Chapter 9

Linear Momentum and Collisions

Answers to Even-numbered Conceptual Questions

2.

10.

12.

14.

16.

18.

20.

Doubling an object’s speed increases its kinetic energy by a factor of four, and its
momentum by a factor of two.

No. For example, suppose object 2 has four times the mass of object 1. In this case, the
two objects have the same kinetic energy if object 2 has half the speed of object 1. On the
other hand, it follows that the momentum of object 2 is twice the momentum of object 1.

No. Consider, for example, a system of two particles. The total momentum of this system
will be zero if the particles move in opposite directions with equal momentum. The
kinetic energy of each particle is positive, however, and hence the total kinetic energy is
also positive.

(a) The force due to braking — which ultimately comes from friction with the road —
reduces the momentum of the car. The momentum lost by the car does not simply
disappear, however. Instead, it shows up as an increase in the momentum of the Earth. (b)
As with braking, the ultimate source of the force accelerating the car is the force of static
friction between the tires and the road.

It is better if the collision is inelastic, because then the light pole gives your car only
enough impulse to bring it to rest. If the collision is elastic, the impulse given to your car
is about twice as much. This additional impulse — which acts over a very short period of
time — could cause injury.

The rate of change in momentum is the same for both objects. As a result, the rate of
change in velocity for the less massive object (the pebble) must be greater than it is for the
more massive object (the boulder). Alternatively, we know that the acceleration (rate of
change in velocity) of an object is proportional to the force acting on it and inversely
proportional to its mass. These objects experience the same force, and therefore the less
massive object has the greater acceleration.

Yes. Just point the fan to the rear of the boat. The resulting thrust will move the boat
forward.

No. Any collision between cars will be at least partially inelastic, due to denting, sound
production, heating, and other effects.

Yes. For example, we know that in a one-dimensional elastic collision of two objects of
equal mass the objects “swap” speeds. Therefore, if one object was at rest before the
collision, it is possible for one object to be at rest after the collision as well. See Figure 9-
7 (a).

The speed of the ball when it leaves the tee is about twice the speed of the club. This
follows for two reasons: (i) The collision is approximately elastic; and (ii) the mass of the
club and the arms swinging the club is much greater than the mass of the ball. See Figure
9-7 (c).
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22. Kinetic energy can be lost as objects rub against one another during a collision, doing
negative, nonconservative work. These are internal forces, however, and hence they can
have no effect on the total momentum of the system.

24, The speed of the ball after bouncing off the elephant will be greater than the speed it had
before the collision. The situation is similar to that shown in Figure 9-7 (c), except that
the small mass has a nonzero speed before the collision.

26. As this jumper clears the bar, a significant portion of his body extends below the bar due
to the extreme arching of his back. Just as the center of mass of a donut can lie outside the
donut, the center of mass of the jumper can be outside his body. In extreme cases, the
center of mass can even be below the bar at all times during the jump.

28. The center of mass is higher than the midway point between the tip of the stalactite and
the cave floor. The reason is that as the drops fall, their separations increase (see
Conceptual Checkpoint 2-5). With the drops more closely spaced on the upper half of
their fall, the center of mass is shifted above the halfway mark.

30. The center of mass of the hourglass starts at rest in the upper half of the glass and ends up
at rest in the lower half. Therefore, the center of mass accelerates downward when the
sand begins to fall — to get it moving downward — and then accelerates upward when most
of the sand has fallen — to bring it to rest again. It follows from Equation 9-18 that the
weight read by the scale is less than Mg when the sand begins falling, but is greater than
Mg when most of the sand has fallen.

32. The scale supports the juggler and the three balls for an extended period of time.
Therefore, we conclude that the average reading of the scale is equal to the weight of the
juggler plus the weight of the three balls.

34. (a) Assuming a very thin base, we conclude that the center of mass of the glass is at its
geometric center. (b) In the early stages of filling, the center of mass is below the center
of the glass. When the glass is practically full, the center of mass is again at the geometric
center of the glass. Thus, as water is added, the center of mass first moves downward,
then turns around and moves back upward to its initial position.

Solutions to Problems

1. Setting the momentum of the ball equal to that of the car gives
B =myw, =L

15,800 kg - -
et = s 3 @{1“'3“‘1)(36005)( Lo j: 2.49x10° mi/h
my, 0.142 kg s s h 1.609 km

P = (9.00 kg)(—1.30 ?)y =_117 kg.?y

Brotal = Pal +Pa +Pg = 440 kg.?f;—4.4o kg~?§f—ll.7 kg-?y= 440 kg-m/s x-16.1 kg-m/s § |
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3. Determine the total momentum of the dog and cat. Let north be in the y-direction.
Pa +Pe = mgVg +mVe = Progal = (20.0 kg)(2.50 Eyj+(5.oo kg)(?a.OO Eﬁj =150kg = &+50.0 kg~
s S S S

Set the total momentum of the dog and cat equal to that of the owner.
Po =MoV0 = Protal
) 15.0kg-2x+50.0 kg-2y
_ Protal _ £ £ Y 0214 Mir0714 By
my 70.0 kg s s

_1(0.714
O=tan"!| =2 |=[733°
! (022
m 2 m 2
= 0214 — | +|0.714 — :-_0.745

4. (a) The carts must have equal and opposite momenta for the total momentum of the system to be zero.
P —P2 =0=mV; —mv,

i (0.45 kg)(l.l %)

my 065ke

(b) @, kinetic energy is always greater than or equal to zero.

