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             b) This is less than the total weight; the suspended mass is accelerating down, so the  tension is less than  mg.    c) As long as the cable remains taut, the velocity of the mass  does not affect the  acceleration, and the tension and normal force are unchanged.      
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     d) The normal force in Fig.  (10.10(b)) is the sum of the tension found in part (a) and the weight of the windlass, a  total 159.6 N (keeping extra figures in part ( a)).      
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 calculated in part (a) is  not large enough to prevent slipping for the  hollow ball.             c) There is no slipping at the point of contact.  
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  (b)

 With friction on both halves, all the  PE  gets converted  ba ck to  PE . With one smooth side, some of the  PE  remains as rotational  KE .      
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 EMBED Word.Document.8 \s [image: image36.emf]10.37:   The period of a second hand is one minute, so the angular momentum is    
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 EMBED Word.Document.8 \s [image: image37.emf]10.38:   The moment of inertia is proportional to the square of the radius, and so the  angular velocity will be proportional to the inverse of the square of the radius, and the  final angular velocity is    
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 EMBED Word.Document.8 \s [image: image38.emf]10.39:     a) The net force is due to the tension in the rope, which always acts in the radial  direction, so the angular momentum with respect to the hole is constant.             b) 
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 EMBED Word.Document.8 \s [image: image42.emf]10.43:       a) From conservation of angular momentum,  
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 In changing the parachutist’s horizontal  component of vel ocity and slowing down the turntable, friction does negative work.      
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 EMBED Word.Document.8 \s [image: image45.emf]10.46:       (a)    Conservation of angular momentum:    
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    (b)  There are no unbalanced torques about the pivot, so angular momentum is  conserved. But the pivot exerts an unbalanced horizontal external force on the system, so  the linear momentu m is not conserved.    
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 EMBED Word.Document.8 \s [image: image47.emf]10.48:      a) Since the gyroscope is precessing in a horizontal plane, there can be no net  vertical force on the gyroscope, so the force that the pivot exerts must be equal in  magnitude to the weight of the gyroscope, 
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 EMBED Word.Document.8 \s [image: image49.emf]10.50:   Using Eq. (10.36) for all parts,     a) halved     b) doubled (assuming that the  added weight is distributed in such a way that 

r

 and  I  are not changed)     c) halved  (assuming that 

w

 and 

r

 are not changed)     d)  doubled     e) unchanged.      



 EMBED Word.Document.8 \s [image: image50.emf]10.51:     a) Solving Eq. (10.36) for 

.   ) 5 / 2 (   ,

2

   

ω MR Iω τ τ

  Using 

s   86,400

rad   2

 





ω

 and 

s/y)   10 y)(3.175   000 , 26 (

2

7





 

and the mass and radius of the earth from Appendix F, 

m. N   10 5.4 ~

22

 

τ

     



 EMBED Word.Document.8 \s [image: image51.emf]10.52:      a) The net torque must be  

m. N   60 . 2

s)   00 . 9 (

rev/min

rad/s

60

2

rev/min    120

) m kg   86 . 1 (

2

 

















 





 

t

ω

I Iα τ

  This torque must be the sum of the applied force 

FR

 and the opposing frictional torques  

f

τ

 at the axle and 

nr μ fr

k



due to the knife. Combi ning,       

  )   (

1

k f

nr μ τ τ

R

F

  

       

 

N.   1 . 68

m)   N)(0.260    (0.60)(160 m) N   50 . 6 ( m) N   60 . 2 (

m   500 . 0

1



    

       b) To maintain a constant angular velocity, the net torque 

τ

 is zero, and the force 

  is   F



 

N.   62.9 m) N   24.96     m N   50 . 6 (

m   500 . 0

1

    



F

    c) The time  t  needed to come to a  stop is  found by taking the magnitudes in Eq. (10.27), with 

f

τ τ



 constant;      

 

 

 

s.   6 . 3

m N   6.50

m kg   86 . 1   rev/min   120

2

rev/min

rad/s

60

2

f f





 

  



τ

ωI

τ

L

t

    Note that this time can also be found as 

 

. s   00 . 9

m 6.50N

m N 60 . 2







t

     



