



 EMBED Word.Document.8 \s [image: image1.emf]11.2:       The calculation of Exercise 11.1 becomes  
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  This result is smaller than the one obtained in Exercise 11.1.      



 EMBED Word.Document.8 \s [image: image2.emf]11.3:       In the notation of Example 11.1, take the origin to be the point

, S

 and let the  child’s distance from this point be

. x

 Then,  
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  which is 

, 2 ) 2 2 ( D L



halfway between the poin t 

S

and the end of the plank.      



 EMBED Word.Document.8 \s [image: image3.emf]11.4:       a) The force is applied at the center of mass, so the applied force must have the  same magnitude as the weight of the door, or 

N.   300

 In this case, the hinge exerts no  force.          b) With respect to the hinge, the moment arm o f the applied force is twice the  distance to the center of mass, so the force has half the magnitude of the weight, or 

N   150

. The hinge supplies an upward force of 

N.   150 N   150 N   300

 

     



 EMBED Word.Document.8 \s [image: image4.emf]11.5:       

kN, 45 . 5   so   ), m 0 . 10 )( N 2800 ( 40   sin ) m 0 . 8 (

   F F

keeping an extra figure.      



 EMBED Word.Document.8 \s [image: image5.emf]11.6:       The other person lifts with a force of 

N. 100 N 60 N 160

   Taking torques  about the point where the 

N   - 60

force is applied,  
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 EMBED Word.Document.8 \s [image: image6.emf]11.7:       If the board is taken to be massless, the weight of the motor is the sum of the  applied forces, 

N.   1000

 The motor is a distance

m 200 . 1

) N 1000 (

) N 600 )( m 00 . 2 (



from the end where  the 400 - N force is applied.      



 EMBED Word.Document.8 \s [image: image7.emf]11.8:       The weight of the motor is 

N. 800 N 200 N 600 N 400

    Of the myriad ways  to do this problem, a sneaky way is to say that the lifters each exert 

N   100

to the lift the  board, leaving 

N   500

and 

N   300

to the lift the motor. Then, the distance of the motor  from the end where the 600 - N force is applied is 

m 75 . 0

) N 800 (

) N 300 )( m 00 . 2 (



.The center of  gravity is located at 

m 80 . 0

) N 1000 (

) m 75 . 0 )( N 800 ( ) m 0 . 1 )( N 200 (





from the end where the 

N   600

 force  is applied.      



 EMBED Word.Document.8 \s [image: image8.emf]11.9:       The torque due to 

,   cot   is   h θ h T T

D

Lw

x x

   and the torque due to 

Lw D T T

y y



  is  

.  The sum of these torques is 

). cot 1 ( θ Lw

D

h



From Figure (11.9(b)), 

, tan θ D h



so the net  torque due to the tension in the tendon is zero.      



 EMBED Word.Document.8 \s [image: image9.emf]11.10:      a) Since the wall is frictionless, the only vertical forces are the weights of the  man and the ladder, and the normal force. For the vertical forces to balance, 

N, 900 N 740 N 160

m 1 2

    

w w n

 and the maximum frictional forces is 

N 360 ) N 900 )( 40 . 0 (

2 s

 

n μ

(see Figure 11.7(b)). b) Note that the ladder makes contact  with the wall at a height of 4.0 m above the ground. Balancing torques about the point of  contact with the ground,    

m, N 684 ) N 740 ))( 5 3 )( m 0 . 1 ( ) N 160 )( m 5 . 1 ( ) m 0 . 4 (

1

   

n

    so 

N, 0 . 171

1



n

 keeping extra figures. This  horizontal force about must be balanced by  the frictional force, which must then be 170 N to two figures. c) Setting the frictional  force, and hence 

1

n

, equal to the maximum of 360 N and solving for the distance  x  along  the ladder,  

), N 740 )( 5 3 ( ) N 160 )( m 50 . 1 ( ) N 360 )( m 0 . 4 ( x

 

  so  x  = 2.70 m, or 2.7 m to two figures.      



 EMBED Word.Document.8 \s [image: image10.emf]11.11:      Take torques about the left end of the board in Figure (11.21). a) The force  F  at  the support point is found from 

N. 1920 or    ), m 00 . 3 )( N 500 ( ) m 50 . 1 )( N 280 ( ) m 00 . 1 (

   

F F

b) The net force must be  zero, so the force at the left end is 

N, 1140 ) N 280 ( ) N 500 ( ) N 1920 (

  

 downward.      



 EMBED Word.Document.8 \s [image: image11.emf]11.12:      a)                   b) 

, 0  when  m   25 . 6

 

A

F x

which is 1.25 m beyond point B. c) Take torques about  the right end. When the beam is just balanced, 

N. 900   so   , 0

 

B A

F F

The distance that  point  B  must be from the right end is then 

m. 50 . 1

) N 900 (

) m 50 . 4 )( N 300 ( 

     



 EMBED Word.Document.8 \s [image: image12.emf]11.13:      In both cases, the tension in the vertical cable is the weight 

. ω

 a) Denote the  length of the horizontal part of the cable by 

. L

 Taking torques about the pivot point, 

), 2 ( 0 30 tan   L w wL . TL

  

from which 

. 60 . 2 w T



 The pivot exerts an upward vertical  force of 

w 2

 and a horizontal force of 

w 60 . 2

, so the magnitude of this force is 

w 28 . 3

,  directed 



6 . 37

 from the horizontal. b ) Denote the length of the strut by 

L

, and note that  the angle between the diagonal part of the cable and the strut is 

. 0 . 15



 Taking torques  about the pivot point, 

. 10 . 4   so   , 45 sin    ) 2 ( 45.0 sin    15.0 sin    w T L w wL TL

     

 The  horizontal force exerted  by the pivot on the strut is then 

ω T 55 . 3 30.0   cos  

 

 and the  vertical force is 

, 05 . 4 30 sin    ) 2 ( w T w

  

 for a magnitude of 

, 38 . 5 w

 directed 

. 8 . 48



     



 EMBED Word.Document.8 \s [image: image13.emf]11.14:      a) Taking torques about the pivot, and using the 3 - 4 - 5 geometry,    

), N 150 )( m 00 . 2 ( ) N 300 )( m 00 . 4 ( ) 5 3 ( ) m 00 . 4 (

 

T

    so 

N.   625



T

 b) The horizontal force must balance the horizontal component of the  force exerted by the rope, or 

N.   500 ) 5 4 (



T

 The  vertical force is 

N, 75 ) 5 3 ( N 150 N 300

  

T

 upwards.      



 EMBED Word.Document.8 \s [image: image14.emf]11.15:      To find the horizontal force that one hinge exerts, take the torques about the  other hinge; then, the vertical forces that the hinges exert have no torque. The horizontal  force is found from 

N. 140  which  from   ), m 50 . 0 )( N 280 ( ) m 00 . 1 (

H H

 

F F

 The top hinge  exerts a force a way from the door, and the bottom hinge exerts a force toward the door.  Note that the magnitudes of the forces must be the same, since they are the only  horizontal forces.      



