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      b)   The total flux through the cube must be zero; any flux entering the cube must also  leave it.      
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    f)   All that matters for Gauss’s law is the total amount of charge enclosed by the  surface, not its distributio n within the surface.      
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    c)   No. All that matters is the total charge enclosed by the cube, not the details of  where the charge is located.      
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 But because we can choose any volume we  want, 

ρ

 must be zero if the integral equals zero.     b)   If there  is no charge in a region of space, that does NOT mean that the electric field  is uniform. Consider a closed volume close to, but not including, a point charge. The field  diverges there, but there is no charge in that region.      
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,  the field CAN be uniform. All that is important is that there be zero flux  through the  surface of the bubble (since it encloses no charge). (See Exercise 22.61.)      
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  But the box is  symmetrical, so for one side, the flux is: 
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    b)   No change. Charge enclosed is the same.      
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 inside of a conductor or else free charges would move under the influence of  forces, violating our electrostatic assumptions (i.e., that charges aren’t moving).      
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    b)   As long as we are outside the sphere, the charge enclosed is constant and the sphere  acts like a point charge.      
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 EMBED Word.Document.8 \s [image: image17.emf]22.18:   Draw a cylindrical Gaussian surface with the line of charge as its axis. The  cylinder has radius 0.400 m and is 0.0200 m long. The electric field is then 840 N/C at  every point on the cylindrical surface and directed perpendicular to the surface. Th us        
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 EMBED Word.Document.8 \s [image: image19.emf]22.20:   a)   For points outside a uniform spherical charge distribution, all the charge can  be considered to be concentrated at the center of the sphere. The field outside  the sphere  is thus inversely proportional to the square of the distance from the cente r. In this case:  
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    b)   For  points outside a long cylindrically symmetrical charge distribution, the field is  identical to that of a long line of charge:  
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 EMBED Word.Document.8 \s [image: image21.emf]22.22:   For points outside the sphere, the field is identical to that of a point charge of the  same total magnitude located at the center of the sphere. The total charge is given by  charge density 
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      b)   At a distance of  0.300 m from the center (double the sphere’s radius) the field will  be 1/4 as strong: 10.6 
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 EMBED Word.Document.8 \s [image: image23.emf]22.24:   a)   Positive charge is attracted to the inner surface of the conductor by the charge  in the cavity. Its magnitude is the same as the cavity charge: 
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 EMBED Word.Document.8 \s [image: image25.emf]22.26:   a)   At a distance of 0.1 mm from the center, the sheet appears “infinite,” so:  
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    b)   At a distance of 100 m from the center, the sheet looks like a point, so:  
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    c)   There would be no difference if the sheet  was a conductor. The charge would  automatically spread out evenly over both faces, giving it half the charge density on any  as the insulator 
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 near one face. Unlike a conductor, the insulator  is  the  charge density in some sense. Thus  one shouldn’t think of the charge as “spreading over  each face” for an insulator. Far away, they both look like points with the same charge.      
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 same as an infinite line of charge.      
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 there. Yes, the charge has been shielded by the grounded  conductor. There is nothing like positive and negative mass (the gravity force is always  attractive), so this cannot be done for gravity.      
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  b)   Total flux:  
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 EMBED Word.Document.8 \s [image: image30.emf]22.31:   a)         b)   Imagine a charge  q  at the center of a cube of edge length  2L.  Then: 
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  Here the square is one 24th of the surface area of the imaginary cube, so it intercepts 1/24  of the flux. That is, 
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 EMBED Word.Document.8 \s [image: image31.emf]22.32:   a)  
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    b)   Since the field is parallel to the surface, 
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    c)  Choose the Gaussian surface to equal the volume’s surface. Then: 750  –   EA =
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q

 we must have some net flux flowing  in  so 

    A E EA
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 on second face.     d)  

0



q

 but we have  E  pointing  away  from face  I . This is due to an external field  that does not affect the flux but affec ts the value of  E .      



 EMBED Word.Document.8 \s [image: image32.emf]22.33:   To find the charge enclosed, we need the flux through the parallelepiped:    
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    b)   There must be a net charge (negative) in the para llelepiped since there is a net  flux flowing into the surface. Also, there must be an external field or all lines would point  toward the slab.      



 EMBED Word.Document.8 \s [image: image33.emf]22.34:         The 
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 particle feels no force where the net electric field is zero. The fields can  cancel only in regions A and B.        
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  The fields cancel 16 cm fro m the line in regions A  and  B.      



