extra figure was kept in these calculations for clarity.)      
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 EMBED Word.Document.8 \s [image: image63.emf]5.64:  a)  
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 EMBED Word.Document.8 \s [image: image64.emf]5.65:  a) The instrument has mass 
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2

0

  

   

 t t a v v

t a v v

y y y

y y y

          Consider forces on the rocket; rocket has the same 

y

a

. Let  F  be the thrust of the  rocket engines.  

N 10 72 . 5 ) s m   07 . 13 s m    (9.80   kg)   000 , 25 ( ) (

5 2 2

     

 

a g m F

ma mg F

      b) 

m.   4170   gives  

0

2

2

1

0 0

    

y y t a t v y y

y y

     



 EMBED Word.Document.8 \s [image: image65.emf]5.66:  The elevator’s acceleration is:  

t t

dt

t dv

a ) s m   40 . 0 ( s m   0 . 3 ) s m   20 . 0 ( 2 s m   0 . 3

) (

3 2

3

2

    

  At 

2 3 2

s m    4.6 s)   0 . 4 )( s m   40 . 0 ( s m   3.0 s,   0 . 4

   

a t

. From Newton’s Second Law,  the net force on you is  

N    1040 or    N    8 . 1036

) s m   kg)(4.6   72 ( ) s m    8 . 9 )( kg   72 (   weight  apparent  

2 2

scale

scale net



    

  

ma w F

ma w F F

     



 EMBED Word.Document.8 \s [image: image66.emf]5.67:  Consider the forces on the person:      

2

 

s m   88 . 5 60 . 0   so   6 . 1

  

 

 

 g a mg n

ma mg n

ma F

y y

         

s m   0 . 5    gives   ) ( 2

? , 0    , s m   88 . 5    m,   0 . 3

0

2

0

2

0

2

0

   

    

y y y y

y y y

v y y a v v

v v a y y

     



 EMBED Word.Document.8 \s [image: image67.emf]5.68:  (a) Choosing upslope as the positive direction:  

ma mg mg f mg F

         

37 cos   37 sin   37 sin

k k net



  and  

2 2

s m 25 . 8 )) 799 . 0 )( 30 . 0 ( 602 . 0 ( ) s m   8 . 9 (

    

a

  Since we know the length of the slope, we can use 

) ( 2

0

2

0

2

x x a v v

  

 with 

0

0



x

 and 

0



v

 at the top.  

s m 11 or    s m   5 . 11 s m   132

s m   132 m)   0 . 8 )( s m   25 . 8 ( 2 2

2 2

0

2 2 2 2

0

 

     

v

ax v

  (b) For the trip back down the slope, gravity and the friction force operate in opposite  directions :  

2 2

k net

s m   55 . 3 )) 799 . 0 )( 30 . 0 ( ) 602 . 0 )(( s m   8 . 9 ( ) 37 cos   30 . 0 37 sin (

    37   cos 37 sin

         

     

g a

ma mg μ mg F

  Now  

s m   7.5 or    s m   54 . 7 s m   8 . 56

s m   8 . 56

m)   0 . 8 )( s m   55 . 3 ( 2 0 ) ( 2

and   , 0 m,   0 . 8 , 0

2 2

2 2

2

0

2

0

2

0 0

 



      

   

v

x x a v v

x x v

   



 EMBED Word.Document.8 \s [image: image68.emf]5.69:  Forces on the hammer :      

ma T ma F

mg T mg T ma F

x x

y y

   

      

74 cos   gives  

74 sin   so   0 74 sin   gives  

  Divide the second equation by the first :  

2

s m   8 . 2   and  

74 tan

1







a

g

a

     



 EMBED Word.Document.8 \s [image: image69.emf]5.70:       It’s interesting to look at the string’s angle measured from the perpendicular to the top of  the crate. This angle is of course 



90

— angle measured from the top of the crate. The  free - body diagram for the washer then leads to th e following equations, using Newton’s  Second Law and taking the upslope direction as positive:    

slope w string

slope w string

string slope w

w string slope w

cos cos

) sin   ( sin

0 cos cos

sin sin

θ g m T

θ g a m θ T

θ T θ g m

a m θ T θ g m



 

  

  



  Dividing the two equations:    

slope

slope

string

0 cos

sin

tan

g

θ g a

θ





      For the crate, the component of the weight along the slope is 

cslope

sin mg

 

 and the  normal force is 

. cos

slope c

θ g m

 Using Newton’s Second Law again:    

slope

slope

k

c slope c k slope c

cos

sin

cos   sin

θ g

θ g a

a m θ g m θ g m





  





  which leads to the interesting observation that the string will hang at an angle whose  tangent is equal to the coefficient of kinetic frict ion :    

