
 
CHAPTER 3. 
 
1. The linear operators are (a), (b), (f) 
 
2.We have 
 

dx ' x 'ψ (x ') = λψ (x)
−∞

x

∫  
 

To solve this, we differentiate both sides with respect to x, and thus get 
 

  λ
dψ (x)

dx
= xψ (x) 

 
A solution of this is obtained by writing dψ /ψ = (1/ λ )xdx   from  which we can 
immediately state that 
 
   ψ (x) = Ceλx 2 / 2  
 
The existence of  the integral that defines O6ψ(x) requires that λ < 0. 
 
3, (a) 

  

O2O6ψ (x) − O6O2ψ (x)

= x
d
dx

dx ' x 'ψ (x ') −
−∞

x

∫ dx ' x '2
dψ (x ')

dx '−∞

x

∫

= x2ψ(x) − dx '
d

dx '−∞

x

∫ x '2 ψ(x ')( )+ 2 dx ' x 'ψ (x')
−∞

x

∫
= 2O6ψ (x)

 

 
Since this is true for every ψ(x) that vanishes rapidly enough at infinity, we conclude that 
 
   [O2 , O6] = 2O6 
 
(b)    
 

  

O1O2ψ(x) − O2O1ψ (x)

= O1 x
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ − O2 x 3ψ( )= x 4 dψ

dx
− x

d
dx

x3ψ( )
= −3x3ψ(x) = −3O1ψ (x)

 

so that 
 
  [O1, O2] = -3O1 

 



4.   We need  to  calculate 

 

〈x2 〉 =
2
a

dxx 2 sin2 nπx
a0

a

∫  

With  πx/a = u  we have 
 

 〈x2 〉 =
2
a

a3

π 3 duu2 sin2 nu =
a2

π 30

π

∫ duu2

0

π

∫ (1− cos2nu)  

 
The first integral is simple. For the second integral we use the fact that 
 

 
duu2 cosαu = −

d
dα

⎛ 
⎝ 

⎞ 
⎠ 0

π

∫
2

ducosαu = −
0

π

∫ d
dα

⎛ 
⎝ 

⎞ 
⎠ 

2 sinαπ
α  

At the end we set α = nπ. A little algebra leads to 
 

  〈x2 〉 =
a2

3
−

a2

2π 2n2  

 

For large n we therefore get Δx =
a
3

.  Since 
 
〈p2〉 =

h2n2π 2

a2 , it follows that 

  
Δp =

hπn
a

, so that 

 

   
  
ΔpΔx ≈

nπh

3
 

 
The product of the uncertainties thus grows as n increases. 
 

5. With 
  
En =

h2π 2

2ma 2 n2  we can calculate 

 

E2 − E1 = 3
(1.05 ×10−34 J .s)2

2(0.9 ×10−30kg)(10−9 m)2
1

(1.6 ×10−19J / eV )
= 0.115eV  

 

We have ΔE =
hc
λ

 so that 
  
λ =

2πhc
ΔE

=
2π (2.6 ×10−7 ev.m)

0.115eV
=1.42 ×10−5m  

 
where we have converted   hc  from J.m units to eV.m units. 
 



6. (a) Here we write  
 

  
n2 =

2ma 2E
h2π 2 =

2(0.9 ×10−30kg)(2 ×10−2 m)2 (1.5eV )(1.6 ×10−19J / eV )
(1.05 ×10−34 J .s)2π 2 = 1.59 ×1015

 
so that n = 4 x 107 . 
 
