



 EMBED Word.Document.8 \s [image: image1.emf]6.2:   a) “Pulling slowly” can be taken to mean that the bucket rises at constant speed, so  the tension in the rope may be taken to be the bucket’s weight. In pulling a given length  of rope, from Eq. (6.1),    
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      b) Gravity is directe d opposite to the direction of the bucket’s motion, so Eq. (6.2)  gives the negative of the result of part (a), or 

J 265
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. c) The net work done on the bucket  is zero.      



 EMBED Word.Document.8 \s [image: image2.emf]6.3:  
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 EMBED Word.Document.8 \s [image: image3.emf]6.4:  a) The friction force to be overcome is      
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    or 74 N to two figures.             b) From Eq. (6.1), 

J 331 ) m 5 . 4 )( N 5 . 73 (

 

Fs

. The work is positive, since the worker  is pushing in the same direction as the crate’s motion.            c) Sin ce  f  and  s  are oppositely directed, Eq. (6.2) gives      
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         d) Both the normal force and gravity act perpendicular to the direction of motion, so  neither force does work. e) The net work done is zero.      



 EMBED Word.Document.8 \s [image: image4.emf]6.5:  a) See Exercise 5.37. The needed force is      
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    keeping extra figures. b) 
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, again keeping an  extra figure. c) The normal force is 
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, and so the work done by friction is 
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. d) Both the normal  force and gravity act perpendicular to the direction of motion, so neither force does work.  e) The net work done is zero.          



 EMBED Word.Document.8 \s [image: image5.emf]6.6:  From Eq. (6.2),      
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 EMBED Word.Document.8 \s [image: image6.emf]6.7:  
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  to  two places.      



 EMBED Word.Document.8 \s [image: image7.emf]6.8:  The work you do is:      
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 EMBED Word.Document.8 \s [image: image8.emf]6.9:  a) (i) Tension force is always perpendicular to the displacement and does no work.          (ii) Work done by gravity is 
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.          b) (i) Tension does no work.          (ii) Let  l  be the length of the string. 
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      The displacement is upward and the gravity force is downward, so it does negative  work.      



 EMBED Word.Document.8 \s [image: image9.emf]6.10:  a) From Eq. (6.6),    
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  b) Equation (6.5) gives the explicit dependence of kinetic energy on speed; doubling the  speed of any object increases the kinetic energy by a factor of four.      



 EMBED Word.Document.8 \s [image: image10.emf]6.11:  For the T - Rex, 
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, or about 40 km/h.      



 EMBED Word.Document.8 \s [image: image11.emf]6.12:  (a) Estimate: 
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 EMBED Word.Document.8 \s [image: image12.emf]6.13:  Let point 1 be at the bottom of the incline and let point 2 be at the skier.         
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        Work is done by gravity and friction, so 

f mg

W W W

 

tot

.         

mgh y y mg W

mg

    

) (

1 2

          

    

tan / ) sin / )( cos (

k k

mgh h mg fs W

f

     

        Substituting these expressions into the work - energy theorem and solving for 
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 EMBED Word.Document.8 \s [image: image13.emf]6.14:     (a)     
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 EMBED Word.Document.8 \s [image: image14.emf]6.15:  a) parallel to incline: force component 
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, same as if had been dropped  from height  h . The work done by gravity depends only o n the vertical displacement of the  object.            When the slope angle is small, there is a small force component in the direction of  the displacement but a large displacement in this direction. When the slope angle is large,  the force component in the d irection of the displacement along the incline is larger but  the displacement in this direction is smaller.          c) 
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 EMBED Word.Document.8 \s [image: image15.emf]6.16:  Doubling the speed increases the kinetic energy, and hence the magnitude of the  work done by friction, by a factor of four. With the stopping force given as being  independent of speed, the distance must also increase by a factor of four.      



