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 EMBED Word.Document.8 \s [image: image15.emf]14.16:     a) Gauge pressure is the excess pressure above atmospheric pressure. The  pressure difference between the surface of the water and the bottom is due to the weight  of the water and is still 2500   Pa after the pressure increase above the surface. But  the  surface pressure increase is also transmitted to the fluid, making the total difference from  atmospheric 2500 Pa+1500 Pa = 4000 Pa.           b) The pressure due to the water alone is 2500 Pa
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 EMBED Word.Document.8 \s [image: image31.emf]14.32:     a) From the equation preceding Eq. (14.10), dividing by the time interval  dt   gives Eq. (14.12).   b) The volume flow rate decreases by 1.50% (to two figures).      
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 EMBED Word.Document.8 \s [image: image41.emf]14.42:     a) The cross - sectional area presented by a sphere is 
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  b) The fractional change in volume is the negative of the fractional change in density.   The density at that depth is then    
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  A fractio nal increase of 
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 Note that to three figures, the gauge pressure and absolute  pressure are the same.       
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  

       

N, 10 88 . 5 m 0 . 3   m 0 . 4   m 00 . 5   s m   80 . 9   m kg 10 00 . 1

5 2 3 3

   

ρgV

    or

N 10 9 . 5

5


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 EMBED Word.Document.8 \s [image: image44.emf]14.45:      Let the width be  w  and the depth at the bottom of the gate be
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   c) The force depends  on the width and the square of the depth, and the torque about the bottom depends on the  width and the cube of the depth; the surface area of the lake does not affect  either result  (for a given width).      
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 EMBED Word.Document.8 \s [image: image47.emf]14.48:      The cylindrical rod has mass 
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 end of the  rod.      
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    which is within 0.36% of the earth’s mass.  d) If 

m

) (r

is used to denote the mass  contained in a sphere of radius 

, r

 then 

. ) (

2

r r Gm g



 Using the same integration as  th at in part (b), with an upper limit of 

r

instead of 

R

 gives the result.     e) 

) kg m N 10 673 . 6 ( ) (   , at      and   , 0 at    0

2 2 11 2

      



R R Gm g R r g r g

 

. s m 85 . 9 m) 10 (6.37 kg) 10 99 . 5 (

2 2 6 24

  

  f)     

;  

2

3

3

4

4

3

3

4

2

























































Br

A

πG Br

Ar

dr

d πG

dr

dg

    setting ths equal to zero gives 

m 10 64 . 5 3 2

6

  

B A r

, an d at this radius  

































































B

A

B A

B

A πG

g

3

2

4

3

3

2

3

4

                 

B

πGA

9

4

2



                 

. s m 02 . 10

) m kg 10 50 . 1 ( 9

) m kg 700 , 12 ( ) kg m N 10 673 . 6 ( 4

2

4 3

2 3 2 2 11





 







π

     



 EMBED Word.Document.8 \s [image: image49.emf]14.50:     a) Equation (14.4), with the radius 
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instead  of height 
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. ) (  

s

dr R r ρg dr ρg dp

   

 This form shows that the pressure decreases with increasing  radius. Integrating, with 

, at    0 R r p

 

   

 

    

r

R r

r R

R

ρg

dr r

R

ρg

dr r

R

ρg

p

R

2 2

s s s ). (

2
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    c) While the same order of magnitude, this is not in very good agreement with the  estimated value. In more realistic density models (see Pr oblem 14.49 or Problem 9.99),  the concentration of mass at lower radii leads to a higher pressure.    
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 EMBED Word.Document.8 \s [image: image52.emf]14.53:     For the barge to be completely submerged, the mass of water displaced would  need to be 
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  but the coal must not be too loosely packed.      



 EMBED Word.Document.8 \s [image: image53.emf]14.54:     The difference between the densities must provide the “lift” of 5800 N (see  Problem 14.59). The average density of the gases in the balloon is then      

. m kg 96 . 0

) m 2200 )( s m 80 . 9 (

) N 5800 (

m kg 23 . 1

3

3 2

3

ave

  

ρ

     



 EMBED Word.Document.8 \s [image: image54.emf]14.55:      a) The submerged volume 
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 EMBED Word.Document.8 \s [image: image55.emf]14.56:     a) The volume displaced must be that which has the same weight and mass as  the ice,
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(note that the choice of the form for the density of water  avoids conversion of units).  b) No; when melted, it is as if the volume displace d by the 
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 of melted ice displaces the same volume, and the water level does not change.   c) 
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  d) The melted water takes up more volume than the salt water  displaced, and so 
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 flows over. A  way of considering this situation (as a thought   experiment only) is that the less dense water “floats” on the salt water, and as there is  insufficient volume to contain the melted ice, some spills over.      