(b) We have  
 

  

  

ΔE = h2π 2

2ma2 2nΔn = (1.05 ×10−34 J.s)2π 2

2(0.9 ×10−30kg)(2 ×10−2 m)2 2(4 ×107) =1.2 ×10−26J

= 7.6 ×10−8eV
 

 
7. The longest wavelength corresponds to the lowest frequency. Since ΔE is 

proportional to (n + 1)2 – n2 = 2n + 1, the lowest value corresponds to n = 1 (a state 
with n = 0 does not exist). We therefore have 

 

  
h

c
λ

= 3
h2π 2

2ma2  

If we assume that we are dealing with electrons of mass m = 0.9 x 10-30 kg, then 
 

  
  
a2 =

3hπλ
4mc

=
3π (1.05 ×10−34 J.s)(4.5 ×10−7 m)

4(0.9 ×10−30kg)(3×108 m / s)
= 4.1×10−19 m2  

so that a = 6.4 x 10-10 m. 
 

8. The solutions for a box of width a have energy eigenvalues 
 
En =

h2π 2n2

2ma 2  with  

n = 1,2,3,…The odd integer solutions correspond to solutions even under x → −x , while 
the even integer solutions correspond to solutions that are odd under reflection. These 
solutions vanish at x = 0, and it is these solutions that will satisfy the boundary conditions 
for the “half-well” under consideration. Thus the energy eigenvalues are given by En 
above with n even. 
 
9. The general solution is  
 

  
ψ (x, t) = Cn un (x)e− iE nt /h

n =1

∞

∑  

 
with the Cn defined by  
 
   Cn = dxun

* (x)ψ (x,0)
− a/ 2

a /2

∫  
 



(a) It is clear that the wave function does not remain localized on the l.h.s. of the box at 
later times, since the special phase relationship that allows for a total interference for 
x > 0 no longer persists for t ≠ 0. 

 

(b) With our wave function we have  Cn =
2
a

dxun (x)
−q /2

0

∫ .We may work this out by 

using the solution of the box extending from x = 0 to x = a, since the shift has no 
physical consequences. We therefore have 

 

Cn =
2
a

dx
2
a0

a/ 2

∫ sin
nπx
a

=
2
a

−
a

nπ
cos

nπx
a

⎡ 
⎣ 

⎤ 
⎦ 0

a /2

=
2

nπ
1− cos

nπ
2

⎡ 
⎣ 

⎤ 
⎦ 
 

 

Therefore P1 =| C1 |2 =
4

π 2  and P2 =| C2 |2 =
1

π 2 | (1− (−1)) |2 =
4
π 2  

 
10. (a) We use the solution of the above problem to get 
 

Pn =| Cn |2 =
4

n2π 2 fn  

 
where fn   = 1 for n = odd integer; fn = 0 for n = 4,8,12,…and fn = 4  for n = 2,6,10,… 
 
(b)  We have 
 

Pn
n=1

∞

∑ =
4
π 2

1
n2

odd
∑ +

4
π 2

4
n2

n= 2,6,10,,,
∑ =

8
π 2

1
n2 = 1

odd
∑  

 
Note. There is a typo in the statement of the problem. The sum should be restricted to 
odd integers. 
 
11. We work this out by making use of an identity. The hint tells us that 
 

(sin x)5 =
1
2i

⎛ 
⎝ 

⎞ 
⎠ 

5

(eix − e−ix)5 =
1

16
1
2i

(e5ix − 5e3ix +10eix −10e− ix + 5e−3ix − e−5ix )

=
1
16

(sin5x − 5sin 3x +10sin x)
 

Thus 
 

  ψ (x,0) = A
a
2

1
16

u5 (x) − 5u3(x) +10u1(x)( ) 

 
(a) It follows that 

 



  
ψ (x, t) = A

a
2

1
16

u5 (x)e− iE 5t /h − 5u3 (x)e−iE 3t /h +10u1(x)e−iE1t / h( ) 

 
(b) We can calculate A by noting that dx |ψ (x,0) |2 =1

0

a

∫ . This however is equivalent 
to the statement that the sum of the probabilities of finding any energy eigenvalue 
adds up to 1. Now we have 

 

P5 =
a
2

A2 1
256

;P3 =
a
2

A2 25
256

;P1 =
a
2

A2 100
256

 

 
so that  
 

   A2 =
256
63a

 

 
The probability of finding the state with energy E3  is 25/126. 
 

