
CHAPTER 4. 
 
 
1. The solution to the left side of the potential region is ψ (x) = Aeikx + Be−ikx .  
As shown in  Problem 3-15, this corresponds to a flux 
 

  
  
j(x) =

hk
m

| A |2 − | B |2( ) 

 
The solution on the right side of the potential is ψ (x) = Ceikx + De−ikxx , and 
as above, the flux is 
 

  
  
j(x) =

hk
m

| C |2 − | D |2( ) 

Both fluxes are independent of x. Flux conservation implies that the two  
are equal, and this leads to the relationship 
 
  | A |2 + | D |2=| B |2 + | C |2  
 
If we now insert  
 

  
C = S11A + S12D
B = S21A + S22D

 

 
into the above relationship we get 
 
| A |2 + | D |2= (S21A + S22D)(S21

* A * +S22
* D*) + (S11A + S12D)(S11

* A * +S12
* D*)  

 
Identifying the coefficients of |A|2 and |D|2, and setting the coefficient of 
AD* equal to zero yields 
 

  

| S21 |2 + | S11 |2= 1

| S22 |2 + | S12 |2= 1
S12S22

* + S11S12
* = 0

 

 
Consider now the matrix  
 

  Str =
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The unitarity of this matrix implies that  
 



 
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ S11

* S12
*

S21
* S22

*

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

1 0
0 1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
that is, 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =1

S11S12
* + S21S22

* = 0
 

 
These are just the conditions obtained above. They imply that the matrix Str 
is unitary, and therefore the matrix S is unitary. 
 
2. We have solve the problem of finding R and T  for this potential well in 

the text.We take V0 < 0. We dealt with wave function of the form   
 

eikx + Re−ikx x < −a

Teikx x > a
 

In the notation of Problem 4-1, we have found that if A = 1 and D = 0, then 
C = S11 = T  and B = S21 = R.. To find the other elements of the S matrix we 
need to consider the same problem with A = 0 and D = 1. This can be 
solved explicitly by matching wave functions at the boundaries of the 
potential hole, but it is possible to take the solution that we have and reflect 
the “experiment” by the interchange x  - x. We then find that S12 = R and 
S22 = T. We can easily check that 
 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =| R |2 + | T |2= 1

 

Also 
S11S12

* + S21S22
* = TR* +RT* = 2Re(TR*) 

 
If we now look at the solutions for T and R in the text we see that the 
product of T and R* is of the form (-i) x (real number), so that its real part 
is zero. This confirms that the S matrix here is unitary. 
 
3. Consider the wave functions on the left and on the right to have the 

forms 
ψ L(x) = Ae ikx + Be− ikx

ψ R (x) = Ceikx + De−ikx  

 
Now, let us make the change  k  - k and  complex conjugate everything. 
Now the two wave functions read 
 



   
ψ L(x)'= A *eikx + B *e− ikx

ψ R (x)'= C * eikx + D* e−ikx  

 
Now complex conjugation and the transformation k  - k  changes the 
original relations to  
 

  
C* = S11

* (−k)A * +S12
* (−k)D*

B* = S21
* (−k)A * +S22

* (−k)D*
 

 
On the other hand, we are now relating outgoing amplitudes C*, B* to 
ingoing amplitude A*, D*, so that the relations of problem 1 read 
 

  
C* = S11(k)A * +S12(k)D*
B* = S21(k)A * +S22(k)D*

 

 
This shows that S11(k) = S11

* (−k); S22(k) = S22
* (−k); S12(k) = S21

* (−k) . These 

result may be written in the matrix form  S(k) = S+ (−k) . 
 
4. (a) With the given flux, the wave coming in  from  x = −∞ , has the 

form    eikx , with unit amplitude. We now write the solutions in the 
various regions 

 

  

x < b eikx + Re− ikx k 2 = 2mE / h2

−b < x < −a Aeκx + Be−κx κ 2 = 2m(V0 − E) /h2

−a < x < c Ceikx + De− ikx

c < x < d Meiqx + Ne−iqx q2 = 2m(E + V1) / h2

d < x Teikx

 

(b) We now have  
 

  

x < 0 u(x) = 0

0 < x < a Asinkx k 2 = 2mE / h2

a < x < b Beκx + Ce−κx κ 2 = 2m(V0 − E ) / h2

b < x e−ikx + Reikx

 