 EMBED Word.Document.8 \s [image: image15.emf]11.16:      (a) Free body diagram of wheelbarrow:        
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             (b) From the ground.      



 EMBED Word.Document.8 \s [image: image16.emf]11.17:      Consider the forces on Clea.                       
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 EMBED Word.Document.8 \s [image: image17.emf]11.18:      a) Denote the length of the boom by  L , and take torques about the pivot point.  The tension in the guy wire is found from    

, 0 . 60   cos   ) 35 . 0 N)( 2600 (   0 . 60   cos     N) 5000 (   60 sin  

    

L L TL

    so 

kN.   14 . 3



T

 The vertical force exerted on the boom by the pivot is the sum of the  w eights, 7.06 kN and the horizontal force is the tension, 3.14 kN. b) No;
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 EMBED Word.Document.8 \s [image: image18.emf]11.19:      To find the tension 

 

L

T

in the left rope, take torques about the point where the  rope at the right is connected to the bar. Then, 

N. 270   so   m), N)(0.50 90 (   m) N)(1.50 240 (   150 sin   m) 00 . 3 (  

L L

   

T T

 The vertical  component of the force that the rope at the end exerts must  be 

N, 195 150 sin    N) 270 (   N) 330 (

  

 and the horizontal component of the force is 

, 150   cos   N) 270 (

 

so the tension is the rope at the right is 

N. 304

R



T

. 9 . 39   and
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 EMBED Word.Document.8 \s [image: image19.emf]11.20:      The cable is given as perpendicular to the beam, so the tension is found by  taking torques about the pivot point; 

kN. 40 . 7 or    , 0 . 25   cos    m) 50 . 4 kN)( 00 . 5 ( 0 . 25   cos   m) 00 . 2 kN)( 00 . 1 ( m) 00 . 3 (

    

T T

  The vertical component of the force exerted on the beam by the pivot is the net weight  minus the upward com ponent of 

kN. 17 . 0 0 . 25   cos   kN 00 . 6   ,

  

T T

 The horizontal force  is 

kN.   13 . 3 0 . 25 sin   
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T

     



 EMBED Word.Document.8 \s [image: image20.emf]11.21:     a)  
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  of   magnitude m. 80 . 0   so   N.m, 40 . 6
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l

  b) The net torque is clockwise, either by  considering the figure or noting the torque found in part (a) was negative. c) About the  point of contac t of

,

2

F

the torque due to 

,   is  

1

1

l F



F

 and setting the magnitude of this  torque to 

m,   80 . 0   gives   m N   40 . 6

 

l

 and the direction is again clockwise.      



 EMBED Word.Document.8 \s [image: image21.emf]11.22:      From Eq. (11.10),  

). m 1333 (

) m 10 0 . 50 m)( 10 0 . 3 (

m) 200 . 0 (

2

2 4 2

0



 



 







F F

lΑ

l

F Y

  Then, 
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 corresponds to a Young’s modulus of 

N   500   and   Pa,   10 3 . 3
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  corresponds to a Young’s modulus of 
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 EMBED Word.Document.8 \s [image: image22.emf]11.23:                
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or 1.4 mm to two figures.      



 EMBED Word.Document.8 \s [image: image23.emf]11.24:      a) The strain, from Eq. (11.12), is 
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For steel, using  Y  from Table (11.1)   and 
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    Similarly, the strain for copper 
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b) Steel: 
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 EMBED Word.Document.8 \s [image: image24.emf]11.25:      From Eq. (11.10),  
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 EMBED Word.Document.8 \s [image: image25.emf]11.26:      From Eq. (11.10),  
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 EMBED Word.Document.8 \s [image: image26.emf]11.27:      a) The top wire is subject to a tension of 
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and  hence a tensile strain of 
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to two figures. The  bottom wire is subject to a tension of 98.0 N, and a tensile strain of 
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 EMBED Word.Document.8 \s [image: image27.emf]11.28:     a) 
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 EMBED Word.Document.8 \s [image: image28.emf]11.29:      
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 EMBED Word.Document.8 \s [image: image29.emf]11.30:      a) The volume would increase slightly. b) The volume change would be twice  as great. c) The volume is inversely proportional to the bulk modulus for a given pressure  change, so the volume change of the lead ingot would be four times that of the  gold.      



 EMBED Word.Document.8 \s [image: image30.emf]11.31:      a) 
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 EMBED Word.Document.8 \s [image: image31.emf]11.32:      a) Solving Eq. (11.14) for the volume change,                 
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    b) The mass of this amount of water not changed, but its volume has decreased to 

, m 947 . 0 m 053 . 0 m 000 . 1
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 and the density is now 
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 EMBED Word.Document.8 \s [image: image32.emf]11.33:   
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 EMBED Word.Document.8 \s [image: image33.emf]11.34:      a) Using Equation 
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             b) Using Equation 
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 EMBED Word.Document.8 \s [image: image34.emf]11.35:      The area  A  in Eq.

) 17 . 11 (

 has increased by a factor of 9, so the shear strain for  the larger object would be 

9 1

 that of the smaller.      



 EMBED Word.Document.8 \s [image: image35.emf]11.36:      Each rivet bears one - quarter of the force, so       Shear stress 
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 EMBED Word.Document.8 \s [image: image36.emf]11.37:     
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 to two figures.      



 EMBED Word.Document.8 \s [image: image37.emf]11.38:      a) 
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 b) If this were the case,  the wire would stretch 6.4 mm.               c) 
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 EMBED Word.Document.8 \s [image: image38.emf]11.39:      
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 EMBED Word.Document.8 \s [image: image39.emf]11.40:     
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 EMBED Word.Document.8 \s [image: image40.emf]11.41:      a) Take torques about the rear wheel, so that 

fd x ωx f ω

 

cm cm

or    , d

.        b) 

m 30 . 1 ) m 46 . 2 )( 53 . 0 (



 to three figures.      



 EMBED Word.Document.8 \s [image: image41.emf]11.42:      If Lancelot were at the end of the bridge, the tension in the cable would be  (from taking torques about the hinge of the bridge) obtained from     so 

N. 6860



T

 This exceeds the maximum tension that the cable can have, so Lancelot is  going into the drink. To find the distance  x  Lancelot can ride, replace the 12.0 m  multiplying Lancelot’s weight by  x  and the tension  

N 10 80 . 5 by   
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max

 

T T

 and solve  for  x ;                       
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 EMBED Word.Document.8 \s [image: image42.emf]11.43:      For the airplane to remain in level flight, both 

0   and   0

     F

.                   Taking the clockwise direction as positive, and taking torques about the center of mass,     Forces:

0

wing tail

   

F W F

    Torques: 

0 ) m 3 (. ) m 66 . 3 (

wing tail

  

F F

    A  shortcut method is to write a second torque equation for torques about the tail, and  solve for the

. 0 ) m 36 . 3 ( ) N 6700 )( m 66 . 3 ( :

wing wing
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F F

 This gives 

. N(down) 600 N 7300 N 6700   and   ), up ( N 7300

tail wing

    

F F

      Note that the rear stabilizer provides a  downward  force, does not hold up the tail of the  aircra ft, but serves to counter the torque produced by the wing. Thus balance, along with  weight, is a crucial factor in airplane loading.      



