
CHAPTER  5. 
 
 
1. We are given 
 

dx(AΨ(x)) *Ψ(x) =
−∞

∞

∫ dxΨ(x) * AΨ(x)
−∞

∞

∫  
 

Now let  Ψ(x) = φ(x) + λψ (x) , where λ is an arbitrary complex number. Substitution 
into the above equation yields, on the l.h.s. 
 

dx(Aφ(x) + λAψ (x)) *(φ(x) + λψ(x))
−∞

∞

∫
= dx (Aφ) *φ + λ (Aφ)*ψ + λ * (Aψ )*φ + | λ |2 (Aψ )*ψ[ ]

−∞

∞

∫
 

 
On the r.h.s. we get 
 

dx(φ(x) + λψ (x)) *(Aφ(x) + λAψ(x))
−∞

∞

∫
= dx φ * Aφ + λ *ψ * Aφ + λφ * Aψ + | λ |2 ψ * Aψ[ ]

−∞

∞

∫
 

 
 
Because of the hermiticity of A, the first and fourth terms on each side are equal. For the 
rest, sine λ is an arbitrary complex number, the coefficients of λ and λ* are independent , 
and we may therefore identify these on the two sides of the equation. If we consider λ, 
for example, we get 
 
  dx(Aφ(x)) *ψ (x) =

−∞

∞

∫ dxφ(x) * Aψ (x)
−∞

∞

∫  
 
the desired result. 
 
2. We have  A+ = A and B+ = B , therefore (A + B)+ = (A + B). Let us call (A + B) = X. 

We have shown that X is hermitian. Consider now 
 
(X +)n  = X+ X+ X+ …X+ = X X X …X = (X)n    
 

which was to be proved. 
 
3. We have 
 

〈A2〉 = dxψ * (x)A2

−∞

∞

∫ ψ (x) 
 

Now define  Aψ(x) = φ(x). Then the above relation can be rewritten as 



 
〈A2〉 = dxψ (x)Aφ(x) = dx

−∞

∞

∫−∞

∞

∫ (Aψ (x))*φ(x)

= dx
−∞

∞

∫ (Aψ (x))* Aψ (x) ≥ 0
 

 

4. Let U = eiH  = 
inH n

n!n= 0

∞

∑ . Then  U + =
(−i)n (H n )+

n!n= 0

∞

∑ =
(−i)n (H n )

n!n =0

∞

∑ = e− iH , and thus  

 
the hermitian conjugate of  eiH  is  e-iH  provided H = H+.. 
 
5. We need to show that  
 

eiHe−iH =
in

n!n =0

∞

∑ H n (−i)m

m!m = o

∞

∑ H m  = 1 

 
Let us pick a particular coefficient in the series, say k = m + n and calculate its 
coefficient. We get, with m= k – n, the coefficient of Hk  is 
 

  

in

n!n= 0

k

∑ (−i) k−n

(k − n)!
=

1
k!

k!
n!(k − n)!n =0

k

∑ in (−i) k−n

=
1
k!

(i − i)k = 0
 

 
Thus in the product only the m = n = 0 term remains, and this is equal to unity. 
 
6. We write  I(λ,λ*) = dx φ(x) + λψ (x)( )

−∞

∞

∫ * (φ(x) + λψ (x)) ≥ 0. The left hand side, in 
abbreviated notation can be written as 

 
I(λ,λ*) = |φ |2∫ + λ * ψ *φ + λ φ *ψ + λλ * |ψ |2∫∫∫  

 
Since λ and λ* are independent, he minimum value of this occurs when 
 

 

∂I
∂λ *

= ψ *φ + λ |ψ |2∫∫ = 0

∂I
∂λ

= φ *ψ + λ * |ψ |2∫∫ = 0
 

 
When these values of λ and λ* are inserted in the expression for I(λ,λ*) we get 
 

I(λ min,λ min
* ) = |φ |2∫ −

φ *ψ ψ *φ∫∫
|ψ |2∫

≥ 0  



 
from which we get the Schwartz inequality. 
 