12. The initial wave function vanishes for x ≤ -a and for x ≥ a. In the region in between it 

is proportional to cos
πx
2a

, since this is the first nodeless trigonometric function that 

vanishes at x = ± a. The normalization constant is obtained by requiring that 
 

1 = N 2 dx cos2

− a

a

∫
πx
2a

= N 2 2a
π

⎛ 
⎝ 

⎞ 
⎠ ducos2 u = N 2a

−π / 2

π /2

∫  

 

so that N =
1
a

. We next expand this in eigenstates of the infinite box potential with 

boundaries at x = ± b. We write 
 

  
1
a

cos
πx
2a

= Cn
n =1

∞

∑ un (x;b) 

 
so that  
 

   Cn = dxun (x;b)ψ (x) = dx
− a

a

∫− b

b

∫ un (x;b)
1
a

cos
πx
2a

 

 
In particular, after a little algebra, using cosu cosv=(1/2)[cos(u-v)+cos(u+v)], we get 
  
 



  
C1 =

1
ab

dx cos
πx
2b−a

a

∫ cos
πx
2a

=
1

ab
dx

1
2−a

a

∫ cos
πx(b − a)

2ab
+ cos

πx(b + a)
2ab

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=
4b ab

π(b2 − a2 )
cos

πa
2b

 

 
so that  

  P1 =| C1 |2 =
16ab3

π 2 (b2 − a2)2 cos2 πa
2b

 

 
The calculation of C2 is trivial. The reason is that while ψ(x) is an even function of x,  
u2(x) is an odd function of x, and the integral over an interval symmetric about x = 0 is 
zero. Hence P2 will 
 be zero. 
 
13. We first calculate 
 

  

φ( p) = dx
2
a

sin
nπx

a0

a

∫ eipx/ h

2πh
=

1
i

1
4πha

dxeix (nπ /a + p /h )

0

a

∫ − (n ↔ −n)⎛ 
⎝ 

⎞ 
⎠ 

=
1

4πha
eiap /h (−1)n −1
p / h − nπ / a

−
eiap / h (−1)n −1
p / h + nπ / a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

=
1

4πha
2nπ / a

(nπ / a)2 − (p /h)2 (−1)n cos pa / h −1+ i(−1)n sin pa / h{ }

 

 
From this we get 
 

 
  

P( p) =| φ(p) |2=
2n2π
a3h

1− (−1)n cos pa / h

(nπ / a)2 − (p / h)2[ ]2  

 
The function P(p) does not go to infinity at  p = nπh / a , but if definitely peaks there. If 
we write   p / h = nπ / a +ε , then the numerator becomes 1− cosaε ≈ a2ε 2 / 2 and the 

denominator becomes (2nπε / a)2 , so that at the peak
 
P

nπh

a
⎛ 
⎝ 

⎞ 
⎠ = a / 4πh .  The fact that the 

peaking occurs at  
 

   
  

p2

2m
=

h2π 2n2

2ma2  

 
suggests agreement with the correspondence principle, since the kinetic energy of the 
particle is, as the r.h.s. of this equation shows, just the energy of a particle in the infinite 
box of width a. To confirm this, we need to show that the distribution is strongly peaked 
for large n. We do this by looking at the numerator, which  vanishes when aε = π / 2, that 
is, when   p / h = nπ / a +π / 2a = (n +1 / 2)π / a . This implies that the width of the 



distribution is   Δp = πh / 2a . Since the x-space wave function is localized to 0 ≤ x ≤ a we 
only know that Δx = a. The result  ΔpΔx ≈ (π / 2)h  is consistent with the uncertainty 
principle. 
 