 EMBED Word.Document.8 \s [image: image16.emf]6.17:  Barring a balk, the initial kinetic energy of the ball is zero, and so    
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 EMBED Word.Document.8 \s [image: image17.emf]6.18:  As the example explains, the boats have the same kinetic energy  K  at the finish line,  so 
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.   b) The boats are said to start fr om rest, so the elapsed time is the  distance divided by the average speed. The ratio of the average speeds is the same as the  ratio of the final speeds, so the ratio of the elapsed times is 
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 EMBED Word.Document.8 \s [image: image18.emf]6.19:  a) From Eq. (6.5), 
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 EMBED Word.Document.8 \s [image: image19.emf]6.20:  From Equations (6.1), (6.5) and (6.6), and solving for  F ,    
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 EMBED Word.Document.8 \s [image: image20.emf]6.21:      
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 EMBED Word.Document.8 \s [image: image21.emf]6.22:  a) If there is no work done by friction, the final kinetic energy is the work done by  the applied force, and solving for the speed,    
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  (Note that even though the coefficient of friction is known to only two places, the  difference of the forces is still known to three places.)    



 EMBED Word.Document.8 \s [image: image22.emf]6.23:  a) On the way up, gravity is opposed to the direction of motion, and so 
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.       c) No; in the absence of air resistance, the ball will have the same speed on the way  down as on the way up. On the  way down, gravity will have done both negative and  positive work on the ball, but the net work will be the same.      



 EMBED Word.Document.8 \s [image: image23.emf]6.24:  a) Gravity acts in the same direction as the watermelon’s motion, so Eq. (6.1) gives      
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 EMBED Word.Document.8 \s [image: image24.emf]6.25:  a) Combining Equations (6.5) and (6.6) and solving for 
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    Keeping extra figures in the intermediate calculations, the acceleration is 
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  giving the same result.      



 EMBED Word.Document.8 \s [image: image25.emf]6.26:  The normal force does no work. The work - energy theorem, along with Eq. (6.5),  gives    
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 is the angle the  plane mak es with the horizontal. Using the given numbers,      
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 EMBED Word.Document.8 \s [image: image26.emf]6.27:  a) The friction force is 
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mgs

k

 

. The change in kinetic energy is 

2

0 1

) 2 / 1 ( mv K K

    

, and so 

g v s

k

2

0

2 /

 

.   b) From the resu lt of part (a), the stopping distance is proportional to the  square of the initial speed, and so for an initial speed of 60 km/h, 
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 EMBED Word.Document.8 \s [image: image27.emf]6.28:  The intermediate calculation of the spring constant may be avoided by using Eq.  (6.9) to see that the work is proportional to the square of the extension; the work needed  to compress the spring 4.00 cm is 
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 EMBED Word.Document.8 \s [image: image28.emf]6.29:  a) The magnitude of the force is proportional to the magnitude of the extension or  compression;    
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 EMBED Word.Document.8 \s [image: image29.emf]6.30:  The work can be found by finding the area under the graph, being careful of the  sign of the force. The area under each triangle is 1/2 
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 EMBED Word.Document.8 \s [image: image30.emf]6.31:  Use the Work - Energy Theorem and the results of Problem 6.30.        a) 
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 EMBED Word.Document.8 \s [image: image31.emf]6.32:  The work you do with your changing force is    
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    The work is negative because the cow continues to advance as you vainly attempt to push  her backward.    



 EMBED Word.Document.8 \s [image: image32.emf]6.33:  
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 EMBED Word.Document.8 \s [image: image33.emf]6.34:   a) The average force is 
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 , and the force needed to hold  the platform in place is twice this, or 800 N. b) From Eq. (6.9), doubling the distance  quadruples the work so an extra 240 J of work must be done. The maximum force is  qu adrupled, 1600 N.        Both parts may of course be done by solving for the spring constant 
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 EMBED Word.Document.8 \s [image: image34.emf]6.35:  a) The static friction force would need to be equal in magnitude to the spring force, 
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 EMBED Word.Document.8 \s [image: image35.emf]6.36:   a) The spring is pushing on the block in its direction of motion, so the work is  positive, and equal to the work done in compressing the spring. From either Eq. (6.9) or  Eq. (6.10), 
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 EMBED Word.Document.8 \s [image: image36.emf]6.37:   The work done in any interval is the area under the curve, easily calculated when  the areas are unions of triangles and rectangles.   a) The area under the trapezoid is 
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 EMBED Word.Document.8 \s [image: image37.emf]6.38:   a) 
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 EMBED Word.Document.8 \s [image: image38.emf]6.39:   a) The spring does positive work on the sled and rider; 

