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Chapter 6 

Applications of Newton’s Laws 

Answers to Even-numbered Conceptual Questions 

2. Spinning the wheels is likely to decrease the force exerted by the Jeep.  The reason is that 
the force exerted by the spinning wheels is kinetic friction, and the coefficient of kinetic 
friction is generally less than the coefficient of static friction.  The spinning wheels look 
better in the movie, however. 

4. The maximum acceleration is determined by the normal force exerted on the drive wheels.  
If the engine of the car is in the front, and the drive wheels are in the rear, the normal 
force is less than it would be with front-wheel drive.  During braking, however, all four 
wheels participate – including the wheels that sit under the engine. 

6. Friction is beneficial whenever you want to start, stop, or turn a car.  It is also beneficial 
when you tune a guitar or tie your shoes. 

8. This is possible because if you spin the bucket rapidly enough, the force needed to 
produce circular motion is greater than the force of gravity.  In this case, a force in 
addition to gravity must act at the top of the circle to keep the water moving in its circular 
path.  This force is provided by the bottom of the bucket.  Therefore, the bottom of the 
bucket pushes against the water, and the water pushes back against the bucket – this keeps 
the water from falling out of the bucket. 

10. At the equator, you are moving in a circular path.  Therefore, part of the force of gravity 
acting on you is providing your centripetal acceleration; the rest shows up as a reduced 
weight on the scale.  At the poles, the scale reads your full weight.  (In addition, the Earth 
bulges at the equator, due to the same effects just discussed.  Therefore, you are farther 
from the center of the Earth when you are at the equator, and this too diminishes your 
weight, as we shall see in Chapter 12.) 

12. Yes.  Equilibrium simply means that the net force acting on an object is zero.  Therefore, 
an object moving with constant velocity can be considered to be in equilibrium.  In a 
frame of reference moving with the same velocity, the object would be at rest and would 
have zero net force acting on it – which is the way we usually think of equilibrium. 

14. In principle, the reading on the scale would be greater than 900 N if the Earth were to stop 
rotating.  See the discussion for Question 10 for further details. 

16. Astronauts feel weightless because they are in constant free fall as they orbit, just as you 
would feel weightless inside an elevator that drops downward in free fall. 

18. A passenger on this ride feels pushed against the wall, which means that the wall, in turn, 
exerts a normal force on the passenger.  If the corresponding force of static friction is 
greater than the passenger’s weight, the passenger stays put as the floor is lowered away.  
(Why do all passengers stay put at the same rotational speed, regardless of their weight?) 

20. If the parking brake is applied while the car is in motion, the rear wheels begin to skid 
across the pavement.  This means that the friction acting on the rear wheels is kinetic 
friction, which is smaller in magnitude than the static friction experienced by the front 
wheels.  As a result, the rear wheels will overtake the front wheels, causing the car to spin 
around and begin moving rear wheels first.  This is standard procedure for stunt drivers 
wishing to spin a car around in a chase scene. 
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22. As the basket within a washing machine rotates, the clothes collect on the rim of the 
basket.  Here the basket exerts an inward force on the clothes causing them to follow a 
circular path.  The water contained in the clothes, however, is able to pass through the 
holes of the basket where it can be drained from the machine. 

 
24. (a)  If the spring is cut in half, it stretches half as much for a given applied force as it 

stretched before being cut.  Therefore, the force constant of the half spring is twice what it 
was for the full spring.  (b)  When two springs are connected end-to-end, they stretch 
twice as much for a given applied force.  It follows that the force constant in this case is 
half what is was for a single spring. 

 
26. People on the outer rim of a rotating space station must experience a force directed toward 

the center of the station in order to follow a circular path.  This force is applied by the 
“floor” of the station, which is really its outermost wall.  Because people feel an upward 
force acting on them from the floor, just as they would on Earth, the sensation is like an 
“artificial gravity.” 

 
28. When a bicycle rider leans inward on a turn, the force applied to the wheels of the bicycle 

by the ground is both upward and inward.  It is this inward force that produces the 
centripetal acceleration of the rider. 

 
30. The physics of this scene is somewhere between “bad” and “ugly”.  When the rope burns 

through, Robin is moving horizontally.  This horizontal motion should continue as Robin 
falls, leading to a parabolic trajectory rather than the straight downward drop shown in the 
movie. 

 
Solutions to Problems 

 1. Determine the deceleration caused by friction. If the player’s initial velocity is in the positive direction, then the 
force of kinetic friction is negative. 

k k kf N mgµ µ= − = −  

k
k 0.41f a g

m
µ= = − = − 2 2

m m9.81 4.02 
s s

 
= − 

 
 

Calculate how far the baseball player slid. 

( )
( )2

2m2 2
sf i
m
s

0 7.90 
7.8 m

2 2 4.02 

v vx
a

−−
∆ = = =

−

 

The player slid 7.8 m. 

 2. Choose the x-axis along the direction of motion. 
ksinxF W fθ= − =∑

ksin cosmg mg ma
ma  

θ µ θ− =  

( )
2

2

m
s

m
s

1.05 
.0 0.570

9.81 cos35.0
° − =

°
k tan tan 35

cos
a

g
µ θ

θ
= − =

 

 3. s sF ma mg fµ= = =  

2

2

m
s

s m
s

12 
1.2

9.81 
a
g

µ = = =  
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 4. 0 s sF f mgµ= =  

( )
0

2
m
s

2.25 N 0.127
(1.80 kg) 9.81 

s
F
mg

µ = = =

k k

 

F f mgµ= =  

( )2
m
s

1.50 N 0.0849
) 9.81 

=
(1.80 kg

k
F

mg
µ = =  

 5. The frictional force is 0.75 N opposite the direction of the push. 

 6. (a) When enough of the tie hangs over the edge, the force of gravity acting on the hanging mass of the tie 
overcomes the force of static friction acting on that portion of the tie lying on the table. 

