



 EMBED Word.Document.8 \s [image: image1.emf]13.2:  a)  Since the glider is released form rest, its initial displacement (0.120 m) is the  amplitude. b) The glider will return to its original position after another 0.80 s, so the  period is 1.60 s. c) The frequency is the reciprocal of the period (Eq. ( 13.2)), 
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 EMBED Word.Document.8 \s [image: image3.emf]13.4:  (a) From the graph of its motion, the object completes one full cycle in 2.0 s; its  period is thus 2.0 s and its frequency 
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4

1

 of a period.         

s.   0500 . 0   so   s,   200 . 0 1

  

t f T

   



 EMBED Word.Document.8 \s [image: image5.emf]13.6:  The period will be twice the time given as being between the times at which the  glider is at the equilibrium position (see Fig. (13.8));  
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 EMBED Word.Document.8 \s [image: image6.emf]13.7:  a) 
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 EMBED Word.Document.8 \s [image: image7.emf]13.8:  Solving Eq. (13.12) for  k ,  
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 EMBED Word.Document.8 \s [image: image8.emf]13.9:  From Eq. (13.12) and Eq. (13.10), 
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 EMBED Word.Document.8 \s [image: image11.emf]13.12:  a) From Eq. (13.19), 
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 EMBED Word.Document.8 \s [image: image14.emf]13.15:  The equation describing the motion is 
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 EMBED Word.Document.8 \s [image: image23.emf]13.24:  a) From Eq. (13.23),    
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 EMBED Word.Document.8 \s [image: image31.emf]13.32:  a) At the top of the motion, the spring is unstretched and so has no potential   energy, the cat is not moving and so has no kinetic energy, and the gravitational potential   energy relative to the bottom is 
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 EMBED Word.Document.8 \s [image: image41.emf]13.42:    a) To the given precision, the small - angle approximation is valid. The highest   speed is at the bottom of the arc, which occurs after a quarter period, 
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 EMBED Word.Document.8 \s [image: image42.emf]13.43:  Besides approximating the pendulum motion as SHM, assume that the angle   is sufficiently small that the length of the spring does not change while swinging in the   arc. Denote the angular frequency of the vertical motion as 
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 EMBED Word.Document.8 \s [image: image45.emf]13.46:  From the parallel axis theorem, the moment of inertia of the hoop about the nail is 
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 EMBED Word.Document.8 \s [image: image48.emf]13.49:  Using the given expression for  I  in Eq. (13.39), with  d=R  (and of course  m=M), 
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 

 

 

. kg.m   129 . 0

2

100 s   120

  m   200 . 0   s m   9.80   kg   80 . 1

2

2

2

2

2































π π

T

mgd I

   



 EMBED Word.Document.8 \s [image: image50.emf]13.51:  a) From Eq. (13.43),  
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 EMBED Word.Document.8 \s [image: image53.emf]13.54:  At resonance, Eq. (13.46) reduces to 
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 Note that  the resonance frequency is independent of the value of  b  (see Fig. (13.27)).      
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 EMBED Word.Document.8 \s [image: image58.emf]13.59:  a) For SHM, the period, frequency and angular frequency are independent of  amplitude, and are not changed. b) From Eq. (13.31), the energy is decreased by a factor  of 
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 EMBED Word.Document.8 \s [image: image60.emf]13.61:  a) Rewriting Eq. (13.22) in terms of the period and solving,  
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 EMBED Word.Document.8 \s [image: image61.emf]13.62:  a) The normal force on the cowboy must always be upward if he is not holding on.  He leaves the saddle when the normal force goes to zero (that is, when he is no longer in  contact with the saddle, and the contact force vanishes). At this point the co wboy is in  free fall, and so his acceleration is 

g



; this must have been the acceleration just before  he left contact with the saddle, and so this is also the saddle’s acceleration.   b) 

m.   110 . 0 )) Hz   50 . 1 ( 2 ) s m 80 . 9 ( ) 2 (

2 2 2

    

π f π a x

 c) The cowboy’s speed will   be the saddle’s speed, 

s. m   11 . 2 ) 2 (

2 2

  

x A πf v

 d) Taking 

0



t

 at the time when  the cowboy leaves, the position of the saddle as a function of time is given by Eq.  (13.13), with

;   cos

2

A ω

g

  

 this is checked by setting 

0



t

 and finding that 

.  