VYo

2

2
1 2 1 2 1 m 1 m)
(C) Ksystem —Emlvl +EM2V2 —3(045 kg)(ll :) +E(065 kg)(076 :j =10461]

5. Determine the speed of the baseball before it hits the ground.

0.780 kg -2
o TR M
m 0.150 kg s

Recall that v2 = vé -2g(y—yp)-

W2 vy’ (5.20 %)2 —(0)?

2g 2(9.81 mz)
S

6. (a) Ap=ps—p;
=m(Vy —V;)

=(0.220 kg){Z.O y—(—z.s Eyﬂ
S S
= (0.220 kg)(4.5 Eyj

=099 kg- 2y
S

Ap =1 0.99 kg -m/s
) Pr—pi =m(ve —v;) = (0.220 kg)[z.o RN Ej =[=0.1Tkg m/s
S S
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(¢) The quantity found in [part (a)].

7. D1 = Protal x = Ptotal €089 = (17.6 kg -m/s)(cos 66.5°) = 7.02 kg - m/s

p 7.02kg-m/s
m=—=——>-——=|251k
! 250 ms

N

P2 = Piotal y = Protal SIN 0 = (17.6 kg-m/s)(sin 66.5°) =16.14 kg - m/s

py 16.14kg-m/s
my=F2 -2 " <88 _Fenrk
27y, 3.10mss
8. [=F,At=(1350N)6.20x10"s) =837 kg-m/s

9. To estimate the magnitude of the force, determine the magnitude of the average force.
_Ap m(ve—v) (0.045 kg)(67 %—O)

At At 0.0010 s -

0. g -2
At

ap (050 ke)(32-0)

11. [ =Ap=mAv
I —9 kg1

av

At =

12. (a) Recall that v= \/@ . Just before the marble hits the floor, its speed is v; = —\/@ (negative downward
motion). Just after it hits the floor, its speed is vy =/2gh,. So,
I=Ap
= mAvV
= 2§ ~(—2gh )]
=m2g (I ++[h)¥

=(0.0150 kg) /2[9.81 %J(Jo.mm +/1.44m)y
S

=(0.133 kg-m/s) y
The impulse is |O.133 kg-m/s in the positive y—direction‘.

(b) Because the impulse is proportional to the sum of the square roots of the initial and final heights, the impulse
would have been than that found in part (a).

13. The impulse is equal to the change in the y-component of the momentum of the ball.

I'=Ap,, =mAv, =m[vy cos65°—(-vy cos 65°)] = (0.60 kg)(5.4 ?) (2c0s65°)=| 2.7 kg-m/s
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14. (a) Let the initial motion of the ball be along the positive x-axis and the final along the positive y-axis.

I =Ap=m(¥;—v;)=(0.14 kg)[(m 2Jy—(—%) 2&}:5.04 ke Dg+252kg- 2§
S S S S
(252
f=tan!| 222 | =[ 27°
&
m 2 m 2
I=,]504kg-—| +|252kg-—| =|56kg-m/s
( g Sj ( g SJ -—g /

(b) Since Ap is directly proportional to the ball’s mass, it would |double in magnitude|. There would be @
kchange in the direction)].

(¢) If the Ap of the ball is unchanged, then the impulse is unchanged|

15. 1=Ap =p; —p; = m(V - ¥;)
=(0.75 kg)[(5.2 m/s)X + (3.7 m/s)y — (8.8 m/s)X — (—2.3 m/s)y]
=(-2.7 kg-m/s)x + (4.5 kg - m/s)y

1 .
(a) 0= tan”!| L |=tan~! M =-59°+180° = | 121° from the x-axis
I —2.7 kg-m/s

X

(b) 1=1(-2.7 kg-m/s)? + (45 kg m/s)? =[ 5.2 kg-ms |

16. The sum of the canoes’ momenta must be zero. The set up is similar to Example 9-3.
Dix + P2x =0=mpyi +myvy,

_my,  —(40kg)(-052 1)

0.44 m B
S

17. This problem is similar to Problem 16, so we may use the above result for m,.

_mpy, _ —(45 ke)(-0.62 )

Vo 0.89 ™ =[31ke]
S

18. Assume the bee’s motion is in the negative direction.
Dbee + Ps =0 = MpeeVpee + MgVs
cm
~(0.175 g)(—1.41 T)

“MpeeVoee
= = =|51.9 mm/s
VS 4.75 g

myg

my
Vox

my =

19. The sum of the pieces’ momenta must be zero. Assume the motion is one-dimensional.
P+ py =0=mpy +myvy

myy =-mv,
m "

mp N
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Now, use the fact that K, =2K].

1 1
K, = —m2v22 =2K; = 2(—m1v12j = mlvl2
2 2
2
mo_ v _l(ﬂJ
my 2\;12 2 my
1= m
2 my

my

[The piece with the smaller kinetic energy has the larger mass

20. The motion is one-dimensional. Assume the satellite’s motion is in the negative x-direction.
Pa + Ps = 0=m,v, +mgvg

— —MsVs

Va

ma
The initial distance is
“mgyy (1100 kg)(-0.13 ™

T (7.55) =

21. (a) vp, =speed of lumberjack relative to the shore

Xg =Wt = m
a

VL log = speed of lumberjack relative to the log
Viog = speed of the log relative to the shore
Use conservation of momentum.
My vy, + MiggVigg =0
mr, (VL,log + vlog) + MipgVieg = 0
MLV log T MLVIog t MogViog = 0
MLV Jog = (=ML = Migg Viog
Mg (85 ke)(2.7 ) ouoa ™
—my, —my,,  —85kg—380kg s

VL = VLlog +Viog = 27 ?{—0.494 ?} -

(b) If the mass of the log had been greater, the lumberjack’s speed relative to the shore would have been
that found in part (a), because vi +vjog =V _|Vlog| = the speed of the lumberjack relative to the shore

Viog =

1 . .
and |v10g| oc ——, which decreases as m,,, increases.