The fact that there is total reflection at x = 0 implies that |R|2 = 1 
 



5.  The denominator in (4-    ) has the form 
 
 D = 2kq cos2qa − i(q2 + k2 )sin2qa  
 
With k = iκ  this becomes 
 
 D = i 2κqcos2qa − (q2 −κ 2 )sin2qa( ) 
 
The denominator vanishes when 
 

 tan2qa =
2tanqa

1− tan2 qa
=

2qκ
q2 −κ 2  

 
This implies that 
 

 tanqa = −
q2 −κ 2

2κq
± 1 +

q2 −κ 2

2κq
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= −
q2 −κ 2

2κq
±

q2 +κ 2

2κq
 

 
This condition is identical with  (4-   ). 
 
The argument why this is so, is the following: When k = iκ  the 
wave functio on the left has the form e−κx + R(iκ )eκx . The function 
e-κx blows up as x → −∞  and the wave function only make sense if 
this term is overpowered by the other term, that is when R(iκ ) = ∞ . 
We leave it to the student to check that the numerators are the same 
at k = iκ. 
 
6.  The solution is    u(x) = Aeikx + Be-ikx        x < b 
       = Ceikx  + De-ikx      x > b  
 
The continuity condition at x = b leads to  
 
      Aeikb  + Be-ikb  = Ceikb + De-ikb 
 
And the derivative condition is 

  
                       (ikAeikb –ikBe-ikb) - (ikCeikb –ikDe-ikb)= (λ/a)( Aeikb  + Be-ikb) 
 
 With the notation 
 
  Aeikb = α ; Be-ikb = β; Ceikb = γ; De-ikb = δ 
 
 These equations read 
 



                         α + β = γ + δ 
 
   ik(α - β + γ - δ) = (λ/a)(α + β) 
 
 We can use these equations to write (γ,β) in terms of (α,δ) as follows 
 

   
γ =

2ika
2ika − λ

α +
λ

2ika − λ
δ

β =
λ

2ika − λ
α +

2ika
2ika − λ

δ
 

 
We can now rewrite these in terms of A,B,C,D and we get for the S matrix 
 

  S =

2ika
2ika− λ

λ
2ika − λ

e−2ikb

λ
2ika − λ

e2ikb 2ika
2ika− λ

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 

 
Unitarity is easily established: 
 

 
| S11 |2 + | S12 |2= 4k 2a2

4k2a2 + λ2 + λ2

4k2a2 + λ2 = 1

S11S12
* + S12S22

* =
2ika

2ika − λ
⎛ 
⎝ 

⎞ 
⎠ 

λ
−2ika− λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ +

λ
2ika − λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ 

−2ika
−2ika − λ

⎛ 
⎝ 

⎞ 
⎠ = 0

 

 
The matrix elements become infinite when 2ika =λ. In terms of κ= -ik, this condition 
becomes κ = -λ/2a = |λ|/2a. 
 
7. The exponent in T = e-S  is 
 

  

S =
2
h

dx 2m(V (x) − E)
A

B

∫

=
2
h

dx (2m(
mω 2

2
(x 2 −

x 3

a
)) −

hω
2A

B

∫
 

 
where A and B are turning points, that is, the points at which the quantity 
under the square root sign vanishes.  
We first simplify the expression by changing to dimensionless variables: 
 
   

  
x = h / mω y; η = a / h / mω << 1 

 
The integral becomes 
 



  2 dy y2 −ηy 3 −1
y1

y2∫                  with  η <<1 

 
where now y1 and y2 are the turning points. A sketch of the potential shows 
that y2 is very large. In that region, the –1 under the square root can be 
neglected, and to a good approximation y2 = 1/η. The other turning point 
occurs for y not particularly large, so that we can neglect the middle term 
under the square root, and the value of y1 is 1. Thus we need to estimate 
 
   dy y2 −ηy 3 −1

1

1/η

∫  
 
The integrand has a maximum at 2y – 3ηy2= 0, that is at y = 2η/3. We 
estimate the contribution from that point on by neglecting the –1 term in 
the integrand. We thus get 
 

  dyy 1−ηy
2/ 3η

1/η

∫ =
2
η2

(1− ηy)5/ 2

5
−

(1− ηy)3/ 2

3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2/3η

1/η

=
8 3
135

1
η2  

 
To estimate the integral in the region 1 < y < 2/3η is more difficult. In any 
case, we get a lower limit on S by just keeping the above, so that 
 
    S > 0.21/η2 
 
The factor eS  must be multiplied by a characteristic time for the particle to 
move back and forth inside the potential with energy  hω / 2 which is 
necessarily of order 1/ω.  Thus the estimated time is longer 

than
const.

