
 

Chapter 11 

Rotational Dynamics and Static Equilibrium 
Answers to Even-numbered Conceptual Questions 

2. As a car brakes, the forces responsible for braking are applied at ground level.  The center 
of mass of the car is well above the ground, however.  Therefore, the braking forces exert 
a torque about the center of mass that tends to rotate the front of the car downward.  This, 
in turn, causes an increased upward force to be exerted by the front springs, until the net 
torque acting on the car returns to zero. 

 
4. The force that accelerates a motorcycle is a forward force applied at ground level.  The 

center of mass of the motorcycle, however, is above the ground.  Therefore, the 
accelerating force exerts a torque on the cycle that tends to rotate the front wheel upward. 

 
6. The moment of inertia is greatest when more mass is at a greater distance from the axis of 

rotation.  Therefore, rotating the body about an axis through the hips results in the larger 
moment of inertia.  Finally, since the angular acceleration is inversely proportional to the 
moment of inertia, it follows that a given torque produces the greater angular acceleration 
when the body rotates about an axis through the spine. 

 
8. Consider an airplane propeller or a ceiling fan that is just starting to rotate.  In these cases, 

the net force is zero – the center of mass is not accelerating – but the net torque is nonzero 
– the angular acceleration is nonzero. 

 
10. As the person climbs higher on the ladder, the torque exerted about the base of the ladder 

increases.  To counter this torque the wall must exert a greater horizontal force, and the 
floor must exert the same increased horizontal force in the opposite direction.  Therefore, 
the ladder is more likely to slip as the person climbs higher. 

 
12. A car accelerating from rest is not in static equilibrium – its center of mass is accelerating.  

Similarly, an airplane propeller that is just starting up is not in static equilibrium – it has 
an angular acceleration. 

 
14. Initially, the center of mass of the glass is near its geometric center.  As water is first 

added, the center of mass moves downward.  Later, as the glass fills, the center of mass 
rises again to roughly its original position.  Of course, the details depend on the precise 
shape of the glass. 

 
16. The tail rotor on a helicopter has a horizontal axis of rotation, as opposed to the vertical 

axis of the main rotor.  Therefore, the tail rotor produces a horizontal thrust that tends to 
rotate the helicopter about a vertical axis.  As a result, if the angular speed of the main 
rotor is increased or decreased, the tail rotor can exert an opposing torque that prevents the 
entire helicopter from rotating in the opposite direction. 

 
18. As the string is pulled downward it exerts a force on the puck that is directly through the 

axis of rotation.  Therefore, the string exerts zero torque on the puck.  It follows that the 
puck’s angular momentum is conserved during this process.  Now, from the relation 

, we see that the puck’s angular speed must increase as 1/    L = Iω = mr2( )ω   r2 .  Similarly, 
from    we see that the puck’s linear speed must increase as 1/r.  Note that this 
latter conclusion is also consistent with the relation 

L = rp = rmv
 v = rω . 
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20. Yes.  Imagine turning on a ceiling fan.  This increases the fan’s angular momentum, 
without changing its linear momentum. 

 
22. The hard boiled egg spins faster.  The reason is that as you spin the raw egg, some of the 

work you do is dissipated in the form of swirling motion within the egg – the egg doesn’t 
spin as a whole, as does the hard boiled egg. 

 
24. No.  If the diver’s initial angular momentum is zero, it must stay zero unless an external 

torque acts on her.  A diver needs to start off with at least a small angular speed, which 
can then be increased by folding into a tucked position. 

 
26. As the beetle begins to walk, it exerts a force and a torque on the turntable.  The turntable 

exerts an equal but opposite force and torque on the beetle.  Therefore, the system 
consisting of the beetle and turntable experiences no net change in its linear or angular 
momentum.  If the turntable is much more massive than the beetle, it will barely rotate 
backward as the beetle moves forward.  The beetle, then, will begin to circle around the 
perimeter of the turntable almost the same as if it were on solid ground.  If the turntable is 
very light, however, it will rotate backward with a linear speed at the rim that is almost 
equal to the forward linear speed of the beetle.  The beetle will progress very slowly 
relative to the ground in this case – though as far as it is concerned, it is running with its 
usual speed.  In the limit of a massless turntable, the beetle remains in the same spot 
relative to the ground. 

 
28. It is more difficult to do sit-ups with your hands behind your head, than with your arms 

stretched outward in front of you.  The reason is that there is more mass farther from the 
axis of rotation in the former case. 

 
30. The hollow sphere is harder to stop because it – with its greater moment of inertia – has 

more kinetic energy for a given speed.  The more the kinetic energy, the more work that 
must be done to bring it to rest. 

 
Solutions to Problems 

 1. ( sin )

sin

r F

F
r

τ θ
τ
θ

=

=

 

F is minimized when r and sinθ  are maximized. With r = 0.25 m and 90θ = °,  
15 N m 60 N

(0.25 m) sin 90
F ⋅
= =

°  

 2. Just before the weed comes out, the system is in static equilibrium: 
w

w

(0.040 m) 1.23 N m 0
1.23 N m 31 N
0.040 m

F

F

τ = − ⋅
⋅

= =

∑ =

 

 3. To hold the trophy in static equilibrium, the torque must be equal and opposite to the torque created by the weight 
of the trophy. (We neglect the weight of the arm.) 

  (a) The moment arm is 0.505 m. 

2
m(0.505 m)(1.31 kg) 9.81 6.49 N m
s

r mgτ ⊥
 

= = = ⋅ 
   
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  (b) The moment arm is (0.505 m)(cos 20.0°) = 0.475 m. 

2
m(0.475 m)(1.31 kg) 9.81 6.10 N m
s

r mgτ ⊥
 

= = = ⋅ 
   

 4. To counteract the torque created by the weight of the trap (and neglecting the weight of the arm and rope), the 
torque exerted about the shoulder must be 

2
m(0.70 m)(3.3 kg) 9.81 23 N m
s

r mgτ ⊥
 

= = = ⋅ 
   

 5. (a) biceps forearm ball

2
m 0.340(12.6 N)(0.0275 m) (1.20 kg) 9.81  m (1.42 N)(0.340 m)

2s
2.14 N m

τ τ τ τ= − −

  = − −  
  

= − ⋅

∑  

  (b) Negative net torque means clockwise motion: the forearm and hand will rotate downward. 

  (c) Attaching the biceps farther from the elbow would increase the moment arm and increase the net torque. 

 

6.