Myog
© vy = kMLl _ 3ke)(27 7) =049 2
log —my, —my,,  —85kg—450kg ’ s

VL = VLlog +Viog = 27 ?{—0.429 ?) =
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22. Choose the motion of the two pieces at right angles to one another to be along the positive x- and y-axes. Use
conservation of momentum.

pt+pr+p3=0
= mvX +mvy + mvy

V3 = —V(f( + 5’)

vy =y (V)2 + (-0 =[ 2y
6 =tan™! (_—V] =225°

-V

0= | 225° if the two pieces with speed v lie along the postive x- and y-axes.

23. The collision is completely inelastic because the two carts stick together. Assume the motion is one-dimensional.
The initial momentum is equal to the final momentum.
pi =mv+m(0)=2mvp = py

my v

2m

Vf = =
The final kinetic energy is

1 5 vY O[T,
K =—QCm)yve" =m| - | =|—mv
f 2( Ve [J 2

24, From Example 9-6,
™% _ tano
mn

L. My tan® (950 kg)<20.0 %)tan40.0°
2= =

1300 kg =[12 ms

my
and
950 kg)(20.0 ™)
mwy ( S
Ve = = =11 m/s
£ (my +my)cos@ (950 kg +1300 kg)cos40.0°

25. Let the motion of player 1 be in the positive x-direction and the motion of player 2 be at an angle of 120°
measured counterclockwise from the positive x-axis.
The initial momenta for the players are p;; = mvX and p,; = mv(cos @Xx +sindy). The final momentum for the

two-player system is p; = 2mv;. Using conservation of momentum, mvX + mvcos X+ mvysin 6y = 2mv;.

Vi = %v[(l +cos@)X+sin0y]

=%(5.75 EJ[(l+cc>5125°);2+sinlzs°y]
S

= (2.875 9][(1—0.5736)&+0.819zy]
S

= (123 m/s) %+(2.36 m/s) ¥ |

26. (a) The final kinetic energy of the car and truck together is the sum of their initial kinetic energies.
Some of the kinetic energy is converted to sound and some to heat. Some of the energy creates the permanent
deformations in the materials of the car and truck.
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2

2
1 2 1 1 m 1 m
2
1 2 1 m
Kp =~ (mg +my)y? = 21200 kg +2600 kg)[S.O ?j ~[481

27. (a) Use momentum conservation. Let the subscripts b and B denote the bullet and the block, respectively.
My Vi +MBVRj = My Vpf + MBVRF
My, Vi +0 = my Ve +mpvpg

_ MpVpi — MBVBf

Vbf
ny
_ (0.0040 kg)(650 m)— (0.095 ke)(23 %)
0.004kg
=[1.0x10% m/s

(b) The final kinetic energy is the initial kinetic energy because energy is lost to the heating and deformation of
the bullet and block.

© K =%mbvbiz :%(0.0040 kg)(650 %)2 =[8507]

K =Ly e? + Ly 2=1(000401<g)(103 75 m)2+1(oo95 kg)(23 m)zz 477
£ = mever o mpvge =2 (0- 75 5) 5O S

28. (a) Nd

(b) Use momentum conservation to determine the speed of the puddy-block system just after the collision.
My Vy +mpvy, = (my, + my vy

my (0)+m v m
vp = b() pp:( P va
P

mb+mp my +m

Use vp to determine Ky and equate K with the gravitational potential energy above the original position of
the block.

2
1 mp 2
—(my +m _— V, =(m, +m h
2( b p)(mb‘f‘mpJ p ( b p)g

20 2
P L T I e
My, + my, 2g
2 m 2
~ 0.0700 kg (5~60 .
0.470 kg +0.0700 kg

SEGED
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29. Use momentum conservation to determine the speed of the puddy-block system just after the collision.
my (0) +myvy, = (my, +my)ve

m
vp =| —2— Vo
mp+mb

Use vy to determine K and equate K¢ with the spring potential energy.

m

2
1
M ]2l
P +my, 2

m

%(mp +mb)[

2
my2v,? (0.0500 kg)* (2.30 ?)

- =[371om]
k(my +my) | (20.0 X)(0.0500 kg +0.430 kg) =

30. (a) K; =%m1v2 +%m2v2 =%(m1 +m2)v2

2
1 v 1 2
Ky =— + —| =— +
f 2(’"1 mz)(4j 32(ml Ny )v

2
ﬁzé(mﬁnh)v [

K; %(m1+m2)v2 |16

(b) Use momentum conservation.

myv+my (—v) = (my +m2)£

1
my —ny 22(”11 +my)

47’}1] —4m2 =m +my

3m1 = 5}’}12
m 13
my 3

31. my = the mass of the truck
m, = the mass of the car
vy = the initial speed of the truck
Use conservation of momentum to find an equation for the final speed of the truck.
myp =myvig +npVar
mvig = mvo — maVaor
- my
if =Vo—— Vaf
m

There is one equation and two unknowns. Use conservation of energy to find a second equation relating v|; and v,

1 2 1 2, 1 2
STy =myvie T mpVof
20Ty 2

2 2 2
myvye =mvy —nmpVar

Substitute for v{ ¢ and solve for v,
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2

my 2 2

m [Vo _?VH] =myy —mpVor

1
2

2_, mp 2 2 2
myy —2myVoVor +—m Vof = myvy —MyVor
1

my 2 2
“2vgvar +—=Vor” =—Vop
m

m; +m
{ L= jVZfZ =2vyvor

m
_ 21”’11
of = Yo
m + my

Substitute for v, in the equation for v .

m 2m 2m m —m
vip =vp ——=| ——— |vp =| I-——2— |yp =| —= |y
my\ . my +my my +my my +my

Using the given information, m; = 1620 kg,

m, =722 kg, and vy =14.5 m/s, the final speeds of the truck and car are: | vy =5.56 m/s | and

Vear =20.1m/s |.