 EMBED Word.Document.8 \s [image: image56.emf]14.57:     The total mass of the lead and wood must be the mass of the water displaced, or    
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    which has  a mass of 5.27 kg.      



 EMBED Word.Document.8 \s [image: image57.emf]14.58:     The fraction  f  of the volume that floats above the fluid is 
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    This increase in lift is not worth the  hazards associated with use of hydrogen.    
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 EMBED Word.Document.8 \s [image: image61.emf]14.62:     To save some intermediate calculation, let the density, mass and volume of the  life preserver be
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 EMBED Word.Document.8 \s [image: image62.emf]14.63:     To the given precision, the density of air is negligible compared to that of brass,  but not compared to that of the wood. The fact that the density of brass may not be  known the three - figure precision does not matter; the mass of the brass is giv en to three  figures. The weight of the brass is the difference between the weight of the wood and the  buoyant force of the air on the wood, and canceling a common factor of 
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air

brass

air wood

wood

brass wood wood wood

1



















 



 

ρ

ρ

M

ρ ρ

ρ

M V ρ M

 

kg. 0958 . 0

m kg 150

m kg 20 . 1

1 ) kg 0950 . 0 (

1

3

3



















 



     



 EMBED Word.Document.8 \s [image: image63.emf]14.64:     The buoyant force on the mass  A , divided  by

kg 70 . 4 kg 80 . 1 kg 1.00 kg 7.50   be must    ,

  

g

(see Example 14.6), so the mass block  is 

kg. 8.20 kg 3.50 kg 70 . 4

 

a) The mass of the liquid displaced by the block is 

kg, 70 . 4

so the density of the liquid is 

. m kg 10 24 . 1

3 3

m 10 3.80

kg 70 . 4

3 3 -

 



b) Scale  D  will read  the mass of the block, 

kg, 20 . 8

as found above. Scale  E  will read the sum of the masses of  the beaker and liquid, 

kg. 80 . 2

   



 EMBED Word.Document.8 \s [image: image64.emf]14.65:   Neglecting the buoyancy of the air, the weight in air is          

N. 0 . 45 ) (

A1 A1 Au Au

 

V ρ V ρ g

    and the buoyant force when suspended in water is    

N. 6.0 N 39.0 N 45.0 ) (

A1 Au water

   

g V V ρ

    These are two equations in the two unknowns 

.   and  

A1 Au

V V

 Multiplying the sec ond by 

A1



 and the first by 

water



and subtracting to eliminate the 

A1

V

term gives                   

N) 0 . 6 ( N) 0 . 45 ( ) (

A1 water A1 Au Au water

ρ ρ ρ ρ g V ρ

  

                        

)) 0 . 6 ( N) 0 . 45 ( (

) (

Au water

A1 Au water

Au

Au Au Au

ρ ρ

ρ ρ ρ

ρ

gV ρ w





 

                              

N)) 0 . 6 )( 7 . 2 ( N) 0 . 45 )( 00 . 1 ((

) 7 . 2 3 . 19 )( 00 . 1 (

) 3 . 19 (







                                       

N. 5 . 33



  Note that in the numerical determination of 

,

Au

w

specific gravities were used instead of  densities.      



 EMBED Word.Document.8 \s [image: image65.emf]14.66:     The ball’s volume is  

3 3 3

cm 7238 cm) 0 . 12 (

3

4

3

4

  

π πr V

  As it floats, it displaces a weight of water equal to its weight. a) By pushing the ball  under water, you displace an additional amount of water equal to 84% of the ball’s  volume or 

. cm 6080 ) cm 7238 )( 84 . 0 (

3 3



 This much water has a mass of 

kg 080 . 6   6080



g

and weighs 

N, 6 . 59 ) s m kg)(9.80 080 . 6 (

2



which is how hard you’ll  have to push to submerge the ball.            b) The upward force on the ball in excess of its own weight was found in part (a): 

