



 EMBED Word.Document.8 \s [image: image1.emf]8.2:   See Exercise 8.3 (a); the iceboats have the same kinetic energy, so the boat with the  larger mass has the larger magnitude of momentum by a factor of 
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, so the larger mass  baseball has the greater momentum; 
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 EMBED Word.Document.8 \s [image: image3.emf]8.4:   From Eq.  (8.2),    
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 EMBED Word.Document.8 \s [image: image4.emf]8.5:   The  y - component of the total momentum is    
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 The weight of the ball is less than half a newton, so the  weight is not significant while the ball and club are in contact.      



 EMBED Word.Document.8 \s [image: image7.emf]8.8:   a) The magnitude of the velocity has changed by     
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 EMBED Word.Document.8 \s [image: image8.emf]8.9:   a) Considering the + x - components, 
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  d) The initial velocity of the shuttle is not known; the  change in the square of the speed is not the square of the change of th e speed.      
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 EMBED Word.Document.8 \s [image: image11.emf]8.12:  The change in the ball’s momentum in the  x - direction (taken to be  positive to the right) is 
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 EMBED Word.Document.8 \s [image: image13.emf]8.14:   The impluse imparted to the player is opposite in direction but of  the same magnitude as that imparted to the puck, so the player’s speed is 
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 EMBED Word.Document.8 \s [image: image14.emf]8.15:   a) You and the snowball now share the momentum of the snowball  when thrown so your speed is 
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 EMBED Word.Document.8 \s [image: image15.emf]8.16:   a)  The final momentum is    
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 EMBED Word.Document.8 \s [image: image16.emf]8.17:   The change in velocity is the negative of the change in Gretzky’s  momentum, divided by the defender’s mass, or    
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    Positive velocities are in Gretzky’s original direction of motion, so the  defender has changed direction.     b) 
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 EMBED Word.Document.8 \s [image: image17.emf]8.18:   Take the direction of the bullet’s motion to be the positive direction. The total  momentum of the bullet, rifle, and gas must be zero, so                        
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Note tha t the speed of the bullet is found by subtracting  the speed of the rifle from the speed of the bullet relative to the rifle.      



 EMBED Word.Document.8 \s [image: image18.emf]8.19:   a) See Exercise 8.21; 
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 EMBED Word.Document.8 \s [image: image19.emf]8.20:   In the absence of friction, the horizontal component of the hat - plus - adversary  system is conserved, and the recoil speed is                                   
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    (This result may be obtained using the re sult of Exercise 8.3.)      
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 EMBED Word.Document.8 \s [image: image22.emf]8.23:     Let the + x - direction be horizontal, along the direction the rock is thrown.  There is no net horizontal force, so 
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 EMBED Word.Document.8 \s [image: image23.emf]8.24:    Let Rebecca’s original direction of motion be the  x - direction. a) From  conservation of the  x - component of momentum,       
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 EMBED Word.Document.8 \s [image: image25.emf]8.26:  The original momentum is 
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 EMBED Word.Document.8 \s [image: image26.emf]8.27:   Denote the final speeds as 
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    so 19.6% of the original energy is dissipated.      
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8.30:  Take north to be the  x - direction and east to be the  y - direction (these choices are  arbitrary). Then, the final momentum is the same as the intial momentum (for a  sufficiently muddy field), and the velocity components are             The magnitude of the ve locity is then 
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 EMBED Word.Document.8 \s [image: image30.emf]8.31:  Use conservation of the horizontal component of momentum to find the velocity of  the combined object after the collision. Let + x  be south.                P
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    Kinetic energy is converted  t o thermal energy due to work done by  nonconservative forces during the collision.      



