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Chapter 9 

Linear Momentum and Collisions 
Answers to Even-numbered Conceptual Questions 

2. Doubling an object’s speed increases its kinetic energy by a factor of four, and its 
momentum by a factor of two. 

 
4. No.  For example, suppose object 2 has four times the mass of object 1.  In this case, the 

two objects have the same kinetic energy if object 2 has half the speed of object 1.  On the 
other hand, it follows that the momentum of object 2 is twice the momentum of object 1. 

 
6. No.  Consider, for example, a system of two particles.  The total momentum of this system 

will be zero if the particles move in opposite directions with equal momentum.  The 
kinetic energy of each particle is positive, however, and hence the total kinetic energy is 
also positive. 

 
8. (a)  The force due to braking – which ultimately comes from friction with the road – 

reduces the momentum of the car.  The momentum lost by the car does not simply 
disappear, however.  Instead, it shows up as an increase in the momentum of the Earth. (b)  
As with braking, the ultimate source of the force accelerating the car is the force of static 
friction between the tires and the road. 

 
10. It is better if the collision is inelastic, because then the light pole gives your car only 

enough impulse to bring it to rest.  If the collision is elastic, the impulse given to your car 
is about twice as much.  This additional impulse – which acts over a very short period of 
time – could cause injury. 

 
12. The rate of change in momentum is the same for both objects.  As a result, the rate of 

change in velocity for the less massive object (the pebble) must be greater than it is for the 
more massive object (the boulder).  Alternatively, we know that the acceleration (rate of 
change in velocity) of an object is proportional to the force acting on it and inversely 
proportional to its mass.  These objects experience the same force, and therefore the less 
massive object has the greater acceleration. 

 
14. Yes.  Just point the fan to the rear of the boat.  The resulting thrust will move the boat 

forward. 
 
16. No.  Any collision between cars will be at least partially inelastic, due to denting, sound 

production, heating, and other effects. 
 
18. Yes.  For example, we know that in a one-dimensional elastic collision of two objects of 

equal mass the objects “swap” speeds.  Therefore, if one object was at rest before the 
collision, it is possible for one object to be at rest after the collision as well.  See Figure 9-
7 (a). 

 
20. The speed of the ball when it leaves the tee is about twice the speed of the club.  This 

follows for two reasons:  (i) The collision is approximately elastic; and (ii) the mass of the 
club and the arms swinging the club is much greater than the mass of the ball.  See Figure 
9-7 (c). 
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22. Kinetic energy can be lost as objects rub against one another during a collision, doing 
negative, nonconservative work.  These are internal forces, however, and hence they can 
have no effect on the total momentum of the system. 

 
24. The speed of the ball after bouncing off the elephant will be greater than the speed it had 

before the collision.  The situation is similar to that shown in Figure 9-7 (c), except that 
the small mass has a nonzero speed before the collision. 

 
26. As this jumper clears the bar, a significant portion of his body extends below the bar due 

to the extreme arching of his back.  Just as the center of mass of a donut can lie outside the 
donut, the center of mass of the jumper can be outside his body.  In extreme cases, the 
center of mass can even be below the bar at all times during the jump. 

 
28. The center of mass is higher than the midway point between the tip of the stalactite and 

the cave floor.  The reason is that as the drops fall, their separations increase (see 
Conceptual Checkpoint 2-5).  With the drops more closely spaced on the upper half of 
their fall, the center of mass is shifted above the halfway mark. 

 
30. The center of mass of the hourglass starts at rest in the upper half of the glass and ends up 

at rest in the lower half.  Therefore, the center of mass accelerates downward when the 
sand begins to fall – to get it moving downward – and then accelerates upward when most 
of the sand has fallen – to bring it to rest again.  It follows from Equation 9-18 that the 
weight read by the scale is less than Mg when the sand begins falling, but is greater than 
Mg when most of the sand has fallen. 

 
32. The scale supports the juggler and the three balls for an extended period of time.  

Therefore, we conclude that the average reading of the scale is equal to the weight of the 
juggler plus the weight of the three balls. 

 
34. (a)  Assuming a very thin base, we conclude that the center of mass of the glass is at its 

geometric center.  (b)  In the early stages of filling, the center of mass is below the center 
of the glass.  When the glass is practically full, the center of mass is again at the geometric 
center of the glass.  Thus, as water is added, the center of mass first moves downward, 
then turns around and moves back upward to its initial position. 

 
Solutions to Problems 

 1. Setting the momentum of the ball equal to that of the car gives  
b b b c

m
5c s

b
b

15,800 kg km 111.3 km 3600 s 1 mi111.3 2.49 10 mi/h
0.142 kg s s h 1.609 km

P m v P

P
v

m

= =

⋅    = = = = = ×   
   

  

 
2.

 
d1

d2

m ˆ4.40 kg
s

m ˆ4.40 kg
s

= ⋅

= − ⋅

p x

p y
 

g
m mˆ ˆ(9.00 kg) 1.30 11.7 kg
s s

 = − = − ⋅ 
 

p y y  

total d1 d2 g
m m mˆ ˆ ˆ ˆ4.40 kg 4.40 kg 11.7 kg 4.40 kg m s  16.1 kg m s
s s s

= + + = ⋅ − ⋅ − ⋅ = ⋅ − ⋅p p p p x y y x ŷ  
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 3. Determine the total momentum of the dog and cat. Let north be in the y-direction. 

d c d d c c total
m m mˆ ˆ ˆ(20.0 kg) 2.50 (5.00 kg) 3.00 15.0 kg 50.0 kg
s s s

m m    + = + = = + = ⋅ + ⋅   
   

p p v v p y x x

et the total momentum of t

m ˆ
s

y  

S he dog and cat equal to that of the owner. 
0 0 0 total

m m
total s s

0
0

ˆ ˆ15.0 kg 50.0 kg m mˆ ˆ0.214 0.714 
70.0 kg s s

m

m

= =

⋅ + ⋅
= = = +

p v p

x ypv x y  

1

2 2

0

0.714tan 73.3
0.214

m m0.214 0.714 0.745 m s
s s

v

θ −  = = ° 
 

   = + =   
   

 

 4. (a) The cart  must ha pposite momenta for the total momentum of the system to be zero. s ve equal and o

( )
1 2 1 1 2 2

m
s1 1

2
2

0

(0.45 kg) 1.1 
0.76 m s

0.65 kg

m m

m vv
m

− = = −

= = =

p p v v

 

  (b) No, kinetic energy is always greater than or equal to zero. 

  (c) 
2 2

2 2
system 1 1 2 2

1 1 1 m 1 m(0.45 kg) 1.1 (0.65 kg) 0.76 0.46 J
2 2 2 s 2 s

K m v m v    = + = + =   
   

 

 5. Determine the speed of the baseball before it hits the ground. 
m
s0.780 kg m5.20

0.150 kg s
pv
m

⋅
= = =

2 2
0 02 (v v g y y= − −

 

Recall that  ).