40 . 0 22   tan ) 68 90 tan( tan

string k

       

θ



   



 EMBED Word.Document.8 \s [image: image70.emf]5.71:  a) Forces on you :        

2

k

k

s m   094 . 3 )   cos   (sin

sin

cos      gives  

   

 

 

  





μ α g a

ma f α mg

ma F

mg n ma F

x x

y y

        Find your stopping distance         

? s, m   20 , s m   094 . 3 , 0

0 0

2

     

x x v a v

x x x

        

  m,   64.6   gives   ) ( 2

0 0

2

0

2

    

x x x x a v v

x x x

which is greater than 40 m. You don’t  stop before you reach the hole, so you fall into it.         b) 

? , 0 m,   40 , s m   094 . 3

0 0

2

     

x x x

v v x x a

        

. s m   16   gives   ) ( 2

0 0

2

0

2

   

x x x x

v x x a v v

     



 EMBED Word.Document.8 \s [image: image71.emf]5.72:  The key idea in solving this problem is to recognize that if the system is  accelerating, the tension that block  A  exerts on the rope is different from the tension that  block  B  exerts on the rope. (Otherwise the net force on the rope would be zero, an d the  rope couldn’t accelerate.) Also, treat the rope as if it is just another object. Taking the  “clockwise” direction to be positive, the Second Law equations for the three different  parts of the system are :   Block  A  (The only horizontal forces on  A  are t ension to the right, and friction to the left):            

.

k

a m T g m

A A A

   

  Block  B  (The only vertical forces on  B  are gravity down, and tension up):             

. a m T g m

B B B

 

  Rope (The forces on the rope along the direction of its motion are  the tensions at either  end and the weight of the portion of the rope that hangs vertically):            

 

. a m T T g m

R A B

L

d

R

  

  To solve for  a  and eliminate the tensions, add the left hand sides and right hand sides of  the three equations :  

 

. or    , ) (

) (

k

k

R B A

A

L

d

R B

m m m

m m m

R B A

L

d

R B A

g a a m m m g m g m g m

 

 

      





        (a) When 

 

. , 0

) (

k

R B A

L

d

R B

m m m

m m

g a

 



  

 As the system moves,  d  will increase, approaching  L  as a limit, and thus the acceleration will approach a maximum value of 

.

) (

R B A

R B

m m m

m m

g a

 





      (b) For the blocks to just begin moving, 

, 0



a

 so solve 

 

] [ 0

A s

L

d

R B

m m m

   

 for d.  Note that we must use static friction to find  d  for when the block will  begin  to move.  Solving for  d , 

), (

B A s

m

L

m m d

R

  

 or 

m.   .63 kg)   4 . kg)   2 ( 25 (.

kg   .160

m   0 . 1

  

d

.       (c) When 

m.   2.50 kg)   4 . kg)   2 ( 25 (. kg,   04 .

kg   .04

m   0 . 1

   

d m

R

 This is not a physica lly  possible situation since 

. L d



 The blocks won’t move, no matter what portion of the  rope hangs over the edge.      



 EMBED Word.Document.8 \s [image: image72.emf]5.73:  For a rope of length  L , and weight  w , assume that a length  rL  is on the table, so that  a length 

L r) 1 (



 is hanging. The tension in the rope at the edge of the table is then 

, ) 1 ( w r



 and the friction force on the part of  the rope on the table is 

.

s s

rw f

 

 This must  be the same as the tension in the rope at the edge of the table, so 

). 1 ( 1   and   ) 1 (

s s

     

r w r rw

  Note that this result is independent of  L  and  w  for a  uniform rope. The fraction that hangs over the ed ge is 

) 1 ( 1

s s

    

r

; note that if 

. 0 1   and   1 , 0

s

   

r r



     



 EMBED Word.Document.8 \s [image: image73.emf]5.74:  a) The normal force will be 

cossin mgF

  , and the net force along (up) the  ramp is  

). cos (sin ) sin (cos ) sin      cos   ( sin   cos  

s s s

                

mg F F α mg mg F

  In order to move the box, this net force must be greater than zero. Solving for  F ,    

.

sin      cos

  cos     sin

s

s

  

  







mg F

  Since  F  is the magni tude of a force,  F  must be positive, and so the denominator of this  expression must be positive, or 

, sin cos

s

   

 and 

.   cot

s

  

 b) Replacing 

k s

 with 

 

  with in the above expression, and making the inequality an equality ,    

.

sin   cos

cos   sin

k

k

  

