



 EMBED Word.Document.8 \s [image: image1.emf]7.2:    a) For constant speed, the net force is zero, so the required force is the sack’s  weight, 
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  b) The lifting force acts in the same direction as the  sack’s motion, so the work is equal to the weight times the distance, 
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 this work becomes potential energy. Note that the result is  independent of the speed, and that an extra figure was kept in part (b) to avoid roundoff  error.      
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 EMBED Word.Document.8 \s [image: image3.emf]7.4:    a) The rope makes an angle of 
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to  two figures.  b) In moving the bag, the rope does no work, so the worker does an amount   of work equal to the change in potential energy, 

J.    10   0.95 ) 30   cos (1   m)   (6.0   ) s m   (9.80   kg)   120 (

3 2

   

 Note that this is not the product  of the result of part (a) and the horizontal displacement; the force needed to keep the bag  in equilibrium varies as the angle is changed.      



 EMBED Word.Document.8 \s [image: image4.emf]7.5:    a) In the absence of air resistance, Eq. (7.5) is applicable. With 
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     b) The result of part (a), and any application of Eq. (7.5), depends only on the  magn itude of the velocities, not the directions, so the speed is again 
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  c) The  ball thrown upward would be in the air for a longer time and would be slowed more by  air resistance.      



 EMBED Word.Document.8 \s [image: image5.emf]7.6:     a) (Denote the top of the ramp as point 2.) In Eq. (7.7), 
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 to two figures. Or, the work done by friction and the change in potential en ergy  are both proportional to the distance the crate moves up the ramp, and so the initial speed  is proportional to the square root of the distance up the ramp; 
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 EMBED Word.Document.8 \s [image: image6.emf]7.7:     As in Example 7.7, 
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 EMBED Word.Document.8 \s [image: image7.emf]7.8:     The speed is  v  and the kinetic energy is 4 K . The work done by friction is  proportional to the normal force, and hence the mass, and so each term in Eq. (7.7) is  proportional to the total mass of the crate, and the speed at the bottom is the same fo r any  mass. The kinetic energy is proportional to the mass, and for the same speed but four  times the mass, the kinetic energy is quadrupled.      
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 EMBED Word.Document.8 \s [image: image9.emf]7.10:     (a) The flea leaves the ground with an upward velocity of 1.3 m/s and then is in  free - fall with acceleration 
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 EMBED Word.Document.8 \s [image: image11.emf]7.12:     Tarzan is lower than his original height by a distance 
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  a bit quick for conversation.      



 EMBED Word.Document.8 \s [image: image12.emf]7.13:     a) The force is applied parallel to the ramp, and hence parallel to the oven’s  motion, and so 
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 (In the above, numerical results of specific parts may differ in the third  place if extra figures are not kept in the intermediate calculations.)      



 EMBED Word.Document.8 \s [image: image13.emf]7.14:     a) At the top of the swing, when the kinetic energy is zero, the potential energy  (with respect to the bottom of the circular arc) is 
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  or 1.9 N to two figures. Note that this  method does not use the intermediate calculation of  v .      



 EMBED Word.Document.8 \s [image: image14.emf]7.15:     Of the many ways to find energy in a spring in terms of the force and the  distance, one way (which avoids the intermediate calculation of the spring constant) is to  note that the energy is the product of the average force and the distance compress ed or  extended. a) 
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 EMBED Word.Document.8 \s [image: image16.emf]7.17:     a) Solving Eq. (7.9) for 
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        b) Denote the initial height of the book as  h  and the maximum compression of the  spring by  x . The final and initial kinetic energies are zero, and the book is initially a  height 
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  The second (negative) root is not unphysi cal, but represents an extension rather than a  compression of the spring. To two figures, the compression is 0.12 m.      



 EMBED Word.Document.8 \s [image: image17.emf]7.18:     a) In going from rest in the slingshot’s pocket to rest at the maximum height, the  potential energy stored in the rubber band is converted to gravitational potential energy; 
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         b) Because gravitational potential energy  is proportional to mass, the larger pebble  rises only 8.8 m.          c) The lack of air resistance and no deformation of the rubber band are two possible  assumptions.      



