
SOLUTIONS MANUAL 
 

CHAPTER 1 
 
1.  The energy contained in a volume dV is 
 

U(ν,T )dV = U (ν,T )r 2drsinθdθdϕ  
 
when the geometry is that shown in the figure.  The energy from this source that emerges 
through a hole of area dA is 
 

       dE(ν,T ) = U (ν,T )dV
dAcosθ

4πr 2  

 
The total energy emitted is 
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 By definition of the emissivity, this is equal to EΔtdA . Hence 
 

   E(ν,T ) =
c
4

U (ν,T ) 

 
2. We have 
 

w(λ,T ) = U (ν,T ) | dν / dλ |= U (
c
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)
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This density will be maximal when dw(λ,T ) / dλ = 0. What we need is 
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Where A = hc / kT . The above implies that with x = A / λ , we must have 
 
  5 − x = 5e−x  
 
A solution of this is x = 4.965 so that  
 



  λmaxT =
hc

4.965k
= 2.898 ×10−3 m  

 
In example 1.1 we were given an estimate of the sun’s surface temperature 
as 6000 K. From this we get 
 

  λmax
sun =

28.98 ×10−4 mK
6 ×103K

= 4.83 ×10−7 m = 483nm   

 
3.  The relationship is  
 
   hν = K + W  
 
where K is the electron kinetic energy and W is the work function.  Here 
   

hν =
hc
λ

=
(6.626 ×10−34 J .s)(3×108 m / s)

350 ×10−9 m
= 5.68 ×10−19J = 3.55eV  

 
With K = 1.60 eV, we get  W = 1.95 eV 
 
4. We use  

  
hc
λ1

−
hc
λ2

= K1 − K2  

 
since W cancels. From ;this we get 
 

h =
1
c

λ1λ2

λ2 − λ1

(K1 − K2) =

= (200 ×10−9 m)(258 ×10−9 m)
(3×108 m / s)(58 ×10−9 m)

× (2.3− 0.9)eV × (1.60 ×10−19)J / eV

= 6.64 ×10−34 J .s

 

5. The maximum energy loss for the photon occurs in a head-on collision, with the 
photon scattered backwards.  Let the incident photon energy be hν , and the backward-
scattered photon energy be hν' . Let the energy of the recoiling proton be E.  Then its 
recoil momentum is obtained from E = p2c 2 + m 2c 4  .  The energy conservation 
equation reads 
 
    hν + mc2 = hν '+E  
 
and the momentum conservation equation reads 
 

    
hν
c

= −
hν '
c

+ p  



that is 
    hν = −hν '+ pc  
 
We get E + pc − mc2 = 2hν  from which it follows that 
 
   p2c2 + m2c4 = (2hν − pc + mc2)2  
 
so that 
 

   pc =
4h2ν2 + 4hνmc2

4hν + 2mc2  

 
The energy loss for the photon is the kinetic energy of the proton  
K = E − mc2 .  Now hν  = 100 MeV and mc 2 = 938 MeV, so that 
 
   pc = 182MeV  
and 
  
  E − mc2 = K = 17.6MeV  
 
6. Let hν  be the incident photon energy, hν'  the final photon energy and p the outgoing 

electron momentum. Energy conservation reads 
 
   hν + mc2 = hν '+ p2c2 + m2c4  
 
We write the equation for momentum conservation, assuming that the initial photon 
moves in the x –direction and the final photon in the y-direction. When multiplied by c it 
read    
 
    i(hν) = j(hν ') + (ipxc + jpyc) 
 
Hence pxc = hν; pyc = −hν ' .  We use this to rewrite the energy conservation equation as 
follows:       

       
(hν + mc 2 − hν ')2 = m 2c 4 + c 2(px

2 + py
2) = m2c4 + (hν)2 + (hν ') 2  

 
From this we get 
  

  hν'= hν
mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
We may use this to calculate the kinetic energy of the electron 
 



  
K = hν − hν '= hν 1−

mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = hν

hν
hν + mc2

=
(100keV )2

100keV + 510keV
=16.4keV

 

 
Also 
 
  pc = i(100keV ) + j(−83.6keV)  
   
which gives the direction of the recoiling electron. 