  







mg F

     



 EMBED Word.Document.8 \s [image: image74.emf]5.75:  a) The product 

2

s

s m   94 . 2



g



is greater than the magnitude of the acceleration of  the truck, so static friction can supply sufficient force to keep the case stationary relative  to the truck; the crate accelerates north at 

2

s m   20 . 2

, due to the friction force of 

N.   0 . 66



ma

 b) In this situation, the static friction force is insufficient to maintain the  case at rest relative to the truck, and so the friction force is the kinetic friction force, 

N.   59

k k

 

mg n

 

     



 EMBED Word.Document.8 \s [image: image75.emf]5.76:  To answer the question, 

0

v

 must be found and compared with 

hr). km   (72   s m   20

  The kinematics relationship 

2

0

2 v ax

 

 is useful, but we also need  a . The acceleration  must be large enough to cause the box to b egin sliding, and so we must use the force of  static friction in Newton’s Second Law: 

. or    ,

s s

g a ma mg

     

 Then, 

, ) ( 2

2

0 s

v x g μ

  

 or 

. m)   47 )( s m   8 . 9 )( 30 (. 2 2

2

s 0

 

gx v



 Hence, 

, h km   60 s m   6 . 16

0

 

v

 which is less than 72 km/h, so do you not go to jail.      



 EMBED Word.Document.8 \s [image: image76.emf]5.77:  See Exercise 5.40. a) The maximum tension and the weight are related by  

), sin (   cos

max k max

β T w β T

  

  and solving for the weight  w  gives  

.     sin

  cos

k

max

















 

β

μ

β

T w

  This will be a maximum when the quantity in parentheses is a maximum. Differentiating  with resp ect to 



,  

, 0 cos

  sin

  sin

  cos

k k

   

















 













d

d

  or 

k

tan

  

, where 

θ

 is the value of 

β

 that maximizes the weight. Substituting for 

k



  in terms of 

θ

,  

.

sin 

  sin

  sin cos

sin

  cos   sin

  cos

max

2 2

max

max

θ

T

θ

θ θ

T

θ

θ θ

θ

T w







































 

      b) In the absence of friction, any non - zero horizontal component of force will be  enough to accelerate the crate, but slowly.      



 EMBED Word.Document.8 \s [image: image77.emf]5.78:  a) Taking components along the direction of the plane’s descent, 

. cos   and   sin  

 

w L w f

 

  b) Dividing one of these relations by the other cancels the  weight, so 

.   tan L f

 

 c) The distance will be the initial altitude divided by the tange nt  of 



. 

,   cos     and    tan 

 

w L L f

 

 therefore 

g w f α

N   900 , 12

N    1300

sin 

 

 and so 

. 78 . 5

  

  This makes the horizontal distance 

km.   7 . 24 ) tan(5.78 m)   2500 (

 

 d) If the drag is  reduced, the angle 



 is reduced, and  the plane goes further.      



 EMBED Word.Document.8 \s [image: image78.emf]5.79:  If the plane is flying at a constant speed of 

s, m   1 . 36

 then 

, 0

 

F

 or 

. 0 sin

  

f w T



 The rate of climb and the speed give the angle 

. 7.96 36.1) 5 arcsin(   ,

    

 Then, 

N.    3087 N   1300 7.96 sin    N)    900 , 12 (    . sin   

      

T f w T

 Note that in level flig ht 

), 0 (

 

 the thrust only needs to overcome the drag force to maintain the constant speed  of 

. s m   1 . 36

     



 EMBED Word.Document.8 \s [image: image79.emf]5.80:  If the block were to remain at rest relative to the truck, the friction force would  need to cause an acceleration of 

; s m   20 . 2

2

 however, the maximum acceleration possible  due to static friction is 

, s m   86 . 1 ) s m   80 . 9 )( 19 . 0 (

2 2



 and so the block  will move relative  to the truck; the acceleration of the box would be 

. s m   47 . 1 ) s m   80 . 9 )( 15 . 0 (

2 2

k

 

g



  The difference between the distance the truck moves and the distance the box moves ( i.e. ,  the distance the box moves relative to the truck) will be 1.80 m after  a time    

s.   22 . 2

) s m   47 . 1 s m   (2.20

m)   80 . 1 ( 2 2

2

2

box truck













a a

x

t

    In this time, the truck moves 

m.   43 . 5 s)   221 . 2 (   ) s m 20 . 2 (

2 2

2

1

2

truck

2

1

 

t a

 Note that an  extra figure was kept in the intermediate calculation to avoid roundoff error.      