  (b) s s
1 3
4 4

mg N m gµ µ  = =  
 

 

s
1
3

µ =  

 
7.

 

( )2

s
s

s

s
m
s

cos ( sin )

cos sin

0.57(32kg) 9.81 

cos 21 0.57sin 21
250 N

xF N
F mg F

mg
F

µ
θ µ θ

µ
θ µ θ

=
= +

=
−

=
°− °

=

 

 8. k
kcos ( sin )

xF N ma
F mg F ma

µ
θ µ θ

− =
− + =

 

2
2

330 N m (330 N)(0.45)cos 21 0.45 9.81 sin 21 3.5 m/s
32 kg 32kgs

 
= ° − − ° = 

 
k

kcos sinFFa g
m m

µ
θ µ θ= − −

 

 9. Place the x-axis parallel to the ramp, pointing uphill. 

  (a)  s 0x xF f W= − =∑
s0 cosmg mg sinµ θ θ= −  

s tan tan 23µ θ= = 0.° = 42  

  (b) s23 ; ( ) onlyfθ µ θ= ° =  
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 10. (a) Determine the acceleration. 

( )2m2 2
sf i

2

12 0 m3.6 
2 2(20 m) s

v va
x

−−
= = =

∆

s .

 

Calculate µ  

sxF f ma= =∑
s sf mg ma

 

µ= =  

2

2

m
s

s m
s

3.6 
0.37

9.81 
a
g

µ = = =  

  (b) First, determine the runner’s acceleration from v v2 2
f i 2a x.= + ∆  Next, equate the force associated with this 

acceleration to the force of static friction between the runner’s shoes and the track. Solve for s .µ  

 11. (a) s sF ma N mgµ µ= = =  

2
2 2

m m 2.3544 2.4 m/s
s s

 
= = 

 
s (0.24) 9.81a gµ= =

 

  (b)  f iv v a= + t

2

f
m
si

m
s

(15 ) 0
6.4 s

2.3544 
v vt

a

−−
= = =

 

 12. (a) 2 2k k
k 0.11 (9.81 m/s ) 1.08 m/sN mgFa g

m m m
µ µ

µ
− −

= = = = − = − = −

2 2
0 2v v a x= + ∆

 

 
2 2 2

0
2

0 (5.3 m/s) 13 m
2 2( 1.08 m/s )

v v
x

a
− −

∆ = = =
−

 

  (b) Doubling the mass doubles the normal force, causing the friction force to double. Therefore, the friction force 
increases. 

  (c) Stay the same, since stopping distance is independent of mass. 

  (d) 2
k( ) ( 0.11)0.12 kg)(9.81 m/s )(13 m) 1.7 N mFd mg dµ= − = − = − ⋅  

2 2 2 2 2
0

1 1 1 10 (0.12 kg)(5.3 m/s) 1.7 kg m / s
2 2 2 2

mv mv mv ∆ = − = − = − ⋅ 
 

2  

 13. (a) 2 2k k
k (0.260)(9.81 m/s ) 2.55 m/sN mgFa g

m m m
µ µ

µ
− −

= = = = − = − = −  

  (b) 2 2 2 2 2
0 2 (4.33 m/s) 2( 2.55 m/s )(0.125 m) 18.11 m / s
4.26 m/s

v v a x
v
= + ∆ = + − =
=

2  
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  (c) 2
k (0.260)(1.95 kg)(9.81 m/s )(0.125 m) 0.622 N mFd mgdµ− = − = − = − ⋅  

2 2 2 2 2 2
0

1 1 1 1(1.95 kg)(18.11 m / s ) (1.95 kg)(4.33 m/s) 0.622 kg m /s
2 2 2 2

mv mv− = − = − ⋅ 2  

 14. The force of friction will cause the car to decelerate from v to 0. 

  (a) 
2 2 2

f i
2 2

v v va
x x
− −

= =
∆ ∆

kf N mg

 

µ µ= =  

k
2

2
2

2

f ma
mvmg

x
vx

g

µ

µ

= −

=
∆

∆ =

 

  (b) The stopping distance quadruples. 

  (c) 
2

;
2
vx

gµ
∆ =  x∆  does not depend on m. 

 15. Place the y-axis along the direction of acceleration. 
yF T W ma= − =∑  

2 2
m m( ) (4.25 kg) 1.80 9.81 49.3 N
s s

mg m a g  
= + = + = 

 
T ma W ma= + = +

 

 16. Place the y-axis along the axis of the spring with y = 0 at the top of the uncompressed spring. 
 0yF ky mg= − − =∑
( )2

m
s

(9.00 kg) 9.81 
1.96 kN/m

( 0.0450 m)
mgk
y

= − = − =
−

 

 17. Place the y-axis perpendicular to the road with y = 0 at the bumper before the box is loaded. 
 0yF ky mg= − − =∑
( )2

m
s

(110 kg) 9.81 
8.3 kN/m

0.13 m
mgk
y

= − = − =
−

 

 18.  2 0y yF T mg= − =∑

( )2
m
s

2 sin

2sin
(50.0 kg) 9.81 

2sin15.0
948 N

T mg
mgT

θ

θ

=

=

=
°

=
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 19. (a) Determine the magnitude of the force required to stretch the spring 2.00 cm. 
N150 ( 0.0200 m) 3.0 N
m

F kx  = − = − − = 
 

s 0F f ma− = =

 

Calculate the magnitude of the force of static friction. 
 

s 3.0 Nf F= =  

  (b) No, the force was determined using only the spring constant and the extension of the spring. 