( )
( )2

2 2m22
s0

0
m
s

5.20 (0)
1.38 m

2 2 9.81 

v vy y h
g

−−
− = = = =  

 6. (a) f i

f i( )

m mˆ ˆ(0.220 kg) 2.0 2.5 
s s
m ˆ(0.220 kg) 4.5 
s

m ˆ0.99 kg
s

0.99 kg m s

m

p

∆ = −
= −

  = − −    
 =  
 

= ⋅

∆ = ⋅

p p p
v v

y y

y

y

 

  
(b)

 
f i f i

m m( ) (0.220 kg) 2.0 2.5 0.11 kg m s
s s

p p m v v  − = − = − = − ⋅ 
   
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  (c) The quantity found in part (a). 

 7. 1 total total cos (17.6 kg m/s)(cos 66.5 ) 7.02 kg m/sxp p p θ= = = ⋅ ° = ⋅  

1
1

1

7.02 kg m/s 2.51 kg
2.80 m/s

pm
v

⋅
= = =

2 total total sin (17.6 kg m/s)(sin 66.5 ) 16.14 kg m/syp p p θ= = = ⋅ ° = ⋅

 

 
 

2
2

2

16.14 kg m/s 5.21 kg
3.10 m/s

pm
v

⋅
= = =  

 8. 
3

av (1350 N)(6.20 10 s) 8.37 kg m/sI F t −= ∆ = × = ⋅
 

 9. To estimate the magnitude of the force, determine the magnitude of the average force. 

( )m
sf i

av
(0.045 kg) 67 0( ) 3.0 kN

0.0010 s
m v vpF

t t

−−∆
= = = =
∆ ∆  

 

10.

 ( )
av

m
s

av

(0.50 kg) 3.2 0
7.0 ms

230 N

pF
t

pt
F

∆
=
∆

−∆
∆ = = =

 

 

11. 
m
s

m m
s s

9 kg
0.3 kg

23 4.5 

I p m v

Im
v

= ∆ = ∆

− ⋅
= = =
∆ − −

 

 12. (a) Recall that 2 .g=v  Just before the marble hits the floor, its speed is h i 2= − 1ghv  (negative downward 

motion). Just after it hits the floor, its speed is f 22v gh= .  So, 

2 1

2 1

2

ˆ ˆ[ 2 ( 2 )]

ˆ2 ( )

m ˆ(0.0150 kg) 2 9.81 ( 0.640m 1.44m)
s

ˆ(0.133 kg m s ) 

m

m gh gh

m g h h

= ∆
= ∆

= − −

= +

 
= + 

 
= ⋅

I p
v

y y

y

y

y
0.133 kg m/s⋅

 

The impulse is  in the positive y-direction. 

  (b) Because the impulse is proportional to the sum of the square roots of the initial and final heights, the impulse 
would have been greater than that found in part (a). 

 13. The impulse is equal to the change in the y-component of the momentum of the ball. 

0 0
m[ cos 65 ( cos 65 )] (0.60 kg) 5.4 (2cos 65 ) 2.7 kg m s
sy yI p m v m v v  = ∆ = ∆ = °− − ° = ° = ⋅ 

   
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 14. (a) Let the initial motion of the ball be along the positive x-axis and the final along the positive y-axis. 

f i

1

2 2

m m mˆ ˆ ˆ( ) (0.14 kg) 18 ( 36) 5.04 kg 2.52 kg
s s s

2.52tan 27
5.04

m m5.04 kg 2.52 kg 5.6 kg m s
s s

m

I

θ −

  = ∆ = − = − − = ⋅ + ⋅    
 = = ° 
 

   = ⋅ + ⋅ = ⋅   
   

I p v v y x x m ˆ
s

y
 

  (b) Since ∆  is directly proportional to the ball’s mass, it would double in magnitude. There would be no p
change in the direction. 

  (c) If  the  of the ball is unchanged, then the impulse is unchanged. ∆p

 15.  f i f i( )
ˆ ˆ ˆ(0.75 kg)[(5.2 m/s) (3.7 m/s) (8.8 m/s) ( 2.3 m/s) ]

ˆ ˆ( 2.7 kg m/s) (4.5 kg m/s)

m= ∆ = − = −
= + − − −
= − ⋅ + ⋅

I p p p v v
x y x

x y
ŷ

  (a) 1 1 4.5 kg m/stan tan 59 180 121  from the -axis
2.7 kg m/s

y

x

I
x

I
θ − −   ⋅
= = = − ° + ° = °   − ⋅  

 

  (b) 2 2( 2.7 kg m/s) (4.5 kg m/s) 5.2 kg m/sI = − ⋅ + ⋅ = ⋅  

 16. The sum of the canoes’ momenta  must be zero. The set up is similar to Example 9-3. 
1 2 1 1 20 2x x xp p m v m v+ = = + x

 

( )m
s1 1

2 m2 s

(340 kg) 0.52 
400 kg

0.44 
x

x

m v
m

v

− −−
= = =

 

 17. This problem is similar to Problem 16, so we may use the above result for m2. 

( )m
s1 1

2 m2 s

(45 kg) 0.62 
31 kg

0.89 
x

x

m v
m

v

− −−
= = =

 

 18. Assume the bee’s motion is in the negative direction. 
bee s bee bee s s0p p m v m+ = = + v

 

( )cm
sbee bee

s
s

(0.175 g) 1.41 
51.9 mm s

4.75 g
m vv

m

− −−
= = =

 

 19. The sum of the pieces’ momenta must be zero. Assume the motion is one-dimensional. 
m  

1 2 1 1 20p p v m v+ = = + 2

1 1 2 2
1 2

2 1

m v m v
m v
m v

= −
−

=

 

2 2 2
1 2

2
2 1 1

m v v
m v v

   −
= =   

   
2  
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Now, use the fact that 2 12 .K K=  

2 2
1 1

2

1 12 2
2 2

2
2 2 2 1 1 1

2
1 2 1

22 21

1

2

1

2

1
22

11
2

2

K m v K m v

m v m
m mv

m
m

m
m

 = = = 
 

 
= =  

 
 

=  
 

=

m v=

 

The piece with the smaller kinetic energy has the larger mass. 

a s a a0p p m v+ = = s sm v+

s s
a

a

m vv
m

−
=

( )(1100 kg)

(97 kg

− −
=

0

log logm v+ +

log logm v+ +

log log( )m v−

og

og

(85kg)

85kg

2.7

= =
−

=

,

og

og

(85kg)

85kg

2.7

= =
−

=

 20. The motion is one-dimensional. Assume the satellite’s motion is in the negative x-direction. 
 

 

The initial distance is 
m
s0.13 

(7.5 s) 11 m
)

=s s
0 a

a

m vx v t t
m

−
= =

 

 21. (a) speed of lumberjack relative to the shore 
 speed of lumberjack relative to the log 

 speed of the log relative to the shore 
Use conservation of momentum. 