 EMBED Word.Document.8 \s [image: image80.emf]5.81:  The friction force  on  block  A  is 

N,   0.420 N)   40 . 1 )( 30 . 0 (

k

  A

w

  as in Problem 5 - 68. This is the magnitude of the friction force that block  A  exerts on block  B , as well as  the tension in the string. The force  F  must then have magnitude    

N.    2.52 N))   3(1.40 N   20 . 4 )( 30 . 0 (

) 3 ( ) (

k k k

  

     

A B A A B

w w T w w w F

  

    Note that the normal force exerted on block  B  by the table is the sum of the weights of  the blocks.      



 EMBED Word.Document.8 \s [image: image81.emf]5.82:  We take the upward direction as positive. The explorer’s vertical acceleration is 

2

s m   7 . 3



 for the first 20 s. Thus at the end of that time her vertical velocity will be 

s. m   74 s)   20 )( s m   7 . 3 (

2

    

at v

y

 She will have fallen a distance  

m   740 s)   20 (

2

s m   74

av

 















 

t v d

    and will thus be 

m   460 740 1200

 

above the surface. Her vertical velocity must reach  zero as she touches the ground; therefore, taking the ignition point of the PAPS as 

, 0

0



y

 

) ( 2

0

2

0

2

y y a v v

y

  

   

2 2

2

0

2

0

2

s m   6.0 or    s m   95 . 5

460

s) m   74 ( 0

) ( 2





 









y y

v v

a

y

    which is the vertical acceleration that must be provided by the PAPS. The time it takes to  reach the ground is given by    

s 4 . 12

s m   95 . 5

) s m   74 ( 0

2

0



 







a

v v

t

    Using Newton’s Second Law for the vertical direction    

N    1400 or    N   5 . 1447

s m   )) 7 . 3 ( kg)(5.95 150 ( ) (

2

PAPSv

PAPSv



      

 

g a m mg ma F

ma mg F

    which is the vertical  component of the PAPS force. The vehicle must also be brought to a  stop horizontally in 12.4 seconds; the acceleration needed to do this is  

2

2

0

s m   66 . 2

s 4 . 12

s m   33 0











t

v v

a

  and the force needed is 

N    399 ) s m   kg)(2.66   150 (

2

PAPSh

  

ma F

 or 400 N, since there  are no other horizont al forces.      



 EMBED Word.Document.8 \s [image: image82.emf]5.83:  Let the tension in the cord attached to block  A  be 

A

T

 and the tension in the cord  attached to block  C  be 

C

T

. The equations of motion are then    

.

k

a m T g m

a m T g m T

a m g m T

C C C

B A B C

A A A

 

  

 



       a) Adding these three equations to e liminate the tensions gives    

), ( ) (

k

B A C C B A

m m m g m m m a

     

  solving for 

C

m

 gives  

,

) ( ) (

k

a g

g a m g a m

m

B A

C



  





  and substitution of numerical values gives 

kg.   9 . 12



C

m

        b) 

N.    101 ) (   N,    2 . 47 ) (

     

a g m T a g m T

C C A A

     



 EMBED Word.Document.8 \s [image: image83.emf]5.84:  Considering positive accelerations to be to the right (up and to the right for the left - hand block, down and to the right for the right - hand block), the forces along the inclines  and the accelerations are related by 

, kg)   50 ( 53 sin kg)   (50 , kg)   100 ( 30 sin kg)   100 ( a T g a g T

     

 where  T  is  the tension  in the cord and  a  the mutual magnitude of acceleration. Adding these relations, 

.   067 . 0 or    , kg)   100 kg   50 ( ) 30 sin    kg   100 53 sin    kg   50 ( g a a g

      

 a) Since  a  comes  out negative, the blocks will slide to the left; the 100 - kg block will slide down. Of course,  if coordinates had been chos en so that positive accelerations were to the left,  a  would be 

.   067 . 0 g



  b) 

. s m   658 . 0 ) s m   80 . 9 ( 067 . 0

2

2



      c) Substituting the value of  a  (including the proper sign, depending on choice of  coordinates) into either of the above relations involvi ng  T  yields 424 N.      



 EMBED Word.Document.8 \s [image: image84.emf]5.85:  Denote the magnitude of the acceleration of the block with mass 

1

m

as  a ; the block  of mass 

2

m

 will descend with acceleration 

. 2 a

 If the tension in the rope is  T , the  equations of motion are  then    

. 2 2

2 2

1

a m T g m

a m T

 



    Multiplying the first of these by 2 and adding to eliminate  T , and then solving for  a  gives    

.