 EMBED Word.Document.8 \s [image: image52.emf]10.53:     a) 

     

. m kg   955 . 0

rev/min

rad/s

30

  rev/min   100

s   0 . 2   m N   0 . 5

2

 













 



  

π

ω

t τ

α

τ

I
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 EMBED Word.Document.8 \s [image: image53.emf]10.54:     a) The moment of inertia is not given, so the angular acceleration must be found  from kinematics;                   

 

   

. s / rad    33 . 8

s   00 . 2   m   30 . 0

m   5.00 2 2 2

2

2

2 2

   

rt

s

t

θ

α

           b) 

 

 

rad/s.   67 . 16 s   00 . 2   rad/s   33 . 8

2

 

αt

           c) The work done by the rope on the flywheel will be the final k inetic energy;          

   

J.   200 m   0 . 5   N   0 . 40

   

Fs W K

       d)      

 

 

. m kg   44 . 1

rad/s   67 . 16

J   200 2 2

2

2 2

   



K

I

     



 EMBED Word.Document.8 \s [image: image54.emf]10.55:     a)

.

2



























  

I

t

τ t

I

τ

τ ταt τω P

           b) From the result of part (a), the power is 

 

 

kW.   50 . 4    W 500

2

0 . 20

0 . 60



           c) 

 

. / 2   / 2 2 τ

2 / 3

I θ τ θ I τ τ αθ τω P

   

          d) From the result of part (c), the power is 

 

 

kW.   6 . 2  W 500

2 / 3

00 . 20

00 . 6



    e) No; the  power is  propo rtional to the time  t  or proportional to the square root of the angle.      
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 This is greater than in part (b).      d) The greater the angular acceleration of the upper end of the cue, the faster you would  have to react to overcome deviations from the vertical.      
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    a)          



 

2

0

    cos



FR θ d θ FR W

  b)   In Eq. (6.14),  dl   is the horizontal  distance the point moves, and so 

, FR dl F W

 



  the same as part (a).     c) From 

. 4 , ) 4 (

2 2

2

MR F ω ω MR W K

  

     d) The  torque, and hence the angular acceleration, is greatest when 

0,

 

at which point 

MR F I τ α 2 ) (

 

, and s o the maximum tangential acceleration is 

. 2 M F

    e)  Using the value for 



 found in part   (c), 

. 4

2

rad

M F R ω a

 

     



 EMBED Word.Document.8 \s [image: image60.emf]10.61:    The tension in the rope must be 

N.   530 ) (

  a g m

 The angular acceleration of  the cylinder is 

, rad/s   2 . 3

2



R a

 and so the net torque on the cylinder must be 9.28 

m. N



 Thus, the torque supplied by the crank is 

m, N   141.8 m) N   (9.28     m)   N)(0.25   530 (

   

and the force applied to the crank handle is 

kN   2 . 1

m   0.12

m N   8 . 141





 to two figures.      



 EMBED Word.Document.8 \s [image: image61.emf]10.62:   At the point of contact, the wall exerts a friction force  f   directed downward and a  normal force  n  directed to the right. This is a situation where the net force on the roll is  zero, but the net torque is  not  zero ,  so balancing torques would not be  correct. Balancing  vertical forces, 

, cos

rod

F w f F

   

and balacing horizontal forces 

,  With  . sin

k rod

n μ f n θ F

 

 these equations become    

, cos

k rod

w F n μ θ F

  

 

  . sin

rod

n θ F



    (a)  Eliminating  n  and solving for 

rod

F

 gives                                

N.   266

30 sin ) 25 . 0 ( 30   cos

N)   0 . 40 ( ) m/s    (9.80   kg)   0 . 16 (

sin cos

2

k

rod



  











θ μ θ

F ω

F

                   b) With respect to the center of the roll, the rod and the normal force exert zero  torque. The magnitude of the net torque is 

n μ f R f F

k

     and   , ) (

 

 may be found  insertion of the value found  for 

rod

F

 into either of the above relations;  i.e., 

  N.   2 . 33 sin

rod k

 

θ F μ f

Then,                                   

. rad/s   71 . 4

) m kg   (0.260

m)   10 N)(18.0   54 . 31 N   0 . 40 (

2

2

2





 