 EMBED Word.Document.8 \s [image: image43.emf]11.44:      The simplest way to do this is to consider the  changes   in the forces due to the  extra weight of the box. Taking torques about the rear axle, the force on the front wheels  is decreased by 

N, 1200 N 3600

m 3.00

m 1.00



  so the net force on the front whee ls  is

N 10 9.58 N 1200 N   10,780

3
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to three figures. The weight added to the rear wheels  is then 

N, 4800 N 1200   N 3600

 

 so the net force on the rear wheels is 

N, 10 36 . 1 N 4800 N 8820
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 again to three figures.           b) Now we want a shift of 

N 10,780

 away from the front axle. Therefore, 

N 780 , 10

m 00 . 3

m 00 . 1



W

 and so 

N. 340 , 32
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w

     



 EMBED Word.Document.8 \s [image: image44.emf]11.45:      Take torques about the pivot point, which is 2.20 m from Karen and 1.65 m  from Elwood. Then 

), m 20 . 0 )( N 240 ( ) m 20 . 2 )( N 420 ( ) m 65 . 1 (

Elwood

 

w

so Elwood  weighs 589 N. b) Equilibrium is neutral.      



 EMBED Word.Document.8 \s [image: image45.emf]11.46:      a) Denote the weight per unit length  as

.   and   ), cm 0 . 8 ( ), cm 0 . 10 (   so   ,

3 2 1

αl w α w α w α

  

  The center of gravity is a distance 

cm

x

to the right of point  O  where    

3 2 1

3 2 1

cm

) 2 cm 0 . 10 ( ) cm 5 . 9 ( ) cm 0 . 5 (

w w w

l w w w

x

 

  



     

.

) cm 0 . 8 ( ) cm 0 . 10 (

) 2 cm 0 . 10 ( ) cm 5 . 9 )( cm 0 . 8 ( ) cm 0 . 5 )( cm 0 . 10 (

l

l l

 

  



    Setting  

0

cm



x

 gives a quadratic in 

, l

 which has as its positive root 

cm. 8 . 28



l

           b) Changing the material from steel to copper would have no effect on the length 

l

  since the weight of each pi ece would change by the same amount.         



 EMBED Word.Document.8 \s [image: image46.emf]11.47:      Let 

R r r

    



i i

,where 

R

  is the vector from the point  O  to the point  P .   The torque for each force with respect to point  P  is then 

i i i

F r

















, and so the net torque  is    

 

i i i

τ F R r

 





  

 

 

           

 

 

   

   

.  

   

i i i

i i

F R F r

F R F r

i

  



  



  In the last expression, the first term is the sum of the torques about point  O , and the  second term is given to be zero, so the net torques are the same.      



 EMBED Word.Document.8 \s [image: image47.emf]11.48:      From the figure (and from common sense), the force 

1

F

  is directed along the  length of the nail, and so has a moment arm of (0.0800 m) 



60 sin

. The moment arm of 

2

F



 is 0.300 m, so    

N. 116 ) 231 . 0 N)( 500 (

m) 300 . 0 (

60 sin     m) 0800 . 0 (

1 2

 





F F

     



 EMBED Word.Document.8 \s [image: image48.emf]11.49:      The horizontal component of the force exerted on the bar by the hinge must  balance the applied force 

F



, and so has magnitude 120.0 N and is to the left. Taking  torques about point 

  m), 00 . 3 (   m) 00 . 4 N)( 0 . 120 ( ,

V

F A



so the vertical comp onent is 

N 160



, with the minus sign indicating a downward component, exerting a torque in a  direction opposite that of the horizontal component. The force exerted by the bar on the  hinge is equal in magnitude and opposite in direction to  the force exerted by the hinge on  the bar.      



 EMBED Word.Document.8 \s [image: image49.emf]11.50:      a) The tension in the string is 

N, 50

2

 w

and the horizontal force on the bar  must balance the horizontal component of the force that the string exerts on the bar, and  is equal to 

N, 30   37 sin    N) 50 (

 

 to the left in the figure. T he vertical force must be  

N. 58 N) 50 ( N) 30 (   c)   . 59

N 30

N 50

arctan    b)   up.    N, 50 N 10 37   cos   N) 50 (

2 2

   

















  

           d) Taking torques about (and measuring the distance from) the left end, 

) m 0 . 5 )( N 40 ( ) N 50 (



x

, so 

m 0 . 4



x

, where only the vertical components of the  forces exert torques.      



 EMBED Word.Document.8 \s [image: image50.emf]11.51:      a) Take torques about her hind feet. Her fore feet are 0.72 m from her hind feet,  and so her fore feet together exert a force of 

N, 9 . 73

m)   72 . 0 (

m) 28 . 0 (   N) 190 (



 so each foot exerts a  force of 36.9 N, keeping an extra figure. Each hind foot then exerts a  force of 58.1 N.    b) Again taking torques about the hind feet, the force exerted by the fore feet is 

N, 1 . 105

m   72 . 0

m) 09 . 0 (   N) 25 ( m)   28 . 0 (   N)   190 (





 so each fore foot exerts a force of 52.6 N and each hind  foot exerts a force of 54.9 N.      



 EMBED Word.Document.8 \s [image: image51.emf]11.52:      a) Finding torques about the hinge, and using  L  as the length of the bridge and 

    and  

B T

w w

for the weights of the truck and the raised section of the bridge,    

   

    

30   cos   L 30   cos   70 sin 

2

1

B

4

3

T

w L w TL 

,  so      

 

N. 10 57 . 2

70   sin

30   cos ) s m   80 . 9 (

5

2

B

2

1

T

4

3

 



 



m m

T

    b) Horizontal: 

 

N. 10 97 1 30 70 cos  

5

    

. T

Vertical:

  

40 sin   

B T

T w w

   

N. 10 2.46

  5

 

     



 EMBED Word.Document.8 \s [image: image52.emf]11.53:      a) Take the torque exerted by 

2

F

  to be positive; the net torque is then 

, sin   sin ) ( sin  ) (

2 1

  

Fl l x F x F

   

 where 

F

is the common magnitude of the forces.  b) 

m, N 3 . 25 37   sin ) m 0 . 3 )( N 0 . 14 (

1

      

 keeping an extra figure, and       

m, N 9 . 37 37   sin ) m 5 . 4 )( N 0 . 14 (

2

    

 and the net torque is 

m. N 6 . 12



 About point 

P,

m, N 3 . 25 ) 37   )(sin m 0 . 3 )( N 0 . 14 (

1

    

 and        

m, N 6 . 12 ) 37   )(sin m 5 . 1 )( N 0 . 14 (

2

      

 and the net torque is 

m. N 6 . 12



The  result of part (a) predicts 

, 37   sin ) m 5 . 1 )( N 0 . 14 (



 the same result.      