 
 

 
7. The photon energy is 
 

  
hν =

hc
λ

=
(6.63×10−34 J.s)(3 ×108 m / s)

3×106 ×10−9 m
= 6.63×10−17J

=
6.63×10−17 J

1.60 ×10−19 J / eV
= 4.14 ×10−4 MeV

 

 
The momentum conservation for collinear motion (the collision is head on for maximum 
energy loss), when squared, reads 
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Here ηi  = ±1, with the upper sign corresponding to the photon and the electron moving in 
the same/opposite direction, and similarly for η f . When this is multiplied by c2 we get 
 
  (hν)2 + (pc)2 + 2(hν) pcηi = (hν ')2 + ( p'c)2 + 2(hν ') p'cη f  
 
The square of the energy conservation equation,   with E expressed in terms of 
momentum and mass reads 
 
  (hν)2 + (pc)2 + m 2c 4 + 2Ehν = (hν ')2 + ( p'c)2 + m2c4 + 2E ' hν '  
 
After we cancel the mass terms and subtracting, we get 
 
  hν(E −η ipc) = hν '(E'−η f p'c) 
 
From this can calculate hν'   and rewrite the energy conservation law in the form 
 



                  E − E '= hν
E − ηi pc
E '−p'cη f

−1
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
The energy loss is largest if ηi = −1;η f = 1. Assuming that the final electron momentum is 

not very close to zero, we can write E + pc = 2E and E'− p'c =
(mc2 )2

2E'
 so that 

  E − E '= hν
2E × 2E'
(mc2 )2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

It follows that 
1
E'

=
1
E

+16hν  with everything expressed in MeV. This leads to 

 E’ =(100/1.64)=61 MeV  and the energy loss is 39MeV. 
 
 
8.We have λ’ = 0.035 x 10-10 m, to be inserted into  
 

λ'−λ =
h

mec
(1− cos600) =

h
2mec

=
6.63 ×10−34 J.s

2 × (0.9 ×10−30kg)(3×108 m / s)
= 1.23×10−12m  

 
Therefore λ = λ’ = (3.50-1.23) x 10-12 m = 2.3 x 10-12 m. 
 
The energy of the X-ray photon is therefore 
 

 hν =
hc
λ

=
(6.63×10−34 J .s)(3 ×108 m / s)

(2.3×10−12m)(1.6 ×10−19 J / eV )
= 5.4 ×105eV  

 
9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal 
and opposite to that of the emitted photon. We therefore have its magnitude given by 
p = hν / c , where hν = 6.2 MeV . The recoil energy is 

E =
p2

2M
= hν

hν
2Mc2 = (6.2MeV )

6.2MeV
2 ×14 × (940MeV )

= 1.5 ×10−3 MeV
 

10. The formula λ = 2asinθ / n  implies that λ / sinθ ≤ 2a / 3. Since λ = h/p this leads to 
      p ≥ 3h / 2asinθ , which implies that the kinetic energy obeys 
 

   K =
p2

2m
≥

9h2

8ma2 sin2 θ
 

 
Thus the minimum energy for electrons is 
 

 K =
9(6.63×10−34 J.s)2

8(0.9 ×10−30 kg)(0.32 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 3.35eV  



 
For Helium atoms the mass is 4(1.67 ×10−27 kg) / (0.9 ×10−30kg) = 7.42 ×103  larger, so 
that  
 

   K =
33.5eV

7.42 ×103 = 4.5 ×10−3 eV   

 

11. We use K =
p2

2m
=

h2

2mλ2  with  λ = 15 x 10-9 m to get 

 

 K =
(6.63×10−34 J.s)2

2(0.9 ×10−30 kg)(15 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 6.78 ×10−3 eV  

  
For λ = 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger. 
Thus  K =6.10 eV. 
 