N. 6 . 59

 The ball’s mass is equal to the mass of water displaced when the ball is floating:    

kg, 158 . 1 g   1158 ) cm g 00 . 1 )( cm 7238 )( 16 . 0 (

3 3

 

    and its acceleration upon release is thus    

2

net s m 5 . 51

kg 1.158

N 6 . 59

  

m

F

a

     



 EMBED Word.Document.8 \s [image: image66.emf]14.67:     a) The weight of the crown of its volume  V  is 

gV ρ w 

crown

 

 , and when  suspended the apparent weight is the difference between the weight and the buoyant  force,    

. ) (    

water crown crown

gV ρ ρ gV f ρ fw

  

    Dividing by the common factors leads to    

.

1

1

or   

water

crown

crown crown  water

f ρ

ρ

f ρ ρ ρ



   

    As 

, 0



f

the apparent weight approaches zero, which means the crown tends to float;  from the above result, the specific gravity of the crown tends to 1. As 

, 1



f

 the  apparent weight is the same as the weig ht, which means that the buoyant force is  negligble compared to the weight, and the specific gravity of the crown is very large, as  reflected in the above expression.  b) Solving the above equations for  f  in terms of the  specific gravity, 

  , 1

crown

water

ρ

ρ

f

 

and so the weight of the crown would be 

     

N.   2 . 12 N   9 . 12   3 . 19 1 1

 

  c) Approximating the average density by that of lead for a  “thin” gold plate, the apparent weight would be 

     

N.   8 . 11 N   9 . 12   3 . 11 1 1

 

     



 EMBED Word.Document.8 \s [image: image67.emf]14.68:     a) See problem 14.67. Replacing  f  with, respectively, 

w w

water

and 

w w

fluid

 gives    

,

-

fluid fluid

steel

w w

w

ρ

ρ



,

-

water fluid

steel

w w

w

ρ

ρ



    and dividing the second of these by the first gives    

.

-

-

water

fluid

water

fluid

w w

w w

ρ

ρ



    b) When 

fluid

w

is greater than 

water,

w

 the term on the right in the above expression is less  than one, indicating that the fluids is less dense than water, and this is consistent with the  buoyant force when suspended in liquid being  less than that when suspended in water. If  the density of the fluid is the same as that of water 



fluid

w

water

w

, as expected. Similarly,  if 

fluid

w

 is less than 

water

w

, the term on the right  in the above expression is greater than  one, indicating the the fluid is denser than water.  c) Writing the result of part (a) as    

.

1

1

water

fluid

water

fluid

f

f

ρ

ρ







    and solving for 

,

fluid

f

   

     

%. 4 . 84 844 . 0 128 . 0   220 . 1 1 1 1

water

water

fluid

fluid

      

f

ρ

ρ

f

     



 EMBED Word.Document.8 \s [image: image68.emf]14.69:     a) Let the total volume be  V ; neglecting the density of the air, the buoyant force  in terms of the weight is  

,

) (

0

m

water water

















  

V

ρ

g w

g ρ gV ρ B

  or    





 

g

w

g ρ

B

V

w water

0

    b)

. m 10 52 . 2

3 4

Cu water



  

g ρ

w

g ρ

B

Since the total volume of the casting is 

,

water

B

g ρ

the  cavities are 12.4% of the total volume.      



 EMBED Word.Document.8 \s [image: image69.emf]14.70:     a) Let  d  be the depth of the oil layer,  h  the depth that the cube is submerged in  the water, and  L  be the length of a side of the cube. Then, setting the buoyant force equal  to the weight, canceling the common factors of  g  and the cross - section a rea and  supressing units, 

      

L h L L h d L h d L d h (0.65)   so   , (0.35) by    related   are     and     , . ) 550 ( ) 750 ( ) 1000 (

  d . Substitution into the first relation gives 

m. 040 . 0

5.00

2

(750) (1000)

(550) 0) (0.65)(100

  





L

L d

   b) The  gauge pressure at the lower face must be sufficient to support the block (the oil exerts  only sideways forces directly on the b lock), and 

Pa. 539 m) 100 . 0 )( s m 80 . 9 )( m kg (550

2 3

wood

   

gL p

As a check, the gauge  pressure, found from the depths and densities of the fluids, is 