 EMBED Word.Document.8 \s [image: image34.emf]22.35:         The electric field 
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 of the sheet of charge is toward the sheet, so the electric  field 
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 of the sphere must be away from the sheet. This is true above the center of the  sphere. Let  r  be the distance ab ove the center of the sphere for the point where the  electric field is zero.    
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 EMBED Word.Document.8 \s [image: image35.emf]22.36:   a)   For 
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since no charge is enclosed.     For 
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 since there is + q  inside a radius  r .     For 
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0, since now the  – q  cancels the inner + q .     For 
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q

πε
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 

 since again the total cha rge enclosed is + q .   b)     c)   Charge on inner shell surface is  – q .   d)   Charge on outer shell surface is + q .   e)        
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 since the charge enclosed is  Q .  
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 since the  – Q  on the  inner surface of the shell cancels the + Q  at the  center of the sphere.  
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, since the total enclosed charge is  – 2 Q .     b)   The s urface charge density on inner surface: 
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    d)       e)        
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      (iv)  
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 since  the net charge enclosed is zero.       (v)  
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            (ii)   small shell outer:  

q Q 2

 
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 EMBED Word.Document.8 \s [image: image41.emf]22.42:   a)   We need:      
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      c)   We see a discontinuity in going from the conducting  sphere to the insulator  due to the thin surface charge of the conducting sphere — but we see a smooth transition  from the uniform insulator to the outside.          



 EMBED Word.Document.8 \s [image: image42.emf]22.43:   a)   The sphere acts as a point charge on an external charge, so:  
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  radially inward.       (b)   If the point charge was inside the sphere (where there is no electric field) it  would feel zero force.      
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 EMBED Word.Document.8 \s [image: image44.emf]22.45:   a)  
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 radially outward, as in  22.48   (b) .     b)  
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 radially outward, since again the charge enclosed is the  same as in part (a).       c)       d)   The inner and outer surfaces of the outer cylinder must have the same  amount  of charge on them: 
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 EMBED Word.Document.8 \s [image: image45.emf]22.46:   a)   (i)    
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 there is no net charge enclosed, so the electric field is zero.            (iii)    
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        b)   (i)   Inner charge per unit length is 
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  (ii)   Outer cha rge per length is 
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 EMBED Word.Document.8 \s [image: image46.emf]22.47:   a)   (i)  
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  radially outward.        (ii)  
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there is not net charge enclosed, so the electric field is zero.       (iii)  
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there is no net charge enclosed, so the electric field is zero.         b )   (i)   Inner charge per unit length is 
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       (ii)   Outer charge per length is ZERO.      



 EMBED Word.Document.8 \s [image: image47.emf]22.48:   a)  
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    c)  
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the electric field for BOTH  regions is 
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so they are consistent.     d)        



 EMBED Word.Document.8 \s [image: image48.emf]22.49:   a)   The conductor has the surface charge density on BOTH sides, so it has twice  the enclosed charge and twice the electric field.     b)   We have a conductor with surface charge density 

σ

 on both sides. Thus the  electric field outsi de the plate is 
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 To find the field  inside the conductor use a Gaussian surface that has one face inside the conductor, and  one outside.   Then:      
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 EMBED Word.Document.8 \s [image: image49.emf]22.50:   a)   If the nucleus is a uniform positively charged sphere, it is only at its very  center where forces on a charge would balance or cancel       b)  
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    So from the simple harmonic motion equation:      
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    d)   If 

R r



 then the electron would still oscillate but not undergo simple  harmonic motion, because for 
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 and is not linear.      



 EMBED Word.Document.8 \s [image: image50.emf]22.51:   The electrons are separated by a distance 
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 and the amount of the positive  nucleus’s charge that is within radius 
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 is all that exerts a force on the electron. So:  
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 EMBED Word.Document.8 \s [image: image52.emf]22.53:   a)   At 
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 EMBED Word.Document.8 \s [image: image53.emf]22.54:   a)   The electric field of the slab must be zero by symmetry. There is no preferred  direction in the 
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- z  plane, so the electric field can only point in the 
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- direction. But at  the origin in the 
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- direction, neither the positive nor negative directions should be  singled out as special, and so the field must be zero.     b)   Use a Gaussian surface that has one face of area A on in the 
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 EMBED Word.Document.8 \s [image: image55.emf]22.56:   a)   We could place two charges 
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             b)   In order for the charge to be stable, the electric field in a neighborhood around it  must always point back to the equilibrium positio n.       c)   If 
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 is moved to infinity and we require there to be an electric field always  pointing in to the region where 
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 had been, we could draw a small Gaussian surface  there. We would find that we need a negativ e flux into the surface. That is, there has to be  a negative charge in that region. However, there is none, and so we cannot get such a  stable equilibrium.       d)   For a negative charge to be in stable equilibrium, we need the electric field to  always point a way from the charge position. The argument in (c) carries through again,  this time inferring that a positive charge must be in the space where the negative charge  was if stable equilibrium is to be attained.    
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 EMBED Word.Document.8 \s [image: image60.emf]22.61:   a)   For a sphere NOT at the coordinate origin:  
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 EMBED Word.Document.8 \s [image: image61.emf]22.62:   Using the technique of  22.61,  we first find the field of a cylinder off - axis, then the  electric field in a hole in a cylinder is the difference between two electric fields — that of a  solid cylinder on - axis, and one off - axis.  
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 EMBED Word.Document.8 \s [image: image65.emf]22.66:   a)   Charge enclosed:  
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