 EMBED Word.Document.8 \s [image: image18.emf]7.19:     The initial kinetic energy and the kinetic energy of the brick at its greatest height  are both zero. Equating initial and final potential energies, 
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 EMBED Word.Document.8 \s [image: image19.emf]7.20:     As in Example 7.8, 
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 EMBED Word.Document.8 \s [image: image22.emf]7.23:     a) In this case, 
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 EMBED Word.Document.8 \s [image: image24.emf]7.25:     a) Gravity does negative work, 
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  b)  Gravity does 118 J of positive work.  c) Zero  d) Conservative; gravity does no net work  on any complete round trip.      
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            c) Gravity is conservative, as the work done to go from one point to another is path - independent.      



 EMBED Word.Document.8 \s [image: image26.emf]7.27:     a) The displacement is in the  y - direction, and since 
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 EMBED Word.Document.8 \s [image: image27.emf]7.28:     a) From (0, 0) to (0,  L ), 
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 (It is not a  coincidence that this is the average to the answers to parts (a) and (b).)  d) The work  depends on path, and the field is not conservative.      



 EMBED Word.Document.8 \s [image: image28.emf]7.29:      a) When the book moves to the left, the friction force is to the right, and the work  is 
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  d) The net work d one by friction for the round trip is not zero, and  friction is not a conservative force.      
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 EMBED Word.Document.8 \s [image: image30.emf]7.31:     The magnitude of the friction force on the book is    
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  a)   The work done during each part of the motion is the same, and the total work done  is 
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 d) The work required to  go from one point to an other is not path independent, and the work required for a  round trip is not zero, so friction is not a conservative force.      
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  The minus sign means that the force is attractive.        
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. 6 12

7 13

r

b

r

a

r

U

r

F

    



             b) Setting 

0



r

F

 and solving for  r  gives 

. ) 2 (

6 / 1

min

b a r



 This is the minimum of  potential energy, so the equilibrium is stable.        c)    

.

4 2 4

) ) / 2 (( ) ) / 2 ((

) (

2 2

2

2

6 6 / 1 12 6 / 1

6

min

12

min

min

a

b

a

b

a

ab

b a

b

b a

a

r

b

r

a

r U

   

 

 
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  (Note: the numerical value for  a  might not be within the  range of standard calculators,  and the powers of ten may have to be handled seperately.)      
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   and so the force is zero  when the slope of the  U vs x  graph is zero, at points  b  and  d .  b) Point  b  is at a potential  minimum; to move it away from  b  would require an input of  energy, so this point is  stable. c) Moving away from point  d  involves a decrease of potential energy, hence an  increase in kinetic energy, and the marble tends to move further away, and so  d  is an  unstable point.      



 EMBED Word.Document.8 \s [image: image38.emf]7.39:      a) At constant speed, the upward force of the three ropes must balance the force,  so the tension in each is one - third of the man’s weight. The tension in the rope is the  force he exerts, or 
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 the driver was speeding.   a)   15 mph over speed limit so $150 ticket.      
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 EMBED Word.Document.8 \s [image: image42.emf]7.43:     The initial and final kinetic energies are both zero, so the work done by the spring  is the negative of the work done by friction, or 
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 EMBED Word.Document.8 \s [image: image43.emf]7.44:     Work done by friction against the crate brings it to a halt:    
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 EMBED Word.Document.8 \s [image: image46.emf]7.47:      a) Use work - energy relation to find the kinetic energy of the wood as it enters the  rough bottom: 
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  (b) Compare maximum static friction force to the weight component down the plane.    
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  The spring force is less than the maximum possible static friction force so the stone  remains at rest.      



 EMBED Word.Document.8 \s [image: image49.emf]7.50:     First get speed at the top of the hill for the block to clear the pit.    
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 EMBED Word.Document.8 \s [image: image52.emf]7.53:     The net work done during the trip down the barrel is the sum of the energy stored  in the spring, the (negative) work done by friction and the (negative) work done by  gravity. Using 
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 EMBED Word.Document.8 \s [image: image53.emf]7.54:     To be at equilibrium at the bottom, with the spring compressed a distance 
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          b) Denote the upward distance from point 2 by  h . The kinetic energy at point 2 and  at the height  h  are both zero, so the energy found in part (a) is equal to the  negative of the  work done by gravity and friction, 
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 EMBED Word.Document.8 \s [image: image56.emf]7.57:     The two design conditions are expressed algebraically as 
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2

1

4 4 2 4

 





    

.