 EMBED Word.Document.8 \s [image: image53.emf]11.54:      a) Take torques about the pivot. The force that the ground exerts on the ladder is  given to be vertical, and

θ θ F sin ) m 0 . 4 )( N 250 ( sin ) m 0 . 6 (

V



  

N. 354   so   , sin ) m 50 . 1 )( N 750 (

V

 

F θ

 b) There are no other horizontal forces on the  ladder, so the horizontal pivot force is  zero. The vertical force that the pivot exerts on the  ladder must be

N, 646 ) N 354 ( ) N 250 ( ) N 750 (

  

up, so the ladder exerts a downward  force of 

N   646

 on the pivot. c) The results in parts (a) and (b) are independent of 

θ.

     



 EMBED Word.Document.8 \s [image: image54.emf]11.55:      a) 

.   and    T H w mg V

   To find the tension, take torques about the pivot  point. Then, denoting the length of the strut by 

, L

 

. cot

4

or   , cos

6

cos

3

2

sin

3

2

θ

mg

w T

θ

L

mg θ L w θ L T













 









































               b) Solving the above for 

w

, and using t he maximum tension for 

, T

 

N. 951 ) s m   80 . 9 ( ) kg 0 . 5 ( 0 55 tan ) N 700 (

4

tan  

2

     

.

mg

θ T w

             c) Solving the expression obtained in part (a) for 



tan 

and letting 

. 00 4   so   , 700 . 0 tan   , 0

4

    

. θ θ ω

T

mg

     



 EMBED Word.Document.8 \s [image: image55.emf]11.56:      (a) and (b)     Lower rod:                  

) cm 0 . 8 ( ) cm 0 . 4 )( N 0 . 6 ( : 0

p

A

  

                                                                        

N 0 . 3



A

              

N   9.0 N 3.0 N 0 . 6 N 0 . 6 : 0

3

      

A T F

    Middle rod :    

) cm 0 . 5 )( N 0 . 9 ( ) cm 0 . 3 ( : 0

p

  

B



             

N 15



B

        

N 24 N 9.0 N 15 : 0

3 2

      

T B T F

              Upper rod :          

) cm 0 . 6 ( ) cm 0 . 2 )( N 24 ( : 0

p

C

   

 

N 0 . 8



C

          

N 32 N 8.0 N 24 : 0

2 1

      

C T T F

 



 EMBED Word.Document.8 \s [image: image56.emf]11.57:        

hinge at    axis   , 0

  

 

0 ) 30 )(cos m 75 . 3 ( ) 40 )(sin m 0 . 6 (

   

w T

            

N 760  



T

   



 EMBED Word.Document.8 \s [image: image57.emf]11.58:      (a)                                    

0

Hinge

 

                

N 000 , 120                        

37   cos ) m 0 . 7 )( N 45,000 ( 37 m)sin  5 . 3 (



  

T

T

             (b) 

N   000 , 120   : 0

   

T H F

x

                   

N    45,000   : 0

  

V F

x

              The resultant force exerted by the  hinge has magnitude 

N   10 28 . 1

5



 and direction 



6 . 20

 above the horizontal.      



 EMBED Word.Document.8 \s [image: image58.emf]11.59:               a) 

, 0

 

 axis at lower end of beam            Let the length of the beam be  L .             

N   2700

20   sin

40   cos  

0 40   cos

2

) 20   (sin

2

1









 













  

mg

T

L

mg L T

             b) Take + y  upward.             

N   1372 60 cos     gives   0

N   6 . 73   so   0 60 sin      gives   0

s x

    

      

T f F

n T w n F

y

         

19

N   73.6

N   1372

, s

s s s

   

n

f

μ n μ f

            The flo or must be very rough for the beam not to slip.      



 EMBED Word.Document.8 \s [image: image59.emf]11.60:      a) The center of mass of the beam is 1.0 m from the suspension point. Taking  torques about the suspension point,    

) m 00 . 2 )( N   100 ( ) m 00 . 1 )( N   0 . 140 ( ) m 00 . 4 (

 

w

    (note that the common factor of sin 



30

 has been factored out),  from which 

N.   0 . 15



w

             b) In this case, a common factor of sin 



45

 would be factored out, and the result  would be the same.    



 EMBED Word.Document.8 \s [image: image60.emf]11.61:      a) Taking torques about the hinged end of  the pole   

0 ) m 00 . 5 ( ) m 00 . 5 ( ) N 600 ( ) m 50 . 2 )( N 200 (

   

y

T

. Therefore the  y - component of    the tension is 

N 700



y

T

. The  x - component of the tension is then 

N 714 ) N 700 ( ) N 1000 (

2 2

  

x

T

. The height above the pole that th e wire must be  attached is 

m 90 . 4 ) m 00 . 5 (

714

700



. b) The  y - component of the tension remains 700 N and  the  x - component becomes 

N   795 ) N 714 (

m 40 . 4

m 90 . 4



, leading to a total tension of 

N,   1059 N)   700 (   N)   795 (  

2 2

 

 an increase of 59 N.      



 EMBED Word.Document.8 \s [image: image61.emf]11.62:       A  and  B  are straightforward, the tensions being the weights suspended; 

N.   588 . 0 ) s m 80 . 9 )( kg 0360 . 0 kg 0240 . 0 (   N,   353 . 0 ) s m 80 . 9 )( kg 0360 . 0 (

2 2

A

    

B

T Τ

To find 

,   and  

D C

T T

a trick making use of the right angle where the strings join is available;  use a coordinate system with axes parallel to  the strings. Then, 

N,   353 . 0 53.1   cos     N,   470 . 0 36.9   cos  

     

B D B C

T T T T

 To find 

,

E

T

 take torques about  the point where string  F  is attached;  

m, N 0.833                      

m) 500 0 )( s m 80 9 kg)( 120 0 (

) m 200 . 0 ( 53.1 sin    ) m 800 . 0 ( 36.9 sin    ) m 000 . 1 (

2

 



   

. . .

T T T

C D E

  so 

F E

T T   N.   833 . 0



 may be found similarly, or from the fact that 

F E

T T



mus t be the  total weight of  the ornament. 