32. This problem is analogous to Problem 31. The hammer takes the place of the truck, and the nail takes the place of the
car. Therefore, the kinetic energy acquired is given by

2 2 2
1 5 1 2my 5 1 2(0.550 kg) [ mJ
Kor =—movye™ =—m vo© =—(0.012 k 45 — | =047
MR Ty 2( J 0 =5 8| 0550 ke + 0,010 ke s

my +my

33. From Example 9-7, K; = 0.197 J.
1 2 1 2
K¢ =—mvie™ +—myvye” =K
f 7 1V1f B 2V2f i

Solve for vyq.

2

2K; my 5 [2(0.1971) (0.160 kg ( mj
Vi = ——=vy = — 1.03 — :-1.31 m/s
it 2 \/ 0.130kg | 0.130 kg s [131 m/s |

m o m

Set the final y-component of momentum equal to zero to determine 6.
0=p y ~ P2y
=mvi¢ sin @ — myVo¢
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. myv
sing = —222f

mvit
.= myVv:
9 =si 1[ 22fJ
mvit
.- mHv:
—sin™! 2Vaf

2
_\/ml (2K; —myvy™)

=sin”!

(0.160 kg)(1.03 %)

\/(0.130 kg)[2(0.197 7)—(0.160 kg)(1.03 T)z}

]

34. For the neutron,

2 2
Kf _ %Wl\/f _ (Vf j
K; %mvi2 Vi
Recall that

Vlfz ml_mz VO SO
m1+m2 ’

y _(m—ij'

f m+M )"
ﬁ_(m—sz
Ki m+M

Ko (1009 —549x104u |
. u-—>. X u

(@) —f:[

=[0.998
K; 1.009u+5.49><104u]

1
K 1.009% —1.007u
(b) Of (

K.

1

2
=19.84x1077
1.009u +1.007u

Ky 1.009u —207.2u
© &=

2
=[0.9807
K; 1.009u+207.2uj
35. (a)

Let subscript 1 refer to the elephant and subscript 2 refer to the ball.
Use momentum conservation.

mvy +myvy =mpig +myVor

Use conservation of kinetic energy.

1

— +— L 2+—1
myv; nmyHv nyv, 1%
SV S MYy = S 2V2f

Rearranging the first equation gives
mO —vir)

my (vor —vy)
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Rearranging the second equation gives
2 2
mW” =) - om0 )
my (vas® —vy%) my (Vo =v2)(Vaf +Vv2)

Comparing these two equations implies that
O —wr)
(vap =2)
Substitute for v,¢ in the first equation and solve for v;¢.

=1, or Vor =V + Vi — V).

mpvy +myvy = myvig +my (v +vig —vy)
(my —mp)vy +2myvy = (my +my)vig

ny —my 2}'}12
Vi = v+ %)
my +my my +my

Since vor = v +Vvig — Vo, Vip =Vap V) — V).

Substitute for vj¢ in the first equation and solve for v,s.
My +myvy = my(Vog +Vy =)+ myVag
2myvy +(my —my vy = (my +my )vag

( 21111 J [le —mlj
Vo = v + %)
my +my my +my
[ 2(5400kg) (_4.30 2} 0.150kg — 5400 kg (8‘11 2)
5400kg +0.150 kg s )| 5400kg +0.150kg s
.

(b) [Kinetic energy has been transferred from the elephant to the ball|

36. Place the x-axis along the Earth-Moon center-to-center line with the origin at the center of the Earth.
0% xmx

cm ~

M
_ mExE +mmxm
mg + My
mg (0) + my, X,

mg +my

mm
=|———— |Xn
mg +mmj

22
= 72'435“0 kg 5 |(3.85x10° m)
5.98x10% kg+7.35x102 kg

=1 4.67x10° m

The mean radius of the Earth is about 6.37x10° m. Therefore, the center of mass is

6.37x10% m—4.67x10% m =|1.70x10° m below the surface of the Earth |.
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37. Place the origin at the center of the basket. Then, the two cartons of cereal are at x, =(-0.75 m)/2=-0.375 m

38.

39.

40.

(assuming the cartons are left of center).
Calculate the x-coordinate of the center of mass and set it equal to zero.

0% Xmx _ 2mexg + My X

cm ~

=0

M 2mg +my,
Solve for x,,.
2mexe +myxy, =0

_ 2mex;
Xy =———
mm

_2(0.55 kg)(-0.375 m)
1.8 kg

=0.23m
The half gallon of milk should be placed [0.23 m from the center of the basket, opposite the cartons of cereal|.

Calculate the x-coordinate of the center of mass. Assume that the mass of each brick is m and that the mass of
each brick is distributed uniformly.

L 5L
X _Zmx _ myxy +myxy +mzx; _m(2+L+4)_l[%)_ HL

em 4 12

M my +my +my 3m 3

Place the origin at the center of the box with the plane of the missing top perpendicular to the positive z-axis. Due
to symmetry, X =Y =0.

7 _Zmz_mzl+m22+mz3+mz4+mzb0mm_m<0+0+0+0—%)_ L
Y 5m 5m 10

The center of mass is |L/10 units below the center of the box.

Xem = W (The subscript refers to the quadrant.)
By symmetry, x;, =x3 =—xy4.