N) 10 N)(3.66 10 (1.96

J 10 5 . 62

4 4

4

k

 

  

         This is actually not hard to solve for 

m N 919



k

, and the c orresponding  x  is 39.8 m.  This is a very weak spring constant, and would require a space below the operating range  of the elevator about four floors deep, which is not reasonable.  b) At the lowest point, the  spring exerts an upward force of magnitude 

mg f



. Just before the elevator stops,  however, the friction force is also directed upward, so the net force is 

f mg f mg f 2 ) (

   

, and the upward acceleration is 

2

2

s m 0 . 17



m

f

.      



 EMBED Word.Document.8 \s [image: image57.emf]7.58:     One mass rises while the other falls, so the net loss of potential energy is    

. J 176 . 1 ) m 400 . 0 )( s m 80 . 9 )( kg 2000 . 0 kg 5000 . 0 (

2

 

    This is the sum of the kinetic energies of the animals. If the animals are equidistant from  the center, they have the same speed, so the kinetic  energy of the combination is 

2

tot

2

1

v m

,  and  

. s m 83 . 1

) kg 7000 . 0 (

) J 176 . 1 ( 2

 

v

     



 EMBED Word.Document.8 \s [image: image58.emf]7.59:     a) The kinetic energy of the potato is the work done by gravity (or the potential  energy lost), 

mgl mv



2
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1

, or 

s m 00 . 7 ) m 50 . 2 )( s m 80 . 9 ( 2 2

2

  

gl v

.         b)  

, 2

2

mg

l

v

m mg T

  

    so 

N. 94 . 2 ) s m 80 . 9 )( kg 100 . 0 ( 3 3

2

  

mg T

     



 EMBED Word.Document.8 \s [image: image59.emf]7.60:     a) The change in total energy is the work done by the air,  
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          b) Similarly,    
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    c) The ball is moving slower on the way down, and does not go as far (in the  x - direction),  and so the work done by th e air is smaller in magnitude.      



 EMBED Word.Document.8 \s [image: image60.emf]7.61:     a) For a friction force  f , the total work done sliding down the pole is 

fd mgd

 .  This is given as being equal to  mgh , and solving for  f  gives  

. 1

) (
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









 





d

h

mg

d

h d

mg f

  When 

0 ,

 

f d h

, as expected, and when 

mg f h

 

, 0

; there is no net force on the  fireman.  b) 

N 441 ) 1 )( s m 80 . 9 )( kg 75 (

m 5 . 2

m 0 . 1

2

 

.  c) The net work done is 

) )( ( y d f mg

 

, and this must be equal to 

2

2

1 mv

. Using the above expression for  f ,    

, 1

) (
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1

2
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


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


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


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d

y

mgh

y d

d

h
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y d f mg mv

    from which 

) 1 ( 2 d y gh v

 

. When 

0



y

 

gh v 2



, which is the original condition.  When 

d y



, 

0



v

; the fireman is at the top of the pole.      



 EMBED Word.Document.8 \s [image: image61.emf]7.62:     a) The skier’s kinetic energy at the bottom can be found from the potential energy  at the top minus the work done by friction, 
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W mgh K
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J 720 , 27 J 500 , 10 J 200 , 38
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K
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) J 20 7 , 27 ( 2
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v

.         b) 
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) N 588 )( 2 [(. J 720 , 27 ), ( J 720 , 27 ) (

2 air k A F 1 2

K d f mgd W W K K



 

)], m 82 )( N 160 ( ) m 82 (



 , or 

J 4957 J 763 , 22 J 720 , 27

2
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K

. Then,    
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kg 60

) J 4957 ( 2 2

2
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m

K

v

            c) Use the Work - Energy Theorem to find the force. 

, KE W

 
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d KE F

     



 EMBED Word.Document.8 \s [image: image62.emf]7.63:     The skier is subject to both gravity and a normal force; it is the normal force that  causes her to go in a circle, and when she leaves the hill, the normal force vanishes. The  vanishing of the normal force is the condition that determines when she  will leave the  hill. As the normal force approaches zero, the necessary (inward) radial force is the radial  component of gravity, or 

, cos

2



mg R mv



 where  R  is the radius of the snowball. The  speed is found from conservation of energy; at an angle  



, she has descended a vertical  distance 

) cos 1 (

 

R

, so 
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2

2

1
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mgR mv
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2
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. Using this in  the previous relation gives 

 

cos ) cos 1 ( 2
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






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

2 . 48

3

2
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

. This result  does not depend on the skier’s mass, the radius of the snowball, or  g .      



