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N.   10 67 . 1

m)   10 6.38 m   10 (7.8

kg)   2150 )( kg   10 97 . 5 (

) kg m N   10 673 . 6 (

4

2 6 5

24

2 2 11

2

2 1

g

 

  



   



r

m m

G F

  The ratio of this force to the satellite’s weight at the surface of the earth is  
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  (This numerical result requires keeping one extra significant figure in the intermediate  ca lculation.) The ratio, which is independent of the satellite mass, can be obtained  directly as  
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 EMBED Word.Document.8 \s [image: image3.emf]12.4:       The separation of the centers of the spheres is 2 R , so the magnitude of the  gravitational attraction is 

. 4 ) 2 (

2 2 2 2

R GM R GM



     



 EMBED Word.Document.8 \s [image: image4.emf]12.5:       a) Denoting the earth - sun separation as  R  and the distance from the earth as  x ,  the distance for which the forces balance is obtained from  
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           b) The ship could not be at eq uilibrium for long, in that the point where the forces  balance is moving in a circle, and to move in that circle requires some force. The  spaceship could continue toward the sun with a good navigator on board.      



 EMBED Word.Document.8 \s [image: image5.emf]12.6:       a) Taking force components to be positive to the right, use of Eq. (12.1) twice  gives    
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  with the minus sign indicating a net force to the left.            b) No, the force found in part (a) is the  net  force due to the other t wo spheres.      
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  toward the sun.   b)The earth - moon distance is sufficiently s mall compared to the earth - sun distance ( r 2  <<  r 2 ) that the vector from the earth to the moon can be taken to be  perpendicular to the vector from the sun to the moon. The components of the  gravitational force are then    
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 EMBED Word.Document.8 \s [image: image11.emf]12.12:      The direction of the force will be toward the larger mass, and the magnitude  will be    
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 EMBED Word.Document.8 \s [image: image12.emf]12.13:      For convenience of calculation, recognize that the mass of the small sphere will  cancel. The acceleration is then    
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 EMBED Word.Document.8 \s [image: image14.emf]12.15:      To decrease the acceleration due to gravity by one - tenth, the distance from the  earth must be increased by a factor of 
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  where the subscripts v refer to the quantities pertinent to Venus. b) 
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             The gravity force is not zero in orbit.  The satellite and the a stronaut have the same  acceleration so the astronaut’s apparent weight is zero.      



 EMBED Word.Document.8 \s [image: image19.emf]12.20:      Get  g  on the neutron star    

2

ns

ns

2

ns

ns

R

GM

g

R

GmM

mg





  Your weight would be         

2

ns

ns ns

R

mGM

mg w

 

                    

2 4

30 2 2 11

2

m) 10 (

kg)   10 99 . 1 )( kg Nm 10 (6.67

 

s m   8 . 9

N 675

 



















                

N 10 1 . 9

13

 

     



 EMBED Word.Document.8 \s [image: image20.emf]12.21:      From eq. (12.1), 
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 EMBED Word.Document.8 \s [image: image21.emf]12.22:      a) From Example 12.4  the mass of the lander is 4000 kg. Assuming Phobos to  be spherical, its mass in terms of its density 
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    b) The force calculated in part (a) i s much less than the force exerted by Mars in Example  12.4.      
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 EMBED Word.Document.8 \s [image: image24.emf]12.25:      The escape speed, from the results of Example 12.5, is 
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               c) Both the kinetic energy and the gravitational potential energy are proportional  to  the mass.      
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 EMBED Word.Document.8 \s [image: image26.emf]12.27:      a) Eliminating the orbit radius  r  between Equations (12.12) and (12.14) gives    
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 EMBED Word.Document.8 \s [image: image27.emf]12.28:      Substitution into Eq. (12.14) gives 
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 EMBED Word.Document.8 \s [image: image29.emf]12.30:      Applying Newton’s second law to the Earth                                     
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 EMBED Word.Document.8 \s [image: image33.emf]12.34:        From either Eq. (12.14) or Eq. (12.19),    
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 EMBED Word.Document.8 \s [image: image34.emf]12.35:      a) The result follows directly from Fig. 12.18. b) 
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 EMBED Word.Document.8 \s [image: image36.emf]12.37:      a) For a circular orbit, Eq. (12.12) predicts a speed of    
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    at the cost of a little more  algebra.      



 EMBED Word.Document.8 \s [image: image38.emf]12.39:      a) Refer to the derivation of Eq. (12.26) and Fig. (12.22). In this case, the red  ring in Fig. (12.22) has mass  M  and the common distance  s  is
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 At the center of  the ring, all mass elements that comp rise the ring attract the particle toward the respective  parts of the ring, and the net force is zero.      



 EMBED Word.Document.8 \s [image: image39.emf]12.40:      At the equator, the gravitational field and the radial acceleration are parallel,  and taking the magnitude of the weight as given in Eq. (12.30) gives    

.

rad 0

ma mg w

 

    The difference between the measured weight and the force of gravitat ional attraction is  the term 

.

rad

ma

  The mass 

m

 is found by solving the first relation for 

.   ,

0 rad

a g

m m







Then,    

 

.