 20. Determine the magnitude of the force required to stretch the spring 2.50 cm. 
N150 ( 0.0250 m) 3.75 N
m

F kx  = − = − − = 
 

s 0F f− =

s s 0F N F W

 

 
µ µ− = − =  

s
3.75 N 0.072
52.0 N

F
W

µ = = =  

 21. (a) r ,F T=

rT W
 and lifting at constant speed, 

 2 .mg= =  So,

rF T= = 2
m(52kg) 9.81 260 N
s

 
= 

 

1 1
2 2

mg =
 

  (b) For each chain, 

c r2 2(255.06 N) 510 NT T= = =
 

 22. r ,F T=  and with acceleration,  So,  r2 (T W ma m g a= + = + ).

r

c r2

F T

T T

= = 2 2
m m) 9.81 0.23 26
s s

 N

 
+ = 

 

1 1( ) (52kg 1.04 N 260 N
2 2
2(261.04 N) 520

m g a+ = =

= = =
 

 23. (a)  0yF =∑

( )
( )

2

s
s s
s

s
m
s

N
m

0
0

( ) 0

(0.27 kg) 9.81 
4.8 cm

(0.46) 120 

f mg
F mg

kx mg
mgx

k

x

µ
µ

µ

− =
− =

− − =
−

=

−
= = −

 

  (b) Yes; the spring displacement is proportional to the block’s mass. 

 24. (a) When the car accelerates from the stop light, the point at which the tassel is attached to the car moves 
forward. The tassel only appears to move backward because as the car moves forward the bottom of the 
tassel remains for a moment where it originally was before it too must move with the car. 
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=  (b)  

 

cos 0yF T mgθ= −∑
sin 0xF T maθ= − =∑

cos sin
mg maT
θ θ

= =  

2n 5.00 0.858 m/s° =2
mtan 9.81 ta
s

a g θ  
= =  

   

 25.  cos 0yF T mgθ= −∑ =

( )2
m
s

(0.0100 kg) 9.81 
0.0985 N

cos cos5.00
mgT
θ

= = =
°

 

 26. (a) T = mg + ma = 755 N 

2 2
755 N 755 N m m9.81 0.976 

70.0 kg s s
a g

m
 

= − = − = 
   

21
2

x at=  

2
m
s

2

2(3.40 m)
0.976 

2.64 s

xt
a

=

=

=

 

  (b) For Jones to be pulled from the pit in less time would require a greater acceleration. This greater acceleration 
would cause the tension in the rope to exceed the 750 N limit and the rope would break. 

 27.  0 0.18 mx =

  (a) 0 0 0 0
N( ) (2 ) 250 (0.18 m) 45 N
m

F k x x k x x kx  = − − = − − = − = − = − 
   

The force required to stretch the spring to twice its equilibrium length is 45 N. 

  (b) No, the force required to compress the spring by 0(1/ 2)x  is only half the force found in (a). The force 
depends linearly on displacement. 

 28. (a) Less; horizontal components of the two string tensions must be equal, and 2 1cos cos .θ θ>  

  
(b)

 
1 1 2 2

1
2 1

2

cos cos
cos
cos

cos 65(1.7 N)
cos32

0.85 N

T T

T T

θ θ
θ
θ

=

=

°
=

°
=

 

  (c) 1 2 1 1 2 2sin sin (1.7 N)sin 65 (0.85 N)sin 32 2.0 Ny yT T Tθ θ= + = + = ° + ° =W T
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=

 29. Place the coordinate system such that the y-axis points up and the x-axis is in the direction opposite of the force 
applied by the archer. 

 

 
2T cos 72.5° = F 

0yF =∑
xF T∑ cos 72.5 cos(–72.5 ) 0T F= °+ ° −

25.0
2cos

T  lb 41.6 lb
72.5

= =
°  

 30. (a) Set the x-axis parallel to and pointing up the incline. 

 0
sin 31 0

F
T mg

=
− °
∑

=

2
m1.0 kg) 9.81 sin 31 5.1 N
s

 
= ° = 

 
sin 31 (T mg= °  

  (b)  0
sin 31 0

F
T Mg

=
− °
∑

=

2
m1.0 kg 2.0 kg) 9.81 sin 31 15 N
s

 
= + ° = 

 
sin 31 (T Mg= °

 

 31. The rope tension equals the force needed to support the weight.  

1 2 2
m(2.50kg) 9.81 24.525 N
s

T T mg  
= = = = 

 
 

1 2cos30 cos30 2(24.525 N)cos30 42.5 NF T T= ° + ° = ° =
 

 32. M = 6.7 kg 
m = hanging mass 

 sin 0F mg Mg θ= − =∑
sin (6.7 kg)sinm M θ= = 42 4.5 kg° =

 

 33. Place the y-axis such that  ˆ.m mg= = −W g y

sin 0yF mg F   = − + =  
  

∑ sin 180
2 2

Fθ θ+ ° −


 

q = 120° 

( ) ( )
( )2

m
s

2 2

0.85 N
120sin sin 180

mgF
θ θ °+ °

(0.15 kg) 9.81 

sin 60 sin
= =

°+−
=  
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 34. The direction of the y-axis is up and that of the x-axis is away from the wall. 

  (a) 
s

s s

s

0
0

x

y

F N F
F f W

f W N mg
mgN

µ

µ

= − =
= − =

− = −

=

∑
∑

 

( )2
m
s

s

(1.3 kg) 9.81 
15 N

0.86
mgF N
µ

= = = =  

  (b) The force of friction stays the same (mg). 