N.   931 . 0  which  from   N,   76 . 1 ) s m 80 . 9 )( kg 180 . 0 (

2

 

F

T

     



 EMBED Word.Document.8 \s [image: image62.emf]11.63:      a) The force will be vertical, and must support the weight of the sign, and is 300  N. Similarly, the torque must be that which balances the torque due to the sign’s weight  about the pivot, 

m N 225 ) m 75 . 0 )( N 300 (

 

. b) The torque due to the wire m ust balance  the torque due to the weight, again taking torques about the pivot. The minimum tension  occurs when the wire is perpendicular to the lever arm, from one corner of the sign to the  other. Thus, 

N.   132 or    m, N   225 ) m 80 . 0 ( ) m 50 . 1 (

2 2

   

T T

The angle that the wire  makes  with the horizontal is 

. 0 . 62 ) ( arctan  90

1.50

0.80

   

Thus, the vertical component of  the force that the pivot exerts is (300 N)  – (132 N) sin 

N   183 0 . 62

 

and the horizontal  force is 

  N 62 0 62 cos ) N 132 (

 

.

, for a magnitude of 193 N and an angle of 



71

 above  the horizontal.      



 EMBED Word.Document.8 \s [image: image63.emf]11.64:      a) 

m. 3 . 1 ) m 10 30 . 0 ( 4 ) 10 0 . 9 )( 23 . 0 ( ) (  

2 4 4

0

μ w l l σ w

         

 

             b)                       

N,   10 1 . 3

m 10 0 . 2

m 10 10 . 0
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  2
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






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

π
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w

σ
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    where the Young’s modulus for nickel has been used.      



 EMBED Word.Document.8 \s [image: image64.emf]11.65:      a) The tension in the horizontal part of the wire will be 240 N. Taking torques  about the center of the disk, 

  N.   60 or w   , 0 m)) 00 . 1 (   m) 250 . 0 N)(   240 (

  

w

                  b) Balancing torques about the center of the disk in this case, 

    

1 . 53   so , 0   cos   m)) N)(2.00   20 ( m) 00 . 1 N)(   60 (( m) 250 . 0 (   N)   240 ( θ θ

.      



 EMBED Word.Document.8 \s [image: image65.emf]11.66:      a) Taking torques about the right end of the stick, the friction force is half the  weight of the stick,

 

2

w

f

 Taking torques about the point where the cord is attached to  the wall (the tension in the cord and the friction force  exert no torque about this  point),and noting that the moment arm of the normal force is 

. 22   ) 40 . 0 ( arctan      so   0.40,   tan Then,   tan , tan

2

          

  n l

n

f

w

             b) Taking torques as in part (a), and denoting the length of the meter stick as 

, l

 

.

2

 tan  n   and   ) (

2

wx

l

w θ l x l w

l

w fl

    

  In ter ms of the coefficient of friction 

,

s



 

. tan

2

2 3

tan

) (

2

2

s

θ

x l

x l

θ

x

x l

n

f

l

l









 

  

  Solving for  x ,  

cm. 2 30

tan

tan 3  

2

s

s .

θ μ

μ θ l

x









           c) In the above expression, setting 

gives   for    solving   and   cm   10

s

 

x

 

. 625 . 0

20 1

tan ) 20 3 (

s









l

θ l

μ

     



 EMBED Word.Document.8 \s [image: image66.emf]11.67:      Consider torques around the point where the person on the bottom is lifting. The  center of mass is displaced horizontally by a distance 

 

45 sin    m) 25 . 0 m 625 . 0 (

 and the  horizontal distance to the point where the upper person is lifting is 



45 sin    m) 25 . 1 (

, and  so the upper lifts with a force of 

N.   588 ) 300 . 0 (

45 sin 25 . 1

45 sin 375 . 0

 





w w

 The person on the  bottom lifts with a force that is the difference between this force and the weight, 1.37 kN.  The person above is lifting less.                                                          



 EMBED Word.Document.8 \s [image: image67.emf]11.68:               (a)                             

N   2 . 59

) cm 0 . 15 )( N   0 . 15 ( ) cm 80 . 3 (

0

B
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
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F
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               (b)                                         

N   754

) cm 0 . 33 )( N   0 . 80 ( ) cm 0 . 15 )( N   0 . 15 ( ) cm 80 . 3 (
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B
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
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 EMBED Word.Document.8 \s [image: image68.emf]11.69:      a) The force diagram is given in Fig. 11.9.              
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           c)   The result of part (b) shows that 

max

w

increases when  D  increases.      



 EMBED Word.Document.8 \s [image: image69.emf]11.70:                  By symmetry,  A=B  and  C=D.  Redraw the table as viewed from the  AC  side.    

   
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           By Newton’s third law of motion, the forces  A, B, C,  and  D   on the table are the  same as the forces the table exerts on the floor.      



 EMBED Word.Document.8 \s [image: image70.emf]11.71:      a) Consider the forces on the roof                V  and  H   are the vertical and horizontal forces each wall exerts on the roof.           
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           By Newton’s 3rd law, the roof ex erts a horizontal, outward force on the  wall. For torque about an axis at the lower end of the wall, at the ground, this  force has a larger moment arm and hence larger torque the taller the walls.   b)           Consider the torques   on one of the walls.  



 EMBED Word.Document.8 \s [image: image71.emf]11.72:      a) Take torques about the upper corner of the curb. The force 

F



acts at a  perpendicular distance 

h R



 and the weight acts at a perpendicular distance 

 

. 2

2

2

2

h Rh h R R
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Setting the torques equal for  the minimum necessary force,  

.

2

2

h R

h Rh

mg F







           b) The torque due to gravity is the same, but the force

F



acts at a perpendicular  distance 

, 2 h R



so the minimum force is 

hv Rh mg



2 ) (

/2 R – h . c) Les s force is  required when the force is applied at the top of the wheel.      



 EMBED Word.Document.8 \s [image: image72.emf]11.73:      a) There are several ways to find the tension. Taking torques about point  B  (the  force of the hinge at  A  is given as being vertical, and exerts no torque about  B ), the  tension acts at distance

2 2

) m 00 . 2 ( ) m 00 . 4 (

 

r 47 . 4



m and a t an angle of 

. 6 . 56

4.00

2.00

arctan  30

 













   

 Setting 

N   268   gives   for    solving   and   ) m 00 . 2 ( N) 500 ( sin   

 

T T φ Tr

.   b) The hinge at  A  is given  as exerting no horizontal force, so taking torques about point 

, D

 the lever arm for the  vertical force at point 

m, 4.31 30.0   tan ) m 00 . 4 ( m) (2.00   is  

  

B

 so the horizontal force  at 

N.   232

m 31 . 4

) m 00 . 2 ( N) 500 (

  is  



B

 Using the result of part (a),  however,

N   232 30.0   cos N) 268 (

 

  In fact, finding the horizontal force at 

B

first  simplifies the calculation of the tension slightly. c) 

N.   366 0 . 30 sin ) N   268 ( ) N   500 (

  

  Equivalently, the result of part (b) could be used, taking torques about point 

, C

 to get the  same result.      