 

( )2

child child adult adult
m
schild child

adult
adult

0

(1.5 m)(16 kg) 9.81 
2.48 m

95 N

r m g r F

r m g
r

F

τ = − =

= = =

∑

 

  (a) 3.0 m > 2.48 m; the adult has enough moment arm to push down and push the child up. 

  (b) 2.5 m > 2.48 m; the adult has just barely enough moment arm to push the child up. 

  (c) 2.0 m < 2.48 m; the adult does not have enough moment arm to hold the child up, and the child goes down. 

 7. For a hoop, 2.I mr=   

2

2(0.75 m)

11 rad

I

I

mr

x

2

0.97 N m
 kg)(0.35 

s

τ α
τα

τ

=

=

=

=

=

⋅

 

 

8.

 

rad
s
2

 and ,  so

(0.220 N m)(5.75 s)
2.55

0.496 kg m

t I

t
I
tI

ω α τ α
τω

τ
ω

∆ = =
 ∆ =  
 

=
∆

⋅
=

= ⋅
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 9. Treat the CD as a disk, with 21 .
2

I mr=  

( ) ( )

2
f

2
f

2 2rev 1 min
min 60 s2

2
2

2
2

1
2

2
450  1 (0.017 kg)(0.12 m)

2 2(3.0 rev)
rev0.00115 kg m
s
rev 2 rad0.00115 kg m

revs
0.0072 N m

I

I

τ θ ω

ω
τ

θ

π

∆ =

=
∆

=

= ⋅ ⋅

  = ⋅ ⋅  
  

= ⋅

 

 10. For a uniform rod rotating about it’s center, 21
12

.I mL=  

2 2
2

1 1 rad(8.40 kg)(3.25 m) 0.322 2.38 N m
12 12 s

I mLτ α α  
= = = = ⋅ 

   

 11. (a) For a disk, 21 .
2

I mr=  

2 22 2
0 0

1 1 1Work
2 4 4

I mr mr 2
0τ θ ω ω− ∆ = = − = − = − ω  

( )
( )

22 rad22
s0

rad
rev

(6.4 kg)(0.71 m) 1.22 
0.25 N m

4 4(0.75 rev) 2  
mr ω

τ
θ π

= = = ⋅
∆

 

  (b) Doubling the mass and halving the radius reduces I by a factor of 2 and therefore reduces the wheel’s kinetic 
energy. The same torque brings the wheel to rest in a decreased angle of rotation. 

 12. 2 2
1 1 2 2 3 3, 2I I m r m r m rτ α= = + +  

  (a)  
2 2 2(9.0 kg)(1.0 m) (2.5 kg)(0) (1.2 kg)(1.2 kg)(0) 9.0 kg mxI = + + = 2⋅

2
2

rad1.20 (9.0 kg m ) 11 N m
s

τ  
= ⋅ = ⋅ 
 

 

  
(b)

  
2 2 2(9.0 kg)(0) (2.5 kg)(2 m) (1.2 kg)(0) 10 kg myI = + + = 2⋅

2
2

rad1.20 (10 kg m ) 12 N m
s

τ  
= ⋅ = ⋅ 
 

 

  (c)  
2 2 2(9.0 kg)(1.0 m) (2.5 kg)(2.0 m) (1.2 kg)(0) 19 kg mzI = + + = 2⋅

2
2

rad1.20 (19 kg m ) 23 N m
s

τ  
= ⋅ = ⋅ 
 
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 13. 2,  where .I I mr
I
ττ α α= ⇒ = = ∑  

  (a) For a constant torque, the angular acceleration is inversely proportional to the moment of inertia. The 
moment of inertia increases as the distance of the mass from the axis of rotation increases. The moment of 
inertia is greatest about the z axis and least about the x axis. Therefore, the angular acceleration is greatest 
about the x axis and least about the z axis. 

  
(b)

 

2
2 2 2 2

13 N m 7.4 rad s
(3.0 kg)(0.50 m) (4.0 kg)(0.50 m) (1.2 kg)(0) (2.5 kg)(0)

xα
⋅

= =
+ + +  

  
(c)

 

2
2 2 2 2

13 N m 5.1 rad s
(3.0 kg)(0) (4.0 kg)(0.70 m) (1.2 kg)(0.70 m) (2.5 kg)(0)

yα ⋅
= =

+ + +  

  
(d)

 2 2 2 2

2

13 N m
(3.0 kg)(0.50 m) (4.0 kg)[(0.70 m) (0.50 m) ] (1.2 kg)(0.70 m) (2.5 kg)(0)

3.0 rad s

zα
⋅

=
+ + + +

=

2  

 14. For the cylindrical reel, 2 21 1 (0.84 kg)(0.055 m) 0.00127 kg m .
2 2

I mr= = = ⋅

 m)(2.1 N) 0.1155 N m.

2  

Torque (0.055rFτ = = = ⋅  

  
(a)

 

2
2

0.1155 N m 91 rad s
0.00127 kg mI

τα ⋅
= = =

⋅  

  
(b)

 

2 2
2

1 1 rad90.9 (0.25 s) 2.84 rad
2 2 s

tθ α  
= = = 

 
r

 
Amount of line = θ  = (0.055 m)(2.84 rad) = 0.16 m 

 15.  New torque = 0.1155 N · m – 0.047 N · m = 0.068 N · m. 20.00127 kg m .I = ⋅

  
(a)

 

2
2

0.068 N m 54 rad s
0.00127 kg mI

τα ⋅
= = =

⋅  

  
(b)

 

2 2
2

1 1 rad53.5 (0.25 s) 1.67 rad
2 2 s

tθ α  
= = = 

 
r

 
Amount of line = θ  = (0.055 m)(1.67 rad) = 0.092 m. 

 16. 1 2 1 2

2

( )
m(0.615 kg 0.351 kg) 9.81 (0.0950 m)
s

0.246 N m

m gr m gr m m grτ = − = −

 
= −  

 
= ⋅

∑  

The magnitude of the frictional torque must equal this quantity for the system to be in static equilibrium. 
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17.

 

8.5 N m 57 N
0.15 m

rF

F
r

τ
τ

=
⋅

= = =
 

(Lid diameter does not enter into the solution.) 

 18. 1 2

1 2

0
3 1 0
4 4

yF F F mg

F L F Lτ

= + − =

   = − + =   
   

∑
∑

 

Multiply the second equation by 4 and subtract it from the first equation. 
1

1

4 0
1
4

F mg

F mg

− =

=

 

From the first equation, 

2

2

1 0
4

3
4

mg F mg

F mg

+ − =

=

 

 19. (a) The torque exerted by the biceps must balance the total torque exerted by the forearm, hand, and baseball. 
Since the moment arm for the force exerted by the biceps is much smaller than the moment arms for the 
forces exerted by the forearm, hand, and baseball, the biceps force must be more than the combined weight 
of the forearm, hand, and baseball. 