 

 

 

 

Lv =

L,logv

logv =

L Lm v

Lm v

L Lm v

L Lm v

=

L,log

,log

,log

log logm v+ =

log( )v

L logm v

Lm= −

0

=

=

0

( )m
s m0.494 
kg s

m m 2.2 m s
s s

= −

 − = 
 

L L,log

L l

,log l

2.7 

380

 0.494

m v
m m

v

− − −

= + +

logv

v vL L
 

  (b) If the mass of the log had been greater, the lumberjack’s speed relative to the shore would have been greater 
than that found in part (a), because L log L logv vv v+ = − =  the speed of the lumberjack relative to the shore 

and log
log

1v
m

∝  which decreases as mlog increases. 

  

(c)

 

( )m
L L,log s

log
L l

L L,log l

2.7 m0.429 
450kg s

m m 0.429 2.3 m s
s s

m v
v

m m

v v v

= −
− − −

 = + + − = 
   
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 22. Choose the motion of the two pieces at right angles to one another to be along the positive x- and y-axes. Use 
conservation of momentum. 

 1 2 3
3

0
ˆ ˆ

p p p
mv mv m

+ + =
= + +x y v

3
2 2

3

1

ˆ ˆ( )

( ) ( ) 2

tan 225

v

v v v v
v
v

θ −

= − +

= − + − =

− = = ° − 

v x y

 

225  if the two pieces witθ = ° h speed  lie along the postive - and -axes.v x y  

 23. The collision is completely inelastic because the two carts stick together. Assume the motion is one-dimensional. 
The initial momentum is equal to the final momentum. 

i f

f

(0) 2

2 2

p mv m mv p
mv vv
m

= + = =

= =

f
 

The final kinetic energy is 
2

2 2
f f

1 1(2 )
2 2 4

vK m v m mv = = = 
   

 24. From Example 9-6, 
2 2

1 1
tanm v

m v
θ=  

( )m
s1 1

2
2

(950 kg) 20.0 tan 40.0tan 12 m s
1300 kg

m vv
m

θ °
= = =

 

and 

( )m
s1 1

f
1 2

(950 kg) 20.0 
11 m s

( )cos (950 kg 1300 kg)cos 40.0
m vv

m m θ
= = =

+ + °

 

 25. Let the motion of player 1 be in the positive x-direction and the motion of player 2 be at an angle of 120° 
measured counterclockwise from the positive x-axis. 
The initial momenta for the players are li ˆmv=p x  and 2i ˆ(cos sin ).mv ˆθ θ= +xp y  The final momentum for the 
two-player system is  Using conservation of momentum, mvf 2m=p f .v fˆ ˆ ˆsin 2 .mv mcosmv θ θ+ + =x x y v  

f
1 [(1 cos )
2

m5.75 [(1 sin1
2 s

m2.875 [(1 0.819
s

ˆ ˆ(1.23 m s)   

v= +

1   ° 
 

 
 
 

v x y

x y

ˆ ˆsin ]

cos125 )

0.5736)

(2.36 m s )

θ θ+

= +

= −

= +

ˆ ˆ25 ]

ˆ ˆ2 ]

+ °

+

x y

x y
 

 26. (a) The final kinetic energy of the car and truck together is less than the sum of their initial kinetic energies. 
Some of the kinetic energy is converted to sound and some to heat. Some of the energy creates the permanent 
deformations in the materials of the car and truck. 
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(b)

 

2 2
2 2

i c c t t
1 1 1 m 1 m(1200 kg) 2.5 (2600 kg) 6.2 54 kJ
2 2 2 s 2 s

K m v m v    = + = + =   
     

2
2

f c t f
1 1 m( ) (1200 kg 2600 kg) 5.0 48 kJ
2 2 s

K m m v  = + = + = 
 

 

 27. (a) Use momentum conservation. Let the subscripts b and B denote the bullet and the block, respectively. 

( ) ( )

b bi B Bi b bf B Bf
b bi b bf B Bf

b bi B Bf
bf

b
m m
s s

2

0

(0.0040 kg) 650 (0.095 kg) 23 

0.004kg

1.0 10  m s

m v m v m v m v
m v m v m v

m v m vv
m

+ = +
+ = +

−
=

−
=

= ×

 

  (b) The final kinetic energy is less than the initial kinetic energy because energy is lost to the heating and deformation of 
the bullet and block. 

  (c) ( )22 m
i b bi s

1 1 (0.0040 kg) 650 850 J
2 2

K m v= = =  

( ) ( )2 22 2 m m
f b bf B BF s s

1 1 1 1(0.0040 kg) 103.75 (0.095 kg) 23 47 J
2 2 2 2

K m v m v= + = + =  

 28. (a) No 

  (b) Use momentum conservation to determine the speed of the puddy-block system just after the collision. 
b b p p b p( )m v m v m m v+ = + f  

p p p

b p

(0)bm m v
m m m

+
= =

+ +

f f

f p
b p

m
v v

m
 
  
 

 

Use v  to determine K  and equate Kf with the gravitational potential energy above the original position of 
the block. 

( )
( )2

p b p

2 2
p p

b p

2m2
s

m
s

( )

2

5.60 0.0700 kg
0.470 kg 0.0700 kg 2 9.81 

2.69 cm

m m gh

m v
m m g

+ = +

  
 =     +   

2
p 2

b p
b p

1 ( )
2

m
m m v

m m

h

 
  + 

 
   =    +    

=
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 29. Use momentum conservation to determine the speed of the puddy-block system just after the collision. 
b p p b p f

p
f p

p b

(0) ( )m m v m m
m

v v
m m

+ = +

 
=   + 

v

 

Use vf to determine Kf and equate Kf with the spring potential energy. 
2

p 2 2
p b p

p b

1 1( )
2 2

m
m m v k x

m m
 

+ =  + 
∆  

( )
( )

222 2 m
p p s

Np b m

(0.0500 kg) 2.30 
3.71 cm

( ) 20.0 (0.0500 kg 0.430 kg)

m v
x

k m m
∆ = = =

+ +
 

 30. (a) 2 2
i 1 2 1 2

1 1 1 ( )
2 2 2

2K m v m v m m v= + = +  

2

f 1 2 1
1 1( ) ( )
2 4 32

v 2
2K m m m m = + = + 

 
v  

21
1 232f

21i 1 22

( ) 1
16( )

m m vK
K m m v

+
= =

+
 

  (b) Use momentum conservation. 

1 2 1 2( ) ( )
4
vm v m v m m+ − = +  

1 2 1 2

1 2 1 2
1 2

1

2

1 ( )
4

4 4
3 5

5
3

m m m m

m m m m
m m
m
m

− = +

− = +
=

=

 

 
31. 

 

Use conservation of momentum to find an equation for the final speed of the truck. 

1
2
0

the mass of the truck
the mass of the car
the initial speed of the truck

m
m
v

=
=
=

1 0 1 1f 2 2f
1 1f 1 0 2 2f

2
1f 0 2f

1

m v m v m v
m v m v m v

mv v v
m

= +
= −

= −

 

There is one equation and two unknowns. Use conservation of energy to find a second equation relating v1f and v2f. 