 35.  total 1 2 3= + +F F F F

1 2 3 T= = =F F F

total, cos
(cos 2

xF T
T

α
α

= +
= +

total, sin
sin

yF T
T

α
α

= +
=

tension=

cos160
cos160 )

T

sin160T

 

 

 

cos( 160 )T° + −
°

sin( 160 )T° + −

°

°

α  was chosen such that 180 .θ α=°−  

  (a) For F  to be aligned with the fractured femur, total total, total,/ (tan160 (180 20 ).y xF F = °) ° − °  

sin sintan
(cos 2cos160 ) cos 2cos1

T
T

α α
α α

=
+ °

160° =
60+ °

 

Solve for α  using a graphing calculator. Graph each side of the above equation and find their intersection. 
120 ,α = °  so 180 60 .θ α= °− = °  

  (b) The tension is equal to the weight of the 4.25 kg mass, T = mg. 
2 2

total, total,

2 2 2 2

2 2

2 2
2

(cos 2cos160 ) sin

(cos 2cos160 ) sin
m(4.25 kg) 9.81 (cos120 2cos160 ) sin 120
s

106 N

x yF F

T T

mg

α α

α α

= +

= + ° +

= + ° +
 

= ° + 
 

=

F

° + °

2 )

 

 36. Taking x as positive in the direction of each mass’s motion, 

 1 2 3

1 1

2 2 1

3 3 2

1 2 3 1 2 1 3

1 2 3 3

( ) (
( )

a a a a
m a T
m a T T
m a m g T
m a m a m a T T T m g T
m m m a m g

= = =
=
= −
= −
+ + = + − + −
+ + =
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)So the masses move like a single mass 1 2 3(m m m+ +  under acceleration  3 .m g

( )23

1 2 3

m
s

(3.0kg) 9.81 

1.0 kg 2.0kg 3.
m g

a
m m m

= =
+ + + +

( sin ) ( )

24.9 m/s
0 kg

=

( )

 

F T Mg mg T mθ= − + − =∑ M a+

( )2
m
s

9.81 [3.2 kg ]( sin )
3.2 kg

g m Ma
m M

θ °−
= =

– (5.7 kg)sin 35

5.7 kg+ +

20.076 m/s ;

 37. The positive axis is along the line of the string and points in the downward direction from the hanging mass. 
M = large mass 
m = small mass 

 
(m + M)a = mg – Mg sin q 

20.076 m/s= −
 

The magnitude is  the direction is upward. 

 38. The x-axis is along the line of the string and points in the downward direction from the hanging mass. 
M = large mass 
m = small mass 

( sin ) ( ) (x )F T Mg mg T m M aθ= − + − = +∑  
(m + M)a = mg – Mg sin q 

( )2
m
s

( sin )

9.81 [4.2 kg–(5.7 kg)sin 30 ]

4.2 kg+5.7 kg

g m Ma
m M

θ−
=

+
°

=
 

21.3 m/s  downward=a  

 39. Using the results from Problem 36,  
3

1 2 3
2

1 m4.905 . So,
2 s

m g
a g

m m m
= = =

+ +
 

1 1 2
m(1.0kg) 4.905 4.9 N
s

T m a  
= = = 

   
and 

2 2 1 2
m(2.0kg) 4.905 4.905 N 15 N
s

T m a T  
= + = + = 

 

 

 40. For the mass on the table:  
The x-axis is along the string. 
The y-axis is perpendicular to the tabletop. 
For the mass on the string: 
The x-axis is along the string and points downward. 
The y-axis points away from the table. 

 
 

1 mass on the tablem =

2 mass on the stringm =
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1 1

2 2 2

2 1

    
 

( )

x

x

F T m a
F m g T m a

T m g T m m a

= =
+ = − =

= + − = +

∑
∑

2

 

2

1 2
2 2

2.80 kg m m9.81 4.36 
3.50 kg+2.80 kg s s

ma g
m m

    
= = =    +      

1 2
m(3.50 kg) 4.36 15.3 N
s

T m a  
= = = 

 

2 2
m15.3 N (2.80 kg) 9.81 27.5 N
s

m g  
< = = 

 

24.36 m/s ,a =

1 1.5 kgm =
m2

1 1

1 2

1 2

    
       

                    ( )

x

x

F F T m a
F T m a

F m m a

= − =
+ = =

= +

∑
∑

1 2

26.4 N 2.6 m/s
1.5 kg+0.93 kg

Fa
m m

= = =
+

  (a)  

 

The tension in the string is less than the weight of the hanging mass. 

  (b)  T = 15.3 N 

 41. The x-axis is in the direction of the force. 
 

 = 0.93 kg 

 

  
(a)

  

  
(b)

 

2

1 2
2

0.93 kg (6.4 N) 2.4 N
1.5 kg+0.93 kg

mT m a F
m m

   
= = = =   +     

  (c) If the mass of block 1 is increased, the acceleration of the system, and hence of block 2, will decrease. 
Therefore, the tension will decrease. 

 42. (a) To keep the smaller bucket from moving, you must add 47 N of downward force to it. There is no 
acceleration. The tension in the rope is equal to the weight of the 110 N bucket of sand. 

  (b) The y-axis points downward relative to the heavier bucket’s position. 
 = mass of heavier bucket 
 = mass of lighter bucket 

1m

2m

2

1
m
s

110 N 11.2 kg
9.81 

W
g

= = =1m  

2

2
m
s

63 N 6.42 kg
9.81 

W
g

= = =2m  

1 1 1

2 2 2

1 2 1 2( )

F T W m a
F T W m a

W W m m a

= − + =
= − =

− = +

  ∑
∑  
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1 2

1 2
2

110 N – 63 N m2.67 
11.2 kg 6.42 kg s

W Wa
m m

−
= = =

+ +  

2 2 2
m(6.42 kg) 2.67 63 N 80 N
s

T m a W  
= + = + = 

 

 

2
cp / .r=

( )2m2
s

s cp cp
(1200 kg) 15 

4.7 kN
57 m

mvf F ma
r

= = = = =

2
52,000 va g

r
= =

  (c) The heavier bucket is at rest on the ground. The lighter bucket is hanging in the air. The tension is equal to 
the weight of the hanging bucket, 63 N. 

 43. The centripetal acceleration is a v  
The magnitude of the force of static friction is equal to the magnitude of the centripetal force. 