X2

3

Xy =3X;m =3(-1.21n.) =-3.6 in.

_my, +nys +myy

1
Xcm ZE(XQ + Xy —Xz) =

Y. =
cm 3m
By symmetry, y; =-y3 =—y4.
1 Y2
Y. =— — — -z
cm 3 (y2 Y2 y2) 3

¥y =—3¥m = -3(-1.2 in) =3.6 in.
(x2,32) =[ (-3.6in.,3.6in) |
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41. Due to symmetry, X = 0. Calculate Y.
zmy
o =
_ myy +myy +mgyg
2m+mg
2my; +m
= ATINIS (3 = yy)
2m+mg
_ 2(16u)(0.143 nm)sin 30° + (32u)(0)
2(16u)+32u
=3.6x10""'m

(Xcms ch) =

(0,3.6x1071" m)

42. (a) Calculate X
Y. - Mx; + Mbxy + Mxs _

1
= —(04+4050m+1.5m)=0.67m

Calculate Y.

_ My, + My, +Mys _
M

(Xems Yem) =| (0.67 m, 0.17 m) |

Y.

cm

1
3(0.50 m+0+0)=0.17m

Chapter 9: Linear Momentum and Collisions

(b) [The location of the center of mass would not be affected| The mass drops out of the equations.

43. We define the following subscripts:

f = floor

nf = not on floor

L =length of rope

Find the equation of motion of the top of the rope.

2.00m

m
Yiop =(o.910 ?jt,0<t< Corgm = 2208

Set the origin at the floor.

Vnf BELL ye=0
_ Mg Yor +Mp Yy
Yem=""
My +myg
Substitute.
0.604kg Yiop
( 2.00m )ytop( 2 )J’O 1 (1j 5 1 (0
em = 0.604kg ~2.00m2)7 T 22,00 m)

181
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44.

y (m)

10
0.8
0.6
0.4
0.2

O

ch

1 1 t(S)
05 10 15 20

MntVnf +MeVe _

e 2
[(mtTert)ant}an +mp(©) 2 (0910 ™)
= t

Mg + Mg Mg +mg

Vem (MZS)

1.0
0.8
0.6
0.4
0.2

o

©)

‘ t
05 10 15 20

We define the following subscripts:

f = floor

nf = not on floor

L = length of rope

Find the equation of motion of the top of the rope.

m
ytOp :2m—[0910 —jt,0<t<W=2.20 S

2.00m
s

Set the origin at the floor.

L 2.00 m

Vnf SELL R ye=0
y. = "t nf + 1 Vr
cm
Miotal
Substitute.
0.604kg Yo
( 2.00m )ytop( 2p)+0
om 0.604 kg
1 (1),
2.00 m(zjyt"p
1 m 2
—— |2 m—(0.910 —jt
2(2.00 m) s
2
L am?|364 M |re] 0,828 T |2
2(2.00 m) s )
Yem =| 100 m=(0.910 m/s)+(0.207 m/s” )
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y (m)
1.0

| | 1 ts
o) 05 10 15 20 ©

_ MnfVnf +MeVe

ch
Myp + Mg
(g +mf)(1+%fz)vnf T mg (0)
- Mye +myg
V,
= [1+%ftjvnf
Vaf
=Var 7y
m (—0.910@)2
=—0910 243 — 3/,
s 200m
Vi =| —0.910 m/s+(0.414 m/s®)
Vem (M75)
O Il Il Il t
05 1.0 ©)

-0.2
-0.4
-0.6
-0.8
_10 L

Chapter 9: Linear Momentum and Collisions

45. (a) Before the string breaks, the reading on the scale is the total weight of

m
Mg =(1.20 kg +0.150 kg)(9.81 S—zj =[132N].

(b) After the string breaks, the reading is [13.2 N|. Because the ball is moving with constant speed, the center of
mass of the system undergoes no net acceleration. Therefore, the reading will not change.

46. (a) Taking up to be positive, calculate the net external force acting on the cooking pot of water and the egg.

Fhetext = F5 —mpg —meg
Now, determine the acceleration of the center of mass.

0.0460 kg

Aem

() :_[ e p]gz_[

M me +my |2
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0.0460 kg +2.90 kg

2

(9.81 mz)
J s/ =1 -0.0766 m/s>
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(b) Recall that F oy = MAyy, then

meg

-

B meg me | m 0.0460 kg |
F; —mpg+ 5 —g(mp +7)—(981 7)[290 kg+T =| 287N

S

Fs_mpg_meg:_

(c) After the egg comes to rest on the bottom of the pot, the reading is the total weight of

m
Mg = (2.90 kg +0.0460 kg)(9.81 S—zj =[289N

47. (a) From Example 9-9, the velocity of the center of mass before the collision is

Vo - mw + myVy
cm T
my +my
_my +m,(0)
my +my

= ml vl
my +my

_ 0.750 kg (0.455 Ej
0.750 kg +0.275 kg s

(035 mp]

(b) Use momentum conservation to find the speed of the carts after the collision.
myvy = myvg +myve = (my +my)ve

m
Ve = [ml +1m2 jvl =V =| 0.333 m/s

1 2 1 2
¢) K; =—mv" +—myv
© K; S VTS Y

1 2,1 2
=—mv;” +—my (0
S+ 2(0)

=—’"1V12
2

2

=l(o.750kg)(o.455 Ej

2 S
=[0.07767

2
1 2 1 m
Kp =—(my +my)ve2 =—(0.750kg +0.275kg)| 0.333 2| =[0.0568
£ = Om+my)? =~ (0.750kg g)( Sj

48. (a) Before the string is cut, the force of gravity is countered by the force of the spring. Just after the string is cut,
the upper block experiences a force of F + F, =2mg —mg =mg, and the lower block experiences a force of

Fy, =—mg. The net force acting on the two-block system is £ =mg+(-mg) = @

net,ext —

(b) Since Fnet,ext =MAy, =0, Ay =|z|'
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49. The net force must be zero for the helicopter to hover.