2 2

) 2 / 1 ( ) 2 / 1 ( mv kx



, or 

s / m 83 . 2 ) kg 70 /( ) m / N 4000 ( ) m 375 . 0 ( /

  

m k x v

.   b) The net work done by  the spring is 

) ( ) 2 / 1 (

2

2

2

1

x x k



, so the final speed is    

s. / m 40 . 2 ) ) m 200 . 0 ( ) m 375 . 0 ((

) kg 70 (

m / N 4000 (

) (

2 2 2

2

2

1

    

x x

m

k

v

     



 EMBED Word.Document.8 \s [image: image39.emf]6.40:   a) From Eq. (6.14), with 
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 EMBED Word.Document.8 \s [image: image40.emf]6.41:  a) The initial and final (at the maximum distance) kinetic energy is zero, so the  positive work done by the spring, 
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  At this point the glider is no longer in contact with the spring.   b) The intermediate  calculation of the initial compression can be avoided by considering that between the  point 0.80 m from the launch to the maximum distance, gravity does a negative a mount  of work given by 
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, and so  the kinetic energy of the glider at this point is 0.567 J. At this point the glider is no longer  in contact with the spring.    



 EMBED Word.Document.8 \s [image: image41.emf]6.42:  The initial and final kinetic energies of the brick are both zero, so the net work done  on the brick by the spring and gravity is zero, so 
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 The spring will  provide an upward force while the spring an d the brick are in contact. When this force  goes to zero, the spring is at its uncompressed length.      
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 EMBED Word.Document.8 \s [image: image43.emf]6.44:   Set time to stop:    
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 EMBED Word.Document.8 \s [image: image44.emf]6.45:   The total power is 

W 10 485 . 1 ) s / m 00 . 9 )( N 165 (

3

 

, so the power per rider is  742.5 W, or about 1.0 hp (which is a very large output, and cannot be sustained for long  periods).      
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 EMBED Word.Document.8 \s [image: image46.emf]6.47:  The power is 
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 EMBED Word.Document.8 \s [image: image47.emf]6.48:   a) The number per minute would be the average power divided by the work ( mgh )  required to lift one box,  
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 EMBED Word.Document.8 \s [image: image48.emf]6.49:   The total mass that can be raised is  
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 EMBED Word.Document.8 \s [image: image49.emf]6.50:   From any of Equations (6.15), (6.16), (6.18) or (6.19),  
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 EMBED Word.Document.8 \s [image: image51.emf]6.52:   Here, Eq. (6.19) is the most direct. Gravity is doing negative work, so the rope  must do positive work to lift the skiers. The force 
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 as the angle between the force and velocity vectors; in this  case, the force is vertical, but the angle 
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 EMBED Word.Document.8 \s [image: image52.emf]6.53:   a) In terms of the acceleration  a  and the time  t  since the force was applied, the  speed is 
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 b) The  power at a given time is proportional to the square of the acceler ation, tripling the  acceleration would mean increasing the power by a factor of nine. c) If the magnitude of  the net force is the same, the acceleration will be the same, and the needed power is  proportional to the time. At 

s   0 . 15



t
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 EMBED Word.Document.8 \s [image: image56.emf]6.57:  a) 
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 EMBED Word.Document.8 \s [image: image57.emf]6.58:   The work per unit mass is 
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 EMBED Word.Document.8 \s [image: image58.emf]6.59:  a) Moving a distance  L  along the ramp, 

, sin    ,

out in

α L s L s

   so 

.

  sin

1

α

IMA

         b) If 

) ( ) (   ,

out in in out

s s F F IMA AMA

 

 and so 

) (   ) ( ) (   ) (

in in out out

s F s F



, or 

.

in out

W W



       c)           d)  

.