 

 44. cp  

cp 52,000v ra= = 2
m52,000 9.81 (0.075 m) 200 m/s
s

gr  
= = 

   

 45. 
2

cp 9 va g
r

= =  

cp 2
m9 9 9.81 (15 m) 36 m/s
s

v ra gr  
= = = = 

   

 46. The y-axis points upward and the x-axis points toward the center of the curve. 
 cos 0yF N mgθ= −∑ =

cos
mgN
θ

=

cpsinx

 

F N maθ= =∑  

cp
sina sing
m mcos

N mθ θ

θ

 = =  
 





 

2v
r

θ= =cp tana g  

( )
( )2

2m
s

m
s

24.0 
102 m

 tan 30.0
=

°

2

tan
vr

g θ 9.81
= =
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 47. cpyF T W ma= − =∑  

( )

cp

cp

cp
2

2m
s

2

( )

2.4 m(61 kg) 9.81 
6.5 ms

650 N

T W ma
mg ma
m g a

vm g
r

= +
= +
= +

 
= +  

 
 
 = + 
  

=

 

 48. cpyF T W ma= − =∑  
2vg
r

 
+  

 
cp( )T m g a m= + =  

If Jill’s speed is doubled, the tension will increase by  If Jill’s mass is doubled, the tension 2(3 / ) 160 N.m v r =
will double. 

 49. (a) At the top of the Ferris wheel: 
2

y y
vF N mg ma m
r

= − = = −∑  

2vN m g
r

 
= −  

 
 

The normal force exerted on a rider is less than that rider’s weight, which results in an apparent weight less 
than the rider’s actual weight. 
At the bottom of the Ferris wheel: 

2

y y
vF N mg ma m
r

= − = =∑  

2vN m g
r

 
= +  

 
 

The normal force exerted on a rider is greater than that rider’s weight, which results in an apparent weight 
greater than the rider’s actual weight. 

  (b) 
2 2 (7.2 m) m1.616 

28 s s
C rv
t t

π π
= = = =  

( )2m2
s

top 2

1.616 m(55 kg) 9.81 520 N
7.2 ms

vW m g
r

    = − = − =    
    

 

( )2m2
s

bot 2

1.616 m(55 kg) 9.81 560 N
7.2 ms

vW m g
r

    = + = + =    
    
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 50. cpyF N mg ma= − = −∑  

( )2m
s

apparent2

12 m9.81 380 N
35 ms

W
 
 − = = 
  

2
(67 kg)vN m g

r
 

= − =  
 

 

 51. cpyF N mg ma= − = −∑  
2

0vN m g
r

 
= − =  

 
 

2

2
m9.81 (35 m)
s

19 m/s

v gr
v gr
=
=

 
=  

 
=

 

 52. (a)  cp 0F ma mg= − =∑
2

cp
va g
r

= =  

2
m9.81 (1.1 m) 3.3 m/s
s

 
= 

 
v gr= =

 

  (b) The answer is independent of mass. 

 53. From Problem 29, 
2 cos  andF T θ=  T m ,  sog=  

( )2
m
s

2 cos
32 N 1.9 kg

2 cos 2 9.81 cos30

F mg
Fm

g

θ

θ

=

= = =
°

 

 
54.

 

( )2m2
s 5 2

cp
77 

1.4 10  m/s
0.042 m

va
r

= = = ×
 

 55. The block is being pulled at constant speed. This implies that the acceleration is zero. The x-axis points opposite 
the direction of motion. 

 k s 0xF f F= − =∑
k k kf N mgµ µ= =

s k

 
F kx f= =  

( )
( )2

m
s

 (0.0620 m)
0.140

) 9.81 
=

N
m

k
85.0

(3.85 kg

kx
mg

µ = =
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 56. The x-axis is along the direction of motion of the child. 
 cos 0yF N mg θ= − =∑

cosN mg θ=

ksinx

 
F mg f mθ= −∑ a=  

k

k
k

2

2

1sin ( )

sin cos
(sin cos )

m9.81 [sin 27.5
s

0.919 m/s

a g N
m

g g
g

θ µ

θ µ θ
θ µ θ

= −

= −
= −
 

= ° 
 

=

0.415cos 27.5 ]− °
 

 57. The x-axis points up and x = 0 is at the spring’s equilibrium point. 
 s 0yF F W= − =∑

( )
2

N
m

m
s

0

1800 ( 0.0375 m)

9.81 

6.9 kg

kx mg
kxm
g

= − −
−

=

− −
=

=

 

 58. The x-axis is along the direction of the applied force. 

  (a)  = 1.1 kg 
 = 1.92 kg 

 

 
 

= m g 

1m

2m

∑
N

∑
2N

1 1 1 0yF N W= − =

1 1m g=

2 2 2 0yF N W= − =

2

1 1

2 2

1 2  (

x

x

1

2

1 2 )

    
 

      

F F T f
F T f

m a
m a

F f f

= − −
+ = −

− − =

∑
∑

m m

=
=

+ a
 

( )2
m
s 2

9.4 N 0.24 9.81 (1.1 kg+1.92 kg)
0.76 m/s

1.1 kg+1.92 kg
m −

= = =1 2

1 2

k ( )F g m
m m
µ− +

+
a

 

  
(b)

 
2 2 2 k 2 2 k 2 2

m m( ) (1.92 kg) 0.76 0.24 9.81 6.0 N
s s

T m a f m a m g m a gµ µ
  

= + = + = + = + =  
    
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 59. The y-axis points up. 

  (a) cpyF ma mg T= = +∑  

( )2m2
s

cp 2

3.23 m( ) (3.25 kg) 9.81 3.81 N
0.950 m s

vT m a g m g
r

    = − = − = − =    
      

The magnitude of the tension at the top of the circle is 3.81 N. 

  (b) cpyF ma T mg= = −∑  

( )2m2
s

2

6.91 m(3.25 kg) 9.81 195 N
0.950 ms

v
r

    + = + =    
    

cp( )T m g a m g= + =

 
The magnitude of the tension at the bottom of the circle is 195 N. 