 



I

τ

α

     



 EMBED Word.Document.8 \s [image: image62.emf]10.63:   The net torque on the pulley is  TR , where  T  is the tension in the string, and 

I TR   α



. The net force on the block down the ramp is 

. ) cos (sin

k

ma T β μ β mg

  

  The acceleration of the block and the angular acceleration of the pulley are  related by 

. αR α



       a) Multiplying the first of these relations by 

R I

  and eliminating 



 in terms of  a,  and  then adding to the second to eliminate  T  gives    

   

 

,

/ 1

  cos sin 

/

  cos sin 

2

k

2

k

mR I

β μ β g

R I m

β μ β

mg a













    and substituti on of numerical values given 1.12 

. m/s

2

  b) Substitution of this result into  either of the above expressions involving the tension gives  T  = 14.0 N.      



 EMBED Word.Document.8 \s [image: image63.emf]10.64:   For a tension  T  in the string, 

.   and  

R

a

I Iα TR ma T mg

     Eliminating  T  and  solving for  a  gives  

,

/ 1 /

2 2

mR I

g

R I m

m

g a









    where  m  is the mass of the hanging weight,  I  is the moment of inertia of the disk  combination 

 

9.89   Problem   from   m kg   10 25 . 2

2 3

  



I

 and  R  is the  radius of the disk to  which the string is attached.              a) With  m  = 1.50 kg, 

. m/s   88 . 2   m, 10 50 . 2

2 2

  



a R

             b) With  m  = 1.50 kg, 

. m/s   13 . 6   m, 10 00 . 5

2 2

  



a R

            The acceleration is larger in case  (b); with the string attached to the larger di sk, the  tension in the string is capable of applying a larger torque.      



 EMBED Word.Document.8 \s [image: image64.emf]10.65:   Taking the torque about the center of the roller, the net torque is 

, αI fR

  

2

  MR I



for a hollow cylinder, and with 

Ma f R a

 

  , /



(note that this is a relation  between magnitudes; the vectors 

 

a f   and  

 are in opposite directions). The net force is 

, Ma f F

 

 from which 

. F f M F a Ma F 2   and   2   so   and   2

  

     



 EMBED Word.Document.8 \s [image: image65.emf]10.66:   The accelerations of blocks  A  and  B  will have the same magnitude  a . Since the  cord does not slip, the angular acceleration of the pulley will be 

.

R

a

 

 Denoting the  tensions in the cord as 

,   and  

B A

T T

 the equations of m otion are    

,    

2

a

R

I

T T

a m g m T

a m T g m

B A

B B B

A A A

 

 

 

    where the last equation is obtained by dividing 

 

I



 by  R   and substituting for 



 in  terms of  a .           Adding the three equations eliminates both tensions, with the result that  

2

/ R I m m

m m

g a

B A

B A

 





  Then,  

.

/

   

R I R m R m

m m

g

R

a

B A

B A

 



  

  The tensions are then found from    

.

2

) (

2

) (

2

2

2

2

R I m m

R I m m m

g a g m T

R I m m

R I m m m

g a g m T

B A

B A B

B B

B A

A B A

A A

 



  

 



  

    As a check, it can be shown that 

. ) (



I R T T

B A

 

     



 EMBED Word.Document.8 \s [image: image66.emf]10.67:   For the disk, 

  10.6   Example   see ) 4 3 (

2

Mv K



. From the work - energy theorem, 

, sin  

1



MgL K



 from which    

m.   957 . 0

0 . 30 sin    ) s m   80 . 9 ( 4

) s m   50 . 2 ( 3

sin    4

3

2

2

2





 



g

v

L

    This same result may be obtained by an extension of the result of Exercise 10.26; for the  disk, the acceleration is 

, sin    ) 3 2 (



g

 leading to the same result.            b) Both the translational and rotational kinetic energy depend on the mass which  cancels the mass dependence of the gravitational potential energy. Also, the moment of  inertia is proportional to th e square of the radius, which cancels the inverse dependence  of the angular speed on the radius.      