ω
e0.2/η 2

. 

8. The barrier factor is eS  where 
 

  
S =

2
h

dx
h2l(l +1)

x 2 − 2mE
R0

b

∫  

 
where b is given by the value of x at which the integrand vanishes, that is, 
with 2mE/  h2 =k2, b = l(l +1) / k .We have, after some algebra 
 

   

S = 2 l(l +1)
du
uR0 / b

1

∫ 1− u2

= 2 l(l +1) ln
1+ 1− (R0 / b)2

R0 / b
− 1− (R0 / b)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 
We now introduce the variable f = (R0/b) ≈ kR0 / l  for large l. Then 
 



   eS eS =
1+ 1− f 2

f

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2l

e−2l 1− f 2

≈
e
2

⎛ 
⎝ 

⎞ 
⎠ 

−2l

f −2l  

    
for f << 1. This is to be multiplied by the time of traversal inside the box. 
The important factor is f-2l.  It tells us that the lifetime is proportional to 
(kR0)-2l  so that it grows as a power of l  for small k. Equivalently we can 
say that the probability of decay falls as (kR0)2l. 
 
9. The argument fails because the electron is not localized inside the 

potential. In fact, for weak binding, the electron wave function extends 
over a region R = 1/α =   h 2mEB , which, for weak binding is much 
larger than a. 

 
10. For a bound state, the solution for x > a must be of the 

form u(x) = Ae −αx ,    where   α = 2mEB / h . Matching 
1
u

du
dx

at x = a  

 
yields  −α = f (EB ).  If f(E) is a constant, then we immediately know α.. Even if f(E) 
varies only slightly over the energy range that overlaps small positive E, we can 
determine the binding energy in terms of the reflection coefficient. For positive energies 
the wave function u(x)  for x > a has the form e-ikx  + R(k)eikx, and matching yields 
 

     
f (E ) ≈ −α = −ik

e− ika − Re ika

e−ika + Re ika = −ik
1− Re2ika

1 + Re2ika  

so that 
 

R = e−2ika k + iα
k − iα

 

 
We see that |R|2 = 1. 
 
11. Since the well is symmetric about x = 0, we need only match wave functions at x = b 
and a. We look at E < 0, so that we introduce and α2 = 2m|E|/  h

2  and  
       q2 = 2m(V0-|E|)/  h2 . We now write down 
Even solutions: 
      u(x)  =  coshαx  0 < x < b 
    = A sinqx + B cosqx      b < x < a  
                = C e-αx     a < x 
 
 

Matching 
1

u(x)
du(x)

dx
 at x = b and at x = a leads to the equations 

 



α tanhαb = q
Acosqb − Bsinqb
Asinqb + B cosqb

−α = q Acosqa − Bsnqa
Asinqa + B cosqa

 

 
From the first equation we get 
 

   
B
A

=
qcosqb −α tanhαbsinqb
qsinqb +α tanhαbcosqb

 

 
and from the second 
 

   
B
A

=
qcosqa +α sinqa
qsinqa −α cosqa

 

 
Equating these, cross-multiplying, we get after a little algebra 
 
q2 sinq(a − b) − αcosq(a − b) = α tanhαb[αsinq(a − b) + qcosq(a − b)] 
 
from which it immediately follows that 
 

   
sinq(a − b)
cosq(a − b)

=
αq(tanhαb +1)
q2 − α 2 tanhαb

 

Odd Solution 
 
Here the only difference is that the form for u(x) for 0  <  x < b   is sinhαx. 
The result of this is that we get the same expresion as above, with tanhαb  
replaced by cothαb. 
 