 60. The x-axis points up the incline, parallel to it. 

  (a)  cos 0yF N mg θ= − =∑
cosN mg θ=  

k k k cosf N mgµ µ= = 2
m0.23(0.012 kg) 9.81 cos15 0.026 N
s

θ  
= ° = 

   
The force of kinetic friction is directed down the incline. 

  (b)  s sin 0xF f mg θ= − =∑

s sin (0.012 kg)f mg θ= = 2
m9.81 sin15 0.030 N
s

 
° = 

 

 

The force of static friction is directed up the incline. 

 61. (a) The x-axis points up the incline, parallel to it. 
 cos 0yF N mg θ= − =∑

cosN mg θ=  

k k 0.23(0.012 kgf Nµ= = 2
m) 9.81 cos 25 0.025 N
s

 
° = 

 

 

The force of kinetic friction is directed down the incline. 

  (b) The force of kinetic friction has the same magnitude (0.025 N) and opposite direction (up the incline) from 
(a). 

 62. xF F f ma= − =∑  

1 ( )a F f
m

= −

s, max s

k k

(0.6
(0.40)(2

f N
f N

 

0)(22 N) 13.2 N
2 N) 8.8 N

µ
µ
= =

= =
=

=
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applied force friction force motion 

0 0 at rest 

5 N 5 N at rest 

10 N 10 N at rest 

15 N 8.8 N accelerating 

10 N 8.8 N accelerating 

8 N 8.8 N/8 N decel./at rest 

5 N 5 N at rest 
 
 63. Place the x-axis up and to the right, parallel to the right wall of the wedge, and the y-axis up and to the left, 

parallel to the left wall of the wedge. 
 

 
1 sin 20 0xF F mg= − ° =∑
2 cos 20 0yF F mg= − ° =∑

1
2

sin 20
cos 20

F mg
F mg

= °
= °

 

 64. The x-axis points upward, parallel to the plank, and the y-axis points up and to the left. x = 0 when the spring is 
unstretched. At maximum stretch with the box at rest, 

 

 

s s

s

sin 65 0
  sin 65 0

xF F f mg
kx N mgµ

= − + − ° =
= + − ° =

∑

cos 65 0
cos 65

yF N mg
N mg

= − ° =
= °

∑

s cos 65 sin 65 0kx mg mgµ+ °− ° =  

( )2

s

s

m
s

N
m

sin 65 cos 6

(sin 65 cos65

(2.0 kg) 9.81 (sin 65

18 

0.89 m

mg mg
x

k
mg

k

µ

µ

° −
=

° −
= −

=

=

5

)

0.

°

°

° − 22cos 65 )°

 

 65. (a) Let T be the tension in the slanting stretch of rope. Then T  is the tension in the rope supporting mass 
B, and T  is the tension in the rope pulling on mass A. But  and so  

sin 45°
cos 45° sin 45 cos 45 ,° = °

Bs on A sin 45 (2.25kg) 9.81
s

T m g= ° = ° = = 2
m 22. 

= 
 

cos 45f T 1 N
 

which is below  

Asf mµ= =s, max 2
m0.320(8.50kg) 9.81 26.7 N.
s

g  
= 

   

  (b) So long as mass A is heavy enough for  is not affected by changes in mass A;  stays s, max s22.1 N, f ≥ f sf
the same. 
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g 66. From the previous Problem,  and s on A Bf m=

2
B, max

s,max
m
s

26.7 N
9.81 

f
m

g
= = 2.72 kg=

 

 67. (a) Greater; horizontal components of the two string tensions must be equal, and cos 2 1cos .θ θ>  

  (b) 1 1 2cos cosT T 2θ θ=  

2
1 2

1

cos (1.7
cos

T T θ
θ

= =
cos32 N) 3.4 N
cos 65

°
=

°
 

  (c) 1 1 2 2sin sinT T mgθ θ+ =  

1 1 2 2sin sinT Tm
g

θ θ+
= = 2

(3.4 N)sin 65 (1.7 N)sin 32 0.41 kg
9.81 m/s

° + °
=  

 68. (a) At the top of the Ferris wheel 
2

y
vF N mg m
r

= − = −∑  

You feel “weightless” if N = 0; then 
2

.v g
r
=  

2C rv
t t

π
= =  

( )22 2

2
4

r
t r g
r t

π
π

= =  

2 2

2
4 4 (7.2 m) 5.4 s

9.81 m/s
rt

g
π π

= = =  

  (b) The period is independent of the mass. 

  (c) 
2

29.81 m/s .va g
r

= = =  Direction is upward. 

 69. 
2

cpsinx
vF T ma m
r

θ= = =∑  

2

2

cos 0

cos sin

tan

yF T mg

mg mvT
r

v
gr

θ

θ θ

θ

= − =

= =

=

∑  

( )
( )2

2m
s

m
s

1.21 
19

 (0.44 m)
=

2
1 1tan tan

9.81

v
gr

θ − −= = °
 

( )2
m
s

(0.075 kg) 9.81 
0.78 N

cos cos18.74
mgT
θ

= = =
°
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 70. With constant speed, the cable tension is the same at both ends. So, for the cable, 
2 sin 22 =0yF T m= °−∑ g  

( )2
m
s 5

(14,000 kg) 9.81 
1.83 10 N

2sin 22 2sin 22
mgT = = = ×

° °  
Then, the force on the barge is 

5cos 22 (1.83 10 N)cos 22 170 kNF T= ° = × ° =
 

 71. (a) For the top block to almost slip: 
 

 
s,maxma f=

yF N= −∑ 0mg =

s,maxf
= =

s ,a g

2
s 2

m0.47 9.81 4.6 m s
s

a gµ  
= = = 

 
smg

m m
µ

 
To give the system an acceleration a, F = (m + M)a. The acceleration that will cause the top block to slip is 

µ=  so  

s (gµ = 2
m2.0 kg+5.0 kg)(0.47) 9.81 32 N
s

 
= 

 
( )F m M= +

 

  (b) Since s( ) ,F m M gµ= +  an increase in m will result in an increase in F. 