2 2

ω

a

ω

g

x

  

 The cowboy’s position is 

. ) 2 (

2

0 0 c

t g t v x x

  

 Finding the time at which  the cowboy and the saddle are again in contact involves a transcendental equation which  must be solved numerically; specifica lly,    

rad),   11 . 1 s) rad   42 . 9 ((   cos   m)   25 . 0 ( ) s m   90 . 4 ( s) m 11 . 2 ( m)   110 . 0 (

2 2

   

t t t

    which has as its least non - zero solution 

s.   538 . 0



t

 e) The speed of the saddle is 

, s m   72 . 1 ) ( sin    s) m     36 . 2 (

   

t ω

and the cowboy’s speed is (2.11 

) s m   80 . 9 ( ) s m

2



 

s, m   16 . 3 s)   538 . 0 (

  

 giving a relative speed of 

s m   87 . 4

 (extra figures were kept in  the intermediate calculations).      



 EMBED Word.Document.8 \s [image: image62.emf]13.63:  The maximum acceleration of both blocks, assuming that the top block does not  slip, is 
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 EMBED Word.Document.8 \s [image: image65.emf]13.66:  a)       For space considerations, this figure is not precisely to the scale suggested in the  problem. The following answers are found algebraically, to be used as a check on the  graphical method.            b)                                                
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 EMBED Word.Document.8 \s [image: image66.emf]13.67:  a) The quantity 

l

  is the amount that the origin of coordinates has been moved  from the unstretched length of the spring, so the spring is stretched a distance 
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 (see  Fig. (13.16 ( c ))) and the elastic pot ential energy is 
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 the two terms proportional to  x  cancel, and    
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             c) An additive constant to the mechanical energy does not  change the dependence  of the force on  
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dU

x

F x

 

 and so the relations expressing Newton’s laws and the  resulting equations of motion are unchanged.      



 EMBED Word.Document.8 \s [image: image67.emf]13.68:      The “spring constant” for this wire is 
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 EMBED Word.Document.8 \s [image: image68.emf]13.69:      a)
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 The time to go from  equilibrium to half the amplitude is 
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 EMBED Word.Document.8 \s [image: image69.emf]13.70:      Expressing Eq. (13.13) in terms of the frequency, and with 
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                                                                                                  a)   Substitution gives 
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  d)   Using the time found in part (c) , 
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(Eq.(13.22) of course gives the  sa me result).      



 EMBED Word.Document.8 \s [image: image70.emf]13.71:      a) For the totally inelastic collision, the final speed 
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 in terms of the initial  speed 
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            (This avoids the intermediate calculation of the speed.) c) Using the total mass, 
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 EMBED Word.Document.8 \s [image: image71.emf]13.72: 
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k

           This is the effective force constant of the two springs.            a) After the gravel sack falls off, the remaining mass attached to the springs is 225  kg. The force constant of the springs is unaffected, so 

Hz.   800 . 0



f

            To find the new amplitude use energy considerations to find the distance  downward that the beam travels after the gravel falls off.            Before the sack falls off, the amount 

0

x

that the spring is stretched  at equilibrium is  given by 
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 The  maximum upward displacement of the beam is 

m.   400 . 0



A

 above this point, so at this  point the spring is stretched 0.2895 m.              With the new mass, the mass 225 kg of the beam alone,  at equilibrium the spring is  stretched 
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The new amplitude is  therefore 
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 

The beam moves 0.098 m above and below the  new equilibrium position. Energy calculations show that 
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

v

when the beam is 0 .098 m  above and below the equilibrium point.            b) The remaining mass and the spring constant is the same in part (a), so the new  frequency is again 
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           The sack falls off when the spring is stretched 0.6895 m. And the s peed of the beam  at this point is 
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  at this point. The total energy of the beam at this point, just after the sack falls off, is  
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Let this  be point 1. Let point 2 be where the beam  has moved upward a distance  d  and where 

0



v

. 
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2

  . m 6985 . 0 E E mgd d k E
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d

. At this end point of   motion the spring is compressed 0.7275 m  –  0.6895 m =0.0380 m.  At the new  equilibrium position the spring is stre tched 0.3879 m, so the new amplitude is 0.3789 m +  0.0380 m = 0.426 m. Energy calculations show that 

v

is also zero when the beam is 0.426  m below the equilibrium position.      
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 EMBED Word.Document.8 \s [image: image73.emf]13.74:      a) Solving Eq. (13.12) for 
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 EMBED Word.Document.8 \s [image: image74.emf]13.75:      Of the many ways to find the time interval, a convenient method is to take 
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 in Eq. (13.13) and find that for 
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 EMBED Word.Document.8 \s [image: image75.emf]13.76:      See Problem 12.84; using 
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 as the variable instead of 

, r

 

.   so   , ) (

E

3

E

E

2

3

E

E

R

g

R

GM

ω x

R

m GM

dx

dU

x F

     

          The period is then  

s,   5070

m/s   9.80

m   10 38 . 6

2 2

2

2

6

E





  

π

g

R

π

ω

π

T

  or 84.5 min.      