 EMBED Word.Document.8 \s [image: image67.emf]10.68:   The tension is related to the acceleration of the yo - yo by 

, ) 2 ( ) 2 ( a m T g m

   and  to the angular acceleration by 

.

b

a

I I Tb

  

 Dividing the second equation by  b  and  adding to the first to eliminate  T  yields    

,

2

2

    ,

) ( 2

2

) 2 (

2

2 2 2

b R b

g α

b R

g

b I m

m

g a













    where 

2 2

2

1

2 mR mR I

 

 has been used for the moment of inertia of the yo - yo. The  tension is found by substitution into either of the two equations;  e.g.,    

.

) 1 ) ( 2 (

2

) ( 2

) (

2

) ( 2

2

1   ) 2 ( ) )( 2 (

2 2

2

2



























   

R b

mg

b R

b R

mg

b R

mg a g m T

     



 EMBED Word.Document.8 \s [image: image68.emf]10.69:      a) The distance the marble has fallen is 

. 2 ) 2 ( R r h r R h y

       The  radius of the path of the center of mass of the marble is 

, r R



 so the condition that the  ball stay on the track is 

). (

2

r R g v

 

 The speed is deter mined from the work - energy  theorem, 

. ) 2 1 ( ) 2 1 (

2 2



I mv mgy

 

 At this point, it is crucial to know that even for the  curved track, 

; r v

 

 this may be seen by considering the time  T  to move around the  circle of radius 

r R



  at constant speed  V  is obtained from 

, ) (   2 Vt r R

  

 during which  time the marble rotates by an angle 

 

,   1   2 T

r

R

   

 from which 

.   r V

 

 The work - energy theorem then states 

, ) 10 7 (

2

mv mgy



 and combining, canceling th e factors of  m   and  g  leads to 

, 2 ) )( 10 7 ( R r h r R

   

 and solving for  h  gives 

. ) 10 17 ( ) 10 27 ( r R h

 

  b) In the absence of friction, 

, ) 2 1 (

2

mv mgy



 and substitution  of the expressions for  y  and 

2

v

 in terms of the other parame ters gives 

, 2 ) )( 2 1 ( R r h r R

   

 which is solved for 

. ) 2 3 ( ) 2 5 ( r R h

 

   



 EMBED Word.Document.8 \s [image: image69.emf]10.70:  In the first case, 



F

 and the friction force act in opposite directions, and the  friction force causes a larger torque to tend to rotate the yo - yo to the right. The net force  to the right is the difference 

, f F



 so the net force is to the right while the net torque  causes a clockwise rotation. For the second case, both the torque and the friction force  tend to turn the yo - yo clockwise, and the yo - yo moves to the right. In the third case,  friction tends to move t he yo - yo to the right, and since the applied force is vertical, the  yo - yo moves to the right.          



 EMBED Word.Document.8 \s [image: image70.emf]10.71:     a) Because there is no vertical motion, the tension is just the weight of the hoop:  

   

N   76 . 1 kg N   8 . 9   kg   180 . 0

  

Mg T

  b) Use 

.   find    to

  

I



The torque is 

  , / /   so   ,

2

MR Mg MR T MR RT I RT α RT

   

      

 

 

2 2

rad/s   5 . 122 m   08 . 0 s m   8 . 9   so

   

R g

           c) 

2

s m   8 . 9

  

R a

       d )  T  would be unchanged because the mass  M  is the same, 

a   and  



would be twice as  great because  I  is now 

.

2

2

1

MR

     



 EMBED Word.Document.8 \s [image: image71.emf]10.72:    (a)

  R a I τ

   T

  and  

 

2

T

T

2 2

m/s   50

kg   4.00

N   200 2

2

1

2

1

  













 

M

P

a

R

a

MR MR PR



  Distance the cable moves: 

2

2

1

at x



 

 

 

 

s m   5 . 70 s   41 . 1   m/s   50 0

s.   41 . 1   m/s   50

2

1

m   50

2

0

2 2

    