A
F,et =0 = thrust—mg = (A—’?jv— mg

o mg (5500 kg)(9.81 m

A v 60.0 ™ S):
S

50. Fiicion =34 N = thrust = (AA—TJV

Am _34N_34N_ ., s0ke
At v 11 % S

Convert Am/At from kg/s to rocks/min.

(0.309 kgj(m Sj( 1 rock J: 37 rocks/min

s min /\ 0.50 kg

51. Use conservation of momentum.
pi=0=pf= (mp +mg)v+2myw,

0= (m, +ms)v+2mb(18.0 2Jrv)
S
m
0 = (my, +mg)v+2my, (18.0 —j+2mbv
S
m
—2my, (18.0 —j = v(my, +mg +2my, )
S

-2m, (18.0 %) ) ~2(0.850kg)(18.0 %) oy

" my+mg+2my  5T.0kgt2.10kg+2(0.850kg) s

The person will recoil with a speed 0of|0.503 m/s|.

52. Use conservation of momentum for each time the person throws a brick.
First brick
pi =0=pp = (my +mg +my)v+mpvy

v

0 = (my, +mg +my, )v+my, (18.0 ?+VJ

0 = (my, +mg +my, )v+my, (18.0 ?J+mbv

—my, (18.0 —(0.850kg)(18.0

V= ( S)= (180 ) =—0252 2
my +mg +2my,  57.0kg+2.10 kg +2(0.850kg) s

Second brick

Pi :(mp +mg +mb)vz(mp +ms)vp +myVy = pr

(myy +mg +my, )v = (my, +mg)vy, +my, (18.0 ?+vp)
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(my, +mg +my, )y —my, (18 %)

Vp =

my +mg + my,

P
(57.0kg+2.10 kg +0.850kg)(-0.252 ™)~ (0.850kg)(18 ™)

57.0kg+2.10 kg +0.850 kg

—_0507 2

$
The person will recoil with a speed of [0.507 m/s].

53. (a) The reading of the scale is given by the total weight of the sand and bucket plus the force of impact due to the
pouring sand.

. A
Scale reading = (my, +mg)g + A—mv
t

= (0.540 kg +0.750 kg)(9.81 %J+(0.0560 Ej{&zo Ej
S

S S
=[12.8N
m
(b) W =(my +my)g = (0.540 kg +0.750 kg)(9.81 S—z) =[127N

2
Am . kg m
54. (a) thrust =——v = (mass per unit length)(speed)v=| 0.13 —= {14 — | =| 025N
(@) v =(mass p g)(p)( mj( j

S

(b) The scale reads jmore than 2.5 N|. It reads the weight of the rope on the scale and the thrust due to the falling
rope.

2
. Am kg m m
¢) Scalereading=—-—v+mg=|0.13 =] 1.4 — | +(0.25kg)| 9.81 — |=| 2.7 N
© £5 N g [ mj( s) ( g)( Szj

55. Place the origin at X .
MeXe + My X
Xcm =(=_—Ct"¢ 7t
Mg + My
__mX

€ me
(725 kg)(555 f)
5.97x10** kg

——6.74x1072 ft

The earth moves only 6.74x1072! ft |.

56. (a) Use conservation of momentum.

1 % 1
mv+—m(0)=m| — |+—mv
5 0) (SJ 72

2 |
—my=—mv,
3 2
v =| 2
2703
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b) K =—m*

W11 (4 )
ml—| +=| =m||=v
3) 2127 )\3
= —mv? +imv2 :lmv2

18 9 2

K; = K¢, therefore, the collision is [elastid|

57. Use conservation of momentum to determine the horizontal speed of the bullet and block.
m = the mass of the bullet
M = the mass of the block
mv+M(0)=(m+M)ve

m
VF = v
m+M

Recall that d), =h =(1/2) gt2 for a mass that is initially stationary. Find the horizontal distance.

x:vft:( m )v 2h _ 0.0100 kg (725 j 2(0750m)_m
m+M 0.0100 kg +1.30 kg 9.8] m

g

58. (a) Since egg 2 is farther from the center of mass than egg 1, the location of the center of mass will change more
lif egg 2 is removed,

mx 3.0 cm
b) X. =X ——=0-—"""-=-025cm
( ) cm cm,prev 12}’}’[ 12
my 3.5cm
Y. =Y -——=0- =-0.29 cm
cm cm,prev 12m 12
KXo Yery) = [(0.25 cm, —0.29 cm)
mxy 15 cm
¢) X.,=X -——==0- =-13cm
( ) cm cm,prev 12]’[’[ 12
my, 3.5cm
Yom = X -—==0-—""—=-029cm
cm cm,prev 12m 12
KXo Yern) = (1.3 cm, —0.29 cm)|

59. Use the thrust equation to estimate the force.
(1000 )(1 m?)(31in)(0.0254 m)(

m
10 |- [024]

thrust =—v =
At 9 h)(3600 s)

60. (a) The change in momentum per second is the weight of the apple.

A

(b) Ap=FAr=WAt=Wt; =(3.0N)(1.55s)=[ 45 kg-m/s
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61. Place the origin at the center of the wheel and the lead weight on the positive x-axis.