 EMBED Word.Document.8 \s [image: image63.emf]7.64:     If the speed of the rock at the top is  v t , then conservation of energy gives the  speed 
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R
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 EMBED Word.Document.8 \s [image: image64.emf]7.65:     a) The magnitude of the work done by friction is the kinetic energy of the  package at point  B , or 
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 EMBED Word.Document.8 \s [image: image65.emf]7.66:     Denote the distance the truck moves up the ramp by  x . 
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 EMBED Word.Document.8 \s [image: image66.emf]7.67:  a) Taking 
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 EMBED Word.Document.8 \s [image: image67.emf]7.68:     The force increases both the gravitational potential energy of the block and the  potential energy of the spring. If the block is moved slowly, the kinetic energy can be  taken as constant, so the work done by the force is the increase in potential  energy, 
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 EMBED Word.Document.8 \s [image: image68.emf]7.69:     With 
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 EMBED Word.Document.8 \s [image: image69.emf]7.70:     a) In this problem, use of algebra avoids the intermediate calculation of the spring  constant  k . If the original height is  h  and the maximum compression of the spring is  d ,  then 

2
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1

) ( kd d h mg

 

. The speed needed is when the spring is compr essed 

2

d

, and from  conservation of energy, 

2
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. Substituting for  k  in terms of 
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










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  Insertion of numerical values gives 
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
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. b) If the spring is compressed a  distance  x , 
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x
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
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 EMBED Word.Document.8 \s [image: image70.emf]7.71:     The first condition, that the maximum height above the release point is  h , is  expressed as 

mgh kx



2

2

1

. The magnitude of the acceleration is largest when the spring is  compressed to a distance  x ; at this point the net upward force is 
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 

, so the  second condition is expressed as 
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.

2

) (

or , ) (

2

1

2

2

2

gh

a g m

k mgh a g

k

m

k



  












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 EMBED Word.Document.8 \s [image: image71.emf]7.72:     Following the hint, the force constant  k  is found from 
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.  When the fish falls from rest, its gravitational potential energy decreases by  mgy ; this  becomes the potential energy of the spring, which  is 
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 EMBED Word.Document.8 \s [image: image72.emf]9.73:   a)       
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 EMBED Word.Document.8 \s [image: image73.emf]7.74:     a) From either energy or force considerations, the speed before the block hits the  spring is              
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         b) This does require energy considerations; the combined work done by gravity and  friction is 
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1
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, and use of the quadratic formula gives 
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d

.  c) The easy thing to do here is to recognize that the presence of the spring  determines  d , but at the end of the motion the spring has no potential energy, and the  distance  below the starting point is determined solely by how much energy has been lost  to friction. If the block ends up a distance  y  below the starting point, then the block has  moved a distance 
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

 down the incline and 
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 up the incline. The magnitude of  the friction force is the same in both directions, 
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    Using the value of  d  found in part (b) and the given values for 
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 gives 
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 EMBED Word.Document.8 \s [image: image74.emf]7.75:     a) 

, J 75 . 3 ) m 25 )(. m N 0 . 40 )( 2 1 ( ) m 25 . 0 )( N 0 . 20 (

2

other

    

B B

U W K

  so 

s m 87 . 3

kg 500 . 0

) J 75 . 3 ( 2

 

B

v

, or 

s m 9 . 3

 to two figures.  b) At this point (point  C ), 

0



C

K

, and so 

other

W U

C



 and 

m 50 . 0

m N 0 . 40

) J 00 . 5 ( 2

   

c

x

 (the minus sign denotes a  displaceme nt to the left in Fig. (7.65)), which is 0.10 m from the wall.      



 EMBED Word.Document.8 \s [image: image75.emf]7.76:     The kinetic energy 
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  after moving up the ramp the distance  s  will be the energy  initially stored in the spring, plus the (negative) work done by gravity and friction, or  
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  Note that the total energy is the same.      
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        c) The work done depends on the path, and the force is not conservative.      
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  The proton moves in the positive  x - direction, speeding up until it reaches a maximum  speed (see part (c)), and then slows down, althou gh it never stops. The minus sign in the  square root in the expression for 
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