4

2

2 2

2 1

2

2 1

2

m m

m

g

m m

g m

a









    The acceleration of the block of mass 

2

m

 is half of this, or 

). 4 (  

2 1 2

m m m g



     



 EMBED Word.Document.8 \s [image: image85.emf]5.86:  Denote the common magnitude of the maximum acceleration as  a . For block  A  to  remain at rest with respect to block  B , 

.

s

g a

 

 The tension in the cord is then 

). )( ( ) ( ) (

k k

g a m m m m g a m m T

B A B A B A

        

 This tension is related to the mass 

C

m

 by 

). ( a g m T

C

 

 Solving for  a  yields    

.
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s
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m m m
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C B A
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
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

 

 



    Solving the inequality for 

C

m

 yields    

.

1

) )( (

s

k s



 



 
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C
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 EMBED Word.Document.8 \s [image: image86.emf]5.87:  See Exercise 5.15 (Atwood’s machine). The 2.00 - kg block will accelerate upward  at 

, 7 3

kg   2.00 kg   5.00

kg   00 . 2 kg   00 . 5

g g







 and the 5.00 - kg block will accelerate downward at 

. 7 3g

 Let the  initial height above the ground be 

0

h

; wh en the large block hits the ground, the small  block will be at a height 

0

2h

, and moving upward with a speed given by 

. 7 6 2

0 0

2

0

gh ah v

 

 The small block will continue to rise a distance

, 7 3 2

0

2

0

h g v



 and  so the maximum heig ht reached will be 

m   46 . 1 7 17 7 3 2

0 0 0

  

h h h

, which is 0.860 m  above its initial height.      



 EMBED Word.Document.8 \s [image: image87.emf]5.88:  The floor exerts an upward force  n  on the box, obtained from 

, ma mg n

   or 

). ( g a m n

 

 The friction force that needs to be balanced is    

N.   105 ) s m   80 . 9 s m    kg)(1.90   0 . 28 ( (0.32)   ) (

2

2

k k

   

g a m n

 

     



 EMBED Word.Document.8 \s [image: image88.emf]5.89:  The upward friction force must be 

,

s s

g m n f

A

    and the normal force, which is  the only horizontal force on block  A , must be 

, a m n

A



 and so 

.

s



g a



 An observer on  the cart would “feel” a backwards force, and  would say that a similar force acts on the  block, thereby creating the need for a normal force.      



 EMBED Word.Document.8 \s [image: image89.emf]5.90:  Since the larger block (the trailing block) has the larger coefficient of friction, it  will need to be pulled down the plane;  i.e. , the larger block will not move faster than the  smaller block, and the blocks will have the same acceleration. For the  smaller block, 

, kg)   00 . 4 ( N    11.11 or    , kg)   00 . 4 ( ) 30   cos ) 25 . 0 ( (sin30 kg)   00 . 4 ( a T a T g

      

 and  similarly for the larger, 

, kg)   00 . 8 ( N   44 . 15 a T

 

  a) Adding these two relations, 

2

s m   21 . 2 , kg)   (12.00 N   55 . 26

 

a a

 (note that an extra figure was kept in the  intermediate calculation to avoid roundoff error).  b) Substitut ion into either of the above  relations gives 

N.    27 . 2



T

 Equivalently, dividing the second relation by 2 and  subtracting from the first gives 

, N   11 . 11

2

N   44 . 15

2

3

 

T

 giving the same result.  c) The  string will be slack. The 4.00 - kg block will h ave 

2

s m   78 . 2



a

 and the 8.00 - kg block  will have 

, s m   93 . 1

2



a

 until the 4.00 - kg block overtakes the 8.00 - kg block and collides  with it.      



 EMBED Word.Document.8 \s [image: image90.emf]5.91:  a) Let 

B

n

 be the normal force between the plank and the block and 

A

n

 be the  normal force between the block and the incline. Then, 

θ w n

B

cos



 and 

. cos 4 cos 3 θ w θ w n n

B A

  

 The net frictional force o n the block is 

  

cos 5 ) (

k k

w n n

B A

 

. To move at constant speed, this must balance the component  of the block’s weight along the incline, so 

, cos 5 sin 3

k

θ w θ w

 

 and 

. 452 . 0 37 tan tan

5

3

5

3

k

    

θ

     



 EMBED Word.Document.8 \s [image: image91.emf]5.92:  (a) There is a contact force  n  between the man (mass  M ) and the platform (mass  m ).  The equation of motion for the man is 

, Ma Mg n T

  

 where  T  is the tension in the  rope, and for the platform, 

Tnmgma



. Adding to eliminat e  n , and rearranging, 

). )( (

2

1

g a m M T

  

 This result could be found directly by considering the man - platform combination as a unit, with mass 

, M m



 being pulled upward with a force 2 T   due to the  two  ropes on the combination. The tens ion  T  in the rope is the same as the  force that the man applies to the rope. Numerically,  

N.   551 ) s m 80 . 9 s m   kg)(1.80   25.0 kg   0 . 70 (

2

1

2

2

   

T

      (b) The end of the rope moves downward 2 m when the platform moves up 1 m, so 

. 2

platform rope

a a

 

 Relative to the man, the acceleratio n of the rope is 

, s m   40 . 5 3

2



a

  downward.      