Pa. 539 ) s m 80 . 9 ))( m kg m)(1000 025 . 0 ( ) m kg m)(750 040 . 0 ((

2 3 3

 

     



 EMBED Word.Document.8 \s [image: image70.emf]14.71:     The ship will rise; the total mass of water displaced by the barge - anchor  combination must be the same, and when the anchor is dropped overboard, it displaces  some water and so the barge itself displaces less water, and so rises.   To find the amou nt the barge rises, let the original depth of the barge in the water be 

   

a b water a b 0

  and      where , m m A m m h

  

are the masses of the barge and the anchor, and  A  is the area of the bottom of the barge. When the anchor is dropped, the buoyant force  on the barge is less than  what it was by an amount equal to the buoyant force on the  anchor; symbolically,    

 

,

water steel a water 0 water

g m Ag h Ag h

     



    which is solved for    

 

  

m,   10 57 . 5

m 00 . 8   m kg 7860

kg 0 . 35

4

2 3

steel

a

0



   



  

A

m

h h h



    or about 0.56 mm.      



 EMBED Word.Document.8 \s [image: image71.emf]14.72:     a) The average density of a filled barrel is 

, m kg 875 m kg 750

3

m 0.120

kg 0 . 15

3

oil

3

   

V

m



which is less than the density of seawater,  so the barrel floats.           b) The fraction that floats (see Problem 14.23) is    

%. 0 . 15 150 . 0

m kg 1030

m kg 875

1 1

3

3

water

ave

    





            c) The average dens ity is 

3 3 3

m

kg

m 0.120

kg 0 . 32

m

kg

  1172   910

 

 which means the barrel sinks.  In order to lift it, a tension 

N 173 )   80 . 9 )( m 120 . 0 )(   1030 ( )   80 . 9 )( m 120 . 0 )(   1177 (

2 3 2

s

m

3

m

kg

s

m

3

m

kg

  



T

 is required.      



 EMBED Word.Document.8 \s [image: image72.emf]14.73:     a) See Exercise 14.23; the fraction of the volume that remains unsubmerged is 

. 1

ρL

ρB 

 b) Let the depth of the liquid be  x  and the depth of the water be  y . Then 

.   and    L y x gL wgy Lgx

B

      

 Therefore 

y L x

 

 and 

.

) (

ω L

B L

ρ ρ

L ρ ρ

y







 c) 

m. 046 . 0 m) 10 . 0 (

0 . 1 6 . 13

8 . 7 6 . 13

 





y

   



 EMBED Word.Document.8 \s [image: image73.emf]14.74:     a) The change is height 

y



is related to the displaced volume 

, by   

A

V

y V

   

  where  A  is the surface area of the water in the lock. 

V



 is the volume of water that has  the same weight as the metal,  so                                    

gA ρ

w

A

g ρ w

A

V

y

water

water

 



 

                                      

m. 213 . 0

m)) m)(20.0 0 . 60 )(( s m 80 . 9 )( m kg (1.00x10

N) 10 50 . 2 (

2 3 3

6







      b) In this case, 

V



 is the volume of the metal; in the above expression, 

water



 is  replaced by 

, 00 . 9

water metal

  

 which gives 

m; 189 . 0   and   ,

9

8

9

  



   







y y y y

y

the  water sinks by this amount.      



 EMBED Word.Document.8 \s [image: image74.emf]14.75:     a) Consider the fluid in the horizontal part of the tube. This fluid, with mass 

, Al



 is subject to a net force due to the pressure difference between the ends of the tube,  which is the difference between the gauge pressures at  the bottoms of the ends of the  tubes. This difference is 

), (

R L

y y ρg



 and the net force on the horizontal part of the fluid  is    

, ) (

R L

Ala A y y g

   

    or    

. ) (

R L

l

g

a

y y

 

    b) Again consider the fluid in the horizontal part of the tube.  As in part (a), the fluid is  accelerating; the center of mass has a radial acceleration of magnitude 

, 2

2

rad

l a

 

 and  so the difference in heights between the columns is

. 2 ) )( 2 (

2 2 2

g l g l l

  

    Anticipating Problem, 14.77, an equivalent way to  do part (b) is to break the fluid in  the horizontal part of the tube into elements of thickness  dr ; the pressure difference  between the sides of this piece is 

dr r dp ) (

2

  

 (see Problem 14.78), and integrating  from 

, 2   gives      to 0

2 2

l p l r r

    

 giving  the same result.     c) At any point, Newton’s second law gives 

pAdla dpA



from which the area  A   cancels out. Therefore the cross - sectional area does not affect the result, even if it varies.  Integrating the above result from 0 to  l  gives 

pal p

 

 between the ends. This is  related to the height of the columns through 

y pg p

  

 from which  p  cancels out.      



