SOLUTIONS MANUAL
CHAPTER 1

1. The energy contained in a volume dV is
Uy, T)dV =U (v, T)r’drsindd@e

when the geometry is that shown in the figure. The energy from this source that emerges
through a hole of area dA is
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dE(v,T)=U(v,T)dV
The total energy emitted is
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By definition of the emissivity, this is equal to EAtdA. Hence
C
E(wT)=7U(T)

2. We have
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This density will be maximal when dw(A,T)/dA = 0. What we need is
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Where A = hc /KT . The above implies that with x = A/ A, we must have

5—-x=5e"

A solution of this is X = 4.965 so that
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In example 1.1 we were given an estimate of the sun’s surface temperature
as 6000 K. From this we get

gon _ 2898 10~ mK

- =4.83 x10"m= 483nm
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3. The relationship is

hyv=K+W

where K is the electron kinetic energy and W is the work function. Here

(6.626x10738)(3x10°m/s)

=5.68x107"J =3.55eV
25010 5.68x107°J =3.55¢

hc
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With K=1.60 eV, we get W=1.95¢eV

4. We use

hc hc
A A =Ki-K,

since W cancels. From ;this we get
he 1 A4,
cA, -4

~ (200x107"m)(258 x 10" m)
(3x10%m/s)(58 x 107 m)

—6.64x10°*) s

(K1 - Kz) =

% (2.3-0.9)eV x (1.60x 107°)J /eV

5. The maximum energy loss for the photon occurs in a head-on collision, with the
photon scattered backwards. Let the incident photon energy be hv, and the backward-
scattered photon energy be hv. Let the energy of the recoiling proton be E. Then its

recoil momentum is obtained from E :J p’c’+m’* . The energy conservation
equation reads

hv+mc® = hv+E
and the momentum conservation equation reads

hv_ v
c ¢ P



that is
hv=—-hv'+pc

We get E + pc —mc” = 2hv from which it follows that
p’c’ + m’c* =(2hv— pc+ mc?)’

so that

_ 4h*V' + 4hwmc’
~ 4hv+2mc?

The energy loss for the photon is the kinetic energy of the proton
K =E —mc’. Nowhv =100 MeV and mc*=938 MeV, so that

pc = 182MeV
and

E-mc’=K=17.6MeV

6. Let hv be the incident photon energy, hv' the final photon energy and p the outgoing
electron momentum. Energy conservation reads

hv+mc® = hv'+4/ p’c” + m’c?
We write the equation for momentum conservation, assuming that the initial photon

moves in the x —direction and the final photon in the y-direction. When multiplied by c it
read

ithv)= j(hv))+(ip,c + jp,C)

Hence pc=hv;pc=-hv. We use this to rewrite the energy conservation equation as
follows:

(hv+me?—hvy =mc’ +c’(p; + p;) =m’c’ +(hw)’ +(hv)’

From this we get

mc’ )
hv= hV(hv+mcz

We may use this to calculate the kinetic energy of the electron
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hv+ mc hv+ mc
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(L00keV) 16 akev

" 100keV + 510keV
Also
pc=i(100keV ) + j(—83.6keV)

which gives the direction of the recoiling electron.

7. The photon energy is

h 63x1071]. 10°
_c=(663>< 0 is)(3i<9 0m/s)=6.63x10‘”J
A 3x10°x107"m

6.63x1077)

T 1.60x10"°J eV

hyv=

=4.14x10™ MeV

The momentum conservation for collinear motion (the collision is head on for maximum
energy loss), when squared, reads

Here 7 =+1, with the upper sign corresponding to the photon and the electron moving in
the same/opposite direction, and similarly for 7, . When this is multiplied by c¢? we get

(hv)” +(pe)” +2(hv) pery, = (hv) +(p'e)” +2(hv) p'ery,

The square of the energy conservation equation, with E expressed in terms of
momentum and mass reads

(hv)? +(pc)’ +m*c* +2Ehv= (hv')’ +(p'c)’ + m’c* +2E'hv
After we cancel the mass terms and subtracting, we get
hWE —npc) = hv(E'-7,p'c)

From this can calculate hv and rewrite the energy conservation law in the form
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The energy loss is largest if 77 = —1;7, = 1. Assuming that the final electron momentum is

(mc?)’

h
E so that

not very close to zero, we can write E + pc=2E and E'-p'c=
V(z E x2E' j
=h
(me?)’
1
It follows that =X E +16hv with everything expressed in MeV. This leads to
E’ =(100/1.64)=61 MeV and the energy loss is 39MeV.