 EMBED Word.Document.8 \s [image: image73.emf]11.74:      a) The center of gravity of top block can be as far out as the edge of the lower  block. The center of gravity of this combination is then 

4 3L

 from the right edge of the  upper block, so the overhang is 

. 4 3L

           b) Take the two - block combination from part (a), and place it on the third block  such that the overhang of 

4 3L

 is from the right edge of the third block; that is, the center  of gravity of the first two blocks is above the right  edge of the third block. The center of  mass of the three - block combination, measured from the right end of the bottom block, is 

6 L



 and so the largest possible overhang is 

. 12 11 ) 6 ( ) 4 3 ( L L L

 

  Similarly, placing this three - block com bination with its center of gravity over the right  edge of the fourth block allows an extra overhang of 

, 8 L

 for a total of  

. 24 25L

 c) As  the result of part (b) shows, with only four blocks, the overhang can be larger th an the  length of a single block.  



 EMBED Word.Document.8 \s [image: image74.emf]11.75:      a)               

N   424 . 0

N   424 . 0

30 cos 2

0 ) cos 2 (

at    axis   , 0

30   so   2 sin

N   47 . 1 2

 







 

 

  

 

C A

C

C

B

F F

mg

F

wR θ R F

P

θ R R θ

w F

           b) Consider the forces on the bottom marble. The horizontal forces must sum to  zero, so            

N   848 . 0

30 sin

sin









A

A

F

n

θ n F

           Could use instead that the vertical forces s um to zero            

checks.  which  N,   848 . 0

30 cos

0 cos









  

mg F

n

n mg F

B

B



   



 EMBED Word.Document.8 \s [image: image75.emf]11.76:      (a) Writing an equation for the torque on the right - hand beam, using the hinge  as an axis and taking counterclockwise rotation as positive:  

0

2

sin

2 2

cos

2 2

sin

wire

  

θ L

w

θ L

F

θ

L F

c

  where



 is the angle between the beams, 

c

F

 is the force exerted by the cross bar, and 

w

is  the weight of one beam. The length drops out, and all other quantities except 

c

F

 are  known, so    

2

 tan  ) 2 (

cos  

sin      sin

wire

2 2

1

2 2

1

2

wire

c

θ

w F

w F

F

θ

θ θ

 





    Therefore  

N   130

2

53

 tan  260







F

            b) The cross bar is under compression, as can be seen by imagining the behavior of  the two beams if the cross bar were removed. It is the cross bar that holds them apart.              c) The upward pull of the wire on each beam is balanced by the downward p ull of  gravity, due to the symmentry of the arrangement. The hinge therefore exerts no vertical  force. It must, however, balance the outward push of the cross bar: 130 N horizontally to  the left for the right - hand beam and 130 N to the right for the left - h and beam. Again, it’s  instructive to visualize what the beams would do if the hinge were removed.      



 EMBED Word.Document.8 \s [image: image76.emf]11.77:      a) The angle at which the bale would slip is that for which 

 

. 0 . 31 arctan   or    , sin    cos  

s s s

     

μ β β w  β w μ Ν μ f

 The angle at which the bale  would tip is that for which the center of gravity is over the lower contact point, or  arctan

  

27 or    , 6 . 26 (

m)   50 . 0

m)   25 . 0

to two figures. Th e bale tips before it slips. b) The angle for  tipping is unchanged, but the angle for slipping is arctan

  

22 or      , 8 . 21 ) 40 . 0 (

to two  figures. The bale now slips before it tips.      



 EMBED Word.Document.8 \s [image: image77.emf]11.78:      a)

N   103 ) s m kg)(9.80 0 . 30 )( 35 . 0 (

2

k k

    

mg μ Ν μ f F

           b) With respect to the forward edge of the bale, the lever arm of the weight is 

m 125 . 0

2

m 250 . 0 

 and the lever arm  h  of the applied force is then  h  

m. 36 . 0   m) 125 . 0 (   m) 125 . 0 (

35 . 0

m 125 . 0

1

k

   



F

mg

     



 EMBED Word.Document.8 \s [image: image78.emf]11.79:      a) Take torques about the point where wheel   B  is in contact with the track. With  respect to this point, the weight exerts a counterclockwise torque and the applied force  and the force of wheel  A  both exert clockwise torques. Balancing torques, 

m). N)(1.00   950 ( m) 60 . 1 )( ( m) 00 . 2 (

A

 

F F

 Using 

N.   870   and   N,   80   N,   494

k

     

A B A

F w F F w F



 b) Again taking torques about the  point where wheel  B  is in contact with the tract, and using 

m.   92 . 1   so   N), 00 . 1 N)(   950 (   ) N   494 (   (a), part  in    as   N   494

  

h h F

     



 EMBED Word.Document.8 \s [image: image79.emf]11.80:      a) The torque exerted by the cable about the left end is 

θ TL sin

. For any angle 

, sin ) 180 ( sin   , θ θ

   

 so the tension  T  will be the same for either angle. The horizontal  component of the force that the pivot exerts on the boom w ill be 

θ T T θ T cos ) 180 (   cos or    cos  

    

. b) From the result of part (a), 

,   α  

sin

1

θ

T

and this  becomes infinite as 

. 180 or    0

   

 Also, c), the tension is a minimum when 



sin 

 is a  maximum, or 

, 90

  

 a vertical  string. d) There are no other horizontal forces, so for the  boom to be in equilibrium, the pivot exerts zero horizontal force on the boom.      



 EMBED Word.Document.8 \s [image: image80.emf]11.81:      a) Taking torques about the contact point on the ground, 

N. 3664 ) 64 0 (   so   , sin m) 5 . 4 ( sin ) m 0 . 7 (

  

w . T θ w θ T

 The ground exerts a vertical    force on the pole, of magnitude 

N   2052

 

T w

. b) The factor of 



sin

appears in both  terms of the equation  representing the balancing of torques, and cancels.      



 EMBED Word.Document.8 \s [image: image81.emf]11.82:      a) Identifying  x  with 

l



in Eq. (11.10), 

.

0

l A Y k

            b) 

. 2   ) 2 1 (

0

2 2

l Ax Y kx



     



 EMBED Word.Document.8 \s [image: image82.emf]11.83:      a) At the bottom of the path the wire exerts a force equal in magnitude to the  centripetal acceleration plus the weight,    

N.   10 07 . 1 ) s m 80 . 9 ) m 50 . 0 ( rev)) rad   2 )( s rev 00 . 2 (((

3 2 2

    

m F

  From Eq. (11.10), the elongation is  

mm. 5 . 5

) m 10 014 . 0 )( Pa   10 7 . 0 (

) m 50 . 0 )( N   10 07 . 1 (

2 4 11

3



 





             b) Usi ng the same equations, at the top the force is 830 N, and the elongation is  0.0042 m.      