 EMBED Word.Document.8 \s [image: image76.emf]13.77:     Take only the positive root (to get the least time), so that                  
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 which is expected.      
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 c) The period does depend on amplitude, and the  motion is not  simple harmonic.      
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 EMBED Word.Document.8 \s [image: image79.emf]13.80:     a) Taking positive displacements and forces to be upwad, 
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 EMBED Word.Document.8 \s [image: image80.emf]13.81:     a) For the center of mass to be at rest, the total momentum must be zero, so the  momentum vectors must be of equal magnitude but opposite directions, and the momenta  can be represented as
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 EMBED Word.Document.8 \s [image: image81.emf]13.82:    a)                                       

.

1

2 9

7

0



























  

r r

R

Α

dr

dU

F

r

             b) Setting the above expression for 
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 EMBED Word.Document.8 \s [image: image83.emf]13.84:    a) As the mass approaches the origin, the motion is that of a mass attached to a  spring of spring constant  k , and the time to reach the origin is 

.

2

k m

π

 After passing  through the origin, the motion is that of a mass attached to a  spring of spring constant 2 k   and the time it takes to reach the other extreme of the motions is
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 the motion is not symmetric about  the origin.      



 EMBED Word.Document.8 \s [image: image84.emf]13.85:    There are many equivalent ways to find the period of this oscillation. Energy  considerations give an elegant result. Using the force and torque equations, taking torques  about the contact point, saves a few intermediate steps. Following the hint,  take torques  about the cylinder axis, with positive torques counterclockwise; the direction of positive  rotation is then such that 
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 EMBED Word.Document.8 \s [image: image85.emf]13.86:    Energy conservation during downward swing:        
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 EMBED Word.Document.8 \s [image: image87.emf]13.88:    The torque on the rod about the pivot (with angles positive in the direction  indicated in the figure) is 
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 EMBED Word.Document.8 \s [image: image88.emf]13.89:  The period of the simple pendulum (the clapper) must be the same as that of the  bell; equating the expression in Eq. (13.34) to that in Eq. (13.39) and solving for  L  gives 
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Note that the mass of the bell,  not the clapper, is us ed. As with any simple pendulum, the period of small oscillations of  the clapper is independent of its mass.      
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 EMBED Word.Document.8 \s [image: image90.emf]13.91:  a)
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 b)There are many possibilities. One is to have a  uniform thin rod pivoted about an axis perpendicular to the rod a distance  d  from its  center. Using the desired period in Eq. (13.39) gives a quadratic  in  d , and using the  maximum size for the length of the rod gives a pivot point a distance of 5.25 mm, which  is on the edge of practicality. Using a “dumbbell,” two spheres separated by a light rod of  length  L  gives a slight improvement to  d =1.6 cm (neglec ting the radii of the spheres in  comparison to the length of the rod; see Problem 13.94).      
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 EMBED Word.Document.8 \s [image: image92.emf]13.93:    a) In Eq. (13.38),  d=x  and from the parallel axis theorem, 
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 EMBED Word.Document.8 \s [image: image93.emf]13.94:  a) From the parellel axis theorem, the moment of inertia about the pivot point  is
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 EMBED Word.Document.8 \s [image: image94.emf]13.95:  a) The net force on the block at equilibrium is zero, and so one spring (the one  with  
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 d) The result of part (c) shows that when a spring is cut in half, the  effective sprin g constant doubles, and so the frequency increases by a factor of 
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 At this point, a simple  pendulum with length 
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 would have the same period as the meter stick without the  added mass; the two bodies oscillate with the same period and do not affect the other’s  motion.    
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 EMBED Word.Document.8 \s [image: image100.emf]13.101:  a) The spring, when stretched, provides an inward force; using 
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    b) The spring will tend to become unboundedly long.      
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