14. We calculate 
 

  

  

φ( p) = dx
α
π

⎛ 
⎝ 

⎞ 
⎠ −∞

∞

∫
1/4

e−αx 2 / 2 1
2πh

e− ipx/ h

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4 1
2πh

⎛ 
⎝ 

⎞ 
⎠ 

1/2

dxe−α (x − ip/αh )2

−∞

∞

∫ e− p 2 /2αh 2

=
1

παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

e− p2 / 2αh 2

 

 
From this we find that the probability the momentum is in the range (p, p + dp) is 
 

 
  
| φ( p) |2 dp =

1
παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

e− p2 /αh 2

 

 
To get the expectation value of the energy we need to calculate 
 

 

  

〈
p2

2m
〉 =

1
2m

1
παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dpp2e− p2 /αh 2

−∞

∞

∫

=
1

2m
1

παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/2 π
2

(αh2 )3/ 2 =
αh2

2m

 

 
An estimate on the basis of the uncertainty principle would use the fact that the “width”  
of the packet is1 / α . From this we estimate  Δp ≈ h / Δx = h α , so that  
 

  
  
E ≈

(Δp)2

2m
=

αh2

2m
 

 
The exact agreement is fortuitous, since both the definition of the width and  
the numerical statement of the uncertainty relation are somewhat elastic. 
 
 
 
 
 
 
 
 
 



 
 
 
 
15. We have 
 
 

  

j(x) =
h

2im
ψ * (x)

dψ (x)
dx

−
dψ *(x)

dx
ψ (x)

⎛ 
⎝ 

⎞ 
⎠ 

=
h

2im
(A * e−ikx + B *eikx )(ikAeikx − ikBe−ikx ) − c.c)[ ]

=
h

2im
[ik | A |2 −ik | B |2 +ikAB *e2ikx − ikA* Be −2ikx

− (−ik ) | A |2 −(ik) | B |2 −(−ik)A * Be −2ikx − ikAB *e2ikx ]

=
hk
m

[| A |2 − | B |2 ]

  

 
This is a sum of a flux to the right associated with A eikx  and a flux to the left associated 
with Be-ikx.. 
 
16. Here  
 

 

  

j(x) =
h

2im
u(x)e− ikx(iku(x)eikx +

du(x)
dx

eikx) − c.c⎡ 
⎣ 

⎤ 
⎦ 

=
h

2im
[(iku2 (x) + u(x)

du(x)
dx

) − c.c] =
hk
m

u2 (x)
 

 

(c) Under the reflection x  -x  both x and p = 
 
−ih

∂
∂x

 change sign, and since the 

function consists of an odd power of x and/or p, it is an odd function of x. Now the 
eigenfunctions for a box symmetric about the x axis have a definite parity. So that 

un (−x) = ±un (x). This implies that the integrand is antisymmetric under x  - x. 
Since the integral is over an interval symmetric under this exchange, it is zero. 

 
(d) We need to prove that 
 

dx(Pψ (x))*ψ(x) =
−∞

∞

∫ dxψ (x)* Pψ (x)
−∞

∞

∫  
 

The left hand side is equal to  
 



 dxψ *(−x)ψ (x) =
−∞

∞

∫ dyψ * (y)ψ(−y)
−∞

∞

∫  
 
with a change of variables x -y , and this is equal to the right hand side. 
 
The eigenfunctions of P with eigenvalue +1 are functions for which u(x) = u(-x), while  
 
those with eigenvalue –1 satisfy v(x) = -v(-x). Now the scalar product is  
 
 dxu *(x)v(x) = dyu *(−x)v(−x) = − dxu *(x)v(x)

−∞

∞

∫−∞

∞

∫−∞

∞

∫  
 
so that 
  dxu *(x)v(x) = 0

−∞

∞

∫  
 
(e) A simple sketch of  ψ(x) shows that it is a function symmetric about x = a/2. 
 This means that the integral dxψ (x)un (x)

0

a

∫  will vanish for the un(x) which are odd 
under the reflection about this axis. This means that the integral vanishes for n = 2,4,6,…  
    
 
 
  
 

 
 
 
 
  

    
  
   

 
 
 
 

 
 

 
 

 
  

    
  



   