2 2
1 0 1 1f 2 2f

2 2 2
1 1f 1 0 2 2f

1 1 1
2 2 2

m v m v m v

m v m v m v

= +

= −

2

 

Substitute for v1f and solve for v2f. 
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2
2 22

1 0 2f 1 0 2 2f
1

2
2 2 22

1 0 2 0 2f 2f 1 0 2 2f
1

2 22
0 2f 2f 2f

1

21 2
2f 0 2f

1

1
2f 0

1 2

2

2

2

2

mm v v m v m v
m
mm v m v v v m v m v
m
mv v v v
m

m m v v v
m

mv v
m m

 
− = − 

 

− + = −

− + = −

 +
= 

 
 

=  + 

2

 

Substitute for v2f in the equation for v1f. 

2 1 2 1 2
1f 0 0 0 0

1 1 2 1 2 1 2

2 21m m m m mv v v v v
m m m m m m m

     −
= − = − =     + + +     

0 14.5v

 

Using the given information, m1 = 1620 kg,  

m2 = 722 kg, and =  m/s, the final speeds of the truck and car are: truck 5.56 m/sv =  and 

car 20.1 m/sv = .  

2
1
2

m

2 2
2 2fm v

2
2f

2(v v =

2 2fm v

 32. This problem is analogous to Problem 31. The hammer takes the place of the truck, and the nail takes the place of the 
car. Therefore, the kinetic energy acquired is given by 

2 2 2
2 21

2f 2 2f 0
1 2

21 1 2(0.550 kg) m(0.012 kg) 4.5 0.47 J
2 2 0.550 kg 0.010 kg s

mK m v v
m m

     = = = =    + +      

 33. From Example 9-7, Ki = 0.197 J. 

f 1 1f
1 1
2 2 iK m v K= +  

Solve for v1f. 
2

i 2
1f

1 1

2 0.197 J) 0.160 kg m1.03 1.31 m s
0.130 kg 0.130 kg s

K m
m m

  = − − =  
  

.

 

Set the final y-component of momentum equal to zero to determine θ  

 1 2

1 1f

0
sin

y yp p
m v θ

= −
= −

=
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2 2f

1 1f
sin m v

m v
θ =  

( )
( )

1 2 2f

1 1f

1 2 2f
2

1 i 2 2f

m
s1

2m
s

sin

sin
(2 )

(0.160 kg) 1.03 
sin

(0.130 kg) 2(0.197 J) (0.160 kg) 1.03 

74.8

m v
m v

m v

m K m v

θ −

−

−

 
=  

 
 
 =
 − 
 
 
 =
  −     

= °

 

2 21
ff 2 f
21i ii2

.
mvK v

K vmv

 
= =  

 

1 2
1f 0

1 2

f i

,  so

.

m mv v
m m
m Mv v
m M

 −
=  + 

− =  + 
2

f

i

K m M
K m M

− =  + 

24
f

4i

1.009 5.49 10 0.998
1.009 5.49 10

K u u
K u u

−

−

 − ×
= =  + × 

2
7f

i

1.009 1.007 9.84 10
1.009 1.007

K u u
K u u

−− = = × + 

 34. For the neutron, 

 

Recall that 

 

 

  (a)  

  (b)  

  (c) 
2

f

i

1.009 207.2 0.9807
1.009 207.2

K u u
K u u

− = = + 
 

 35. (a) Let subscript 1 refer to the elephant and subscript 2 refer to the ball. 
Use momentum conservation. 

 
Use conservation of kinetic energy. 

1 1 2 2 1 1f 2 2fm v m v m v m v+ = +

2 2
1 1 2 2 1 1f

1 1 1
2 2 2

m v m v m v+ = 2
2 2f

1 .
2

m v+ 2  

Rearranging the first equation gives 
1 1 1f

2 2f 2

( ) 1.
( )

m v v
m v v

−
=

−
 

178 



Physics: An Introduction Chapter 9: Linear Momentum and Collisions 

Rearranging the second equation gives 
2 2

1 1 1f 1 1 1f 1 1f
2 2 2 2f 2 2f 22 2f 2

( ) ( )(1 .
( )(( )

m v v m v v v v
m v v v vm v v

− −
= =

− +−

)
)

+
 

1 1f

2f 2

( ) 1,
( )
v v
v v

−
=

− 2f 1 1f 2or .v v v v= + −

2fv

1 1 2 2 1 1f 2 1 1f 2
1 2 1 2 2 1 2 1f

( )
( ) 2 ( )
m v m v m v m v v v
m m v m v m m v

+ = + + −
− + = +

1 2 2
1f 1 2

1 2 1 2

2m m mv v v
m m m m

   −
= +   + +   

2f 1 1f 2 1f 2f 2 1Since , .v v v v v v v v= + − = + −

1fv

1 1 2 2 1 2f 2 1 2 2f
1 1 2 1 2 1 2 2f

( )
2 ( ) ( )
m v m v m v v v m v

m v m m v m m v
+ = + − +
+ − = +

   Comparing these two equations implies that  

 

Substitute for  in the first equation and solve for v  

 

1f .

 

 
Substitute for  in the first equation and solve for v  

 

2f .

1 2 1
1 2

1 2
400 kg) m4.30

0.150 kg s

m m mv v
m m

   −
= +   + +   
 

= − 
 

2f
1 2

2

2(5
5400kg

17 m/s

m m

= −

0

v

.150kg kg m 8.11
5400kg kg s
  
  + +  

5400
0.150
−

+  



 
 
 

 

  (b) Kinetic energy has been transferred from the elephant to the ball. 

 36. Place the x-axis along the Earth-Moon center-to-center line with the origin at the center of the Earth. 

cm

E E m m

E m
E m m

E m

m
m

E m
22

8
24 22

6

(0)

7.35 10  kg (3.85 10  m)
5.98 10  kg 7.35 10  kg

4.67 10  m

mxX
M

m x m x
m m

m m x
m m
m x

m m

Σ
=

+
=

+
+

=
+

 
=  + 
 ×

= ×  × + × 

= ×

610  m.×

 

The mean radius of the Earth is about 6.37  Therefore, the center of mass is  
6 66.37 10  m 4.67 10  m 1.70 e surface of the Earth× − × = 610  m below th× .  
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 37. Place the origin at the center of the basket. Then, the two cartons of cereal are at c ( 0.75 m)/2 0.375 mx = − = −  
(assuming the cartons are left of center). 
Calculate the x-coordinate of the center of mass and set it equal to zero. 

c c m m
cm

c m

2
0

2
m x m xmxX

M m m
+Σ

= = =
+

c c m m2 0m x m x+ =

 

Solve for xm. 
 

c c
m

m

2

2(0.55 kg)( 0.375 m)
1.8 kg

0.23 m

m xx
m

= −

−
= −

=

 

The half gallon of milk should be placed 0.23 m from the center of the basket, opposite the cartons of cereal. 

 38. Calculate the x-coordinate of the center of mass. Assume that the mass of each brick is m and that the mass of 
each brick is distributed uniformly. 

( )5
2 41 1 2 2 3 3

cm
1 2 3

1 11 11
3 3 4 1

LLm Lm x m x m xmx L
2

X L
M m m m m

+ ++ +Σ  = = = = = + +    

 39. Place the origin at the center of the box with the plane of the missing top perpendicular to the positive z-axis. Due 
to symmetry, Xcm = Ycm = 0. 

