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The much higher bulk modulus  increases both the needed pressure amplitude and the speed, but the speed is proportional  to the square root of the bulk modulus. The overall effect is that for such a large bulk  modulus, large p ressure amplitudes are needed to produce a given displacement.      
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  The amplitude at 
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exceeds the pain threshold, and at 
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 the sound  would be unbearable.      
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  times smaller than the pressure amplitude at sea level (Example 16 - 1), so pressure  amplitude decreases with altitude for constant frequency and displacement amplitude.      
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 EMBED Word.Document.8 \s [image: image6.emf]16.7:     Use 

  s m   1482

water



v

at 

C, 20



 as given in Table 

  1 . 16

 The sound wave travels  in water for the same time as the wave travels a distance 

m 8 . 20 m   20 . 1 m   0 . 22

 

 in air,  and so the depth of the diver is    

   

m.   6 . 89

s m   344

s m   1482

m   8 . 20 m   8 . 20

air

water

 

v

v

    This is the depth of the diver; the distance from the horn is 

m.   8 . 90

     



 EMBED Word.Document.8 \s [image: image7.emf]16.8:     a), b), c) Using Eq. 

 , 10 . 16

   

     

 

s m 10 32 . 1

mol kg   10 02 . 2

K   15 . 300   K mol J   3145 . 8   41 . 1

3

3

2

H

 









v

 

     

 

s m 10 02 . 1  

mol kg   10 00 . 4

K   15 . 300   K mol J   3145 . 8   67 . 1

3

3

e

H

 









v

          

     

 

. s m 323

mol kg   10 9 . 39

K   15 . 300   K mol J   3145 . 8   67 . 1

3

Ar











v

    d) Repeating the calculation of Example 16.5 at 

K 15 . 300



T

 gives 

, s m 348

air



v

 and  so 

air He air H

  94 . 2 ,   80 . 3

2

v v v v

 

 and 

.   928 . 0

air Ar

v v



     



 EMBED Word.Document.8 \s [image: image8.emf]16.9:     Solving Eq. (16.10) for the temperature,    

  

K, 191

K mol J 3145 . 8 40 . 1

hr km 6 . 3

s m 1

 

0.85

h km 850

mol) kg 10 8 . 28 (

2

3

2











































 



R

Mv

T



    or 

  C. 82

 

     b) See the results of Problem 18.88, the variation of atmospheric pressure  with altitude, assuming a non - constant temperature. If we know the altitud e we can use  the result of Problem 18.88, 
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    (The result is known to only two figures, being the difference of quantities known to  three figures.)      
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    c) The amplitude is larger in air, by a factor of about  60. For a given frequency, the much less dense air molecules must have a larger  amplitude to transfer the same amount of energy.      
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        b) No; for a fixed wavelength , the frequency is proportional to the speed of sound in  the ga s.      
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 b) The length  of the column is half of the original length, and so the frequency of the fundamental  m ode is twice the result of part (a), or 1.23 kHz.    
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  The path difference is a half - integer number of wavelengths, so the interference is  destructive.      



 EMBED Word.Document.8 \s [image: image35.emf]16.36:    

,   Since   a)

beat

b a

f f f

   the possible frequencies are 440.0 

 

Hz   5 . 1 Hz

  

Hz   441.5 or    Hz   5 . 438

    b) The tension is proportional to the square of the frequency.  Therefore 

 

Hz   440

Hz   5 . 1 2

2

2

  i)   .   So    . 2   and  

     







T

T

f

f

T

T

f f T f T

 

  . 10 82 . 6

3



 

 

 

. 10 82 . 6   ii)

3

Hz   440

Hz   5 . 1 2







   

T

T

   



 EMBED Word.Document.8 \s [image: image36.emf]16.37:     a) A frequency of 

  Hz   110 Hz   112 Hz   108

2

1

  will be heard, with a beat  frequency of 112 Hz – 108 Hz = 4 beats per second.    b) The maximum amplitude is the  sum of the amplitudes of the individual waves, 

 

. m   10 0 . 3 m   10 5 . 1 2

8 8

 

  

 The  minimum amplitude i s the difference, zero.      
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 This is, of  course, the same result as obtained directly from Eq. (16.27). 
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 The frequencies corresponding to  these wavelengths are      c) 431 Hz and     d) 373 Hz.        
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    b) Using the result of part (a) in Eq. (16.18), or solving Eq. (16.27) for 