 EMBED Word.Document.8 \s [image: image92.emf]5.93:  a) The only horizontal force on the two - block combination is the horizontal  component of 

. cos ,



F F



 The blocks will accelerate with 

). ( cos

2 1

m m F a

  

 b) The  normal force between the blocks is 

, sin

1



F g m



 for the blocks  to move together, the  product of this force and 

s



 must be greater than the horizontal force that the lower block  exerts on the upper block. That horizontal force is one of an action - reaction pair; the  reaction to this force accelerate s the lower block. Thus, for the blocks to stay together, 

). sin (

1 s 2

 

F g m a m

 

 Using the result of part (a),  

). sin (

m

cos

1 s

2 1

2

 



F g m

m

F

m

 



  Solving the inequality for  F  gives the desired result.      



 EMBED Word.Document.8 \s [image: image93.emf]5.94:  The banked angle of the track has the same form as that found in Example 5.24, 

  , tan

2

0

gR

v

β



 where 

0

v

 is the ideal speed, 

s m   20

 in this case. For speeds larger than 

0

v

, a  frictiona l force is needed to keep the car from skidding. In this case, the inward force will  consist of a part due to the normal force  n  and the friction force 

.   cos sin      ;

rad

ma β f β n f

 

 The normal and friction forces both have vertical  components; since there is no  vertical acceleration, 
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 Using 
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 and 
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 these two relations become  
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  Dividing to cancel  n  gives  
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  Solving for 
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 and simplifyi ng yields  

.

  sin 25 . 1 1

  cos   sin   25 . 1

2

s









β β

  Using 
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 EMBED Word.Document.8 \s [image: image94.emf]5.95:  a) The same analysis as in Problem 5.90 applies, but with the speed  v  an unknown.  The equations of motion become  
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  Dividing to cancel  n  gives  
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2

s
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

  
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  Solving for  v  and substituting numerical values gives 

s m   9 . 20



v

 (note that the value  for the coefficient of static friction must be used).       b) The same analysis applies, but the friction force must be directed up the bank; this  has the same algebraic effect as replacing 

f

 with 

f



, or replacing 

s



 with 

s

 

  (although coefficients of friction may certainly never be negative). The result is  
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  and substitution of numerical values gives 
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 EMBED Word.Document.8 \s [image: image95.emf]5.96:  (a) 

h mi   80

 is 

s m   7 . 35

 in SI units. The centripetal force needed to keep the car on  the road is provided by friction; thus  
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  (b) If 
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  (c) If 
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  The speed limit is evidently designed for these conditions.      



 EMBED Word.Document.8 \s [image: image96.emf]5.97:  a) The static friction force between the tires and the road must provide the  centripetal acceleration for motion in the circle.       
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      m ,  g , and  r  are constant so 
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

 where 1 refers to dry road and 2 to we t  road.       
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      b) Calculate the time it takes you to reach the curve       

s   7 . 34   gives    

2
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      During this time the other car will travel 

m.   1250 (34.7s)   s) m   36 (

0 0
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t v x x

x

 The  other car will be 50 m behind you as you enter the curve, a nd will be traveling at nearly  twice your speed, so it is likely it will skid into you.      



 EMBED Word.Document.8 \s [image: image97.emf]5.98:  The analysis of this problem is the same as that of Example 5.22; solving for  v  in  terms of 
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 EMBED Word.Document.8 \s [image: image98.emf]5.99:    The point to this problem is that the monkey and the bananas have the same  weight, and the tension in the string is the same at the point where the bananas are  suspended and where the monkey is pulling; in all cases, the monkey and bananas will  hav e the same net force and hence the same acceleration, direction and magnitude. a) The  bananas move up. b) The monkey and bananas always move at the same velocity, so the  distance between them stays the same. c) Both the monkey and bananas are in free fall,   and as they have the same initial velocity, the distance bewteen them doesn’t change. d)  The bananas will slow down at the same rate as the monkey; if the monkey comes to a  stop, so will the bananas.      