Y My Xy + My X, cm,prev

em =0

My + Myp
My, [0.0502 kg
— Nw T 7| e ei.
wh 355 kg
Before the lead weight was added, the center of mass was [0.354 from the center of the wheel.

Xem,prev j(zs.o cm) = -3.54x10"%cm

62. Since there are no external forces acting on the system in the x-direction, X, of the system will not change.
After the system comes to rest, the ball, hoop, and system have the same X_,,. Therefore, the x-coordinate of the

ball will be X,p,.

My, +2Mx, 1 1 R R
X, = TEMS L o)== 042 RS || =]
em M 3 (% +2%) 3{ [ 4)} 2

63. (a) When the canoeist walks toward the shore, the canoe will move away from the shore according to
conservation of momentum. Therefore, her distance from the shore is 2.5 m.

(b) Place the origin at the center of the canoe before the canoeist walks toward the shore.
Xem =0 and will not change since there is no external force with an x-component acting on the system.

Assume the canoeist walks in the positive x-direction. After the canoeist walks to the end of the canoe, the
distance between the canoeist and the canoe’s center of mass is x,; —x,, =1.5 m, where x;, and x,,
represent the x-component of the center of mass for the canoeist and the canoe, respectively.
mx,, +Mx,,
m+M

0 = mx,, + Mx,,

=mx,, + M (x,, +1.5 m)

=(m+M)x,, +(1.5 m)M

Xy = —(l.Sm)(mi/IMj

—sm)|—Bke )y
22 kg +63 kg
Xy =—1.Im+1.5m=04m

Xem=0=

3.0m +2.5m=4.0 m. So, the canoeist is

The distance between the system’s center of mass and the shore is

40m-04m= from shore.

64. Place the origin at the center of the canoe before the canoeist walks toward the shore. X, =0 and will not
change since there is no external force with an x-component acting on the system. Assume the canoeist walks in
the positive x-direction. After the canoeist walks to the end of the canoe, the distance between the canoeists and
the canoe’s center of mass is x;; —x,, =1.5 m, where x;, and x,, represent the x-component of the center of

mass for the canoeist and the canoe, respectively.
mx,, + Mx),
m+M
0 = mx,, + Mx,,
=m(xy; —1.5 m)+ Mx,,
MXM
Xy —1.5m

Xem =0=
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The distance between the system’s center of mass and the shore is (3.0 m)/2 + 2.5 m = 4.0 m. So,
Xy =40m-34m=0.6m.
_ (63 kg)(0.6 m)

0.6m—-1.5m

[k

. m
65. (a) Scale reading =W = (m +my)g = (0.150 kg +1.20 kg)(9.81 8—2) =

(b) In the absence of the liquid, the ball would fall with an acceleration equal to g. The liquid is retarding the motion of

the ball with a force of m ( g —%) = (%j myg. So, the scale reading is

3 3 3 m
—mg+myg=|—m+m =|—(0.150 kg)+1.20 kg || 9.81 — |=|129 N
S g =(3mom Je=| 20150k 120 ke o1

66. Use conservation of momentum.
0 = myvy, +myvy

oy, (1 ke)(6.2 %)cosl3°

LA 025 m =[27 k]

p

m

67. Due to symmetry, Y., =0.

—11 o
X, = 2(1.00)(9-6x10”! ' m) cos 52.25°+ (16u)(0) _ ¢ |12
2(1.0u) +16u

(X, Yo ) =1 (6.5x1072m, 0)
cm cm

68. m= (o.lzsﬁj (0.500 m) = 0.0625 kg
m

B Am
F = mg+(—At jv
=m +Kﬂjv}v
= (0.0625 kg)[9.81 %}[(0.125 E)(l.% 9}}(133 Ej
S m S S

-[oa]

Yo
mvy + m, a5

m+m

69. Vem =§v0 =
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70. (a) mvy =Cm)ve

71.

72.

73.

V,
b =| 22
2

1

(b) %mvg— 2m)v}

2

vV
vp =| -~

NG

Assume gravity is the only force acting on the rocket after it is launched. After rising for 2.5 s its speed is
v=442 m/s—(9.81 m/s>)(2.50 s) =19.7 m/s.

(@)

(b)

©

(b)

(©

Since the initial momentum is upward, each piece must have a momentum with a vertical component equal to
half the initial momentum.

1 m .
Py =Py = E(mv) = (Ejvf sin45°
v 19.7 m/s
Ve = = =[27.9 m/s
F ™ sin45° ~ sin45° -
Before the explosion V,, =| (19.7 m/s)y |.

Since the momentum of the system is the same after the explosion, and the total mass has not changed,

Vem =1 (19.7 m/s)y | after the explosion too.

The only force acting on the system before and after the explosion is gravity. Therefore,

A =| (-9.81 m/s?)y |.

(11,000 kg - m/s)X +(-370 kg - m/s)y +p, = (15,000 kg - m/s)X + (2100 kg - m/s)y
| P2 = (4000 kg-m/s)% + (2470 kg - m/s)j

@ Momentum depends only on mass and velocity. It is independent of position.

Use momentum conservation.
mv; + myVvy = myvy + myvg
(0.84 kg)(0) +(0.42 kg)(0.68 m/s) = (0.84 kg +0.42 kg)v¢

The energy stored in the spring bumper is equal to the loss of kinetic energy at that time.

AK =K; -K; = %(0.84 kg +0.42 kg)(0.227 m/s)2 —%(0.42 kg)(0.68 m/s)2 =-0.0651]
Energy stored in the bumper is |0.065 J|.