1

rad 0 rad 0

rad

rad









a g

w

a g

a

w ma

    Using either 

2

0

s m   80 . 9



g

or calculating  

0

g

from Eq. (12.4) gives 

N.   40 . 2

rad



ma

     



 EMBED Word.Document.8 \s [image: image40.emf]12.41:    a) 
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 EMBED Word.Document.8 \s [image: image42.emf]12.43:      a) From Eq. (12.12),  
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 EMBED Word.Document.8 \s [image: image43.emf]12.44:      Using the mass of the sun for  M in Eq. (12.32) gives    
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    Using 3.0 km instead of 2.95 km is accurate to 1.7%.      
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 EMBED Word.Document.8 \s [image: image45.emf]12.46:      a) From symmetry, the net gravitational force will be in the direction  45
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 EMBED Word.Document.8 \s [image: image46.emf]12.47:      The geometry of the 3 - 4 - 5 triangle is available to simplify some of the algebra,  The components of the gravitational force are                              
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 EMBED Word.Document.8 \s [image: image47.emf]12.48:      a) The direction from the origin to the point midway between the two large  masses is arctan 
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    with the minus sign indicating a clockwise torque.  c) There can be no net torque due to  gravitational fields with respect to the center of gravity, and so the center of gravity in  this cas e is not at the center of mass.      



 EMBED Word.Document.8 \s [image: image48.emf]12.49:      a) The simplest way to approach this problem is to find the force between the  spacecraft and the center of mass of the earth - moon system, which is 
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 EMBED Word.Document.8 \s [image: image49.emf]12.50:      Denote the 25 - kg sphere by a subscript 1 and the 100 - kg sphere by a  subscript 2.   a) Linear momentum is conserved because we are ignoring all other  forces, that is, the net external force on the system is zero. Hence, 
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 EMBED Word.Document.8 \s [image: image50.emf]12.51:      Solving Eq. (12.14) for  r,                
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 EMBED Word.Document.8 \s [image: image52.emf]12.53:      a) From Eq. (12.14),  
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 Note that the period to use for the earth’s rotation  is the siderial day, not the solar day (see Section 12.7). b) For these observers, th e  satellite is below the horizon.          



 EMBED Word.Document.8 \s [image: image53.emf]12.54:      Equation 12.14 in the text will give us the planet’s mass:                              
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 EMBED Word.Document.8 \s [image: image54.emf]12.55:      In terms of the density 
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 EMBED Word.Document.8 \s [image: image55.emf]12.56:      a) Following the hint, use as the escape velocity 
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 EMBED Word.Document.8 \s [image: image56.emf]12.57:      a) The satellite is revolving west to east, in the same direction the earth is  rotating. If the angular speed of the satellite is 
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  At this point, it is advantageous to use the algebraic expression for  g  as given in  Eq. (12.4) instead of numerical values to obtain the fractional difference as 
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) s   00 . 4 ( s m 0 . 12 0

0

g gt v

   

 

2

s m 00 . 3



g

  Apply Newton’s second law to a falling object:  

G gR M

R

GmM

mg ma F

2

2

  :  

    

                                              

π C R C πR 2 2

  

                               

 

kg   10 56 . 4

kg m N   10 67 . 6

) s m   00 . 3 (

25

2 2 11

2

2

m   10 00 . 2

2

2

8

 



 







G gR M
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           b) See Exercise 12.5. The point where the net gravitational field vanishes is  
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           c) The work needed to put the satellite into orbit was the same as the work needed  to put the  satellite from orbit to the edge of the universe.      
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  a) Making the simplifying assumption that the direction of launch is the direction of the  earth’s motion in its orbit, the speed relative the earth is    
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 EMBED Word.Document.8 \s [image: image69.emf]12.70:      a) In moving to a lower orbit by whatever means, gravity does positive work,  and so the speed does increase. b) 
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  d)As the term “burns up” suggests, the  energy is converted to heat or is dissipated in the collisions of the debris with the  grounds.      



 EMBED Word.Document.8 \s [image: image70.emf]12.71:      a) The stars are separated by the diameter of the circle  d  =2 R ,   so the  gravitational force is 
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    The subscripts a and p denote aphelion and perihelion.   To use conservation of angular momentum, note that at the extremes of distance  (periheleion  and aphelion), Mars’ velocity vector must be perpendicular to its radius  vector, and so the magnitude of the angular momentum is
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    a confirmation of Kepler’s Laws.      
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 d) No; Miranda’s  gravity is sufficient to retain objects released near its surface.      
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 EMBED Word.Document.8 \s [image: image77.emf]12.78:      a) The semimajor axis is 
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 This is far larger than the energy of a volcanic  eruption and is comparable to the energy of burning the fossil fuel.      