8.We have 2’ =0.035x 10"° m, to be inserted into

h 6.63x107J.s

= =1.23%x10"m
2me 2x(0.9x 10 kg)(3x10°m/9) 8

A=
m

1-cos60”) =
< (1—-cos60")
Therefore A= A" =(3.50-1.23)x 10 m=2.3x 10" m.
The energy of the X-ray photon is therefore

hc  (6.63x107J5)(3x10°m/s) 5
= = 2% 10 Pmy 6 x 1077 Jayy ~ o410V

9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal
and opposite to that of the emitted photon. We therefore have its magnitude given by
p=hv/c, where hv=6.2 MeV . The recoil energy is

2
P Y 6omevy—2ZMY s 0 Mev
2M 2Mc’ 2% x 14 x (940MeV)

10. The formula A = 2asin@/n implies that A /sin@ <2a/3. Since A = h/p this leads to
p> 3h/2asin @, which implies that the kinetic energy obeys

_P, o
2m ~ 8ma’sin’ @
Thus the minimum energy for electrons is

~ 9(6.63x107*Js)’
~8(0.9%x107°°kg)(0.32x107°m)* (1.6 x 107 J /eV)

=3.35eV



For Helium atoms the mass is 4(1.67 x 10°"kg) /(0.9 x 10 °°kg) = 7.42 x 10’ larger, so
that

33.5eV 3
_ =28 451076V
Tarxig o 10Te
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11. We use Kzzp—m: with 2=15x 10” m to get

K- (6.63x107*Js)’
~2(0.9x107°°kg)(15 x 107°m)* (1.6 x 107 J /eV)

=6.78x107eV

For 4= 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger.
Thus K=6.10¢V.

12. For a circular orbit of radius r, the circumference is 2xnr. If n wavelengths A are to fit
into the orbit, we must have 2zr = nA = nh/p. We therefore get the condition

pr=nh/27z =nh

which is just the condition that the angular momentum in a circular orbit is an integer in
units of 7.

13. We have a=nA/2sin@. Forn=1,A=0.5 x 10" m and 6= 5° . we get
a=2.87 x 10" m. For n = 2, we require sinf, = 2 sin0,. Since the angles are very
small, 0, =260;. So that the angle is 10°.

14. The relation F = ma leads to mv %/r = mor that is, v = or. The angular momentum

quantization condition is mvr = n %, which leads to maer* = nh. The total energy is
therefore

1 1
=3 mv> +3 me’r’ = me’r’ = nhw

The analog of the Rydberg formula is

E,—E, hwo(h-n)

" n n _ _ 'ﬁ
Un—-n')= b b =(n n)2ﬁ

The frequency of radiation in the classical limit is just the frequency of rotation

v, = /27 which agrees with the quantum frequency when n—n’=1. When the

selection rule An = 1 is satisfied, then the classical and quantum frequencies are the same
for all n.



15. With V(r) =V, (r/a)k , the equation describing circular motion is

v (1\
r | °\a)

so that

kv, ( r\ k2

The angular momentum quantization condition mvr = n# reads

k+2

yma’ky, GJT = nh

We may use the result of this and the previous equation to calculate
K
Loy (1) (' AR
= mv OK 2 —( k+1)V\ . —( +1V, matkv,
In the limit of k >>1, we get
k

1 2| p? [2 , L K 5
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E— 2(kV0) 2 (nNH)*=* > Tma n

Note that V, drops out of the result. This makes sense if one looks at a
picture of the potential in the limit of large k. For r< a the potential is
effectively zero. For r > a it is effectively infinite, simulating a box with
infinite walls. The presence of Vj is there to provide something with the
dimensions of an energy. In the limit of the infinite box with the quantum
condition there is no physical meaning to V, and the energy scale is
provided by 7’ /2ma’.

16. The condition L = n% implies that

In a transition from n; to n, the Bohr rule implies that the frequency of the
radiation is given

E-E, #

o= S = (7 )= (0 )



Let n; =N, + An. Then in the limit of large n we have (n] —n>)— 2n,An, so
that

1 an, 1L
— 22 An=—=an
" _>27z I 27 |

Classically the radiation frequency is the frequency of rotation which is
o=L/,1e.

We see that this is equal to 1, when An = 1.

17. The energy gap between low-lying levels of rotational spectra is of the order of

7’ /1=(1/2z)hii/ MR?, where M is the reduced mass of the two nuclei, and R is their
separation. (Equivalently we can take 2 x m(R/2)* = MR?). Thus

hc 1 7]
= =2 "R

This implies that

-34 )
R:‘/ na na _J (LOSx 10990 m)

2aMc Yame ~ \ 2(.67 x 10 7kg)(3x 10°m /s)