 EMBED Word.Document.8 \s [image: image83.emf]11.84:      a)                b) The ratio of the added force to the elongation, found from taking the slope of the  graph, doing a least - squares fit to the linear part of the data, or from a casual glance at the  data gives 

. m N   10 00 . 2

4

 



l

F

From Eq. (11.1 0),  

Pa.   10 8 . 1

) ) m 10 35 . 0 ( (

m) 50 . 3 (

) m N   10 00 . 2 (

11

2 3

4

0

 



 









A

l

l

F

Y

           c) The total force at the proportional limit is 

N,   80 N   60 N   0 . 20

 

and the stress at  this limit is 

Pa.   10 1 . 2

8

) m 10 35 . 0 (

) N   80 (

2 3

 



 

     



 EMBED Word.Document.8 \s [image: image84.emf]11.85:      a) For the same stress, the tension in wire  B  must be two times in wire  A,  and so  the weight must be suspended at a distance 

m 70 . 0 ) m 05 . 1 )( 3 2 (



from wire  A. .               b) The product  Y A  for wire  B  is 

) 3 4 (

 that of wire  B ,  so for the same strain, the  tension in wire  B  must be 

) 3 4 (

 that in wire  A , and the weight must be 0.45 m from wire  B .      



 EMBED Word.Document.8 \s [image: image85.emf]11.86:      a) Solving Eq. (11.10) for 

l

  and using the weight for  F ,  

m. 10 8 . 1

) m 10 00 . 8 )( Pa   10 0 . 2 (

) m 0 . 15 )( N   1900 (

4

2 4 11

0





 

 

  

YA

Fl

l

           b) From Example 5.21, the force that each car exerts on the cable is 

,

0

2

0

2

l w l mω F

g

w

 

 and so  

m. 10 9 . 1

) m 10 00 . 8 )( Pa   10 0 . 2 )( s m   80 . 9 (

) m 0 . 15 ( ) s rad 84 . 0 )( N   1900 (

4

2 4 11 2

2 2 2

0

2

0





 

 

   

gYA

l wω

YA

Fl

l

     



 EMBED Word.Document.8 \s [image: image86.emf]11.87:      Use subscripts 1 to denote the copper and 2 to denote the steel. a) From Eq.  (11.10), with 

,   and  

2 1 2 1

F F l l

   

 

m. 63 . 1

) Pa 10 9 )( cm 00 . 2 (

) Pa 10 21 )( cm 00 . 1 (

) m   40 . 1 (

10 2

10 2

1 1

2 2

1 2











































Y A

Y A

L L

           b) For nickel, 

Pa   10 00 . 4

8

1

 

A

F

and for brass, 

Pa.   10 00 . 2

8

2

 

A

F

c) For nickel, 

3

Pa   10 21

Pa   10 00 . 4

10 9 . 1

10

8







 

and for brass, 

. 10 2 . 2

3

Pa   10 9

Pa   10 00 . 2

10

8







 

     



 EMBED Word.Document.8 \s [image: image87.emf]11.88:      a) 

N.   10 2 . 4 ) 010 . 0 )( m 10 0 . 3 )( Pa   10 4 . 1 (

4 2 4 10

max

0

max

    























l

l

YA F

             b) Neglect the mass of the shins (actually the lower legs and feet) compared to the  rest of the body. This allows the approximation that the compressive stress in the shin  bones is uniform. The maximum height  will be that for which the force exerted on each  lower leg by the ground is 

max

F

found in part (a), minus the person’s weight. The impulse  that the ground exerts is 

s. m kg   10 2 . 1 ) s   030 . 0 ))( s m   80 . 9 )( kg   70 ( N   10 2 . 4 (

3 2 4

     

J

The speed at the  ground is

gh m J gh 2 2   so   , 2



 and solving for  h ,    

m, 64

2

2

1

2

















m

J

g

h

  but this is not recommended.      



 EMBED Word.Document.8 \s [image: image88.emf]11.89:      a) Two times as much, 0.36 mm, b) One - fourth (which is 

2

) 2 1 (

) as much,  0.045 mm.c) The Young’s modulus for copper is approximately one - half that for steel, so  the wire would stretch about twice as much. 

mm.   33 . 0 ) mm   18 . 0 (

Pa   10 11

Pa   10 20

10

10







   



 EMBED Word.Document.8 \s [image: image89.emf]11.90:      Solving Eq. (11.14) for 

, V

  

L.   0541 . 0

m) 150 . 0 (

) s m 80 . 9 )( kg 1420 (

) L   250 )( Pa   10 110 (

2

2

1 11

0 0

 

  

     

 

π

A

mg

kV P kV V

    The minus sign indicates that this is the volume by which the original hooch has  shrunk, and is the extra volume that can be stored.      



 EMBED Word.Document.8 \s [image: image90.emf]11.91:      The normal component of the force is 

θ F cos

  and the area (the  intersection of the red plane and the bar in Figure (11.52)) is 

,   cos   / θ A

 so the  normal stress is 

. cos   ) (

2



A F

           b) The tangential com ponent of the force is 

, sin    θ F

  so the shear stress is 

.   cos   sin    ) A F ( θ θ

             c) 

θ

2

cos

is a maximum when 

0. or    1,   cos

 

θ θ

  d) The shear stress can be  expressed as 

, ) (2 sin    ) 2 ( θ A F

which is maximized wh en 

. 45

2

90

  or   , 1 ) (2 sin 

 



 

θ θ

 Differentiation of the original expression with respect  to 



 and setting the derivative equal to zero gives the same result.      



 EMBED Word.Document.8 \s [image: image91.emf]11.92:      a) Taking torques about the pivot, the tension

T

in the cable is related to  the weight by 

.

sin    2

  so   , 2   sin   

0 0

θ

mg

T mgl l θ T

 

 The horizontal component of the  force that the cable exerts on the rod, and hence the horizontal component of t he  force that the pivot exerts on the rod, is 

θ

mg

cot   

2

and the stress is 

. cot   

2

θ

A

mg

            b)  

.

2

cot

  0 0

AY

θ mgl

AY

F l

l

  

           c) In terms of the density and length, 

, ) (

0

l ρ A m



 so the stress is 

θ g ρl cot    ) 2 (

0

 and the change in length is 

. cot    ) 2 (

2

0

θ Υ g ρl

 d) Using the numerical  values, the stress is 

5

10 4 . 1



 Pa and the change in length is 

  m.   10 2 . 2

6





e) The  stress is proportional to the length and the change in length is prop ortional to the  square of the length, and so the quantities change by factors of 2 and 4.      