 EMBED Word.Document.8 \s [image: image78.emf]12.79:      a) From Eq. (12.14) with the mass of the sun,    
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 EMBED Word.Document.8 \s [image: image79.emf]12.80:      Outside the planet it behaves like a point mass, so at the surface:    
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 EMBED Word.Document.8 \s [image: image80.emf]12.81:      The radius of the semicircle is 
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 EMBED Word.Document.8 \s [image: image81.emf]12.82:      The direct calculation of the force that the sphere exerts on the ring is slightly  more involved than the calculation of the force that the ring exerts on the ball. These  forces are equal in magnitude but opposite in direction, so it will suffic e to do the latter  calculation. By symmetry, the force on the sphere will be along the axis of the ring in Fig.  (12.34), toward the ring. Each mass element 
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The sphere attracts the ring  with  a force of the same magnitude. (This is an alternative but equivalent way of obtaining the  result of parts (c) and (d) of Exercise 12.39.)2      



 EMBED Word.Document.8 \s [image: image82.emf]12.83:      Divide the rod into differential masses  dm at  position  l , measured from the right  end of the rod. Then, 
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 as expected. (This is an alternative but  equivalent way of obtaining the result of part (b) Exe rcise 12.39.)      



 EMBED Word.Document.8 \s [image: image83.emf]12.84:      a) From the result shown in Example 12.10, the force is attractive and its  magnitude is proportional to the distance the object is from the center of the earth.  Comparison with equations (6.8) and (7.9) show that the gravitational potential ener gy is  given by    
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s, m 10 672 . 7

m 10 776 . 6

) kg 10 97 . 5 )( kg m N 10 673 . 6 (

3

6

24 2 2 11

 



  





v

and 

5 . 92 s   5549   2

  

v r T



 min. We th en can use the two derived equations to  approximate the   

s. m 05662 .

  and   s,   1228 . 0 .   and     ,     and    

) s   5549 (

) m   100 (

 

s m   10 672 . 7

m)   100 (   3

  r       3

3

  

         







 

π

T

r π

T

r π

v

π

v T v T v T

  Before the cable breaks, the shuttle will have traveled a distance  d, d  

22 s   7 . 1324 ) s m   05662 (. ) m   75 (   So,    m.   75 ) m   100 ( ) m   125 (

2 2

    

 min. It will take  22 minutes for the cable to break.         c) The ISS is moving faster than the space shuttle, so the total angle it covers in an  orbit must be 



2

radians more than the angle that the space shuttle covers before they are  once again in line. Mathematically,

π

r r

t v v

r

vt

2

) (

) (

 

 

 

. Using the binomial theorem and  neglecting terms of order 

 

 

π t r v

r

r v

r

v

r

r

r

t v v

r

vt 2   1   ,

2

1

) (

      

 





 

. Therefore, 















 





r

r v

v

r

t

  2

r

r v

T

r π

vT









 

. Since 

,   ,   and     2

2

3

2

  3

3

T

T

T v

T

T v

t

vT

π

T v

t r vT r

















 

















 



     

 as was to be  shown.  

y.   9 . 7 d   2900 s   10 5 . 2

8

) s   1228 . 0 (

) s   5549 (

2

2

     



T

T

t

 It is highly doubtful the shuttle  c rew would survive the congressional hearings if they miss!      



 EMBED Word.Document.8 \s [image: image85.emf]12.86:      a) To get from the circular orbit of the earth to the transfer orbit, the  spacecraft’s energy must increase, and the rockets are fired in the direction opposite that  of the motion, that is, in the direction that increases the speed. Once at the  orbit of Mars,  the energy needs to be increased again, and so the rockets need to be fired in the direction  opposite that of the motion. From Fig. (12.37), the semimajor axis of the transfer orbit is  the arithmetic average of the orbit radii of the earth a nd Mars, and so from Eq. (12.19),  the energy of spacecraft while in the transfer orbit is intermediate between the energies of  the circular orbits. Returning from Mars to the earth, the procedure is reversed, and the  rockets are fired against the direction  of motion. b) The time will be half the period as  given in Eq. (12.19), with the semimajor axis  a  being the average of the orbit radii, 
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 EMBED Word.Document.8 \s [image: image86.emf]12.87:      a) There are many ways of approaching this problem; two will be given here.          I)  Denote the orbit radius as 
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 and the distance from this radius to either ear as 
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, can be modeled as subject to two forces, the gravitational force  from the black hole and the tension force (actually the force from the body tissues),  denoted by 
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  the same  result as above.        Method (I) avoids using the binomial theorem or Taylor series expansions; the  approximations are made only when numerical values are inserted and higher powers of 
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 EMBED Word.Document.8 \s [image: image87.emf]12.88:      As suggested in the problem, divide the disk into rings of radius  r  and thickness  dr . Each ring has an area 
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 EMBED Word.Document.8 \s [image: image88.emf]12.89:      From symmetry, the component of the gravitational force parallel to the rod is  zero. To find the perpendicular component, divide the rod into segments of length  dx  and  mass 
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