( )21 2 3 4 bottom
cm

0 0 0 0

5 5

Lmmz mz mz mz mzmz LZ
M m m

+ + + −+ + + +Σ
= = = = −

10  
The center of mass is L/10 units below the center of the box. 

 40. 2 3
cm 3

mx mx mx
X

m
+ +

=

2 3

4   (The subscript refers to the quadrant.) 

By symmetry, .4x x x−= =  

2
2 2( )

3 3cm 2
1 xX x= + x x− =  

2 cm

cm

3x X
myY

= =

= 2 3 4

3( 1.2 in.) 3.

3
my my

m

− =
+ +

2 3 4y y= − = −

6 in.−

y

 

By symmetry, .  

2
2 2 2( )

3 3
3 3( 1.2 in.)

3.6 in., 3.6 in.)

yy y y− = −

= − − =

cm

2 cm

2 2

1

3.6 
( , ) (

Y

y Y
x y

= −

= −
= −

in.
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 41. Due to symmetry, Xcm = 0. Calculate Ycm. 

cm

1 2 s s

s
1 s s

1 2
s

11

2
2

( )
2

2(16 )(0.143 nm)sin 30 (32 )(0)
2(16 ) 32

3.6 10 m

myY
M

my my m y
m m

my m y
y y

m m
u u

u u
−

Σ
=

+ +
=

+
+

= =
+

°+
=

+

= ×

 

11
cm cm( , ) (0, 3.6 10  m)X Y −= ×  

 42. (a) Calculate Xcm. 

1 2 3
cm

1 (0 0.50 m 1.5 m) 0.67 m
3 3

Mx Mx Mx
X

M
+ +

= = + + =
 

Calculate Ycm. 

1 2 3
cm

1 (0.50 m 0 0) 0.17 m
3 3

My My My
Y

M
+ +

= = + + =
 

cm cm( , ) (0.67 m, 0.17 m)X Y =  

  (b) The location of the center of mass would not be affected. The mass drops out of the equations. 

 43. We define the following subscripts: 
f = floor  
nf = not on floor 
L = length of rope 
Find the equation of motion of the top of the rope.  

top m
s

m 2.00m0.910 , 0 2.20 s
s 0.910 

y t t = < < = 
 

  

Set the origin at the floor. 
top

nf fand 0
2

y
y y= =  

nf nf f f
cm

nf f

m y m yY
m m

+
=

+
 

  Substitute. 

( ) top0.604 kg
2top2.00m 2 2 2 2

cm top

0 1 1 1 m0.910 (0.207 m s )
0.604kg 2.00m 2 2(2.00 m) s

y
y

Y y t

  +       = = = =        
t
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t (s)
0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

y (m)

O  

( ) ( )nf f 2m2nf nf f s 2nf nf f f nf
cm

nf f nf f

(0) 0.910 
(0.414 m s )

2.00 m

m m
L v t v mm v m v vV t

m m m m L

+  ++   = = = = =
+ +

t t
 

t (s)
0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Vcm (m/s)

O  

top m
s

m 2.00 m2 m 0.910 , 0 2.20 s
s 0.910 

y t t = − < < = 
 

top
nf fand 0

2
y

y y= =

nf nf f f
cm

total

m y m yY
m

+
=

( ) top0.604kg
top2.00 m 2

cm

2
top

0

0.604 kg
1 1

2.00 m 2

2 m 0.91

y
y

Y

y

  + 
 =

 =  
 

= −

 44. We define the following subscripts: 
f = floor  
nf = not on floor 
L = length of rope 
Find the equation of motion of the top of the rope.  

 

Set the origin at the floor. 

 

 

Substitute. 

( ) ( )

2

2 2

2

2 2
cm

1 m0 
2(2.00 m) s

1 m4 m 3.64 0.828 
2(2.00 m) s s

1.00 m 0.910 m s 0.207 m s

t

Y t

  
    
  

= − +    
  

= − +

2 2mt t

t

 
   
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t (s)
0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

y (m)

O  

( )

( )

nf

nf nf f f
cm

nf f

nf f nf f

nf f

nf
nf

2
nf

nf

2m
s

2
cm

( ) 1

1

0.910m0.910
s 2.00 m

0.910 m s (0.414 m s )

v
L

m v m vV
m m

m m t v m

m m
v t v
L
vv t

L

t

V t

+
=

+

+ + +
=

+
 = + 
 

= +

−
= − +

= − +

(0)

 

0.5 1.0 1.5

-1.0

-0.8

-0.6

-0.4

-0.2

t (s)

Vcm (m/s)

0

 

(1.20 kg 0.150 kg) 9Mg = +

net,ext s p eF F m g m g= − −

( )

 45. (a) Before the string breaks, the reading on the scale is the total weight of  

2
m.81 13.2 N .
s

 
= 

 
 

  (b) After the string breaks, the reading is 13.2 N. Because the ball is moving with constant speed, the center of 
mass of the system undergoes no net acceleration. Therefore, the reading will not change. 

 46. (a) Taking up to be positive, calculate the net external force acting on the cooking pot of water and the egg. 
 

Now, determine the acceleration of the center of mass. 

( )2
m
s 2e

e p

9.81 0.0460 kg 0.0766 m s
2 0.0460 kg 2.90 kg 2

m g
M m m

   
− = − = −    + +  

p e 2
cm

(0) gm m
A

−+
= =
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  (b) Recall that F  then net,ext cm ,MA=

e
e 2

m gm g = −s pF m g− − . 

e e
p 2

m 0.0460 kg9.81 2.90 kg 28.7 N
2 2 2s

m     + = + =        
s p

m gF m g g m= + =
 

  (c) After the egg comes to rest on the bottom of the pot, the reading is the total weight of 

2
m(2.90 kg 0.0460 kg) 9.81 28.9 N
s

Mg  
= + = 

 
 

 47. (a) From Example 9-9, the velocity of the center of mass before the collision is  
1 1 2 2

cm
1 2

1 1 2

1 2

1
1

1 2

(0)

0.750 kg m0.455 
0.750 kg 0.275 kg s
0.333 m s

m v m vV
m m

m v m
m m

m v
m m

+
=

+
+

=
+

 
=  + 
  =   +   

=

 

  (b) Use momentum conservation to find the speed of the carts after the collision. 
 

1 1 1 f 2 f 1 2 f( )m v m v m v m m v= + = +

1
f 1 cm

1 2
0.333 mmv v V

m m
 

= = = + 
s  

  

(c)

 

2 2
i 1 1 2 2

2 2
1 1 2

2
1 1

2

1 1
2 2
1 1 (0)
2 2
1
2
1 m(0.750 kg) 0.455 
2 s
0.0776J

K m v m v

m v m

m v

= +

= +

=

 =  
 

=

 

2
2

f 1 2 f
1 1 m( ) (0.750kg 0.275kg) 0.333 0.0568 J
2 2 s

K m m v  = + = + = 
 

 

 48. (a) Before the string is cut, the force of gravity is countered by the force of the spring. Just after the string is cut, 
the upper block experiences a force of s g 2 ,F F mg mg mg+ = − =  and the lower block experiences a force of 

g .F mg= −  The net force acting on the two-block system is net,ext ( ) 0F mg mg= + − = .  