12. For a circular orbit of radius r, the circumference is 2πr. If n wavelengths λ are to fit 
into the orbit, we must have 2πr = nλ = nh/p. We therefore get the condition 
 
     pr = nh / 2π = nh  
 
which is just the condition that the angular momentum in a circular orbit is an integer in 
units of   h . 
 
13. We have a = nλ / 2sinθ . For n = 1, λ= 0.5 x 10-10 m and θ= 5o . we get 

a = 2.87 x 10-10 m. For n = 2, we require sinθ2 = 2 sinθ1. Since the angles are very 
small,  θ2 = 2θ1. So that the angle is 10o. 
 

14. The relation F = ma leads to  mv 2/r = mωr that is, v = ωr. The angular momentum 
quantization condition  is mvr = n  h , which leads to mωr2 = nh. The total energy is 
therefore 

 

  
E =

1
2

mv2 +
1
2

mω 2r2 = mω2r 2 = nhω  

 
The analog of the Rydberg formula is 
 

  
  
ν(n → n') =

En − En '

h
=

hω(n − n')
h

= (n − n')
ω
2π

 

 
The frequency of radiation in the classical limit is just the frequency of rotation 
νcl = ω / 2π  which agrees with the quantum frequency when  n – n’ = 1. When the 
selection rule Δn = 1 is satisfied, then the classical and quantum frequencies are the same 
for all n.  
 



15. With V(r) = V0 (r/a)k , the equation describing circular motion is 
 

m
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so that 
 

  v =
kV0

m
r
k

⎛ 
⎝ 

⎞ 
⎠ 

k / 2

 

 
The angular momentum quantization condition mvr = nh reads 
 

  
  

ma2kV0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k +2
2

= nh  

 
We may use the result of this and the previous equation to calculate 
 

  
E =

1
2

mv2 + V0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

= (
1
2

k +1)V0
r
a
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k
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1
2
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In the limit of k >>1, we get 
 

 
  
E →

1
2

(kV0 )
2

k +2 h2

ma2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
k+ 2

(n2 )
k

k +2 →
h2

2ma2 n2  

 
Note that V0 drops out of the result. This makes sense if one looks at a  
picture of the potential in the limit of large k. For r< a the potential is  
effectively zero. For r > a it is effectively infinite, simulating a box with 
infinite walls. The presence of V0 is there to provide something with the 
dimensions of an energy. In the limit of the infinite box with the quantum 
 condition there is no physical meaning to V0 and the energy scale is  
provided by   h2 / 2ma 2 . 
 
16. The condition L = nh implies that  
 

  
E =

n2h2

2I
 

 
In a transition from n1 to n2 the Bohr rule implies that the frequency of the  
radiation is given 
    

  
  
ν12 =

E1 − E2

h
=

h2

2Ih
(n1

2 − n2
2 ) =

h

4πI
(n1

2 − n2
2 ) 



 
Let n1 = n2 + Δn. Then in the limit of large n we have (n1

2 − n2
2 ) → 2n2Δn , so  

that 
 

  
  
ν12 →

1
2π

hn2

I
Δn =

1
2π

L
I

Δn  

 
Classically the radiation frequency is the frequency of rotation which is 
ω = L/I , i.e.  

  νcl =
ω
2π

L
I

 

 
We see that this is equal to ν12  when Δn = 1. 
17. The energy gap between low-lying levels of rotational spectra is of the order of 
  h

2 / I = (1 / 2π )hh / MR2 , where M is the reduced mass of the two nuclei, and R is their 
separation. (Equivalently we can take 2 x m(R/2)2 = MR2). Thus 
 

  
  
hν =

hc
λ

=
1

2π
h

h

MR2  

 
This implies that  
 

 
  
R =

hλ
2πMc

=
hλ

πmc
=

(1.05 ×10−34 J.s)(10−3 m)
π (1.67 ×10−27kg)(3×108 m / s)

= 26nm  

   
 
 
 
  
 
 
 

 
 
 

 
  
 
  
 
  
 
 