) )( (

) )( (

out in

in out

in in

out out

in

out

IMA

AMA

s s

F F

s F

s F

W

W

E

   

   



 EMBED Word.Document.8 \s [image: image59.emf]6.60:  a) 
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J.   10 59 . 2  

) min s   (60   min)   1 . 90 (

m)   10 66 . 6 ( 2

  kg)   400 , 86 (

2

1 2

2

1

2

1

12

2

6

2

2

 



































π

T

πR

m mv

                    b) 

J.   10 80 . 4 s))   (3.00 m)   (1.00 (   kg)   (86,400   ) 2 1 (   ) 2 1 (

3 2 2

  

mv

   



 EMBED Word.Document.8 \s [image: image61.emf]6.62:  a)  
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 EMBED Word.Document.8 \s [image: image62.emf]6.63:   See Problem 6.62: The work done is negative, and is proportional to the distance  s   that the package slides along the ramp, 
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 EMBED Word.Document.8 \s [image: image63.emf]6.64:   a) From Eq. (6.7),    
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

 term is always in the 

x



- direction, and so the needed force, and  hence the needed work, will be less when 

0
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

x

.    



 EMBED Word.Document.8 \s [image: image68.emf]6.69:   a) 
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, or 0.15 N to two figures. b) At  the later radius and speed, the tension is 

N 41 . 9 kg) 120 . 0 (

m) 10 0 (

m/s) (2.80
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

.

, or 9.4 N to two  figures. c) The surface is frictionless and horizontal, so the net work is the work done by  the cord. For  a massless and frictionless cord, this is the same as the work done by the  person, and is equal to the change in the block’s kinetic energy, 
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. Note  that in this case, the tension cannot be perpendicular to the block’s velocity at al l times;  the cord is in the radial direction, and for the radius to change, the block must have some  non - zero component of velocity in the radial direction.    



 EMBED Word.Document.8 \s [image: image69.emf]6.70:   a) This is similar to Problem 6.64, but here 
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, so the work done is again negative;    
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      Note that 
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 is so large compared t o 
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 that the term 
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 is negligible. Then, using Eq.  (6.13)) and solving for 
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v

,    
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  b) With 
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  c) The repulsive force has done no net work, so the kinetic energy and hence the speed of  the proton have their original values, and the speed is 

s / m 10 00 . 3
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

.      



 EMBED Word.Document.8 \s [image: image70.emf]6.71:  The velocity and acceleration as functions of time are    
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 EMBED Word.Document.8 \s [image: image71.emf]6.72:  In Eq. (6.14), 
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  The final speed of the object is then    

s. / m 57 . 6

) kg 250 . 0 (

) J 39 . 3 ( 2

) s / m 00 . 4 (

2

2 2

1 2

    

m

W

v v

   



 EMBED Word.Document.8 \s [image: image72.emf]6.73:    a) 
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      b) The work done by gravity is 
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 EMBED Word.Document.8 \s [image: image74.emf]6.75:   Setting the (negative) work done by the spring to the needed (negative) change in  kinetic energy, 
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 EMBED Word.Document.8 \s [image: image75.emf]6.76:   a) Equating the work done by the spring to the gain in kinetic energy, 
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 must now include friction, so 

0

2

0

2

1

tot

2

2

1

fx kx W mv

  

, where  f  is the magnitude  of the frictio n force. Then,    

. s / m 90 . 4 ) m 06 . 0 (

kg) 0300 . 0 (

N) 00 . 6 ( 2

) m 06 . 0 (

kg 0300 . 0

m / N 400

2

2

0

2

0

  

 

x

m

x

m

k

v

f

  c) The greatest speed occurs when the acceleration (and the net force) are zero, or 
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  which is larger than the result of part (b) but smaller than the result of part (a).    