  

at v v

t t

            (b)  For a hoop, 

,

2

MR I



which is twice as large as before, so 

T

  and    a



 would be  ha lf as large. Therefore the time would be longer. For the speed, 

, 2

2

0

2

ax v v

 

in which  x  is the same, so 

v

 would be smaller since  a  is smaller       



 EMBED Word.Document.8 \s [image: image72.emf]10.73:    Find the speed  v  the marble needs at the edge of the pit to make it to the level  ground on the other side. The marble must travel 36 m horizontally while falling  vertically 20 m.           Use the vertical motion to find the time. Take 

y



to be downward.           

m/s.   82 . 17   gives   Then 

s   02 . 2   gives  

?    m,   20   , m/s   80 . 9   , 0

0 0 0

2

2

1

0 0

0

2

0

  

   

    

x x

y y

y y

v t v x x

t t a t v y y

t y y a v

        Use conservation of energy,  where point 1 is at the starting point and point 2 is at the  edge of the pit, where 

m/s.   82 . 17



v

Take 

0



y

 at point 2, so 

.   and   0

1 2

h y y

 

       

2

2

1

2

2

1

2 2 1 1



I mv mgh

U K U K

 

  

        Rolling without slipping means 

2

5

1

2

2

1

2

5

2

    so    ,    . mv I mr I r v ω

   

        

m   23

) m/s   10(9.80

m/s)   82 . 17 ( 7

10

7

2

2

2

10

7

  



g

v

h

mv mgh

         b) 

,

2

5

1

2

2

1

mv I

 

 Independent of r.          c) All is the same, except there is no rotational kinetic energy  term in 

2

2

1

: mv K K



         

2

2

1

mv mgh



         

0.7   m,   16

2

2

 

g

v

h

times smaller than the answer in part ( a).      



 EMBED Word.Document.8 \s [image: image73.emf]10.74:   Break into 2 parts, the rough and smooth sections.         
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
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
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
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













 

  Smooth:  Rotational  KE  does not change.    

m/s   29.0

m)   25 )( m/s   80 . 9 ( 2 m)    25 )( m/s   80 . 9 (

7

10

2

7

10

2

1

7
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2

1

2

1

2

1

2 2

2 1 B

2

B 1 2
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2
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2

2



 

 

















   

gh gh v

v gh gh

KE mv KE mv mgh

     



 EMBED Word.Document.8 \s [image: image74.emf]10.75:      a) Use conservation of energy to find the speed 

2

v

 of the ball just before it  leaves the top of the cliff. Let point 1 be at the bottom of the hill and point 2 be at the top  of the hill. Take 

0



y

 at the b ottom of the hill, so 

m.   0 . 28 y   and   0

2 1

 

y

         

2

2

2

1

2

2

2

1

2

2

1

2

1

2

1

2

1

2 2 1 1

 

I mv mgy I mv

U K U K

   

  

         Rolling without slipping means 

 

2

5

1

2 2

5

2

2

1

2

2

1

) / (     and    mv r v mr I r v

    

        

s m   26 . 15

2

7

10

2

1 2

2

2

10

7

2

2

1

10

7

  

 

gy v v

mv mgy mv

         Consider the projectile motion of the ball, from just after it leaves the top of  the cliff  until just before it lands. Take 

y



 to be downward.      Use the vertical motion to find the time in the air:       

s   39 . 2   gives  

?    m,    0 . 28   , s m    80 . 9   , 0

2

2

1

0 0

0

2

0

   

    

t t a t v y y

t y y a v

y y

y y

      During this time the ball travels horizontally 

   

m.   5 . 36 s   39 . 2   s m   26 . 15

0 0

   

t v x x

x

      Just befo re it lands, 

s   3 . 15   and   s   4 . 23

0 0

    

x x y y y

v v t a v v s m    0 . 28

2 2

  

y x

v v v

           b) At the bottom of the hill, 

 

  . s m   0 . 25 r r v ω

 

The rotation rate doesn't change  while the ball is in the air, after it leaves the top of the cliff, so just before it lands 

. s)   3 . 15 ( r

 

 The total kinetic energy is the same at the bottom of the hill and just before  it lands, but just before it lands less of this energy is rotational kinetic energy, so the  translational kinetic energy is greater.      