 EMBED Word.Document.8 \s [image: image75.emf]14.76:     a) The change in pressure with respect to the vertical distance supplies the force  necessary to keep a fluid element in vertical equilibrium (opposing the weight). For the  rotating fluid, the change in pressure with respect to radius supplies the  force necessary to  keep a fluid element accelerating toward the axis; specifically, 

, ρa dr dr dp

p

p

 





and  using 

r ω a

2



 gives 

.

2

r ρω

p

p







 b) Let the pressure at 

  0 , 0

 

r y

be 

a

p

(atmospheric   pressure); integrating the expression for 

p

p





 from part (a) gives    

 

. 2

2

a

2

0 , r

ρω

p y r p

  

    c) In Eq. 

) 0 , ( , ), 5 . 14 (

1 a 2

  

y r p p p p

as found in part (b), 

), ( y   and   0

2 1

r h y

 

 the  height of the liquid above the 

0



y

 pla ne. Using the result of part (b) gives 

. 2 ) (

2 2

g r ω r h



     



 EMBED Word.Document.8 \s [image: image76.emf]14.77:     a) The net inward force is 

  , Adp pA A dp p

    and the mass of the fluid  element is 

. r ρAd



 Using Newton’s second law, with the inward radial acceleration of 

, '

2

r



 gives 

.

2

r d r dp

 

 

 b) Integrating the above expression,    

 

 



p

p

r

r

r d r dp

0 0

2

ρω

   

 

,

2

0

2 2

2

0

r r

ρω

p p



















 

  which is the desired result. c) Using the same reasoning as in Section 14.3 (and Problem  14.78), the net force o n the object must be the same as that on a fluid element of the same  shape. Such a fluid element is accelerating inward with an acceleration of magnitude 

, cm

2

R ω

 and so the force on the object is 

.

cm

2

R ρVω

 d) If 

, ob cm

R

cmob

R ρ ρ



 the inward  force is greater than that needed to keep the object moving in a circle with radius 

cmob

R

at  angular frequency 

ω

, and the object moves inward. If 

, ob cm

cmob

R ρ ρR



, th e net force is  insufficient to keep the object in the circular motion at that radius, and the object moves  outward. e) Objects with lower densities will tend to move toward the center, and objects  with higher densities will tend to move away from the cente r.      



 EMBED Word.Document.8 \s [image: image77.emf]14.78:      (Note that increasing 

x

 corresponds to moving toward the back of the car.)          a) The mass of air in the volume element is 

ρAdx ρdV



, and the net force on the  element in the forward direction is 

 

. Adp pA A dp p

  

From Newton’s second law, 

, ) ( a dx ρA Adp



 from which 

. adx ρ dp



 b) With 

ρ

given to be constant, and with 

.   , 0  

0 0

ρax p p x at p p

   

 c) Using 

3

kg/m   1.2



ρ

in the result of part (b) gives 

  

 

atm

p

-5 2 3

10 15  

 

~

  Pa   0 . 15 m   5 . 2   s m   0 . 5   m kg   2 . 1

 

, so the fractional pressure  difference is negligble. d) Following the argument in Section 14 - 4, the force on the  balloon must be the same as the force on the same volume of air; this force is the product  of the mass 

ρV

an d the acceleration, or 

. ρVa

 e) The acceleration of the balloon is the  force found in part (d) divided by the mass 

 

. ,

bal bal

a ρ ρ or V ρ

 The acceleration relative to  the car is the difference between this acceleration and the car’s acce leration, 

 

 

. 1

bal rel

a ρ ρ a

 

 f) For a balloon filled with air, 

 

1

bal



ρ ρ

 (air balloons tend to sink  in still air), and so the quantity in square brackets in the result of part (e) is negative; the  balloon moves to the back of the car. Fo r a helium balloon, the quantity in square  brackets is positive, and the balloon moves to the front of the car.      