S

v
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  This is less than the answer in part (a).   The waves travel in  air and what matters is the velocity of the listener or source  relative to the air, not relative to each other.      
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  This is negative because the listener is moving away from the source.      
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 EMBED Word.Document.8 \s [image: image46.emf]16.47:     a) Mathematically, the waves given by Eq. (16.1) and Eq. (16.4) are out of  phase. Physically, at a displacement node, the air is most compressed or rarefied on either  side of the node, and the pressure gradient is zero. Thus, displacement nodes a re pressure  antinodes.     b) (This is the same as Fig. (16.3).) The solid curve is the pressure and the  dashed curve is the displacement.             c)       The pressure amplitude is not the same. The pressure gradient is either zero or  undefined. At the place s where the pressure gradient is undefined mathematically (the  “cusps” of the 

x y -

plot), the particles go from moving at uniform speed in one direction  to moving at the same speed in the other direction. In the limit that Fig. (16.43) is  an  accurate depiction, this would happen in a vanishing small time, hence requiring a very  large force, which would result from a very large pressure gradient.     d) The statement is  true, but incomplete. The pressure is indeed greatest where the displac ement is zero, but  the pressure is equal to its largest value at points other than those where the displacement  is zero.      
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    s o the airliner is not in violation of the ordinance.      
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        c) T he distance is proportional to the reciprocal of the square root of the intensity, and  hence to 10 raised to half of the sound intensity levels divided by 10. Specifically,    
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   (b) If the tension is doubled, all the frequencies of the string will increase by a factor of 
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 EMBED Word.Document.8 \s [image: image52.emf]16.53:     a) For an open pipe, the difference between successive frequencies is the  fundamental, in this case 392 Hz, and all frequencies would be integer multiples of this  frequency. This is not the case, so the pipe cannot be an open pipe. For a stopped  pipe,  the difference between successive frequencies is twice the fundamental, and each  frequency is an odd integer multiple of the fundamental. In this case, 
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 EMBED Word.Document.8 \s [image: image53.emf]16.54:     The steel rod has standing waves much like a pipe open at both ends, as shown  in Figure (16.18). An integral number of half wavelengths must fit on the rod, that is, 
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 from either end, or at 0.375 m from either end.      



 EMBED Word.Document.8 \s [image: image54.emf]16.55:     The shower stall can be modeled as a pipe closed at both ends, and hence there  are nodes at the two end walls. Figure (15.23) shows standing waves on a  string  fixed at  both ends but the sequence of harmonics is the same, namely that an integral n umber of  half wavelengths must fit in the stall.   a) The condition for standing waves is 
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    Note that the fundamental and second harmonic, which would have the greatest  amplitude, are frequencies typically in the normal range of male singers. Hence, men do  sin g better in the shower! (For a further discussion of resonance and the human voice, see  Thomas D. Rossing ,  The Science of Sound , Second Edition, Addison - Wesley, 1990,  especially Chapters 4 and 17.)      
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 EMBED Word.Document.8 \s [image: image56.emf]16.57:     a) The second distance is midway between the first and third, and if there are no  other distances for which resonance occurs, the difference between the first and third  positions is the wavelength 
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 EMBED Word.Document.8 \s [image: image57.emf]16.58:     a) Considering the ear as a stopped pipe with the given length, the frequency of  the fundamental is 
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 EMBED Word.Document.8 \s [image: image58.emf]16.59:     a) From Eq. (15.35), with  m  the mass of the string and  M  the suspended mass,                    

  

ρ L πd

Mg

mL

F

f

2 2

1

4

                         

Hz 3 . 77

) m kg 10 4 . 21 ( m) 45 . 0 ( m) 10 225 (

) s m kg)(9.80 10 0 . 420 (

3 3 2 2 6

2 3



 







π

    and the tuning fork frequencies for which the fork would vibrate are integer mult iples of 
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 so the tension does not vary appreciably along  the string.      
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 EMBED Word.Document.8 \s [image: image63.emf]16.64:     To produce a 10.0 Hz beat, the bat hears 2000 Hz from its own sound plus 2010  Hz coming from the wall. Call 

v

the magnitude of the bat’s speed, 

w

f

 the frequency the  wall receives (and reflects), and  V  the  speed of sound.   Bat is moving source and wall is stationary observer:    
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                                                                      (2)     Solve (1) and (2) together:    
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 EMBED Word.Document.8 \s [image: image64.emf]16.65:  a) 
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 EMBED Word.Document.8 \s [image: image65.emf]16.66:     (See also Problems 16.70 and 16.74). Let 
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 EMBED Word.Document.8 \s [image: image66.emf]16.67:     a)
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    The reflected waves have higher frequency.      