 EMBED Word.Document.8 \s [image: image31.emf]8.32:     (a)  Momentum conservation tells us that both cars have the same change in  momentum, but the smaller car has a greater velocity change because it has a smaller  mass.        (b) The occupants of the small car experience 2.5 times the velocity change of  those in the large car, so they also experience 2.5 times  the acceleration. Therefore they  feel 2.5 times the force, which causes whiplash and other serious injuries.      
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 EMBED Word.Document.8 \s [image: image32.emf]8.33:   Take east to be the  x - direction and north to be the  y - direction (again, these choices  are arbitrary). The components of the common velocity after the collision are    
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 EMBED Word.Document.8 \s [image: image33.emf]8.34:  The initial momentum of the car must be the  x - component of the final momentum  as the truck had no intial  x - component of momentum, so    
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 EMBED Word.Document.8 \s [image: image34.emf]8.35:  The   speed of the block immediately after being struck by the bullet may be found  from either force or energy considerations. Either way, the distance  s  is related to the  speed 
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 EMBED Word.Document.8 \s [image: image35.emf]8.36:  a) The final speed of the bullet - block combination is   Energy is conserved after the collision, so 
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 EMBED Word.Document.8 \s [image: image36.emf]8.37:   Let + y  be north and + x  be south. Let 
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 EMBED Word.Document.8 \s [image: image37.emf]8.38:  (a) At maximum compression of the spring, 
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 EMBED Word.Document.8 \s [image: image38.emf]8.39:  In the notation of  Example 8.10, with the smaller glider denoted as  A , conservation  of momentum gives  
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 EMBED Word.Document.8 \s [image: image39.emf]8.40:  a) In the notation of Example 8.10, with the large marble (originally moving to the  right) denoted as 

s. m   200 . 0 ) 00 . 1 ( ) 00 . 3 ( ,

2 2

 

B A

v v A

 The relative velocity has switched  direction, so 

. m   600 . 0

2 2

s v v

B A

  

 Adding these eliminates 

2

B

v

 to  give 

  s, m   100 . 0 or    s, m   400 . 0 ) 00 . 4 (

2 2

   

A A

v v

with the minus sign indicating a final  velocity to the left. This may be substituted into either of the two relations to obtain 

s; m   500 . 0

2



B

v

 or, the second of the above relations may be multiplied by 3.00 and  subtract ed from the first to give 

  s, m   00 . 2 ) 00 . 4 (

2



B

v

the same result.    

. 10 5 . 4 , 10 5 . 4   c)

s m kg   009 . 0   s, m   kg   009 . 0   b)

4 4

 

      

      

B A

B A

K K

P P

  Because the collision is elastic, the numbers have the same magnitude.      



 EMBED Word.Document.8 \s [image: image40.emf]8.41:   Algebraically, 
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 EMBED Word.Document.8 \s [image: image41.emf]8.42:   a) Using Eq. 
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 EMBED Word.Document.8 \s [image: image42.emf]8.43:  a) In Eq. (8.24), let 
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 EMBED Word.Document.8 \s [image: image43.emf]8.44:  From Eq. (8.28),            
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 EMBED Word.Document.8 \s [image: image44.emf]8.45:   Measured from the center of the sun,    
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    The center of mass of the system lies outside the sun.      



 EMBED Word.Document.8 \s [image: image45.emf]8.46:  a) Measured from the rear car, the position of the center of mass is, from Eq. (8.28), 

  m,   0 . 24

kg)   1800 kg   1200 (

) m   0 . 40 )( kg   1800 (





which is 16.0 m behind the leading car.  

s. m   8 . 16

) kg   1800 kg   1200 (

) s m   0 . 20 )( kg   1800 ( ) s m   0 . 12 )( kg   1200 (

              

(8.30),   Eq.   From   c)

s. m kg   10 04 . 5 ) s m   0 . 20 )( kg   1800 ( ) s m   0 . 12 )( kg   1200 (   b)

cm

4









   

v

     

s. m kg   10 04 . 5 ) s m   8 . 16 )( kg   1800 kg   1200 (   d)

4

   

     



 EMBED Word.Document.8 \s [image: image46.emf]8.47:   a) With 
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 EMBED Word.Document.8 \s [image: image47.emf]8.48:  As in Example 8.15, the center of mass remains at rest, so there is zero net  momentum, and the magnitudes of the speeds are related by 
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 EMBED Word.Document.8 \s [image: image48.emf]8.49:  See Exercise 8.47(a); with 
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 EMBED Word.Document.8 \s [image: image50.emf]8.51:  a) From Eq. (8.38), 
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 b) The absence of  atmosphere would not prevent the rocket from operating. The rocket could be steered by  ejecting the fuel in a direction with a component perpendicular to the rocket’s velocity,  and braked  by ejecting in a direction parallel (as opposed to antiparallel) to the rocket’s  velocity.      