  (b) ∑
 

biceps forearm ball 0τ τ τ τ= − − =

biceps (0.0275 m) (1.20 kg) 9.81F 2

biceps

biceps

m 0.340  m (1.42 N)(0.340 m) 0
2s

(0.0275 m) 2.484 N m 0
2.484 N m
0.0275 m
90.3 N

F

F

  − −  
  

− ⋅ =
⋅

=

=

=
 

 

20. (a)

 2

1 2

1 2
m
s

0
290 N 122 N 42 kg

9.81 

yF F F mg
F Fm

g

= + − =
+ +

= = =

∑

 

  

(b)

 
( )2

2 2 cg

2 2
cg

m
s

0
(2.50 m)(122 N) 0.74 m
(42 kg) 9.81 

x F x mg
x Fx
mg

τ = − =

= = =

∑
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 21.  

Taking the rear feet as the center of rotation 

front rear

front rear front

0
3

yF F F mg
mg F F F

= + − =
= + =

∑

front cg

front

cg

(3.2 m) ( )
(3.2 m)

F mg

front cg

0
3 ( )
1 (3.2 m)
3
1.1 m

d
F F d

=
=

=

=

d

τ = −∑  

 22. The teeter-totter itself is balanced and contributes no net torque. 0τ =∑  requires  

 so that child child parent parent ,m gd F d= child
parent child

parent
.

m g
d d

F
=  

  
(a)

 ( )2
m
s

parent

(36 kg) 9.81 
(2.6 m) 4.4 N

210 N
d = =

 

  
(b)

 ( )2
m
s

parent

(36 kg) 9.81 
(2.6 m) 3.0 N

310 N
d = =

 

  (c) The answers would not change since only the teeter-totter’s length enters into the calculations (the child sits 
half a length from the pivot point). 

 23. rem
rem 0

2
L

LF m g Lτ  = − − = 
 

∑  

( )
( )

2

2

rem rem rem

rem rem

rem
m
s

m
s

1 0
2

2( )

(0.110kg) 9.81 (0.210 m)

2 0.365 N (0.110 kg) 9.81

7.85 cm

LF m gL m gL

m gL
L

F m g

+ − =

=
+

=
 +  

=

 

 24. (a) With the stick-to-wall contact as the pivot, 

stick string stick stick
1( sin ) ( )
2

L T L Wτ θ  = −  
 

∑ 0=  
2 2(2.5 m) (1 m)

where sin 0.9165.
2.5 m

θ
−

= =  

( )2
m
sstick

string

(0.13 kg) 9.81 
0.70 N

2sin 2(0.9165)
W

T
θ

= = =
 

  (b) A shorter string will make a smaller angle with the stick, and so have to have a greater tension to produce the 
same value for Tstring sin .θ  
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  (c) 
2 2(2.0 m) (1.0 m)

sin 0.8660
2.0 m

θ
−

= =  

( )2
m
s

string

(0.13 kg) 9.81 
0.74 N

2(0.8660)
T = =

 

 25. 1 2 diver board

1 2 diver board

0
1(0) ( ) ( ) 0
2

yF F F m g W

F F d m g L W Lτ

= + − − =

 = + − − = 
 

∑
∑

 

From the latter equation, 

( )2
m 11 2diver board s2

2

1 diver board 2 2

(90.0 kg) 9.81 (66 N) (5.00 m)( )( )
3.1 kN

1.50 m
m(90.0 kg) 9.81 66 N 3.053 kN 2.1 kN  (i.e., 2.10 kN downward)
s

m g W L
F

d

F m g W F

 ++   = = =

 
= + − = + − = − 

   

 26. (a) Place the center of rotation at the shoulder. The y-axis is directed upward. 
 h(22.5 cm) (67.0 cm 22.5 cm) 0F mτ = − −∑ g =

( )2
m
s

h

(44.5 cm)(1.10kg) 9.81 
21.3 N

22.5 cm
F = =

 

h ˆ( 21.3 N)= −F y  

  (b) h s– 0yF F F mg= + − =∑  

s h 21.34 N (1F F mg= + = + 2
m.10 kg) 9.81 32.1 N
s

 
= 

 

 

s ˆ(32.1 N)=F y  

 27. (a) 
 

wire weight =0r T r mgτ ⊥− ⊥−= −∑
1

weight 2
2wire

(1.2 m)cos 25 m(3.1 kg) 9.81 32 N
0.51 m s

r
T mg

r
⊥−

⊥−

°  
= = = 

   

  (b) The horizontal component of the hinge force is equal to, and opposes, the horizontal wire tension: 32 N. The 
vertical component of the hinge force is equal to, and opposes, the rod weight: (3.1 kg)(9.81 m/s2) = 30 N. 

 28. (a) The tension will decrease, because  has decreased and r  has increased. weightr⊥− wire⊥−

  
(b)

 

1
weight 2

2wire

(1.2 m)cos35 m(3.1 kg) 9.81 22 N
(1.2 m)sin 35 s

r
T mg

r
⊥−

⊥−

°  
= = = °    
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 29.  where c is the horizontal distance from the bottom of the ladder to the x-y value of 
the center of the mass of the ladder. 

3 0,f a mgb m gcτ = − − =∑

2 24.0m 3.8m
2 2

c    = −   
   

0.6245m=  

( )[ ]2
m
s

3

9.81 (85kg)(0( )g mb m cf
a
+

= =
.70m) (7.2 kg)(0.6245m)

165.2 N 170 N
3.8m

+
= =

 
2 3

2 3

0

170 N

xF f f
f f

= − =
=
=

∑  

1

1

0

(8

90

yF f mg m g
f m

= − − =

=

∑

2

( )
m5kg 7.2 kg) 9.81 
s

0 N

m g= +
 

= +  
 

 

 30. (a) Let L = the rod length. 

sin 45 0
2

2sin 45 2

LLT F

F FT

τ = ° −

= =
°

∑ =

 

  (b) The vertical component of force at the bolt is equal, and opposite to, the vertical component of the wire 

tension: cos 45 .
22

F F
° =  The horizontal component of force at the bolt can be found from 0τ =∑  with 

the center of rotation at the top of the rod: -bolt 0
2 x
L F LF− = and -bolt .