 72. Let the x-axis point in the direction of motion and the origin be at the end of the unstretched spring. 
 

 

sin 0yF N F Wθ= + − =∑
kcos 0xF F fθ= − =∑

sin
( )sin

sin

N W F
W kx
mg kx

θ
θ

θ

= −
= − −
= +

k kcos

 

F f Nθ µ= =  

k
cosF
N

θµ =  

( )
( ) ( )2

k

N
m
m
s

cos
sin

85 (

(4.5 kg) 9.81 

0.040

kx
mg kx

θµ
θ

−
=

+
− −

=

=

N
m

0.021 m)cos13

85 ( 0.021 m)sin13

°

+ − °  

 73. yF T W Ma= − =∑  

  (a)  
The tension is greater than the combined weight of the men. 

( )T Ma W Ma Mg M a g W Mg= + = + = + > =

  
(b)

 
2 2

m m( ) (172 kg) 1.10 9.81 1.88 kN
s s

T M a g  
= + = + = 

   
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 74. Place the x-axis along the direction of motion. 
 

 

sin 0yF N T Wθ= + − =∑
kcos 0xF T fθ= − =∑

k k kcos (T f N k ksin ) sinW T W Tθ µ µ= = =

k k(cos sin )T W
θ µ µ− = −

kmg
θ  

θ µ θ µ+ = µ=  

( )2
m
s

0.38(18 kg) 9.81 
69 N

45 (0.38)sin 45
=

+ ° + °
k

kcos sin cos
mgT µ

θ µ θ
= =

 

2
m kg) 9.81 (69
s

 
− 

 
sinN W T mg= − = − sin (18Tθ θ =  N)sin 45 130 N° =

 

 75. (a) The coefficient of static friction can be determined from the information given. The force required to stretch 
the spring is equal in magnitude to the force of static friction between the wheel and the ground. If the wheel 
is not slipping, it is not moving relative to the point of contact between it and the ground. 

  (b) Place the x-axis along the direction of motion of the toy bulldozer. 
 

N = W = mg 
 

0yF N W= − =∑

sxF kx f= − + =∑
s sf N kx

0
µ= =  

( )
( )2

N
m

m
s

13 (2.0 m)
0.88

.0 kg) 9.81 
=s

(3

kx kx
N mg

µ = = =  

 76. (a)  2 sin 0yF T mgθ= −∑ =

( )2
4 m

s
(1.0 10  kg) 9.81 

5.4 mN
2sin 2sin 5.2

mgT
θ

−×
= = =

°
 

  (b) The tension would be greater than that found in part (a) because the vertical component of the tension is less, 
thus requiring a larger total tension to compensate. 

 77. For the cereal box to just barely stay in place, 
 

Also, 

s

s

=0
0

yF f W
N mgµ

= −
− =

∑

x ,F N= =∑ ma  so that  

2
m
s

s

0
9.81

26
0.38

mg

g

s

2 m/s

ma

a

µ

µ

− =

= = =

 

 78. (a)  2 sin 0yF T Fθ= −∑ =

2 sin 2(2.7 N)siF T θ= = n 4.1 0.39 N° =
 

  (b) The required force would be less than that in (a) because the vertical component of the tension decreases 
with decreasing angle. 
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 79. Convert mi/h to m/s. 
25 mi 1609 m 1 h m11.2 

h mi 3600 s s
    =   
   

cos 0yF T Wθ= − =∑

 

 

cos cos
W mgT
θ θ

= =  

cp

cp cp
2

sin

sin
cos

tan

tan

F T
mg

mg
F ma

vmg m
r

θ

θ
θ
θ

θ

=

 =  
 

=
=

=

 

Solve for q. 
2

tan v
gr

θ =  

( )
( )2

2m
s

m
s

11.2 
7.7

9.81 (95 m)

 
  = 
  

2
1 1tan tanv

gr
θ − − 
= =  

 
°

 

The mass of the dice drops out of the equations. 

 80.  = tension of the 15° rope 
 = tension of the 30° rope 

 

 

1T

2T

∑
∑

1 1 2 2sin sin 0yF T T Wθ θ= + −

1 1 2 2cos cos 0xF T Tθ θ= − =

=

2
1 2

1

cos
cos

T T θ
θ

 
=  

 

1 1 2 2sin sinT T mg

 

θ θ+ =  

2
2 1 2 2

1

cos sin sin
cos

T Tθ
θ θ

θ
 

+ = 
 

2 2 1 2cos tan sin )T m

mg

g

 

( θ θ θ+ =  

( )2
m
s

0 kg) 9.81 
620 N

tan15 sin 35
=

° + °2T
2 1 2

(5

cos tan sin cos
mg

θ θ θ
= =

0.

35+ °

 

2
1 2

1

cos cos(670 N)
cos cos

T T θ
θ

 
= = 

 

35
15

570 N
 °

= ° 
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= 81.  lift cos 0yF F Wθ= −∑
lift cpsinxF F mθ= =∑ a  

cp
lift sin

ma
F

θ
=  

cp cpcos
tan
ma

lift0 cos
sin
ma

F mg= − = mg mgθ θ
θ θ

 
− = − 

 

 

cptan
ma
mg

θ =  

( ) ( )
( )2

2 23 m 1 h2 h 3600 s1 1 1
m
s

380 10  
tan tan 28

9.81 (2100 m)

v
g gr

− − −
 ×    

= = = =         
 

cptan
a

θ °

 

 82. (a) minF  is the smallest value of F that prevents the block from sliding down the incline.  is the largest maxF
value of F that can act on the block without causing it to slide up the incline. 