 EMBED Word.Document.8 \s [image: image51.emf]8.52:  It turns out to be more convenient to do part (b) first; the thrust is the force that  accelerates the astronaut and MMU, 
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 EMBED Word.Document.8 \s [image: image52.emf]8.53:  Solving for the magnitude of 
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 EMBED Word.Document.8 \s [image: image53.emf]8.54:  Solving Eq. (8.34) for 
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 EMBED Word.Document.8 \s [image: image54.emf]8.55:  a) The average thrust is the impulse divided by the time, so the ratio of the average  thrust to the maximum thrust is 

. 442 . 0

s)   (1.70   N)   (13.3

s) N   0 . 10 (





   b) Using the average force in Eq.  (8.38), 

s. m   800

kg   0125 . 0

s N   0 . 10  

ex

  



dm

dt F

v

   c) Using the result of part (b) in Eq.  (8.40),   

s m 530 ) 0133 . 0 0258 . 0 ( ln   ) s m 800 (

 

v

.      



 EMBED Word.Document.8 \s [image: image55.emf]8.56:  Solving Eq. (8.4) for the ratio 
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 EMBED Word.Document.8 \s [image: image56.emf]8.57:  Solving Eq. (8.40) for 
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 EMBED Word.Document.8 \s [image: image57.emf]8.58:  a) The speed of the ball before and after the collision with the plate are found   from the heights. The impulse is the mass times the sum of the speeds,   
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 EMBED Word.Document.8 \s [image: image60.emf]8.61:  The total momentum of the final combination is the same as the initial momentum;  for the speed to be one - fifth of the original speed, the mass must be five times the original  mass, or 15 cars.      



 EMBED Word.Document.8 \s [image: image61.emf]8.62:  The momentum of the convertible must be the south component of the total  momentum, so    
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 EMBED Word.Document.8 \s [image: image62.emf]8.63:  The total momentum must be zero, and the velocity vectors must be three vectors of  the same magnitude that sum to zero, and hence must form the sides of an equilateral  triangle. One puck will move 
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 EMBED Word.Document.8 \s [image: image64.emf]8.65:  a) To throw the mass sideways, a sideways force must be exerted on the mass, and  hence a sideways force is exerted on the car. The car is given to remain on track, so some  other force (the tracks on the car) act to give a net horizontal force of zero  on the car,  which continues at 

s m   00 . 5

east.        b) If the mass is thrown with backward with a speed of 

s m   00 . 5

 relative to the initial  motion of the car, the mass is at rest relative to the ground, and has zero momentum.  The  speed of the car is then 

 

 

  s, m   71 . 5 ) s m   00 . 5 (

kg   175

kg   200



and the car is still moving east.          c) The combined momentum of the mass and car must be same before and after the  mass hits the car, so the speed is 

     

 

kg   225

s m   00 . 6 kg   0 . 25 s m   00 . 5 kg   200

 

=

  s, m   78 . 3

wit h the car still  moving east.    



 EMBED Word.Document.8 \s [image: image65.emf]8.66:   The total mass of the car is changing, but the speed of the sand as it leaves the car  is the same as the speed of the car, so there is no change in the velocity of either the car  or the sand (the sand acquires a downward velocity after it leaves th e car, and is stopped  on the tracks  after  it leaves the car). Another way of regarding the situation is that 

ex

v

in  Equations (8.37), (8.38) and (8.39) is zero, and the car does not accelerate. In any event,  the speed of the car remains  constant at 15.0 m/s. In Exercise 8.24, the rain is given as  falling vertically, so its velocity relative to the car as it hits the car is not zero.    