 EMBED Word.Document.8 \s [image: image76.emf]6.77:   Denote the initial compression of the spring by  x  and the distance from the initial  position by  L . Then, the work done by the spring is 
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 and the work done by friction is 
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  

; this form takes into account th e fact that while the spring is compressed,  the frictional force is still present (see Problem 6.76). The initial and final kinetic  energies are both zero, so the net work done is zero, and 
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  or 0.81 m to two figures. Thus the book moves 
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, or about 1.1 m.    



 EMBED Word.Document.8 \s [image: image77.emf]6.78:   The work done by gravity is 
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   (negative since the cat is moving  up), and the work done by the applied force is  FL , where  F  is the magnitude of the  applied force. The total work is    
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  The cat’s initial kine tic energy is 

J 2 . 20 ) s / m 40 . 2 )( kg 00 . 7 (

2

2

1

2

1

2

1

 

mv

, and    

. s / m 58 . 6

) kg 00 . 7 (

) J 4 . 131 J 2 . 20 ( 2 ) ( 2

1

2











m

W K

v

   



 EMBED Word.Document.8 \s [image: image78.emf]6.79:   In terms of the bumper compression  x  and the initial speed 
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, the necessary  relations are    
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  Combining to eliminate  k  and then  x , the two inequalties are    
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       b) A distance of 8 m is not commonly available as space in which to stop a car.      



 EMBED Word.Document.8 \s [image: image79.emf]6.80:   The students do positive work, and the force that they exert makes an angle of 
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 with the direction of motion. Gravity does negative work, and is at an angle of 
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 with the chair’s motion, so the total work  done is 
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  Note that extra figures were kept in the intermediate calculation to avoid roundoff error.      



 EMBED Word.Document.8 \s [image: image80.emf]6.81:  a) At maximum compression, the spring (and hence the block) is not moving, so the  block has no kinetic energy. Therefore, the work done  by  the block is equal to its initial  kinetic energy, and the maximum compression is found from 
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  b) Solving for  v  in terms of a known  X ,    
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 EMBED Word.Document.8 \s [image: image81.emf]6.82:   The total work done is the sum of that done by gravity (on the hanging block) and  that done by friction (on the block on the table). The work done by gravity is (6.00 kg)  gh   and the work done by friction is 
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 EMBED Word.Document.8 \s [image: image82.emf]6.83:  See Problem 6.82. Gravity does positive work, while friction does negative work.  Setting the net (negative) work equal to the (negative) change in kinetic energy,    
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 EMBED Word.Document.8 \s [image: image83.emf]6.84:   The arrow will acquire the energy that was used in drawing the bow ( i.e. , the work  done by the archer), which will be the area under the curve that represents the force as a  function of distance. One possible way of estimating this work is to approx imate the  F vs.  x  curve as a parabola which goes to zero at 
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 This may seem like a crude approximation  to the  figure, but it has the ultimate advantage of being easy to integrate;    
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 Other ways of finding the area under the  curve in Fig. (6.28)  should give similar results.      



 EMBED Word.Document.8 \s [image: image84.emf]6.85:   
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 EMBED Word.Document.8 \s [image: image85.emf]6.86:  Your friend’s average acceleration is  
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  Since there are no other horizontal forces acting, the force you exert on her is given by    
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    Her average velocity during your pull is 3.00 m/s, and the distance she  travels is thus 9.00  m. The work you do is 
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, and the average power is  therefore 

 W. 390 s J/3.00 1170
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 The work can also be calculated as the change in the  kinetic energy.    
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 EMBED Word.Document.8 \s [image: image87.emf]6.88:    
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 the power output is 13.5 W.      



 EMBED Word.Document.8 \s [image: image88.emf]6.89:   Let  t  equal the number of seconds she walks every day. Then, 
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 EMBED Word.Document.8 \s [image: image89.emf]6.90:         a) The hummingbird produces energy at a rate of 
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to 

J/s. 75 . 1

 At           10 beats/s, the bird must expend between 0.07 J/beat and 0.175 J/beat.         b) The steady output of the athlete is 
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

which is below the         10 W/kg necessary to stay aloft. Though the athlete can expend 

W/kg 0 2 kg W/70 400 1



 for short periods of time, no human - powered aircraft could  stay aloft for very long. Movies of early attempts at human - powered flight bea r out this  observation.      