 EMBED Word.Document.8 \s [image: image75.emf]10.76:   (a)

) 1 (

2

1

2

1

2 2



I mv mgh

 

                       













   

2

s

2

r spokes rim

3

1

6   R m R M I I I

  Uniform density means:  

.   and   2

s r

λR m πR λ m

 

 No slipping means that  

. R v ω



  Also, 

 

3 2 6 2

s r

     

π Rλ Rλ πRλ m m m

 substituting into (1) gives                     

      

 

 

 

 

 

   

s m   0 . 26   and

s rad   124

2 m   210 . 0

m   0 . 58 s m   80 . 9 3

2

3

 

3

1
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1
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 














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










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







    

Rω v

π

π

π R

gh π

ω

ω πRR πRλR Rω π Rλ gh π Rλ

    (b) Doubling the density would have no effect because it does not appear in the answer. 

,    

1

R

α ω

 so doubling the diameter would double the radius which would reduce 

but   half, by    ω

Rω v



would be u nchanged.      



 EMBED Word.Document.8 \s [image: image76.emf]10.77:     a) The front wheel is turning at 

s. rad   2 s rev   00 . 1

                    

s   07 . 2 ) s rad   2 )( m   330 . 0 (

   

rω υ

           b) 

s rev   503 . 0 s rad   16 . 3 m   655 . 0 ( ) s m   07 . 2 (

   

r v ω

           c) 

s rev   50 . 1   s rad   41 . 9 ) m   220 . 0 ( ) s m   07 . 2 (

   

r v ω

     



 EMBED Word.Document.8 \s [image: image77.emf]10.78:     a) The kinetic energy of the ball when it leaves the tract (when it is still rolling  without slipping) is 

  ) 10 7 (

2

mv

and this must be the work done by gravity, W =  mgh,  so 

. 7 10gh v



The ball is in t he air for a time 

. 7 20   so     , 2   hy vt x g y t

  

     b) The answer does not depend on  g , so the result should be the same on the moon.      c) The presence of rolling friction would decrease the distance.       d) For the dollar coin, modeled as a uniform disc, 

. 3 8   so   and   , ) 4 3 (

2

hy x mv K

 

     



 EMBED Word.Document.8 \s [image: image78.emf]10.79:     a) 

        

 

s. m 34 . 9    

kg   0590 . 0 7

m   15 . 0   m N   400   2 1   800 . 0 10

7

10

2

  

m

K

v

       b) Twice the speed found in part (a), 

s. m   7 . 18

    c) If the ball is rolling without  slipping, the speed of a point at the bottom of the ball is zero.    d) Rather than use the  intermediate calculation  of the speed, the fraction of the initial energy that was converted  to gravitational potential energy is 
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 and solving  for  h  gives 5.60 m.      



 EMBED Word.Document.8 \s [image: image79.emf]10.80:     a)               b)    R  is the radius of the wheel ( y  varies from 0 to 2 R ) and  T  is the period of the  wheel’s rotation.            c)   Differentiating,                                                       
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                            independent of tim e. This is the magnitude of the radial acceleration for a point moving  on a circle of radius  R  with constant angular velocity 
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 For motion that consists of this  circular motion superimposed on motion with constant velocity 
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 the acceleration  due to the circular motion will be the total acceleration.      



 EMBED Word.Document.8 \s [image: image80.emf]10.81:   For rolling without slipping, the kinetic energy is 
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 EMBED Word.Document.8 \s [image: image81.emf]10.82:   Differentiating , and obtaining the answer to part (b),    
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  in agr eement with Eq. (10.25); the total work done is the change in kinetic energy.      



 EMBED Word.Document.8 \s [image: image82.emf]10.83:   Doing this problem using kinematics involves four unknowns (six, counting the  two angular accelerations), while using energy considerations simplifies the calculations  greatly. If the block and the cylinder both have speed  v ,   the pulley has angular  velocity  v/R  and the cylinder has angular velocity  v/2R , the total kinetic energy is    

.