 EMBED Word.Document.8 \s [image: image99.emf]5.100:    The separated equation of motion has a lower limit of 
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  Note that the speed is always greater than 

t

v

.      



 EMBED Word.Document.8 \s [image: image100.emf]5.101:  a) The rock is released from rest, and so there is initially no resistive force and 
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 c) The net force must be  1.80 N, so 
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 d) When the net  forc e is equal to zero, and hence the acceleration is zero, 
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 and 
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   e) From Eq. (5.12),  
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  From Eq. (5.10),  
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 EMBED Word.Document.8 \s [image: image101.emf]5.102:  (a) The retarding force of the surface is the only horizontal force acting. Thus  
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  For the rock’s position :  
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  and integrating gives  
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  (b)  
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  This is a quadratic equation in  t ; from the quadratic formula we can find the single  solution :  
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  (c) Substituting the expression for  t  into the equation for  x :  
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 EMBED Word.Document.8 \s [image: image102.emf]5.103:   Without buoyancy, 
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       With buoyancy included there is the additional upward buoyancy force  B , so  
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 EMBED Word.Document.8 \s [image: image103.emf]5.104:   Recognizing the geometry of a 3 - 4 - 5 right triangle simplifies the calculation. For  instance, the radius of the circle of the mass’ motion is 0.75 m.         a) Balancing the vertical force, 
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        b)  The net inward force is 

N.    6 . 66

L

5

3

U

5

3

  

T T F

 Solving 
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  or 0.02223 min, so the system makes 45.0 rev/min. c) When the lower string becomes  slack, the system is the same as the conical pendul um considered in Example 5.22. With 

, 800 . 0 cos
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 the period is 
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 which is the  same as 
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 d) The system will still be the same as a conical pendulum, but  the block will drop to a smaller angle.      



 EMBED Word.Document.8 \s [image: image104.emf]5.105:    a) Newton’s 2nd law gives       
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       This is the same expression used in the derivation of Eq. (5.10), except the lower limit  in the velocity integral is the initial s peed 

0

v

 instead of zero.        Evaluating the integrals and rearranging gives        
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       b) The downward gravity force is larger than the upward fluid resistance force so the  acceleration is downward, until the fluid resistance force equals gravity when the  terminal speed is reached. The object speeds up until 

t

v v

y



. Take 

y



 to be downward.                            c) The upward resistance force is larger than the downward gravity force so the  acceleration is upward and the object slows down, until the fluid resistance force equals  gra vity when the terminal speed is reached. Take 

y



 to be downward.  



 EMBED Word.Document.8 \s [image: image105.emf]5.106:  (a) To find find the maximum height and time to the top without fluid resistance :  
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  (b) Starting from Newton’s Second Law for this situation  
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  we rearrange and integrate, taking down ward as positive as in the text and noting that the  velocity at the top of the rock’s “flight” is zero :  
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  From Eq. 5.9, 
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 EMBED Word.Document.8 \s [image: image106.emf]5.107:   a) The forces on the car are the air drag force 
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 Take the velocity to be in the 
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- direction. The forces are opposite in  direction to the velocity. 
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  We can write this equation twice, once with 
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        b) 
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 EMBED Word.Document.8 \s [image: image107.emf]5.108:   (a) One way of looking at this is that the apparent weight, which is the same as  the upward force on the person, is the actual weight of the person minus the centripetal  force needed to keep him moving in its circular path :  
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  (b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when  the road no longer has to exert any upward force on it :  
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  The answer doesn’t depend on the cart’s mass, because the centripetal force needed  to  hold it on the road is proportional to its mass and so is its weight, which provides the  centripetal force in this situation.      



 EMBED Word.Document.8 \s [image: image108.emf]5.109:  a) For the same rotation rate, the magnitude of the radial acceleration is  proportional to the radius, and for twins of the same mass, the needed force is  proportional to the radius; Jackie is twice as far away from the center, and so must hold  on w ith twice as much force as Jena, or 120 N.         b) 
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 EMBED Word.Document.8 \s [image: image109.emf]5.110:  The passenger’s velocity is 
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 The vertical component of the  seat’s force must balance the passenger’s weight and the horizontal component must  provide the centripetal force. Therefore :  
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 above the horizontal. The magnitude of  the net force exerted by the seat (note that this is not the net force on the passenger) is  
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  (b) The magnitude of the force is the same, but the horizontal component is reversed.    



 EMBED Word.Document.8 \s [image: image110.emf]5.111:  a)             b) The upward friction force must be equal to the weight, so 
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      c) No; both the weight and the required normal force are proportional to the rider’s  mass.      



