
CHAPTER 2 
 
1. We have 
 

ψ (x) = dkA(k)eikx
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because only the even part of eikx = coskx + i sinkx contributes to the integral. The integral 
can be looked up. It yields 
 

   ψ (x) = N
π
α

e−α |x |  

 
so that  

   |ψ (x) |2 =
N 2π 2

α 2 e−2α |x|  

 
If we look at |A(k)2 we see that this function drops to 1/4 of its peak value at k =± α.. We 
may therefore estimate the width to be Δk = 2α. The square of the wave function drops to 
about 1/3 of its value when 
x =±1/2α. This choice then gives us Δk Δx = 1. Somewhat different choices will give 
slightly different numbers, but in all cases the product of the widths is independent of α. 
 
2. the definition of the group velocity is 
 

vg =
dω
dk

=
2πdν

2πd(1/ λ )
=

dν
d(1/ λ )

= −λ2 dν
dλ

 

 
The relation between wavelength and frequency may be rewritten in the form 
 

   ν2 −ν0
2 =

c 2

λ2  

so that 
 

   −λ2 dν
dλ

=
c 2

νλ
= c 1− (ν0 /ν)2  

 
3. We may use the formula for vg derived above for   
 

ν =
2πT

ρ
λ−3/2  

 
to calculate 
 



   vg = −λ2 dν
dλ

=
3
2

2πT
ρλ

 

 
4. For deep gravity waves,  
 

ν = g / 2πλ−1/2  

from which we get, in exactly the same way  vg =
1
2

λg
2π

. 

 
5. With ω = hk2/2m, β = h/m and with the original width of the packet w(0) = √2α, we 

have  
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
h2t2

2m 2α 2 = 1 +
2h2t2

m 2w4 (0)
 

 
(a) With t = 1 s, m = 0.9 x 10-30 kg and w(0) = 10-6 m, the calculation yields w(1) = 1.7 x 

102 m 
With w(0) = 10-10 m, the calculation yields w(1) = 1.7 x 106 m. 
These are very large numbers. We can understand them by noting that the characteristic 
velocity associated with a particle spread over a range Δx is v = h/mΔx and here m is very 
small. 
(b) For an object with mass 10-3 kg and w(0)= 10-2 m, we get 
 

  

2h2t2

m2w4 (0)
=

2(1.05 ×10−34 J.s)2 t2

(10−3 kg)2 × (10−2m)4 = 2.2 ×10−54  

 
for t = 1. This is a totally negligible quantity so that w(t) = w(0). 
 
6. For the 13.6 eV electron v /c = 1/137, so we may use the nonrelativistic expression 

for the kinetic energy. We may therefore use the same formula as in problem 5, that is 
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
h2t2

2m 2α 2 = 1 +
2h2t2

m 2w4 (0)
 

 
We caclulate t for a distance of 104 km = 107 m, with speed (3 x 108m/137) to be 4.6 s. 
We are given that w(0) = 10-3 m. In that case 
 

 w(t) = (10−3 m) 1 +
2(1.05 ×10−34 J.s)2 (4.6s)2

(0.9 ×10−30kg)2(10−3 m)4 = 7.5 ×10−2 m  

 
For a 100 MeV electron E = pc to a very good approximation. This means that β = 0 and 
therefore the packet does not spread. 
 



7. For any massless particle E = pc so that β= 0 and there is no spreading. 
 
8. We have 
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where k = p/h. 
 

9. We want  

 dxA2

−∞
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∫ e−2μ|x | = A2 dxe2μx + dxe−2μx

0
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so that 
   A = μ  
 
10.   Done in text.  
 
11. Consider the Schrodinger equation with V(x) complex. We now have 
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Consequently 
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We require that the left hand side of this equation is negative. This does not tell us much 
about ImV(x) 
except that it cannot be positive everywhere. If it has a fixed sign, it must be negative. 
 
12. The problem just involves simple arithmetic. The class average  
 

  〈g〉 = gng
g
∑ = 38.5  

 

  (Δg)2 = 〈g2〉 − 〈g〉 2 = g2ng
g
∑ − (38.5)2 =  1570.8-1482.3= 88.6 

 
The table below is a result of the numerical calculations for this system 
 
 
g           ng              (g - <g>)2/(Δg)2 = λ                e-λ                       Ce-λ 
60 1               5.22  0.0054  0.097 
55 2  3.07  0.0463  0.833 
50 7  1.49  0.2247  4.04 
45 9  0.48  0.621  11.16 
40 16  0.025  0.975  17.53 
35 13  0.138  0.871  15.66 
30 3  0.816  0.442  7.96 
25 6  2.058  0.128  2.30 
20 2  3.864  0.021  0.38 
15 0  6.235  0.002  0.036 
10 1  9.70  0.0001  0.002 
5 0  12.97  “0”  “0” 
__________________________________________________________  

 
 

(c) We want 
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so that  N =
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(d) We have 
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Note that this integral vanishes for n  an odd integer, because the rest of the integrand is 
even. 
 
For n = 2m, an even integer, we have 
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For n = 1 as well as n = 17 this is zero, while for n = 2, that is, m = 1, this is 
1

2α
. 

 

(e)  
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The integral is easily evaluated by rewriting the exponent in the form 
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A shift in the variable x allows us to state the value of the integral as and we end up with 
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We have, for n even, i.e. n = 2m, 
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where at the end we set  
  
β =

1
αh2 . For odd powers the integral vanishes. 

Specifically for m = 1 we have  We have 

 

  

(Δx)2 = 〈x2 〉 = 1
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(Δp)2 = 〈p2〉 =
αh2

2

 

 



so that  
  
ΔpΔx =

h

2
. This is, in fact, the smallest value possible for the product of the 

dispersions. 
 
 
24.  We have 
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In working this out we have shamelessly interchanged orders of integration. The 
justification of this is that the wave functions are expected to go to zero at infinity faster 
than any power of x , and this is also true of the momentum space wave functions, in their 
dependence on p. 
 

 