 EMBED Word.Document.8 \s [image: image66.emf]8.67:    a) The ratio of the kinetic energy of the Nash to that of the Packard is 
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 b) The ratio of the momentum of the Nash to that of the  Packard is 

0.933,      
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 therefore the  Packard has the greater magnitude  of momentum. c) The force necessary to stop an object with momentum  P   in time  t  is  

F

 =

/ P



t . Since the Packard has the greater momentum, it will require the greater force  to stop  it. The ratio is the same since the time is the same, therefore 

    /



P N

F F

 0.933. d)  By the work - kinetic energy theorem, 

   



F

 

d

k



. Therefore, since the Nash has the greater  kinetic energy, it will require  the greater force to stop it in a given distance. Since the  distance is the same, the ratio of the forces is the same as that of the kinetic energies, 

    /



P N

F F

 1.68.      



 EMBED Word.Document.8 \s [image: image67.emf]8.68:    The recoil force is the momentum delivered to each bullet times the rate at which  the  bullets are fired,  
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 EMBED Word.Document.8 \s [image: image68.emf]8.69:    (This problem involves solving a quadratic. The method presented here formulates  the answer in terms of the parameters, and avoids intermediate calculations, including  that of the spring constant.)           Let the mass of the frame be  M   and the mas s putty be  m .  Denote the distance that the  frame streteches the spring by  x 0  , the height above the frame from which the putty is  dropped as  h  , and the maximum distance the frame moves from its initial position (with  the frame attached) as  d .     The collis ion between the putty and the frame is completely inelastic, and the  common speed after the collision is 
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0
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

have been used. In this form, it is seen  that a factor of  g  cancels from all terms. After performing the algebra, the quadratic for  d   becomes     which has as its positive  root   For this situation,  m  = 4/3  M  and  h/x 0  = 6, so       d  = 0.232 m.      
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 EMBED Word.Document.8 \s [image: image69.emf]8.70:  a) After impact, the block - bullet combination has a total mass of 1.00 kg, and the  speed  V  of the block is found from
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The spring constant k  is determined from the calibration; 
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  b) Although this is not a pendulum, the analysis of the inelastic collision is the same;    
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 EMBED Word.Document.8 \s [image: image70.emf]8.71:  a) Take the original direction of the bullet’s motion to be the  x - direction,    and the direction of recoil to be the  y - direction. The components of the stone’s velocity    after impact are then        
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    and the stone’s speed is 
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so the collision is  not perfectly elastic.    



 EMBED Word.Document.8 \s [image: image71.emf]8.72:  a) The stuntman’s speed before the collision is 
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 The speed  after the collision is     
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    b) Momentum is not conserved during the slide. From the work - energy theorem, the  distance  x  is found from 
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    Note that an extra figure was needed for 

V

in part (b) to avoid roundoff error.      



 EMBED Word.Document.8 \s [image: image72.emf]8.73:  Let  v  be the speed of the mass released at the rim just before it strikes the second  mass. Let each object have mass  m .          Conservation of energy says 

gR v mgR mv 2    ;
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        This is speed 
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for the collision. Let 

2

v

be the speed of the combined object just after  the collision. Conservation of momentum applied to the collision  gives
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          Apply conservation of energy to the motion of the combined object after the collision.   Let  
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be the final height above the bottom of the bowl.    
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       Mechanical energy is lost in the collision, so the final gravitational potential energy is  less than the initial gravitational  potential energy.      



 EMBED Word.Document.8 \s [image: image73.emf]8.74:  Collision: Momentum conservation gives    
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                (1)        Energy Conservation :    
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            (2)     Solve  (1) and (2) for 
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      Energy conservation after coll ision:    
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 EMBED Word.Document.8 \s [image: image74.emf]8.75:  First consider the motion after the collision.  The combined object has mass 
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25.0 kg. Apply 
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 to the object at the top of the circular loop, where the  object has speed 
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       The minimum speed 
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 for the object not to fall out of the circle is given by setting 
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. This gives 
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         Next, use conservation of energy with  point 2 at the bottom of the loop and point 3 at  the top of the loop. Take 
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y

 at the point 2. Only gravity does work, so          

3 3 2 2

U K U K

  