 EMBED Word.Document.8 \s [image: image111.emf]5.112:   a) For the tires not to lose contact, there must be a downward force on the tires.  Thus, the (downward) acceleration at the top of the sphere must exceed  mg , so 
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      b) The (upward) acceleration wi ll then be 4 g , so the upward normal force must be 
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 EMBED Word.Document.8 \s [image: image112.emf]5.113:  a) What really happens (according to a nosy observer on the ground) is that you  slide closer to the passenger by turning to the right.   b) The analysis is the same as that of  Example 5.23. In this case, the friction force should be insufficient to  provide the inward  radial acceleration, and so 
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  to two places. Why the passenger is not wearing a seat belt is another question.      



 EMBED Word.Document.8 \s [image: image113.emf]5.114:   The tension  F  in the string must be the same as the weight of the hanging block,  and must also provide the resultant force necessary to keep the block on the table in  uniform circular motion; 
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 EMBED Word.Document.8 \s [image: image114.emf]5.115:   a) The analysis is the same as that for the conical pendulum of Example 5.22, and  so  
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  b) For the bead to be at the same elevation as the center of the hoop, 
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 the speed of the bead would be infinite, and this is  not possible.   c) The expression for 
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 is the only physical possibility.      
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, where the minus sign  indicates that the track pushes  down  on the car. The magnitude of this force is 30.4 N.      



 EMBED Word.Document.8 \s [image: image118.emf]5.119:   The analysis is the same as for Problem 5.95; in the case of the cone, the speed is  related to the period by 
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 EMBED Word.Document.8 \s [image: image119.emf]5.120:   a) There are many ways to do these sorts of problems; the method presented is  fairly straightforward in terms of application of Newton’s laws, but involves a good deal  of algebra. For both parts, take the  x - direction to be horizontal and positive t o the right,  and the  y - direction to be vertical and positive upward. The normal force between the  block and the wedge is  n ; the normal force between the wedge and the horizontal surface  will not enter, as the wedge is presumed to have zero vertical acceler ation. The horizontal  acceleration of the wedge is  A , and the components of acceleration of the block are 
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  and 
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. The equations of motion are then  
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  Note that the normal force gives the wed ge a negative acceleration; the wedge is expected  to move to the left. These are three equations in four unknowns,  A , 
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 and  n . Solution  is possible with the imposition of the relation between  A , 
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.         An observer on the wedge is not in an inertial frame, and should not apply Newton’s  laws, but the kinematic relation between the components of acceleration are not so  restricted. To such an observer, the vertical acceleration of the blo ck is 
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  At this point, algebra is unavo idable. Symbolic - manipulation programs may save some  solution time. A possible approach is to eliminate 
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       (c) The trajectory is a spiral.      



 EMBED Word.Document.8 \s [image: image120.emf]5.121:   If the block is not to move vertically, the acceleration must be horizontal. The  common acceleration is 
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 EMBED Word.Document.8 \s [image: image121.emf]5.122:  The normal force that the ramp exerts on the box will be 
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  The acceleration will be the greatest when the first term in parantheses is greatest; as in  Problems 5.77 and 5.123, this occurs when 
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 EMBED Word.Document.8 \s [image: image122.emf]5.123:    a) See Exercise 5.38; 
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 EMBED Word.Document.8 \s [image: image123.emf]5.124:   For convenience, take the positive direction to be down, so that for the baseball  released from rest, the acceleration and velocity will be positive, and the speed of the  baseball is the same as its positive component of velocity. Then the resistin g force,  directed against the velocity, is upward and hence negative.         a)              b) Newton’s Second Law is then 
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 EMBED Word.Document.8 \s [image: image124.emf]5.125:    Take all accelerations to be positive downward. The equations of motion are  straightforward, but the kinematic relations between the accelerations, and the resultant  algebra, are not immediately obvious. If the acceleration of pulley  B  is 
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  These are five equations in five unknowns, and may be solved by standard means. A  symbolic - manipulation program is of great use here.         a) The accelerations 
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        b) The accelerat ion of the pulley  B  has the same magnitude as 
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        e) & f) Once the accelerations are known, the tensions may be found by substitution  into the appropriate equation of motion, giving  
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 All masses and pulleys are in equilibrium, and the tensions are equal to the  weights they support, which is what is ex pected.      



 EMBED Word.Document.8 \s [image: image125.emf]5.126:  In all cases, the tension in the string will be half of  F .         a) 
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 EMBED Word.Document.8 \s [image: image126.emf]5.127:    Before the horizontal string is cut, the ball is in equilibrium, and the vertical  component of the tension force must balance the weight, so 
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