 EMBED Word.Document.8 \s [image: image67.emf]16.68:     a) The maximum velocity of the siren is 
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  b) The maximum (minimum) frequency is heard when the platform is passing through  equilibrium and movin g up (down).      



 EMBED Word.Document.8 \s [image: image68.emf]16.69:     a) 
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 EMBED Word.Document.8 \s [image: image69.emf]16.70:      (See Problems 16.66, 16.74, 16.67).    a) In a time  t , the wall has moved a  distance 
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 and the wavefront that hits the wall at time  t  has traveled a distance  vt , where 
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    b) The reflected  wave has traveled  vt  and the wall has moved 
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so the wall and the wavefront are  separated by 

. ) (

1

t v v



     c) The distance found in part (b) must contain  the number of  reflected waves found in part (a), and the ratio of the quantities is the wavelength of the  reflected wave, 
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 EMBED Word.Document.8 \s [image: image70.emf]16.71:     a)    
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             b) For small  x , the binomial theorem (see Appendix B) gives 

 

, 2 1 1

2 1

x x

  

 

 

, 2 1 1

2 1

x x

  



 so    













 













 

c

v

f

c

v

f f 1

2

1

S

2

S L

    where the binomial theorem has been used to approximate 

 

. 1 2 1

2

x x

  

    The above result may be obtained without resort to the binomial theorem by  expressing 
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    To first order in 
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, the square root in the denom inator is 1, and the previous result is  obtained.     c) For an airplane, the approximation 
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is certainly valid, and solving  the expression found in part (b) for 
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is seen to be valid. Note that in this case, the frequency  difference  is known to three figures, so the speed of the plane is known to three figures.      



 EMBED Word.Document.8 \s [image: image71.emf]16.72:     a) As in Problem 16.71,    
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    with the minus sign indicating that the gas is approaching the earth, as is expected since 

.

S R

f f


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     c) The ratio of the width  of the nebula to 
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 times the distance from the earth is the ratio of the angular width  (taken as 5 arc minutes) to an entire circle, which  is 
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    so the explosion actually took place about 4100  B.C      



 EMBED Word.Document.8 \s [image: image72.emf]16.73:     a) The frequency is greater than 2800 MHz; the thunderclouds, moving toward  the installation, encounter more wavefronts per time than would a stationary cloud, and  so an observer in the frame of the storm would detect a higher frequency. Using th e result  of Problem 16.71, with 
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    b) The waves are being sent at a higher frequency than 2800 MHz from an approaching  source, and so are received at a higher frequency. Repeating the above calculation gives  t he result that the waves are detected at the installation with a frequency 109 Hz greater  than the frequency with which the cloud received the waves, or 218 Hz higher than the  frequency at which the waves were originally transmitted at the receiver. Note t hat in  doing the second calculation, 

Hz   109 MHz   2800

S

 

f

is the same as 

MHz   2800
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 EMBED Word.Document.8 \s [image: image73.emf]16.74:     a) (See also Example 16.19 and Problem 16.66.) The wall will receive and  reflect pulses at a frequency 
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    b) In this case, the sound reflected from the wall will have a lower frequency, and  using 
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 EMBED Word.Document.8 \s [image: image74.emf]16.75:     Refer to Equation (16.31) and Figure (16.38). The sound travels a distance 
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 EMBED Word.Document.8 \s [image: image75.emf]16.76:     a)                    b) From Eq. (16.4), the function that has the given 
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    e) The speaker cone moves with the displacement as found in part (c ); the speaker  cone alternates between moving forward and backward with constant magnitude of  acceleration (but changing  sign). The acceleration as a function of time is a square wave  with amplitude 
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 EMBED Word.Document.8 \s [image: image76.emf]16.77:     Taking the speed of sound to be 
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     c) With the  result of part (a), the amplitudes, either displacement or pressure, must be subtracted.  That is, the intensity is found by taking the square roots of the intensities found in part  (b), subtracting, and squaring the difference. The result is th at 

dB.   62.1   and  W  10 60 . 1

6

  



β I

 