2x
FF =  

 
31. (a) N = the normal force exerted by the bowling ball on the meter stick 

L = the distance along the meter stick from the floor to the point of contact with the bowling ball 
a = radius of the bowling ball 
h = height from the floor to the point of contact between the bowling ball and the meter stick 

 = length of the meter stick 
Let the axis of rotation be at the point where the meter stick touches the floor. 

cm
(1 cos )0 cos

2 sing
aF r NL mg N θτ θ

θ
+   = = − = −      

∑
 

( )2
m
s

(0.214 kg) 9.81 (1.00 m)(cos30.0 )(sin 30.0 )cos sin 2.26 N
2 (1 cos ) 2(0.108 m)(1 cos30.0 )

mg
a

θ θ
θ

° °
= = =

+ + °
N

N

 

 = 2.26 N perpendicular to the meter stick and away from the bowling ball 
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230 

=

  (b) F = the force exerted by the floor 
 

 
 

sin 30.0 0x xF F N= − ° =∑
(2.26 N)sin 30.0 1.12xF = °

cos30.0y yF N F= °+∑
77 N=

0mg−

2
m9.81 (2.255 N)cos30.0 0.14616 N
s

 
− ° = 

 
cos30.0 (0.214yF mg N= − ° =  kg)

 

2 2 (1.1277 N)x yF F F= + 2 2(0.14616 N) 1.14 N= + =  

–1 –1 0.14616 Ntan tan
1.1277 N

y

x

F
F

θ
 

= =  
 

7.38  = °
 

 

 32. (a) At the top of the crate, the horizontal tipping force has a moment arm twice as long as the opposing crate 
weight, acting through the center of mass. So, the tipping force must be at least half as great as the weight: 

2
1 m(14.2 kg) 9.81 69.7 N .
2 s

 
= 

 
 

  (b) Halfway down the side of the crate, the tipping force has the same moment arm as the opposing crate weight 
and must equal the weight in magnitude. But because s 1,µ <  the floor friction cannot sustain a static friction 
force equal to the crate weight, and so the crate slips before it tips. 

 33. (a) To keep the crate from sliding, the tipping force cannot exceed 

s,max s 2
m(14.2 kg) 9.81 (0.551) 76.775 N.
s

f mgµ  
= = = 

 
 

For this to be sufficient to tip the grate, the height h must provide a moment arm such that 
2
L mg=hF  and 

( )2
m
s

(14.2 kg) 9.81 (1.21 m)
1.10 m

2 2(76.755 N)
mgLh

F
= = =

 

  (b) 76.8 N 

 34. The orange juice should be placed on the lighter side, i.e., with the cereal. The distance d from the center should 
be such that 

milk cereal juice 0
2 2
L Lm g m g dm gτ    = − −   

   
∑ =  

milk cereal

juice

( ) (0.620 m)(1.81 kg 0.722 kg) 18.7 cm
2 2(1.80 kg)

L m m
d

m
− −

= = =
 

 35. Since the board is just beginning to tip, there is no weight on the left sawhorse. With the right sawhorse as the 
center of rotation and d as the cat’s distance from that sawhorse, (0.500 m) 0Mg mgdτ = − =∑  and 

7.00 kg(0.500 m) (0.500 m) 1.4 m
2.5 kg

Md
m

 
= = = 

   
So, the cat can get within 1.50 m – 1.4 m  = 0.10 m of the right end of the board. 
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 36. (a) The mass of the necklace is less than the meter stick’s, because the moment arm for the necklace is greater 
than the moment arm for the mass of the meter stick. 

  (b) With the new balance point as the center of rotation, M as the meter stick mass, and m as the necklace mass, 
.  (0.095 m) (0.500 m 0.095 m) 0Mg mgτ = − −∑ =

0.095 m 0.095 m(0.34 kg)
0.500 m 0.095 m 0.405 m

m M   = =  −  
80 g



=

 

 37. Start with two books.  Place the bottom book such that its edge is under the center of mass of the book above. 
The center of mass of the system is 

1 1 2 2 2
cm

1 2

3
2 4

LmL mm x m xX L
m m m

++
= =

+
=

 

Place the third book such that its edge is under the center of mass of the system above. 
The center of mass of the system is 

( ) ( ) ( )3 5
2 4 41 1 2 2 3 3

cm,total
1 2 3

5
6

L LLm m mm x m x m x
X L

m m m m m m

+ ++ +
= =

+ + + +

Rx =

=
 

Let  position of right edge of the top book. 

R cm,total
7 5 11
4 6 12
L Ld x X L= − = − =  

 38. With the new balance point as the center of rotation, M as the bat mass, and m as the glove mass, 
 (0.247 m) (0.711 m 0.247 m) 0.Mg mgτ = − −∑ =

0.711 m 0.247 m 0.464 m(0.560 kg)
0.247 m 0.247 m

M m − = = 
 

1.05 kg 
 
 

=
 

 39. Let M = bucket mass, m = pulley mass, r = pulley radius, T = rope tension, and note that for the pulley, 
21 .

2
I mr=  

Downward force on bucket: Ma = Mg – T 

Torque on pulley: 21
2

rT mr α=

a r

 

Bucket/pulley relationship: α=  

  (a) From the last two equations, 1 ,
2

m=T  and then from the first equation, a

( )2
m
s

2

1
2

2
2
2(2.85 kg) 9.81 

2(2.85 kg) 0.742 kg

8.68 m s

Ma Mg ma

Mga
M m

= −

=
+

=
+

=

 

  
(b)

 

2
m

2s
8.68 

71.7 rad s
0.121 m

a
r

α = = =
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(c)

 

2 2
2

1 1 m8.68 (1.50 s) 9.77 m
2 2 s

y at  
∆ = = = 

   

 40. (a) Less, since if it were not, the bucket would not be subject to a net downward force and would not fall. 

  (b) From part (a) of the previous solution, 

2
1 1 m(0.742 kg) 8.68 3.22 N
2 2 s

T ma  
= = = 

   

 41. The torque is rF Iα=  where 21
2

I mr=  and  

( )( )rev rad
s r

2

2 s)
(2.40 m 2  

213 kg

t
F tm

r

ωα

ω

π

∆
=
∆
∆

=
∆

=

=
ev

(40.0 N)(3.50 
) 0.0870 

 

 42. (a) No; the side you are pulling on has the greater tension, because it is doing more work, accelerating not only 
the hanging mass but also the pulley. 