  (b) Since F M  net,ext cm 0,A= = cm 0 .A =  
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 49. The net force must be zero for the helicopter to hover. 

net 0 thrust mF mg v mg
t

∆ = = − = − ∆ 
 

( )2
m
s

m
s

(5500 kg) 9.81 
900 kg s

60.0 
m mg
t v

∆
= = =

∆  

 

50.

 
friction

m
s

3.4 N thrust

3.4 N 3.4 N kg0.309
s11 

mF v
t

m
t v

∆ = = =  ∆ 
∆

= = =
∆

 

Convert ∆m/∆t from kg/s to rocks/min. 
0.309 kg 60 s 1 rock 37 rocks min

s min 0.50 kg
    =   

   
 

 51. Use conservation of momentum. 
i f p s b b

p s b

p s b b

b p s

0 ( ) 2
m0 ( ) 2 18.0 
s

m0 ( ) 2 18.0 2
s

m2 18.0 ( 2 )
s

p p m m v m v

m m v m v

m m v m m

m v m m m

= = = + +

 = + + + 
 
 = + + + 
 

 − = + + 
 

b

v

 

( ) ( )m m
b s s

p s b

2 18.0 2(0.850 kg) 18.0 m0.503 
2 57.0kg+2.10 kg 2(0.850kg) s

m
v

m m m

− −
= = = −

+ + +  

The person will recoil with a speed of 0.503 m/s. 

 52. Use conservation of momentum for each time the person throws a brick. 
First brick 

 i f p s b0 ( )p p m m m v m= = = + + + b bv

( ) ( )

p s b b

p s b b b

m m
b s s

p s b

m0 ( ) 18.0 
s
m0 ( ) 18.0 
s

18.0 (0.850 kg) 18.0 m0.252 
2 57.0 kg 2.10 kg 2(0.850kg) s

m m m v m v

m m m v m m v

m
v

m m m

 = + + + + 
 
 = + + + + 
 

− −
= = = −

+ + + +

 

Second brick 
i p s b p s p b b f

p s b p s p b p

( ) ( )
m ( ) ( ) 18.0 
s

p m m m v m m v m v p

m m m v m m v m v

= + + = + + =

 + + = + + + 
 
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( )

( ) ( )

m
p s b b s

p
p s b

m m
s s

( ) 18 

(57.0kg+2.10 kg 0.850kg) 0.252 (0.850 kg) 18

57.0kg 2.10 kg 0.850 kg
m0.507 
s

m m m v m
v

m m m

+ + −
=

+ +

+ − −
=

+ +

= −

 

The person will recoil with a speed of 0.507 m/s. 

 53. (a) The reading of the scale is given by the total weight of the sand and bucket plus the force of impact due to the 
pouring sand. 

b s

2

Scale reading ( )

m kg(0.540 kg 0.750 kg) 9.81 0.0560 3.20 
s ss

12.8 N

mm m g v
t

∆
= + +

∆
   = + +   

  
=

m 

  

  (b) b s 2
m( ) (0.540 kg 0.750 kg) 9.81 12.7 N
s

W m m g  
= + = + = 

 
 

 54. (a) 
2kg mthrust (mass per unit length)(speed) 0.13 1.4 0.25 N

m s
m v v
t

∆   = = = =  ∆   
 

  (b) The scale reads more than 2.5 N. It reads the weight of the rope on the scale and the thrust due to the falling 
rope. 

  
(c)

 

2

2
kg m mScale reading 0.13 1.4 (0.25 kg) 9.81 2.7 N
m s s

m v mg
t

∆    = + = + =   ∆       

 55. Place the origin at Xcm. 

e e t t
cm

e t
t t

e
e

24

21

0

(72.5 kg)(555 ft)
5.97 10  kg

6.74 10  ft

m x m x
X

m m
m xx
m

−

+
= =

+

= −

= −
×

= − ×

 

The earth moves only 216.74 10  ft .−×  

 56. (a) Use conservation of momentum. 

2

2

2

1 1(0)
2 3 2

2 1
3 2

4
3

vmv m m mv

mv mv

v v

 + = + 
 

=

=

 

186 



Physics: An Introduction Chapter 9: Linear Momentum and Collisions 

  

(b)

 

2
i

2 2

f

2 2 2

1
2
1 1 1 4
2 3 2 2 3
1 4 1

18 9 2

K mv

vK m m

mv mv mv

=

    = +    
    

= + =

i f ,

v  

K K=  therefore, the collision is elastic. 

 57. Use conservation of momentum to determine the horizontal speed of the bullet and block. 

 
the mass of the bullet
the mass of the block

m
M

=
=

f

f

(0) ( )mv M m M v
mv v

m M

+ = +
 =  + 

(1/ 2)yd h= =

 

Recall that  for a mass that is initially stationary. Find the horizontal distance. 2gt

2
m
s

0.0100 kg m 2(0.750 m)725 2.16 m
0.0100 kg 1.30 kg s 9.81 

   =  + +   
f

2m hx v t v
m M g

 = =  
 

 =

 

 58. (a) Since egg 2 is farther from the center of mass than egg 1, the location of the center of mass will change more 
if egg 2 is removed. 

  

(b)

 

1
cm cm,prev

1
cm cm,prev

3.0 cm0 0.
12 12

3.5 cm0 0.29
12 12

mxX X
m

myY Y
m

= − = − = −

= − = − = −

25 cm

 cm
 

(Xcm, Ycm) = (–0.25 cm, –0.29 cm) 

  

(c)

 

2
cm cm,prev

2
cm cm,prev

15 cm0 1.3 cm
12 12

3.5 cm0 0.
12 12

mxX X
m

myY Y
m

= − = − = −

= − = − = − 29 cm
 

(Xcm, Ycm) = (–1.3 cm, –0.29 cm) 

 59. Use the thrust equation to estimate the force. 

( ) ( )
( )

3
kg 2 m

in.m
s
h

1000 (1 m )(31 in.) 0.0254 mthrust 10 0.24 N
s(9 h) 3600 

m v
t

∆  = = = ∆  

 

 60. (a) The change in momentum per second is the weight of the apple. 

3.0 Np F mg
t

∆
= = =

∆
 

  
(b)

 f (3.0 N)(1.5 s) 4.5 kg m sp F t W t Wt∆ = ∆ = ∆ = = = ⋅
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 61. Place the origin at the center of the wheel and the lead weight on the positive x-axis. 

lw lw wh cm,prev
cm

lw wh

2lw
cm,prev lw

wh

0

0.0502kg (25.0 cm) 3.54 10 cm
35.5 kg

m x m X
X

m m
m

X x
m

−

+
= =

+
 

= − = − = − × 
 

 

Before the lead weight was added, the center of mass was 0.354 mm from the center of the wheel. 