       

 

R g m v m v m 2

tot

2

3 tot

2

1

2

2 tot

2

1

 

        Use

Rg v



3

 and solve for

s m   13.1 5 :

2 2

 

gR v v

        Now apply conservation of momentum to the collision between the dart and the  sphere. Let
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 be the speed of the dart before the collision.         
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 EMBED Word.Document.8 \s [image: image75.emf]8.76:  Just after the collision :  
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      Energy and momentum are conserved during the elastic collision.    

      

      

(2)                                       s m 1024

s m 0 . 16 kg   00 . 8 kg   00 . 2 kg   00 . 2

2

1

2

1

2

1

(1)                                            s m 0 . 64

s m   0 . 16 kg   00 . 8 kg   00 . 2 kg   00 . 2

2 2 2

2

2

0

2

2

2

2

0

2

8 8

2

2 2

2

0 2

2 0

2 0

8 8 2 2 0 2

 

 

 

 

 

 

v v

v v

v m v m v m

v v

v v

v m v m v m

  Solve (1) and  (2) for 
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 EMBED Word.Document.8 \s [image: image76.emf]8.77:   a) The coefficient of friction, from either force or energy consideration, is 
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 is the speed of the block after the bullet passes through. The speed  of the block is determined from the momentum lost  by the bullet, 

 

 

s, m kg   12 . 1 s m 280 kg 10 00 . 4

3

  



and so the coefficient of kinetic friction is    

   

 

 

. 22 . 0

m 45 . 0 s m   80 . 9 2

) kg   80 . 0 ( s m   kg   12 . 1

2

2

k







μ

    b) 

 

   

 

J.    291 s m 120 s m   400 kg 10 00 . 4

2 2

  3

2

1

  



  c) From the calculation of the  momentum in part  (a), the block’s initial kinetic energy was 
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 EMBED Word.Document.8 \s [image: image77.emf]8.78:  The speed of the block after the bullet has passed through (but before the block has  begun to rise; this assumes a large force applied over a short time, a situation  characteristic of bullets) is    
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  or 390 m/s to two figures.      



 EMBED Word.Document.8 \s [image: image78.emf]8.79:    a
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    b) Of the many ways to do this calculation, the most direct way is to differentiate the  expression of part (a) with resp ect to  M  and set equal to zero;  
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    c) From Eq.(8.24), with 
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 the neutron has lost all of its kinetic  energy.      



 EMBED Word.Document.8 \s [image: image79.emf]8.80:  a) From the derivation in Sec. 8.4 of the text we have    
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    The ratio of the kinetic energies of the two particles after the collision is    
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 EMBED Word.Document.8 \s [image: image80.emf]8.81:  a) Apply conservation of energy to the motion of the package from point 1 as it  leaves the chute to point 2 just before it lands in the cart. Take  y =  0 at point 2, so  y 1  =  4.00 m. Only gravity does work, so    
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         b) In the collision between the package and the cart momentum is conserved in the  horizontal direction. (But not in the vertical direction, due to the vertical force the floor  exerts on the cart.) Take + x   to be to the right. Let  A  be the pac kage and  B  be the cart.          P x  is constant gives        
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The horizontal velocity of the package is constant during  its free - fall.)         Solving for 
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The cart is moving to the left at 3.29 

m/s

after  the package lands in it.      



 EMBED Word.Document.8 \s [image: image81.emf]8.82:  Even though one of the masses is not known, the analysis of Section (8.4) leading  to Eq. (8.26) is still valid, and 
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 EMBED Word.Document.8 \s [image: image82.emf]8.83:  a) In terms of the primed coordinates,    
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         and so the term in square brackets in the expression for the kinetic energy vanishes,  showing the desired result.   b) In any collision for which other forces may be neglected  the vel ocity of the center of mass does not change, and the 
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 EMBED Word.Document.8 \s [image: image83.emf]8.84:  a) The relative speed of approach before the collision is the relative speed at which  the balls separate after the collision. Before the collision, they are approaching with  relative speed 2

v

, and so after the collision they are  receding with speed 2

v

. In the limit  that  the larger ball has the much larger mass, its speed after the collision will be  unchanged (the limit as 

B A

m m



in Eq. (8.24)), and so the small ball will move upward  with spe ed 3

v

.  b) With three times the speed, the ball will rebound to a height time  times greater than the initial height.      