  (b) 1 25 NT =

2 ,
 

To find T  let M = hanging mass, m = pulley mass, r = pulley radius, and note that for the pulley 

21 .
2

I mr=  

Upward force on hanging mass: 2Ma T Mg= −  

Net torque on pulley: 21
2

mr1 2rTrT α 
 
 

− =  

Mass/pulley relationship: a rα=  

From the last two equations, 1 2
1 ,
2

ma− =T T  so 1 2
2 (a T T
m

= − ),  and from the first equation, 

1 2( )T T 2T− =
2M
m

.Mg− 2 Solving for T  yields 

( )2
m
s1

2

2(0.67 kg)(25 N)2 16 N
 ) 1.3 kg

MTT
M m

+
= = =

+ +

(0.67 kg)(1.3 kg) 9.81 

 2(0.67 kg2
Mmg +

 

 43. From part (b) of the previous solution, 
2
2

2

2

16 N m9.81
0.67 kg s
14 m s

Ma T Mg
Ta g
M

= −

= −

= −

=
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=

 44.  

From the second equation, 

2.54 N  0
(0.200 m) (0.300 m) 0

yF Mg mg
mg Mgτ
= − − =

= −
∑
∑

3 .
2

m M=  From the first equation,

 

( )2
5 m
2 s

2.54 N 2.54 N 0.1036 kg
2.5 9.81 

M
g

= = =

 

  (a) 0.104 kg 

  (b) 3 (0.1036 kg) 0.155 kg
2

=  

 45. Take the direction from  over the pulley to m  as positive. 
Force on   
Force on   

Net pulley torque: 

1m
m
g= −

2

1:m

2:m
1 1 1m a T g= −

2 2m a m T2

21
2

MR2 1T( )R T α− =  

Mass/pulley relationship: R aα =  
Adding the first two equations and rearranging produces T T2 1 2 1 1 2( ) (m m g m m a) ,− = − − +  

which when substituted into the third equation yields 2
2 1 1 2

1) ( ) ]
2

R m m g m m a MR[( .α− − + =  

Substitute using the fourth equation. 

2 1

2 1
1

1 2 2

m m

m m
m m M

 − 
 + + 

1
1(
2

m m+ =2 )a

=

( )g− − Ma

a g

 

Which is the acceleration for both masses. 

 46. For a sphere, 

2

24 6 2
4

33 2

2
5
2 rev rad(5.97 10  kg)(6.38 10  m) 1 2   
5 day rev 8.64 10

7.07 10 kg m s

L I

mr

1 day
s

ω

ω

π

=

=

    = × ×     
  ×  

= × ⋅

 

 47. For a disk, 

2

2

4 2

1
2
1 1 rev rad(0.015 kg)(0.15 m) 33  2   
2 3 min rev

5.9 10  kg m s

L I

mr

1 min
60 s

ω

ω

π

−

=

=

  =   
  

= × ⋅




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 48. For the fly, 

2

2

5 2

( )

1 rev 2 min(0.15 m) (0.0011 kg) 33  
3 min rev 60 s

8.6 10 kg m s

L rmv
rm r
r m

ω
ω

π

−

=
=

=
  =   
  

= × ⋅





 

 49. (a) 
m(70.1 kg) 3.35 235 kg m s
s

p mv  = = = ⋅ 
 

 

  (b) 3 2kg m(5.00 m) 234.8 1.17 10 kg m s
s

L r p⊥
⋅ = = = × ⋅ 

 
 

 50. (a) 
m(56.4 kg) 2.68 151 kg m s
s

p mv  = = = ⋅ 
 

 

  (b) 2 2kg m(6.00 m) 151 9.07 10 kg m s
s

L r p⊥
⋅ = = = × ⋅ 

 
 

 51. (a) Greater with respect to point B, because the moment arm is zero for point A. 

  (b) Same, because the moment arm is the same for both points. 

  
(c)

 

m k(62.2 kg) 5.85 363.9 
s s

p mv g m⋅ = = = 
   

A A
kg m(0) 363.9 0

s
L r p⊥

⋅ = = = 
 

 

3 22.55 10 kg m s= × ⋅B B 2
kg m(7.00 m) 363.9 

s
L r p⊥

⋅ 
= =  

 
 

3 22.55 10 kg m s= × ⋅O O 2
kg m(7.00 m) 363.9 

s
L r p⊥

⋅ 
= =  

 
 

 52. (a) 
2(0.12 N m)(0.50 s) 0.060 kg m sL tτ= ∆ = ⋅ = ⋅  

  (b) 

2kg m
s

3 2

0.060 
24 rad s

2.5 10  kg m
L
I

ω
⋅

−
= = =

× ⋅
 

 
53.

 

2 2kg m kg m
s s2 1 9700 8500 

210 N m
5.66 s

L L
t

τ
⋅ ⋅−−

= = = ⋅
∆  

 54. Because the gerbils are running in place, their speed is zero and they contribute no angular momentum. 
2 4m( ) (0.0050kg)(0.095m) 0.55 2.6 10 kg m s

s
vL I MR MRv
R

ω −   = = = = = × ⋅   
   

2
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 55. By conservation of angular momentum, i i f f ,I Iω ω=  so 
rad
sf i

radi f s

3.28
0.573

5.72
I
I

ω
ω

= = =

 

 
56. Initial:

 

2
2

child child
1 1 m(34.0 kg) 2.80 133 J
2 2 s

m v  = = 
   

2
2 2 21 1 radFinal: [510 kg m (34.0 kg)(2.31 m) ] 0.318 35.0 J

2 2 s
Iω  = ⋅ + = 

 

 

 57. By conservation of angular momentum, i i f f ,I Iω ω=  so 

f i

i f
2I

I
ω
ω

= =
 

Her angular speed doubles. 

 58. (a) It increases, because the diver does work in going into her tuck. 

  (b) 
( ) 22 1 11 i if f 2 22

2 21 1
i i i i2 2

(2 )
2

II

I I

ωω

ω ω
= =  

 59. 
rev rad rad0.641 2 4.0275
s rev

π   =  
   s  

By conservation of angular momentum,  

( ) ( )

disk person final

2 2 2
i f

i
f

rad m
s s

1 1
2 2

2
+2

(155 kg)(2.63 m) 4.0275 2(59.4 kg) 3.41

(155 kg)(2.63 m) 2(59.4 kg)(2.63 m)
2.84 rad s

L L L

MR mvR MR mR

MR mv
MR mR

ω ω

ω
ω

+ =

   + = +   
   

+
=

+
=

+
=

 

 60. (a) It must decrease, because some energy will be dissipated in the “collision” between the person and the  
merry-go-round. 