 62. Since there are no external forces acting on the system in the x-direction, cmX  of the system will not change. 
After the system comes to rest, the ball, hoop, and system have the same .  Therefore, the x-coordinate of the 
ball will be  

cmX

cm.X

h b
cm h b

1 1( 2 ) 0 2
3 3 3 4

Mx R RX x x R  = = + = + −    

2Mx
M
+

2
=

 

 63. (a) When the canoeist walks toward the shore, the canoe will move away from the shore according to 
conservation of momentum. Therefore, her distance from the shore is greater than 2.5 m. 

  (b) Place the origin at the center of the canoe before the canoeist walks toward the shore. 
 and will not change since there is no external force with an x-component acting on the system. 

Assume the canoeist walks in the positive x-direction. After the canoeist walks to the end of the canoe, the 
distance between the canoeist and the canoe’s center of mass is 

cm 0X =

1.5 m,M mx x− =  where Mx  and mx  
represent the x-component of the center of mass for the canoeist and the canoe, respectively. 

cm 0

0

(1

(1

m

M

X

mx
mx

x

x

= =

= −

= −

= −

( 1.5 m)
( ) (1.5 m)

.5m)

63 kg.5 m) 1.1 m
22 kg 63 kg

1.1 m 1.5 m 0.4 m

m M

m M
m m

m

mx Mx
m M
Mx
M x

m M x M
M

m M

+
+

= +
= + +
= + +

 
 + 
 

= − + 
+ =

 

The distance between the system’s center of mass and the shore is 3.0 m 2.5 m
2

+ = 4.0 m.  So, the canoeist is 

4.0 m – 0.4 m = 3.6 m from shore.  

 64. Place the origin at the center of the canoe before the canoeist walks toward the shore.  and will not 
change since there is no external force with an x-component acting on the system. Assume the canoeist walks in 
the positive x-direction. After the canoeist walks to the end of the canoe, the distance between the canoeists and 
the canoe’s center of mass is  where 

cm 0X =

1.5 m,M mx x− = Mx  and mx  represent the x-component of the center of 
mass for the canoeist and the canoe, respectively. 

cm 0

0
( 1.5 m)

1.5 m

m M

m M
M M

M

M

mx MxX
m M

mx Mx
m x Mx

Mxm
x

+
= =

+
= +
= − +

= −
−
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The distance between the system’s center of mass and the shore is (3.0 m)/2 + 2.5 m = 4.0 m. So, 
4.0 m 3.4 m 0.6 m.

(63 kg)(0.6 m)
0.6 m 1.5 m

42 kg

Mx

m

= − =

= −
−

=

 

 
65. (a)

 
1 2 2

mScale reading ( ) (0.150 kg 1.20 kg) 9.81 13.2 N
s

W m m g  
= = + = + = 

   

  (b) In the absence of the liquid, the ball would fall with an acceleration equal to g. The liquid is retarding the motion of 

the ball with a force of 1
3

4 4
gm g m g   − =   

   
1 .  So, the scale reading is 

1 2 1 2 2
3 3 3 m(0.150 kg) 1.20 kg 9.81 12.9 N
4 4 4 s

m g m g m m g     + = + = + =           

 66. Use conservation of momentum. 

( )
p p h h

m
sh h

p mp s

0

(1.1 kg) 6.2 cos13
27 kg

0.25 

m v m v

m vm
v

= +

°
= − = − =

−
 

 67. Due to symmetry, Y  cm 0.=
11

12

10 m
2(1.0

10 m

−

−= ×

12
cm

cm cm

2(1.0 )(9.6 )cos52.25 (16 )(0) 6.5 10 m
) 16

( , ) (6.5 , 0)

u uX
u u

X Y

−× ° +
= =

+
×

 

 68. 
 kg0.125 (0.500 m) 0.0625 kg
m

m  = = 
 

 

2
m kg m(0.0625 kg) 9.81 0.125 1.33 1.33 

m ss
0.834 N

mF mg v
t

mmg v v
L

∆ = +  ∆ 
  = +     

       = +              
=

m
s

 

 
69.

 

( )0
0 r 2

cm 0
r

r r

r

r

2
3

2 1( )
3 2
2 1 21
3 2 3

2

vmv m
V v

m m

m m m m

m m

m m

+
= =

+

+ = +

   − = −   
   

=
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 70. (a) 0 f

0
f

(2 )

2

mv m v
v

v

=

=

 

  (b) 2 2
0 f

0
f

1 1 (2 )
2 2

2

mv m v

v
v

=

=

 

 71. Assume gravity is the only force acting on the rocket after it is launched. After rising for 2.5 s its speed is 
 244.2 m/s (9.81 m/s )(2.50 s) 19.7 m/s.v = − =

  (a) Since the initial momentum is upward, each piece must have a momentum with a vertical component equal to 
half the initial momentum. 

1 2 f
1 ( ) sin 45
2 2y y

mp p mv v = = =  
 

°  

f
19.7 m/s 27.9 m/s

sin 45 sin 45
vv = = =

° °
 

  (b) Before the explosion cm ˆ(19.7 m/s) .= yV   
Since the momentum of the system is the same after the explosion, and the total mass has not changed, 

cm ˆ(19.7 m/s)V = y  after the explosion too. 

  (c) The only force acting on the system before and after the explosion is gravity. Therefore, 
2

cm ˆ( 9.81 m/s )A = − y .  

 72. (a) 2ˆ ˆ ˆ(11,000 kg m/s) ( 370 kg m/s) (15,000 kg m/s) (2100 kg m/s)⋅ + − ⋅ + = ⋅ + ⋅x y p x ŷ  

2 ˆ ˆ(4000 kg m/s) (2470 kg m/s)= ⋅ + ⋅p x y  

  (b) No     Momentum depends only on mass and velocity. It is independent of position. 

 73. (a) Use momentum conservation. 
1 1 2 2 1 f 2 f

f

f

(0.84 kg)(0) (0.42 kg)(0.68 m/s) (0.84 kg 0.42 kg)
0.23 m/s

m v m v m v m v
v

v

+ = +
+ = +

=
 

  (b) The energy stored in the spring bumper is equal to the loss of kinetic energy at that time. 
2 2

f i
1 1(0.84 kg 0.42 kg)(0.227 m/s) (0.42 kg)(0.68 m/s) 0.065 J
2 2

K K K∆ = − = + − = −  

Energy stored in the bumper is 0.065 J. 

  (c) Since this is a one-dimensional, head-on elastic collision, we can use the results of Problem 74. 

1,f
0.84 kg 0.42 kg 2(0.42 kg)(0) (0.68 m/s) 0.45 m/s
0.84 kg 0.42 kg 0.84 kg 0.42 kg

v    −
= + =   + +   

 

2,f
2(0.84 kg) 0.42 kg 0.84 kg(0) (0.68 m/s) 0.23 m/s

0.84 kg 0.42 kg 0.84 kg 0.42 kg
v    −

= + =  + +   
−  
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 74. Use momentum conservation. 
 