 EMBED Word.Document.8 \s [image: image90.emf]6.91:   From the chain rule, 
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 EMBED Word.Document.8 \s [image: image91.emf]6.92:   a) The power  P  is related to the speed by 
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 EMBED Word.Document.8 \s [image: image92.emf]6.93:   a) 
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 EMBED Word.Document.8 \s [image: image93.emf]6.94:   a) The number of cars is the total power available divided by the power needed per  car,    
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    rounding down to the nearest integer.         b)  To accelerate a total mass  M  at an acceleration  a  and speed  v , the extra power  needed i s  Mav . To climb a hill of angle 
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  rounding to the nea rest integer.      



 EMBED Word.Document.8 \s [image: image94.emf]6.95:  a) 
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        c) Approximating 

, sin



 by 

, tan



 and using the component of gravity down the  incline as 

, sin
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mg
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 EMBED Word.Document.8 \s [image: image95.emf]6.96:   a) Along this path,  y  is constant, and the displacement is parallel to the force, so 
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      b) Since the force has no  y - component, no work is done moving in the  y - direction.       c) Along this path,  y  varies with position along t he path, given by 
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

 so 
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      b) The speed is lowered by a factor of one - half, and the resisting force is lowered by a  factor of 

), 4 / 35 . 0 65 . 0 (



 and so the power at the lower speed is      
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        c) Similarly, at the h igher speed,    
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      b) The extra power needed is    
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    so the total power is 47.2 hp. (Note: If the sine of the angle is approximated by the  tangent, the third place will be different.)     c) Similarly,    
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      This is the rate at which work is done on the car by gravity. The engine must do work on  the car at a rate of 4.06 hp.  d) In this case, approximating the sine of the slope by the  tangent is appropriate, and the grade is  

, 0203 . 0

km/h)) m/s)/(3.6 km/h)((1 0 . 60 )( m/s kg)(9.80 1800 (
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      very close to a 2% grade.      



 EMBED Word.Document.8 \s [image: image99.emf]6.100:   Use the Work – Energy Theorem, 
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      To eliminate  x , note that the box comes to a rest wh en the force of static friction balances  the component of the weight directed down the plane. So, 

; cos mg   A sin mg
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x

 solve  this for  x  and substitute into the previous equation.    
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 EMBED Word.Document.8 \s [image: image100.emf]6.101:   a) Denote the position of a piece of the spring by  l ; 
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 is the fixed point and 
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 is the moving end of the spring. Then the velocity of the point corresponding to  l ,   denoted  u , is 
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 ( when the spring is moving,  l  will be a function of time, and so  u   is an implicit function of time). The mass of a piece of length  dl  is 
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 and so    
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  d) Algebraically,    
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 EMBED Word.Document.8 \s [image: image101.emf]6.102:   In both cases, a given amount of fuel represents a given amount of work 
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 that  the engine does in moving the plane forward against the resisting force. In terms of the  range  R  and the (presumed) constant speed  v ,    

.

2

2

0













  

v

v R RF W





  In terms of the time of flight 
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  a) Rather than solve for  R  as a function of  v , differentiate the first of these relations with  respect to  v , setting 
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 to obtain 
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       b) Similarly, the maximum time is found by setting 
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 EMBED Word.Document.8 \s [image: image102.emf]6.103:   a) The walk will take one - fifth of an hour, 12 min. From the graph, the oxygen  consumption rate appears to be about 
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    b) The run will take 6 min. Using an estimation of the  rate from the graph of about 
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 gives an energy consumption of about 
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 c) The run takes 4  min, and with an estimated rate of about 
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 the energy used is about 
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 d) Walki ng is the most efficient way to go. In general, the point where the  slope of the line from the origin to the point on the graph is the smallest is the most  efficient speed; about 5 

h. km
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 The generalization of Eq. (6.11)  is then    
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