  (b) Initial: 
2 22 2 2

disk i i

2 2
2

1 1 1 1 1
2 2 2 2 2

1 rad 1(155 kg)(2.63 m) 4.0275 (59.4 kg) 3.41
4 s 2
4.69 kJ

I mv MR mvω ω + = + 
 

  = +  
  

=

m
s




 

235 



Chapter 11: Rotational Dynamics and Static Equilibrium Physics: An Introduction 

Final: 
2 22

final f f

2
2 2

1 1 1
2 2 2

1 1 rad(155 kg)(2.63 m) (59.4 kg)(2.63 m) 3.018
2 2 s
4.31 kJ

I MR mRω ω = + 
 

 = +    
=

 
 

 

( )

2
student-stool

2
student-stool

m
s

2 2

( )

(1.5 kg) 2.7 (0.40 m)

4.1 kg m (1.5 kg)(0.40 m)
0.37 rad s

I
I mr

mvr
I mr

ω
ω

=

= +

=
+

=
⋅ +

=

2
21 1 m(1.5 kg) 2.7 5.5 J

2 2 s
mv  = = 

 

 61. By conservation of angular momentum, 
mvr
mvr

ω  

 62. (a) It decreases, because energy is dissipated in the collision between the mass and the student’s hand. 

  (b) Initial: 

 

Final: 
2

2 2 21 rad.1 kg m (1.5 kg)(0.40 m) ] 0.373 0.30 J
2 s

 = ⋅ + = 
 

2 2
student-stool

1 1 ( ) [4
2 2

I I mrω ω= +
 

 63. (a) Angular momentum is conserved as the moment of inertia decreases, so the turntable rotates faster. 

  (b) From conservation of angular momentum, 
2

i f( )I mr Iω ω+ =  
2

i

5.4 10 kg
5.4

rev33.514
min

3.5 rad s

f
I mr

I
ω ω

−

 +
=   
 

× ⋅
=

 =  
 

=

3 2 2

3 2
m (0.0013 kg)(0.15 m) 1 rev33

3 min10  kg m
2  rad 1 min

rev 60 s
π

−
+  

 
 × ⋅

  
  
  
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 64. (a) i i f fI Iω ω=

s i( 2I mr

 
2 2

i s f) ( 2 )I mr fω ω+ = +  

i

f

rev
s

rev
s

2
s i s

2.95 2 2
3.54 

)

2

m 2(1.25 kg)(0.759 m) ] 5.43kg m

2(1.25 kg)
 m

I mr I

m

ω
ω+ −

 
⋅ + − ⋅ 

 

f
( 2

[5.43 kg

0.344

r =

=

=

2

 

  (b) Initial: 
2 2 2

i i s i i

2
2 2

1 1 ( 2 )
2 2

1 rev 2 rad[5.43 kg m 2(1.25 kg)(0.759 m) ] 2.95
2 s
1.18 kJ

I I mrω ω

π

= +

rev
  = ⋅ +  


    

=

 

Final: 
2 2 2

f f s f f

2
2 2

1 1 ( 2 )
2 2

1 rev 2 rad[5.43 kg m 2(1.25 kg)(0.344 m) ] 3.54
2 s
1.42 kJ

I I mrω ω

π

= +

rev
  = ⋅ +  


    

=

 

 65. (a) Total angular momentum must remain zero. With v  as the child’s ground-relative speed, then, 

 But 
g

g 0.Rmv Iω− = g ,v v Rω= +  so that  Thus, g(v v ) / Rω = − .

g
g

2
g( )

v v
Rmv I

R

mR I v

vg

Iv

2

0

0

Iv
I mR

=

+

−

+ −

 
− = 

 

=

 

  (b) As I v  This is correct, because an ultra-light merry-go-round would move easily beneath the g0,  0.→ →

child’s feet and act like a slippery surface, preventing the child from generating forward motion relative to 
the ground. And as g,  .I v→∞ → v  This is also correct, since an ultra-massive merry-go-round would 

hardly budge, and then  g .v v≈

 66. For a uniform rod, 21
12

I m= .  

2
2 2 2 21 1 1 1 radWork (0.46 kg)(0.52 m) 7.1 0.26 J

2 2 12 24 s
K I mω ω   = ∆ = = = =   

     
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 67. 1 2 radrev rad
4 rev 2

π πθ   ∆ = =  
  

 

2

0.12 J
rad

0.076 N m

W
W

π

τ θ

τ
θ

= ∆

=
∆

=

= ⋅

 

 68. 21, , and 60.0  rad.
2 3

rF I mr πτ= = ° =  

2
f

1
2

W Iτ θ ω= ∆ =  

( )3
2

(36.1 N)  rad
2 2 0.575 rad s

(167 kg)(2.74 m)
rF F

I mrmr

π
θ θ∆ ∆ ∆
= = =f 1

2

2 2τ θω = =

 

 69. One complete turn = 2π  rad 
(3.8 N m  rad) 24 JW τ θ π= ∆ = ⋅ =)(2

 

 70. For a hoop, 2.I mr=  Here, .v
r

ω =  

2 2
2 2 2 31 1 m (0.0065 kg) 1.4 6.4 10 J

2 2 s
vW K mr mv
r

−   = ∆ = = = = ×   
   

1 1
2 2

Iω =
 

 71. From Problem 12,  and  2 29.0 kg m ,  10 kg m ,x yI I= ⋅ = ⋅ 219 kg m .zI = ⋅

  
(a)

 

2
2 21 1 rad(9.0 kg m ) 2.75 34 J

2 2 sx xW K I ω  = ∆ = = ⋅ = 
   

  
(b) 

2
2 21 1 rad(10 kg m ) 2.75 38 J

2 2 sy yW I ω  = = ⋅ = 
   

  
(c)

 

2
2 21 1 rad(19 kg m ) 2.75 72  J

2 2 sz zW I ω  = = ⋅ = 
   

 

72. (a)

 

2 2 2

2

2
2 2

(3.0 kg)(0.50 m) (4.0 kg)(0.50 m) (1.2 kg)(0) (2.5 kg)(0)
1.75 kg m

1 1 rad(1.75 kg m ) 2.75 6.6  J
2 2 s

x

x x

I

W K I ω

= + + +

= ⋅

 = ∆ = = ⋅ = 
 

2

 

  

(b)

 

2 2 2 2

2
2 2

(3.0 kg)(0) (4.0 kg)(0.70 m) (1.2 kg)(0.70 m) (2.5 kg)(0) 2.55 kg m

1 1 rad(2.55 kg m ) 2.75 9.6  J
2 2 s

y

y y

I

W I ω

= + + + =

 = = ⋅ = 
 

2⋅
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(c)