 EMBED Word.Document.8 \s [image: image84.emf]8.85:  a) If the crate had final speed 

v

, J&J have speed 4.00 
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
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 EMBED Word.Document.8 \s [image: image85.emf]8.86:  (a) For momentum to be conserved, the two fragments must depart in opposite  directions. We can thus write  
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 EMBED Word.Document.8 \s [image: image86.emf]8.87:    Let the proton be moving in the  +

x

- direction with speed 

p

v

 after the decay.  The  initial momentum of the neutron is zero, so to conserve momentum the electron must be  moving in the
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- direction after the collision; let its speed be 
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 EMBED Word.Document.8 \s [image: image87.emf]8.88:  The ratios that appear in Eq. 
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 EMBED Word.Document.8 \s [image: image88.emf]8.89:  The “missing momentum” is         
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 .     Since the electron has momentum to the right, the neutrino’s momentum must be to the  left.      



 EMBED Word.Document.8 \s [image: image89.emf]8.90:   a
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 EMBED Word.Document.8 \s [image: image90.emf]8.91:  See Problem 8.90. Puck 

B

moves at an angle 65.0

) 65 25 90   i.e. (

       from the  original direction of puck  A ’s motion, and from conservation of momentum in the 
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 EMBED Word.Document.8 \s [image: image91.emf]8.92:  Since mass is proportional to weight, the given weights may be used in determining  velocities from conservation of momentum. Taking the positive direction to the left,  
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 EMBED Word.Document.8 \s [image: image92.emf]8.93:  a
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 From symmetry, the center of mass is on the vertical axis, a distance 
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from the apex.   b) The center of mass is on the (vertical) axis of  symmetry, a distance 
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 from the center  of the bottom of the    . c) Using  the wire frame as a coordinate system, the coordinates of the center of mass are equal,  and each is equal to 
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L L L ) 289 . 0 ( 12 ) 60 )(tan 2 (

  

above the center of  the base.      



 EMBED Word.Document.8 \s [image: image93.emf]8.94:  The trick here is to notice that the final configuration is the same as if the canoe 

(

assumed symmetrical

)

has been rotated about its center of mass. Intially, the center of  mass is a distance 
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 from the center of the canoe, so in rotating about  this point the center of the canoe would move 
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 EMBED Word.Document.8 \s [image: image94.emf]8.95:  Neglecting friction, the total momentum is zero, and your speed will be one - fifth of  the slab’s speed, or 0.40  
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 EMBED Word.Document.8 \s [image: image95.emf]8.96:  The trick here is to realize that the center of mass will continue to move in the  original parabolic trajectory, “landing” at the position of the original range of the  projectile. Since the explosion takes place at the highest point of the trajectory , and one  fragment is given to have zero speed after the explosion, neither fragment has a vertical  component of velocity immediately after the explosion, and the second fragment has  twice  the velocity the projectile had before the explosion. a) The fragme nts land at  positions symmetric about the original target point. Since one lands at 
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 EMBED Word.Document.8 \s [image: image96.emf]8.97:  Apply conservation of energy to the explosion. Just before the explosion the sheel  is at its maximum height and has zero kinetic energy. Let 

A

 be the piece with mass 1.40  kg and

B

be the piece with mass 0.28  kg. Let 

A

v

 and 
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v

 be the speeds of the two pieces  immediately after the collision.      
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    Since the two fragments reach the ground at the same time, their velocitues just  after the explosion mus t be horizontal. The initial momentum of the shell before the  explosion is zero, so after the explosion the pieces must be moving in opposite horizontal  directions and have equal magnitude of momentum :  
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 EMBED Word.Document.8 \s [image: image97.emf]8.98:  The two fragments are 3.00 kg and 9.00 kg. Time to reach maximum height = time  to fall back to the ground.    
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 EMBED Word.Document.8 \s [image: image98.emf]8.99:    The information is not sufficient to use conservation of energy. Denote the emitted  neutron that moves in the 