2

3

) (

2

) 2 (

2

) 2 (

2

1

2 2 2

2

2

2

2

Mv Mv R v

MR

R v

R M

Mv K















   

  This kinetic energy must be the work done by gravity; if the hanging mass descends a  distance  y , 
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 EMBED Word.Document.8 \s [image: image83.emf]10.84:  (a)  
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               (b) As the bridge lowers, 
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 EMBED Word.Document.8 \s [image: image84.emf]10.85:   The speed of the ball just before it hits the bar is 
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  Just after the collision the se cond ball has linear speed           
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for the height the second ball goes.      



 EMBED Word.Document.8 \s [image: image85.emf]10.86:     a) The rings and the rod exert forces on each other, but there is no net force or  torque on the system, and so the angular momentum will be constant. As the rings slide  toward the ends, the moment of inertia changes, and the final angular velocit y is given by  Eq.
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Note that conversion from rev/min to rad/s is not necessary.      b) The forces and torques that the rings and the rod exert on each other will vanish, but   the common angular velocity will be the same, 7.5 rev/min.      



 EMBED Word.Document.8 \s [image: image86.emf]10.87:  The intial angular momentum of the bullet is 
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 EMBED Word.Document.8 \s [image: image87.emf]10.88:    Assuming the blow to be concentrated at a point (or using a suitably chosen  “average” point) at a distance 
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 EMBED Word.Document.8 \s [image: image88.emf]10.89:     a) The initial angular momentum is 
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 EMBED Word.Document.8 \s [image: image89.emf]10.90:  Angular momentum is conserved, so 
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 EMBED Word.Document.8 \s [image: image90.emf]10.91:  The initial angular momentum is 
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 EMBED Word.Document.8 \s [image: image91.emf]10.92:   The tension is related to the block’s mass and speed, and the radius of the circle,  by
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    The radius at which the string breaks can be related to the initial angular momentum by  
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 EMBED Word.Document.8 \s [image: image92.emf]10.93:  The train’s speed relative to the earth is 
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,with the minus sign indicating that the turntable moves  clockwise, as expected.      



 EMBED Word.Document.8 \s [image: image93.emf]10.94:      a), g)            b) Using the vector product form for the angular momentum, 

so   ,   and  

2 1 2 1

r r v v

   

   

                 

,

1 1 2 2

v r v r

   

  

m m

  so the angular momenta are the same.  c) Let 

.

ˆ

j ω

 



Then,          

 

and   ,

ˆ ˆ

1 1

k i v x z r

     



 

                                        

 

 

 

 

.

ˆ ˆ ˆ

2 2

1 1 1

k j i v L xR y x xR mω r m

      







    With 

,

2 2 2

R y x

 

 the magnitude of 

,   and   , 2   is  

2 2

1

2

R m R m

   

ω L L



 

and so 

.   and   , cos

6 2

1

) )( 2 (

2

2 2



 



    

R m

R m

 This is true for 

2

L



as well, so the total angular  momentum makes an angle of 

6



 with the + y - axis.    d) From the intermediate  calculation of part (c), 

,

2

1

mvR R m L

y

  

  so the total  y - component of angular  momentum is 

y y

L mvR L   e)   . 2



is constant, so the net  y - component of torque is zero. f)  Each particle mo ves in a circle of radius  R  with speed  v , and so is subject to an inward  force of magnitude 

.

2

R mv

 The lever arm of this force is  R,  so the torque on each has  magnitude 

.

2

mv
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 EMBED Word.Document.8 \s [image: image94.emf]10.95:      a) The initial angular momentum with respect to the pivot is 
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 EMBED Word.Document.8 \s [image: image95.emf]10.96:  The initial angular momentum is 
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    where the minus sign indicates that the turntable has reversed its direction of motion  (i.e.,   the man had the larger magnitude of angular momentum initially).      



 EMBED Word.Document.8 \s [image: image96.emf]10.97:   From Eq. (10.36),            
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 EMBED Word.Document.8 \s [image: image97.emf]10.98:  The velocity of the center of mass will change by 
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 EMBED Word.Document.8 \s [image: image98.emf]10.99:   In Fig. (10.34(a)), if the vector 
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 EMBED Word.Document.8 \s [image: image99.emf]10.100:     a)                   The distance from the center of the ball to the midpoint of the line joining the  points where the ball is in contact with the rails is 
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  which is the same as the work found in part  (b).    