 EMBED Word.Document.8 \s [image: image92.emf]11.93:      a) Taking torques about the left edge of the left leg, the bookcase would  tip when 

, 750

) m 1.80 (

) m 90 . 0 )( 1500 (

  



F

 and would slip when 

, 600 ) 1500 )( (

s

    

F

 so  the bookcase slides before tipping. b) If 

F

is vertical, there will be  no net  horizontal force and the bookcase could not slide. Again taking torques about the  left edge of the left leg, the force necessary to tip the case is 

kN. 5 . 13

) m 10 . 0 (

) m 90 . 0 )( 1500 (





  c) To slide, the friction force is 

),   cos   (

s

θ F w μ f

 

 and setting this  equal  to 

θ F sin   

 and solving for 

F

 gives  

.

  cos   sin 

s

s

θ μ

w μ

F

 



  To tip, the condition is that the normal force exerted by the right leg is zero, and  taking torques about the left edge of the left leg, 

), m   90 . 0 ( ) m   0.10 (   cos   m)   (1.80   sin    w θ F θ F

 

 and solving for 

F

 gives  

.

sin    2     cos   ) 9 1 ( θ θ

w

F





  Setting the expression equal gives  

,   cos   sin ) sin   2     cos   ) 9 1 ((

s s

θ μ θ θ θ μ

  

  and solving for 

θ

 gives  

. 66

) 2 - 1 (

) 9 10 (

arctan 

s

s

 



















μ

μ

θ

     



 EMBED Word.Document.8 \s [image: image93.emf]11.94:      a) Taking torques about the point where the rope is fastened to the  ground, the lever arm of the applied force is 

2

h

 and the lever arm of both the  weight and the normal force is 

. tan ) (   so   and   , tan

2

 

h w n F h

h

 

 Taking torques  about t he upper point (where the rope is attached to the post), 

.

2

h

F h f



Using 

n f

s

 

 and solving for  F,  

,   400

36.9   tan

1

30 . 0

1

)   400 ( 2
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1 1
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1
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s

nN nN w F


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
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 





 

           b) The above relations between 

become     and     , f n F

 

,

5

2

  ,  tan  ) (

5

3

F f h w n h F

   

  and eliminating  

gives   for    solving   and     and   F n f

 

,
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5 3 5 2

1

s






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









 

 

w F

  and substitution of numerical values gives 750 N to two figures. c) If the force is  applied a distance  y  above the ground, the above relations become    

, ) (    , tan   ) ( fh y h F h w n Fy

    

  which become, on eliminating 

,   and   f n

 

   

.
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1

s
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h

y

h

y

F w

  As the term in square brackets approaches zero, the necessary force becomes  unboundedly large. The limiting value of  y  is found by setting the term in square  brackets equal to zero. Solving for  y  gives  

. 71 . 0

36.9   tan 30 . 0

9 . 36   tan

  tan

  tan



 








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

s

h
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 EMBED Word.Document.8 \s [image: image94.emf]11.95:      Assume that the center of gravity of the loaded girder is at 

, 2 L

 and that  the cable is attached a distance  x  to the right of the pivot. The sine of the angle  between the lever arm and the cable is then 

, ) ) 2 ((

2 2

x L h h

 

 and the tension is  obtained from balancing torques about the pivot;  

, 2

) ) 2 ((

2 2

L w

x L h

hx

T



















 

  where 

w

is the total load (the exact value of 

w

and the position of the center of  gravity do not matter for the purposes  of this problem). The minimum tension will  occur when the term in square brackets is a maximum; differentiating and setting  the derviative equal to zero gives a maximum, and hence a minimum tension, at 

). 2 ( ) (

2

min

L L h x

 

 However, if 

, 2   if   occurs  which  ,

min

L h L x

 

 the cable must  be attached at  L , the furthest point to the right.      



 EMBED Word.Document.8 \s [image: image95.emf]11.96:      The geometry of the 3 - 4 - 5 right triangle simplifies some of the  intermediate algebra. Denote the forces on the ends of the ladders by 

R L

F F   and  

(left and right). The contact forces at the ground will be vertical, since  the floor is  assumed to be frictionless. a) Taking torques about the right end, 

R L L

F F F   N. 391   so ), m 90 . 0 )( N 360 ( ) m 40 . 3 )( N 480 ( ) m 00 . 5 (

  

may be found in a  similar manner, or from 

N.   449 N   840

  

L R

F F

 b) The tension in the rope may be  found by finding the torque on each ladder, using the point  A  as t he origin. The  lever arm of the rope is 1.50 m. For the left ladder, 

N   1 . 322   so   ), m 60 . 1 )( N 480 ( ) m 20 . 3 ( ) m 50 . 1 (

  

T F T

L

(322 N to three figures). As a  check, using the torques on the right ladder, 

) m 90 . 0 )( N 360 ( ) m 80 . 1 ( ) m 50 . 1 (

 

R

F T

 gives the same result. c) The horizontal  component of the force  at  A  must be equal to the tension found in part (b). The  vertical force must be equal in magnitude to the difference between the weight of  each ladder and the force on the bottom of each ladder, 480 N  391 N = 449  N  360 N = 89 N. The magnitude of the force  at  A  is then  

N. 334 ) N 89 ( ) N   1 . 322 (

2 2

 

           d) The easiest way to do this is to see that the added load will be distributed  at the floor in such a way that 

N. 961 ) N 800 )( 64 . 0 (   and   N, 679 ) N 800 )( 36 . 0 (

  



  



R R L L

F F F F

 Using these  forces in the form for the tension found in part (b) gives  

N, 53 . 936

) m 50 . 1 (

) m 90 . 0 )( N 360 ( ) m 80 . 1 (

) m 50 . 1 (

) m 60 . 1 )( N 480 ( ) m 20 . 3 (















R L

F F

T

  which is 937 N to three figures.      
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and the change in the  volume of the sodium is 
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s s
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 Setting the total volume change equal to  Ax  ( x  is  positive) and using 

, A F p

 
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A F V k V k Ax
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  and solving for 

s

k

 gives  
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           b) In this situation,  

 
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
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mm   0.66 or    m,   10 62 . 6  

4

) m   10 00 . 5 )( Pa   10 20 (

) m 50 . 1 )( s m 80 . 9 )( kg 50 . 4 (

2 7 10

2



 

   



l

  to two figures. b) 

J. 022 . 0 ) m 10 0500 . 0 )( s m 80 . 9 )( kg 50 . 4 (

2 2

 



 c) The magnitude 

F

will be vary with distance; the average force is 

N,   7 . 16 ) cm   0250 . 0 (  

0



l A Y

and so  the work done by the applied force is 

J.   10 35 . 8 ) m   10 0500 . 0 ( N) 7 . 16 (

3 2

 

  

d) The  wire is initially stretched a distance 

m   10 62 . 6

4





( the result of part (a)), and so the  average elongation during the additional stretching is 

m   10 12 . 9

4





, and the  average force the wire exerts is 

N.   8 . 60

The work done is negative, and equal to  

J.   10 04 . 3 ) m   10 0500 . 0 )( N 8 . 60 (

2 2

 
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 e) See problem 11.82. The change in  elastic potential energy is 

 

J,   10 04 . 3 ) ) m   10 62 . 6 ( ) m   10 62 . 11 ((

m   50 . 1 2

) m   10 00 . 5 )( Pa   10 20 (

2 2 4 2 4

2 7 10
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

    

 

  the negative of the result of part (d). (If more figures are kept in the intermediate  c alculations, the agreement is exact.)  