 EMBED Word.Document.8 \s [image: image78.emf]14.79:     If the block were uniform, the buoyant force would be along a line directed  through its geometric center, and the fact that the center of gravity is not at the geometric  center does not affect the buoyant force. This means that the torque about t he geometric  center is due to the offset of the center of gravity, and is equal to the product of the  block’s weight and the horizontal displacement of the center of gravity from the  geometric center, 

. 2 m) 075 . 0 (

 The block’s mass is half of its  volume times the density  of water, so the net torque is    

m, N 02 . 7

2

m 075 . 0

) s m 80 . 9 (

2

) m kg 1000 ( ) m 30 . 0 (

2

3 3

 

    or 

m N   0 . 7



to two figures. Note that the buoyant force and the block’s weight form a  couple, and the torque is the same about any axis.    



 EMBED Word.Document.8 \s [image: image79.emf]14.80:     a) As in Example 14.8, the speed of efflux is 

. 2gh

 After leaving the tank,  the water is in free fall, and the time it takes any portion of the water to reach the  ground is 

,

) ( 2

g

h H

t





 in which time the water travels  a horizontal distance 

). ( 2 h H h vt R

  

          b) Note that if 

, ) ( ) ( , h h H h H h h H h

 







 



 and so 

h H h

 



 gives the  same range. A hole 

h H



 below the water surface is a distance  h  above the bottom  of the tank.      



 EMBED Word.Document.8 \s [image: image80.emf]14.81:     The water will rise until the rate at which the water flows out of the hole is  the rate at which water is added;    

, 2

dt

dV

gh A



    which is solved for    

cm. 1 . 13

) s m 80 . 9 ( 2

1

m 10 50 1

s m 10 40 . 2

2

1

2

2

2 4

3 4

2











































.

g A

dt dV

h

    Note that the result is independent of the diameter of the bu cket.      



 EMBED Word.Document.8 \s [image: image81.emf]14.82:   a)

. s m 200 . 0 ) m 0160 . 0 ( ) m 00 . 8 )( s m 80 . 9 ( 2 ) ( 2

3 2 2

3 3 1 3 3
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A y y g A v

  b) Since 

3

p

 is atmospheric, the gauge pressure at point 2 is  

), (

9

8

1

2

1
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2

1

3 1

2

2
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2

3

2

2

2

3 2

y y ρg

A

A

v v v p
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





























     

  using the expression for 

3

υ

 found above. Subsititution of numerical values gives 

4

2

10 97 . 6

 

p

 Pa.      



 EMBED Word.Document.8 \s [image: image82.emf]14.83:     The pressure difference, neglecting the thickness of the wing, is 

), (   ) 2 1 (

2

bottom

2

top

v v ρ p

  

 and solving for the speed on the top of the wing gives    

. s m 133 ) m kg 20 . 1 ( Pa) 2000 ( 2 s) m 120 (

3 2

top

  

v

    The pressure difference is comparable to that due to an altitude change of  about 

m, 200

  so ignoring the thickness of the wing is valid.      



 EMBED Word.Document.8 \s [image: image83.emf]14.84:     a) Using the constancy of angular momentum, the product of the radius and  speed is constant, so the speed at the rim is about 

h. km 17

350

30

h) km 200 (















 b) The  pressure is lower at the eye, by an amount  

Pa.   10 8 . 1

h km 6 . 3
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 EMBED Word.Document.8 \s [image: image86.emf]14.87:     a) The speed of the liquid as a function of the distance  y  that it has fallen is 
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 EMBED Word.Document.8 \s [image: image88.emf]14.89:     a) The tension in the cord plus the weight must be equal to the buoyant force, so    
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 EMBED Word.Document.8 \s [image: image89.emf]14.90:     When the level of the water is a height  y  above the opening, the efflux speed is 
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 EMBED Word.Document.8 \s [image: image90.emf]14.91:     a) The fact that the water first moves upwards before leaving the siphon does not  change the efflux speed, 
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 EMBED Word.Document.8 \s [image: image91.emf]14.92:     Any bubbles will cause inaccuracies. At the bubble, the pressure at the surfaces  of the water will be the same, but the levels need not be the same. The use of a hose as a  level assumes that pressure is the same at all point that are at the same  level, an  assumption that is invalidated by the bubble.  