11. (a) The condition that there are at most two bound states is equivalent 

to stating that there is at most one odd bound state. The relevant figure 
is Fig. 4-8, and we ask for the condition that there be no intersection 
point with the tangent curve that starts up at 3π/2. This means that  

 
λ − y2

y
= 0 

for y ≤ 3π/2. This translates into λ  =  y2 with y < 3π/2, i.e. λ  < 9π2/4. 
(b) The condition that there be at most three bound states implies that there 
be at most two even bound states, and the relevant figure is 4-7. Here the 
conditon is that y < 2π so that λ < 4π2. 
 



(c) We have y = π so that the second even bound state have zero binding 
energy. This means that λ = π2. What does this tell us about the first bound 
state? All we know is that y is a solution of Eq. (4-54) with λ = π2.   
Eq.(4-54) can be rewritten as follows: 
 

 tan2 y =
1− cos2 y

cos2 y
=

λ − y2

y2 =
1− (y2 / λ )

(y 2 / λ)
 

 
so that the even condition is cos y = y / λ , and in the same way, the odd 
conditin is sin y = y / λ .  Setting λ = π  still leaves us with a 
transcendental equation. All we can say is that the binding energy f the 
even state will be larger than that of the odd one. 
 
13.(a)  As b  0, tanq(a-b)  tanqa and the r.h.s. reduces to α/q. Thus we 
get, for the even solution 
 

tanqa = α/q  
and, for the odd solution, 
     tanqa  = - q/α. 
 
These are just the single well conditions. 
(b) This part is more complicated. We introduce notation c = (a-b), which 
will be held fixed. We will also use the notation z = αb. We will also use 
the subscript “1” for the even solutions, and “2” for the odd solutions. For b 
large, 
 

   
tanhz =

ez − e− z

ez + e−z =
1− e−2z

1 + e−2z ≈1− 2e−2z

cothz ≈1 = 2e−2z

 

 
The eigenvalue condition for the even solution now reads  
 
  

 tanq1c =
q1α1(1+1− 2e−2z1 )
q1

2 −α1
2(1− 2e−2z1 )

≈
2q1α1

q1
2 − α1

2 (1−
q1

2 + α1
2

q1
2 − α1

2 e−2z1 )  

 
The condition for the odd solution is obtained by just changing the sign of 
the e-2z  term, so that 
 

 tanq2c =
q2α2 (1+1 + 2e−2z2 )

q2
2α2

2(1 + 2e−2z2 )
≈

2q2α 2

q2
2 −α 2

2 (1+
q2

2 +α 2
2

q2
2 −α2

2 e−2z2 )  

 



In both cases q2 + α2 = 2mV0/  h2  is fixed.  The two eigenvalue conditions 
only differ in the e-2z terms, and the difference in the eigenvalues is 
therefore proportional to e-2z , where z here is some mean value between 
α1 b and α2b.  
This can be worked out in more detail, but this becomes an exercise in 
Taylor expansions with no new physical insights. 
 
 
14. We write 
 

〈x
dV (x)

dx
〉 = dxψ(x)x

dV (x)
dx−∞

∞

∫ ψ (x)

= dx
d

dx
ψ 2xV( )− 2ψ

dψ
dx

xV −ψ 2V⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −∞

∞

∫
 

 
The first term vanishes because ψ  goes to zero rapidly. We next rewrite 
 

  

−2 dx
dψ
dx−∞

∞

∫ xVψ = −2 dx
dψ
dx−∞

∞

∫ x(E +
h2

2m
d2

dx2 )ψ

= −E dxx
dψ 2

dx
−

h2

2m−∞

∞

∫ dxx
d

dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫
 

 
Now 
 

   dxx
dψ 2

dx−∞

∞

∫ = dx
d
dx−∞

∞

∫ xψ 2( )− dxψ 2

−∞

∞

∫  

 
The first term vanishes, and the second term is unity.  We do the same with 
the second term, in which only the second integral 
 

     dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫  

 
remains. Putting all this together we get 
 

 
  
〈x

dV
dx

〉 + 〈V 〉 =
h2

2m
dx

dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

+ E dxψ 2

−∞

∞

∫−∞

∞

∫ = 〈
p2

2m
〉 + E  

 
so that 

       
1
2

〈x
dV
dx

〉 = 〈
p2

2m
〉   

 
 



 
 
 

 
   

 