- y



direction by the subscript 1 and the emitted neutron that  moves in the  – y - direction by the subscript 2. Using cons ervation of momentum in the  x -   and  y - directions, neglecting the common factor of the mass of neutron,    
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 EMBED Word.Document.8 \s [image: image99.emf]8.100:  a) With block  B  initially at rest, 
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.  b) Since there is no net external  force, the center of mass moves with constant velocity, and so a frame that moves with  the center of mass is an inertial reference frame. c) The velocitie s have only 
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- components, and the 
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.   d) Since there is zero momentum in the center - of - mass frame before the collision, there  can be no momentum  after the collision; the momentum of each block after the collision  must be reversed in direction. The only way to conserve kinetic energy is if the  momentum of each has the same magnitude so in the center - of - mass frame, the blocks  change direction but ha ve the same speeds.  Symbolically, 
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 EMBED Word.Document.8 \s [image: image100.emf]8.101:  a) If the objects stick together, their relative speed is zero and 
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 EMBED Word.Document.8 \s [image: image101.emf]8.102:  a) The decrease in potential energy 

  0    

    means that the kinetic energy  increases. In the center of mass frame of two hydrogen atoms, the net momentum is  necessarily zero and after the atoms combine and have a common velocity, that  velocity  must have zero magnitude, a situation precluded by the necessarily positive kinetic  energy. b) The initial momentum is zero before the collision, and must be zero after the  collision. Denote the common initial speed as 
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v

, th e final speed of the hydrogen atom as 

v

, the final speed of the hydrogen molecule as 

V

, the common mass of the hydrogen  atoms as 

m

 and the mass of the hydrogen molecules as 2
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. After the collision, the two  particles must be moving in opposite directions, and so to conserve momentum, 
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 EMBED Word.Document.8 \s [image: image102.emf]8.103:  a) The wagon, after coming down the hill, will have speed 
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and in the 5.0 s, the wagon  will not reach the edge. b) The “collision” is completely inelastic, a nd kinetic energy is  not conserved. The change in kinetic energy is 

     

J,   4769     m/s   10 kg   300 m/s   6.9 kg   435

2

2

1

2

2

1

  

 so about 4800 J is lost.      



 EMBED Word.Document.8 \s [image: image103.emf]8.104:  a) Including the extra force, Eq. 
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 which  is about three - fourths the speed found in Example 8.17.      



 EMBED Word.Document.8 \s [image: image104.emf]8.105:  a) From Eq. 
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 EMBED Word.Document.8 \s [image: image105.emf]8.106:  a)  There are two contribution to 
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 EMBED Word.Document.8 \s [image: image106.emf]8.107:  a)  For 
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, and so the astronaut is  subject to a force of 6.0 kN, about eight times her weight on earth.      



 EMBED Word.Document.8 \s [image: image107.emf]8.108:  The impulse applied to the cake is 
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, where  m  is the mass of the  cake and  v  is its speed after the impulse is applied. The distance  d  that the cake moves  during this time is then 
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 EMBED Word.Document.8 \s [image: image108.emf]8.109:  a) Noting than 
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 EMBED Word.Document.8 \s [image: image110.emf]8.111:  a) The tension in the rope at the point where it is suspended from the table is 
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dx



, the work done is 

    

. negative   is   dx dx x g

 

 The total work done  is then    

   

.

32 2

 

2

4 /

0

2

0

4 /

gl x

g dx x g

l

l



    



       b) The center of mass of the hanging piece is initially a distance  l /8 below the top of the  table, and the hanging weight is 

  

4 / l g


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 EMBED Word.Document.8 \s [image: image111.emf]8.112:  a) For constant acceleration  a , the downward velocity is 
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