 

2 2 2 2

2

2
2 2

(3.0 kg)(0.50 m) (4.0 kg)[(0.7 m) (0.5 m) ] (1.2 kg)(0.70 m) (2.5 kg)(0)
5.02 kg m

1 1 rad(5.02 kg m ) 2.75 19 J
2 2 s

z

z z

I

W I ω

= + + + +

= ⋅

 = = ⋅ = 
 

2

 

 73. 
rev 2 rad 1 min rad3620 379.09
min rev 60 s s

2 rad(6.30 rev) 39.58 rad
rev

π ω

π θ

    = =   
   

  = = ∆ 
 

 

  

(a)

 

( )

2 2

222 2 rad11
2 s2

1 1 and .
2 2

(0.755 kg)(0.152 m) 379.09
15.8 N m

2 2(39.58 rad)

W I I mr

mr

τ θ ω

ω
τ

θ

= ∆ = =

= = =
∆

⋅
 

  (b) The time to rotate the first 3.15 revolutions is greater than the time to rotate the last 3.15 revolutions because 
the blade is speeding up. So more than half the time is spent in the first 3.15 revolutions. Therefore, the 
angular speed has increased to more than half of its final value. After 3.15 revolutions, the angular speed is 
greater than 1810 rpm. 

  

(c)

 

2

2 2

2

2

2 rad(3.15 rev) 19.79 rad
rev

1
2
1
4

4

4(15.83 N m)(19.79 rad)
(0.755 kg)(0.152 m)

60 s 1 rev(268 rad/s)
min 2  rad

2560 rpm

I

mr

mr

π θ

τ θ ω

ω

τ θω

π

  = = ∆ 
 

∆ =

=

∆
=

⋅
=

 =  
 

=





=

 

 74. (a) Taking the second pillar as the pivot point, 
 (828 N)(1.1 m) 0mgdτ = −∑

( )2
m
s

(828 N)(1.10 m) (910.8 N m) 1.45 m
(64.0 kg) 9.81

d
mg

⋅
= = =

 

  

(b)

 

2 1

2 1 2

0
m828 N (64.0 kg) 9.81 1.46 kN
s

yF F F mg

F F mg

= − − =

 
= + = + = 

 

∑

 

239 



Chapter 11: Rotational Dynamics and Static Equilibrium Physics: An Introduction 

 75.  rod length,  rod mass, m  person mass, and d = distance to wall. = rm = p =

r psin
2

gτ θ  = − − 
 

ma 0 N,T T

0m gdT m

x 140= =

=∑  

Setting  

( )

( )( )
( )

2

2

4.25 mm
2s

m
s

(4 0.0  kg) 9.81

 kg)

3.

° −

max 2

p

sin

.25 m)( sin 3

(68.0

0 m

gθ r

1400 N)

T m

m g

−

(47.0

9.81

d =

=

=

 

 76. (a) It increases, because the string does work on the puck. Alternatively, the speed increases because a  
center-directed force does not change the angular momentum, which must be conserved. 

  (b) i f
f f

f

f

2
2

L L
mvr mv r

rmvr mv

v v

=
=

 =  
 

=

 

 77. (a) The force from the index finger, since it has to counteract both the thumb’s force and the pen’s weight. 

  (b) Taking the thumb as the pivot point, 
 f (0.035 m) (0.070 m) 0F mgτ = −∑ =

f
0.070 m 2(0.025 kg) 9.81
0.0035 m

F mg = = 
  2

m 0.49 N
s

 
= 

   
f t

t f

=0

0.4905 N (0.025 kg)

yF F F mg

F F mg

= − −

= − = −

∑

2
m9.81 0.25 N
s

 
= 

   

 78.  where b and c are the horizontal distances from the bottom of the ladder to the  
x-values of the centers of mass of the person and the ladder, respectively. 

3 0,f a mgb m gcτ = − − =∑

2 24.0m 3.8m
2 2

c    = −   
   

0.6245m=  

  (a) b = c = 0.6245 m 

( )2 m
2s

60.0 Nm
9.81s

3

9.81 (0.6245m) 85kg
( ) ( ) 150 N

3.8m
g mb m c gc m mf

a a

 
+  + +  = = = =
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2 3

2 3

0

150 N

xF f f
f f

= − =
=
=

∑  

2

1

1

m 2
s

0
( )

60.0 N m85 kg 9.81 
9.81 s

890 N

yF f mg m g
f m m g

= − − =
= +
   = +     

=

∑

( )

 

( )
2 23 34m 3.8m 0.9367 m

4 4
b       = + =            

( ) ( )( )

  (b)  

( )2 m
2s

60.0 N
9.81

0.6245m

220 N

  
 +       =

m
s

3

9.81 85kg 0.9367 m
( )

3.8m
g mb m cf

a
+

= =
 

2 3 220 Nf f= =  

1 ( ) 890 Nf m m g= + =
 

 79. This problem is similar to Problem 24. For a different solution approach here, note that from the sign’s point of 
view the situation is symmetric: it has a movable support at each end and doesn’t “know” whether the support is a 
wall or a wire. So, the force at the wall bolt is the same as it would be if the wall were instead a wire running up 
and to the right at 20.0° above horizontal. By symmetry, f = T and 2 sin 0.yF T mgθ= − =∑  

  
(a)

 

( )2
m
s

(16.0 kg) 9.81
229 N

2sin 2sin 20.0
mgT

θ
= = =

°  

  

(b)

 

( )2
m
s

cos cos (229.5 N)cos 20.0 216 N

(16.0 kg) 9.81
sin sin 78.5 N

2 2

x

y

F F T

mgF F T

θ θ

θ θ

= = = ° =

= = = = =
 

 80. The upper student exerts no vertical force, so for the lower student,  Since the only horizontal 
forces are those exerted by the students, they must be equal and opposite. Call the horizontal force of each student 

180 N.yF mg= =

.xF  Using the couch’s center of mass as the pivot point,  
 cos 2 sin 0y xF Fτ θ θ= − =∑

cos cos30.0
2sin 2sin 30.0x yF Fθ

θ
° = =  ° 

(180 N) 156 N=
 

For the upper student, F = 156 N. 