  (b) Let the x-axis be parallel to and up the incline. 
 so .cos 0,yF N mg θ= − =∑ cosN mg θ=  

 min s sinxF F f mg= + −∑ 0=θ

min s
2

sin s
(3.1 kg)(9.81 m/s )
11 N

F mg f m s s
.707 (0.50)(0.7

N m sin cos
07)]

g mgin
[0

gθ θ µ= −

= −

θ µ θ= −= −

=
 

  (c) On the verge of sliding up the incline 
 max s sin 0xF F f mg θ= − − =∑

max s s
2

sin
(3.1 kg)(9.81 m/s )[(0.50
32 N

F f mg N ssin cos sin
)(0.707) (0.707)]

mg mg mgθ µ θ µ θ= +

= +

θ= + = +

=
 

 83.  sin 0xF T W θ= − =∑
sinT mg θ=

0 ,
 

With θ = °
sin 0 0.T mg= ° =

90 ,

 the climber is lying on a level surface and does not hang from the rope at all. Therefore, 
 

With θ = °
sin 90g

 the climber is against a vertical wall and all the climber’s weight is hanging from the rope. 
Therefore, T m  .mg= ° =
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p
 84. 

s c

0y

x

F N W
F f ma

= − =

= =
∑
∑

 

( )
( )2

s s
s cp

cp
s

2

2m
s

m
s

1.9 

(2.1m) 9.81 

0.18

N W mg
f N

mg ma
a
g

v
rg

µ
µ

µ

= =
=
=

=

=

=

=

 

 85. Top block: 
 

 

0y m mF N W= − =∑
m mN W mg= =

x mF f ma= =∑
s sm mf N m

 

gµ µ= =

y M MF N W= − −∑
M M mN W W= + =

x mF F f f= − −∑

 
Bottom block: 

 

 
 

0mW =

( )M m+
0M =

g

s sµ µ+ s( ) (2m g g m Mµ+ = + )m MF f f mg= + = M
 

 86. From Problem 37, 
3

1 2

m g
a

m m m
=

+ + 3
 

and so 
1 3

1 1
1 2 3

1 2 3
2 1 2

1 2 3

)( g

m m g
T m a

m m m
m m m

T T m a
m m m

= =
+ +

+
= + =

+ +

 

 87. am = the mass of the rope on the table 
bm = the mass of the rope hanging 
am + bm = m 
a  + b = 1 
The force pulling the hanging section of the rope is its weight, W m  

The force of static friction acting on the section of rope on the table must be at least as great as W

.β β= g

β  to prevent the 
rope from slipping. 

 s s
s

f N
mg

µ
µ α

=
=

s mg mgµ α β=  
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s the hanging fraction of ropeβ µ α= =

s
s s

(1 )
 

β µ β
µ µ β

= −
= −

s s(1 )

 

β µ µ+ =  

s

s1
µ

β
µ

=
+  

cp.mF F=

cp

cp
2

2

Mg F
ma

vm
r

mvM
rg

=
=

=

=

sin 0yF N W F θ= − − =∑
scosxF F f maθ= − =∑

s s s ( sin )f N mg Fµ µ θ= = +

s
s s
s s

0 cos
cos sin
(cos sin )

F f
F mg F
F mg

θ
θ µ µ θ
θ µ θ µ

= −
= − −
= − −

s

scos sin
mg

F
µ
θ µ θ

=
−

s sin 0θ µ θ− >

s
s

s

cos sin 0
sin cos

cos 1
sin tan

θ µ θ
µ θ θ

θµ
θ θ

− >
<

< =

s
1 ,  .

tan
Fµ

θ
= = ∞

s
1 ,

tan
µ

θ
>

( )( )( )2

cp
va
r

= =

 88. At one end of the string, T = Mg; at the other end, T .mF=  And if M remains at rest, the motion of m is circular 
and  

 

 89.  

 

 

  (a)   

 

  (b) Set cos  to determine the limit of s .µ  

 

If  

If  F < 0. 

 
90. (a)

 

225mi 1609m 1 h
h mi 3600 s 210 m/s

12 m

 
   =
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  (b) Taking T as the chain tension,  

2

2

cp

cp

cp1

m
1 s

m
s

sin
cos

tan

tan

10.4 
tan

9.81 

47

T ma
T mg

a
g

a
g

θ
θ

θ

θ −

−

=
=

=

 
=  

 
 
 =
 
 

= °

 

  (c) The angle corresponds to a ratio of vertical to horizontal force. Both of those forces are proportional to m, so 
that m drops out of the ratio. 

 91. The x-axis is along the motion of the conveyor belt. 
 

N = mg 
0yF N W= − =∑

kxF f ma= =∑  

k k
k

f N
m m

µ
µ= = = 2 2

m m0.780 9.81 7.65 
s s

a g  
= = 

   

  (a) 
m1.25
s

v at= =  

2

m
s
m
s

1.25 
0.163 s

7.65 
vt
a

= = =  

  
(b)

 

2 2
2

1 1 m7.65 (0.163 s) 0.102 m
2 2 s

x at  
= = = 

   
The box has moved 0.102 m. 

 92. The x-axis is along the direction of motion. 
 

N = mg 
0yF N W= − =∑

kxF F f= − =∑
k

ma  

F mg maµ− =

1 75 NF =

2 81 NF =

 
 
 

1 2
m0.50 
s

a =  

2 2
m0.75 
s

a =  

There are two equations and two unknowns. 
Subtract I from II. 
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           2 1 2 1( )F F m a a− = −  

2 2

2 1
m m2 1 s s

81 N–75 N 24 kg
0.75 – 0.50 

F Fm
a a

−
= = =

−

k 1 1mg F ma

 

µ = −  

( )
2

22

m
s
mm
ss

0.50 75 N 0.27
9.81 24 kg) 9.81 

− =1 1
k

(

F a
mg g

µ = − =
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