Since this is a one-dimensional, head-on elastic collision, we can use the results of Problem 74.
Vo= 0.84 kg—0.42 kg 0)+ 2(0.42 kg) (0.68 m/s) = [ 0.45 m/s
171 0.84 kg +0.42 kg 0.84 kg +0.42 kg
2(0.84 kg) 0.42 kg —0.84 kg
Vo = 0)+ 0.68 m/s) =| —0.23 m/s
2t {0.84 kg +0.42 kg O+ 05a kg +0.42 kg ( )
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74. Use momentum conservation.

myy +myvy =mvig +myVar

Use conservation of kinetic energy.

— le12 + lI’I’lz\)zz = lmlvlfz + l my V2f2 .
2 2 2 2

Rearranging the first equation gives
mO —vir)

my(vap =v2)

Rearranging the second equation gives

2 2
m (v~ =) - my (v —vie )V +vir)

my (V2f2 —sz) my (VZf ) )(VZf +V2)
Comparing these two equations implies that
V| +Vif

=1, or Vor =V + Vi — V).
Vor + V)

Substitute for vo¢ in the first equation and solve for vi¢.
My +myvy = mpvig + i (v +vig — ;)

(my —my)vy +2myvy = (my +my)vie

ny —my 2I’ﬂ2
Vif = Vi + %)
my +my my +my

Since Vo =V +Vir = Vo, Vif =Vor +Vo — V.

Substitute for vj¢ in the first equation and solve for v,s.
My +myvy = my(Vog +Vy =)+ myVog
2myvy + (my —my vy = (my +my )vog

2m1 my —my
Vo = v+ %)
my +my my +my
2m1 my —my my —my 2m2
75. Vof —Vif = [ - v+ - Vi
m +m2 m +I’ﬂ2 nm +m2 m +WI2

my+m —my —m
= =2 i | == i
my +my my +my

=Vi —V2i

76. In each case, the potential energy of the spring is converted into the kinetic energy of the cart(s). So, the kinetic
energy of the single cart is equal to the sum of the kinetic energies of the two carts.

1 1 1
—m? = —mv12 +—mv22
2 2

2
. _ 1 2 1 2 1 2 2
Because of momentum conservation, v; = —v,. So, we have Emv = Eme +Em(_Vf) =mvf.
, 2
The final speed of each cart is vy = TV .
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77. Assume v is in the positive x-direction. Use conservation of momentum.

Pxi = Pxt
mvgy =mvy, +mvy,
Vo =V cos @ +Vv, cos b, (I
Pyi = Pyf
0=v sing +v,siné, (II)
Use conservation of kinetic energy.
1 2 1 1 2

2

2
—myy” =—mv;" +—mv,
2 2

v02 = v12 + v22 11y
Square (I) and subtract from (I1I).

V02 = V]2 +V22

—(v02 = vlz cos? o+ v22 cos? 6, +2v v, cos G cos )

0= v12 (1—cos? o)+ v22 (1—cos? 6,)—2vv, cos b cos G,

= vlz sin’ 6 +v22 sin’ 6, —2vivy cosG cosd, (IV)

From (II),
Vi sin G . .
vy =————"L and v12 sin’ 6 = v% sin’ 6.
sin 6,

Substituting these results into (IV) gives

0= 2v12 sin’ 6 —2v (Vl .SH;H] jcos 6, cos 6,

S &,
. cos b, cos b, sin 4
sin2 ¢ = 6 050, sin
sin&,
0=cosf, cosb, +sinf;sinb,
= cos(0) 6y

So,
6-6,= cos ™10 =90°.

78. Fnet,ext = (mg +mg) Ay = meag + mgag

— m
Fnet,ext — Mg dg 40.0 N—(9.50 kg)(2-32 )

ag = =|0.855 m/52
me 21.0 kg

©
()

79. Place the origin at the position of impact, and assume that the combined objects move away from the origin in the
negative x-direction.

Use conservation of momentum.
Pix = Pfx
V
mvcos + mvcos &, = (2m) (gj

2
cosb, +cosb, = 3

Piy = Py
mysin@ + mvsing, =0
sin@, =—sin 6, =sin(-6,)
91 = —92
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Substitute this result into the previous result.

cos¢91+cos(—491):§
2
2cosb) =—
4 3
cost91:l
3
(1
=cos | —
g (J

=70.5°
So, the initial angle was 2(70.5°) =[1419]

80. From Problem 74,

ny —my 2}'}12
Vi = v+ V).
my +my my +my

Choose the positive direction to be up.
Vif =V, VI =V

m=m V)=V
m2=M

m—M [ 2M j (M—m+2Mj (3M—mj
Vi = (-v)+ y= y= %

(m+MJ m+M m+M m+M
Recall that v =./2gh.

)

2gh
&%m m+M

3M —m\’
m = h
m+M
81. (a) Ifthe rope’s center of mass moves upward with constant acceleration, then the velocity of the rope’s center
of mass must be increasing linearly with time, since it is upward.
We define the following subscripts:

t = table
nt = not on table

M
MgV Ay (TW)V“Lmt(O) _ [VZJ

ch - - -

M M L

Vem 1s upward, and since both v and L are constant, ¥, is proportional to 7. Hence A, is upward and

2
constant. | 4., =— |, the slope of a graph of V,, versus t.

(b) The rope being lowered has downward momentum. Its downward momentum is decreasing as more and more
of its mass comes to rest. Therefore, there must be a net upward force acting on the rope, resulting in an
acceleration of the rope’s center of mass.
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MtV + MV (M+%vt)v+(%vt)(0) v
© Von= = =y+|— |t
M M L

Even though v is negative if the rope is moving downward, the equation for V,, is linear with positive slope.

Therefore, 4., which is the slope of a velocity versus time graph, is positive and constant, having the same

2
magnitude as in part (a), VT
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