Use conservation of kinetic energy. 
1 1 2 2 1 1f 2 2fm v m v m v m v+ = +

2 2
1 1 2 2 1 1f

1 1 1
2 2 2

m v m v m v+ = 2
2 2f

1 .
2

m v+ 2  

Rearranging the first equation gives 
1 1 1f

2 2f 2

( ) 1.
( )

m v v
m v v

−
=

−
 

Rearranging the second equation gives 
2 2

1 1 1f
2 2

2 2f 2

( )
( )

m v v
m v v−

1 1 1f 1 1f

2 2f 2 2f 2

( )(1 .
( )(

m v v v v
m v v v v

− −
= =

− +
)
)

+

 

Comparing these two equations implies that 
1 1f

2f 2
1,v v

v v
+

=
+

2fv

 or  

Substitute for  in the first equation and solve for v  

2f 1 1f 2.v v v v= + −

1f .

1 1 2 2

1 2 1

1f

( )
m v m v
m m v

m m
m m

+ =
− +

−

2fv v

1 1f 2 1 1f

2 2 1 2

2
1 2

1 2

2 (

2

m v m v v
m v m m v

mv v
m m

+ +
= +

 
= +  + + 

1f 2 ,v v− 1f 2f= +

1f

2

1f

( )
)

v−

2

1 2

1 2

 
 
 

1= +
v

v

 

Since  v v  
Substitute for  in the first equation and solve for v  

1.v v−

2f .

1 1 2 2

1 1 2

2f

2 (

2

m v m v
m v m

m m

+ =
+ −

1 2f 2 1

1 2 1 2 2f

1 2
1 2

1 2

( )
) ( )

m v v v
v m m v

m m mv v
m m

+ − +
= +

   −
= +   + +   

2 2f

1

m v

1 2

m

v

 

 75. 1 1 2 2 1 2
2f 1f 1i 2i

1 2 1 2 1 2 1 2

1 2 1 2
1i 2i

1 2 1 2

1i 2i

2 2m m m m m mv v v v
m m m m m m m m

m m m mv v
m m m m

v v

          − −
− = − + −          + + + +          

   + − −
= +   + +   
= −

 

 76. In each case, the potential energy of the spring is converted into the kinetic energy of the cart(s). So, the kinetic 
energy of the single cart is equal to the sum of the kinetic energies of the two carts. 

2 22
1 2

1 1 1
2 2 2

mv mv mv= +  

Because of momentum conservation, v1 .v2= −  So, we have 2 2 2
f f

1 1 1 ( )
2 2 2

mv mv m v mv= + − = 2
f .  

The final speed of each cart is f
2 .

2
v v=  
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192 

I)

 77. Assume v  is in the positive x-direction. Use conservation of momentum. 

 

Use conservation of kinetic energy. 

0

i f
0 1

i f

cos

0 s

x x

y y

mv 2
0 1 1 2 2

1 1 2 2

cos (I)

in sin (I

x x

p p
mv mv

v v v
p p

v v

θ θ

θ θ

=
= +
= +
=
= +

2 2 2
0 1 2

2
2

1
2

(III)

mv mv mv

v

= +

= +2 2
0 1

1 1
2 2

v v

 

Square (I) and subtract from (III). 
2 2

0 1
2 2

0 1

v v

v v

2
2

22 2
1 2 2

2 22 2
1 1 2
2 22 2

1 1 2 2

( cos cos 2

0 (1 cos ) (1 cos

sin sin 2

v

v v

v v

v v

θ θ 1 2 1 2

2 1 2 1

1 2 1 2

cos cos )

) 2 cos cos

cos cos (IV)

v

v v

v v

θ θ

2θ θ θ

θ θ

− θ

θ θ

= +

− = + +

= − + −

= + −

 

  From (II), 
1

2
2

sin
sin

vv 1θ
θ

= −  and 2 2 2 2
1 1 2sin sin .v v 2θ θ=  

Substituting these results into (IV) gives 

2 2
1 1 1

2
1

1 2

0 2 sin cos

cos cossin
sin

0 cos cos
cos(

1 1
1

2

1 2 1

2
1 2 1 2

sin2 cos
sin

sin

sin sin
)

vv v θ
2θ θ θ

θ

θ θ
θ θ

= −

= −

1
1 2 cos 0θ θ −− = =

θ
θ θ θ

θ
θ θ

 
= −  

 

= +

90 .°

 

So, 
 

 

78.

 

( )2

net,ext c s cm c c s s

m
net,ext s s s 2

c
c

( )

40.0 N (9.50 kg) 2.32 
0.855 m s

21.0 kg

F m m A m a m a

F m a
a

m

= + = +

−−
= = =

 

 79. Place the origin at the position of impact, and assume that the combined objects move away from the origin in the 
negative x-direction. 
Use conservation of momentum. 

i f

1 2

1 2

i f

1 2
1 2
1 2

cos cos (2 )
3

2cos cos
3

sin sin 0
sin sin sin( )

x x

y y

p p
vmv mv m

p p
mv mv

θ θ

θ θ

θ θ
2θ θ θ

θ θ

=
 + =  
 

+ =

=
+ =

= − = −
= −
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Substitute this result into the previous result. 

1 1

1

1

1
1

2cos cos( )
3
22cos
3
1cos
3

1cos
3

70.5

θ θ

θ

θ

θ −

+ − =

=

=

 =  
 

= °

 

So, the initial angle was 2(70.5°) = 141°. 

 80. From Problem 74, 

1 2 2
1f 1 2

1 2 1 2

2 .m m mv v
m m m m

   −
= +   + +   

1f
1
2

mv v
m m
m M

=
=
=

1
2

v v
v v

= −
=

v  

Choose the positive direction to be up. 

  
2 2 3( ) M M m M M mv v

m M m M m M
− − +    + = =    + + + +    

m
m Mv v
m M

 = − 
 

v− 

  

Recall that 2 .v gh=  

2

2 2m

m

3

3

M mgh g

M mh h

 =  
 

 =  
 

h
m M

m M

−
+

−
+

 

 81. (a) If the rope’s center of mass moves upward with constant acceleration, then the velocity of the rope’s center 
of mass must be increasing linearly with time, since it is upward.  
We define the following subscripts: 
t = table 
nt = not on table 

( ) 2tnt nt t t
cm

(0)M
L vt v mm v m v vV t

M M L

+  +
= = =   

 

cmV

 

 is upward, and since both v and L are constant, V  is proportional to t. Hence cm cmA  is upward and 

constant. 
2

cm ,vA
L

=  the slope of a graph of V  versus t. cm

  (b) The rope being lowered has downward momentum. Its downward momentum is decreasing as more and more 
of its mass comes to rest. Therefore, there must be a net upward force acting on the rope, resulting in an 
upward acceleration of the rope’s center of mass. 
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  (c) 
( ) ( ) 2

nt nt t t
cm

(0)M M
L LM vt v vtm v m v vV v t

M M L

+ +  +
= = = +   

 

cm ,A

 

Even though v is negative if the rope is moving downward, the equation for V  is linear with positive slope. 
Therefore,  which is the slope of a velocity versus time graph, is positive and constant, having the same 

magnitude as in part (a), 

cm

2
.v

L
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