For the lower student, 2 2(156 N) (180 N) 238 N .F = + =  
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0 81.  
With the first pillar as the pivot point, 

1 2 swimmer board( )yF F F m m g= + − + =∑

( ) ( )2 2

2 board person

person board
2

m m
s s

2

1 swimmer board 2

2

0
2

2

(90.0 kg) 9.81 (85 kg) 9.81 (5.00 m)

1.50 m 2(1.50 m)
ˆ[(0.59kN/m) 1.4kN]

( )
m(90.0 kg 85 kg) 9.81 5
s

LF d m g m gx

m g m gL
F x

d d

x

x
F m m g F

τ  = − − = 
 

 
= + 
 

= +

= +
= + −

 
= + − 

 

∑

F y

1

N88.6 1389.75 N
m

ˆ[ (0.59 kN/m) 0.33kN]

x

x

  − 
 

= − +F y

 

 82. (a) Start with two books. Place the bottom book such that its edge is under the center of mass of the book above. 
The center of mass of the system is 

1 1 2 2 2
cm

1 2

3
2 4

LmL mm x m xX L
m m m

++
= =

+
=  

Place the third book such that its edge is under the center of mass of the system above. 
The center of mass of the system is  

( ) ( ) ( )3 5
2 4 41 1 2 2 3 3

cm, 3 books
1 2 3

5
6

L LLm m mm x m x m x
X L

m m m m m m

+ ++ +
= =

+ + + +
=  

Place the fourth book such that its edge is under the center of mass of the other three. 
The center of mass of the new system is 

( ) ( ) ( )5
1 1 cm, 3 books 6 2 6 6

cm,4 books
1

3 3 7
3 4

LL L Lm x m X m m LX
m m m

+ + + +
= =

+

Rx =
8

=
 

Let  the position of the right edge of the top book. 

R cm, 4 books
23 7 25
12 8 24

L Ld x X L= − = − =
 

  (b) The distance is independent of the mass, as long as all books have the same mass. The answer to part (a) 
stays the same. 

 83. (a) With conservation of angular momentum, an increase in the moment of inertia leads to a decrease in the 
speed of rotation. The length of a day would increase. 
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  (b) i i f f
i

f i
f

I I
I
I

ω ω

ω ω

=

=

 

Also, with T = one period, 2 ,T π
ω

=  so 

i

f

f f
f i

f i i ii

f f
f i i i i

i i

2 2 2

0.332 86,400s1 1 (1 day) 261 s
0.331 day

I
I

I IT T
I I

I IT T T T T T
I I

π π π
ω ωω

   
= = = =   

   

      ∆ = − = − = − = − =      
        

 84. Let the pivot point be at the bottom of the rod. 

( )cos 45 0
2

22

LT L F

T F

τ  = ° −  
 

=

∑ =  

0 sin 45
2y

TF N T Mg N Mg= = − °− = − −∑
 

2
TN Mg= +  

0x cos  45
2 22 2

T F T F F
2

F T f F N F Mg Fµ µ µ− −    ° − + = − + = − + + = − +  
  

Mg= = −∑
 

( )1
2

2
1

F Mg

MgF

µ µ

µ
µ

− =

=
−

 

 
85. (a)

 

( )( )( )2
1 m
7 s

1
7

2 2.3 kg 9.812 7.5 N
l

MgF
l
µ
µ

= = =
− −

 

  (b) 
7( cos 45 ) 0
8

7 2
8

T L F L

T F

τ  = ° − = 
 

=

∑  

0 sin 45
2y

TF N T mg N mg= = − °− = − −∑
 

1 7 2 7
8 82 2

TN mg F mg F
 

= + = + = +  
 

mg
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0
cos 45

2
1 7 2 7

8 82
7 1 7
8 7 8

1 1 1
8 8 7

1
7

xF
T f F

T N F

F F mg F

F F mg F

F F mg

mg

µ

µ

=
= − °− +

= − − +

   = − − + +       
  = − − + +  
  

= − −

= −

∑

 

The applied force drops out of the equation, therefore the rod will never slip. 

 86. The net torque about the center of the cylinder is ,I Trτ α= =  where T is the tension of the rope. So, 
21

2
1
2

mr Tr

mr T

α

α

  = 
 

=
 

or, since 1,  .
2

r a T mα = = a  

yF mg T ma= − =∑  

1
2

1
2

2
3

ma mg T

mg ma

a g a

a g

= −

= −

= −

=

 

 87. The net torque about the center of the sphere is ,I Trτ α= =  where T is the tension of the rope. So, 

22
5

2
5

mr Tr

mr T

α

α

  = 
 

=

 

or, since 2,  .
5

r a T mα = = a  

F mg T ma= − =∑  

2
5

2
5

5
7

ma mg ma

a g a

a g

= −

= −

=
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 88. Upward force on the mass: Ma = T −Mg 

Net torque on the pulley: 21
2

rF rT mr α − =  
 

 

Mass/pulley relationship: a rα=  

  (a) From the last two equations, 1
2

F T m− = a  and 1 ,
2

T F ma= −  and then from the first equation, 

1
2

.Ma F ma Mg= − −  Solving for a yields 1
2

.F Mga
M m
−

=
+

 

  (b) F = the tension on the pulled side  

 

1 2the tension on the mass side
2 2 2

Fm Mmg FM MmgT F ma F
M m M m
− +

= = − = − =
+ +  

  (c) As m T  and as  0,  ,→ → F g,  .m T M→∞ →

 

89.

 

R

R
4

3R
4

θ

 

  
1
4

1

1
4

1sin 14.48
4

R

R
θ

θ −

= =

= =

sin  

°

  Taking the point of contact with the step as the pivot, 

min

min

1cos 0
4

4 cos (4cos14.40 ) 3.87

MgR F R

F Mg Mg Mg

τ θ

θ

 = − = 
 

= = ° =

∑
 

 90. Forces: T T  
Torques: T r  
Hanging mass: T m  
From the second equation,  
From the first equation,  

1 2 Mg− =

1 A 2 (5.60T=

2 =
A )r

g

1 25.60 .T T=

( )2
m
s

5.60

1

2 2

2 4.60
(0.105 kg) 9.8

4.60
0.224 N

T T Mg
MgT

− =

=

=

=
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1 5.60(0.2239 N) 1.25 NT = =
 

2 1 0.105 kg 22.8 g
4.60 4.60

T Mgm
g g

 
= = = = 

   

a b
L
2

mg1
2

mg3
2

mg

0τ =∑ 1 ( )
2

mg a mg b−
 

 91. By symmetry, each of the middle bricks supports half the weight of the top brick. The situation at the moment 
tipping begins looks like this: 

 

Since  implies 0= , 
   it follows that a = 2b. And since 3 ,

2
La b b+ = =  

6
L

=b  and 

2 .
2 6 3
L Lx L= + =  
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