7. We have UU+ =   1  and VV+ = 1. Now (UV)+  = V+U+ so that  
 

(UV)(UV)+ = UVV+U+ = UU+  = 1 
 

8. Let Uψ(x) = λψ(x), so that λ is an eigenvalue of U. Since U is unitary, U+U = 1. Now 
 

dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
On the other hand, using the eigenvalue equation, the integral may be written in the form 
 
  dx

−∞

∞

∫ (Uψ (x))*Uψ (x) = λ *λ dxψ *(x)ψ (x) =| λ |2
−∞

∞

∫  
 
It follows that |λ|2 = 1, or equivalently λ = eia , with a real. 
 
9. We write   
 

dxφ(x) *φ(x) =
−∞

∞

∫ dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
10. We write, in abbreviated notation 
 

va
*∫ vb = (Uua∫ )*Uub = ua

*∫ U +Uub = ua
*∫ ub = δ ab  

 
11. (a)  We are given A+ = A and B+ = B. We now calculate 
 
(i [A,B])+ = (iAB – iBA)+ = -i (AB)+ - (-i)(BA)+ = -i (B+A+) + i(A+B+) 
 
                = -iBA + iAB = i[A,B] 
 
(b) [AB,C] = ABC-CAB = ABC – ACB + ACB – CAB = A(BC – CB) – (AC – CA)B 
 

      = A [B,C] – [A,C]B 
 

(c) The Jacobi identity written out in detail is 
 
[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =  
 



A(BC – CB) – (BC – CB)A + B(CA – AC) – (CA - AC)B + C(AB – BA) – (AB – BA)C 
 
= ABC – ACB – BCA + CBA + BCA – BAC – CAB + ACB + CAB – CBA – ABC + BAC 
 
It is easy to see that the sum is zero. 
 
12. We have  
 
eA B e-A  = (1 + A + A2/2! + A3/3! + A4/4! +…)B (1 - A + A2/2! - A3/3! + A4/4! -…) 
 
Let us now take the term independent of A: it is B. 
The terms of first order in A are AB – BA = [A,B]. 
The terms of second order in A are  
 
A2B/2! – ABA + BA2/2! = (1/2!)(A2B – 2ABA + BA2) 
 
    = (1/2!)(A(AB – BA) – (AB – BA)A) = (1/2!){A[A,B]-[A,B]A} 
 
               = (1/2!)[A,[A,B]] 
 
The terms of third order in A are A3B/3! – A2BA/2! + ABA2/2! – BA3.  One can again 
rearrange these and show that this term is  (1/3!)[A,[A,[A,B]]]. 
 
There is actually a neater way to do this. Consider  
 
   F(λ) = eλABe−λA  
 
Then 
 

  
dF(λ)

dλ
= eλA ABe−λA − eλA BAe−λA = eλA[A,B]e−λA   

 
Differentiating again we get  
 

  
d2F(λ)

dλ2 = eλA[A,[A,B]]e−λA  

 
and so on. We now use the Taylor expansion to calculate F(1) = eA B e-A. 
 

F(1) = F (0) + F'(0) +
1
2!

F ' '(0) +
1
3!

F ' ' '(0) + ..,

= B+ [A,B] + 1
2!

[A,[A,B]] + 1
3!

[A,[A,[A,B]]] + ...
  

 
13. Consider the eigenvalue equation  Hu = λu. Applying H to this equation we get 
  



H2 u = λ 2u ;  H3 u = λ3u  and H4u = λ4u . We are given that H4 = 1, which means 
that H4 applied to any function yields 1. In particular this means that λ4 = 1. The 
solutions of this are λ = 1, -1, i, and –i. However, H is hermitian, so that the 
eigenvalues are real. Thus only λ = ± 1 are possible eigenvalues. If H is not 
hermitian, then all four eigenvalues are acceptable. 
 
 

14. We have the equations 
 

Bua
(1) = b11ua

(1) + b12ua
(2)

Bua
(2) = b21ua

(1) + b22ua
(2) 

 
Let us now introduce functions (va

(1),va
(2))  that satisfy the equations 

Bva
(1) = b1va

(1);Bva
(2) = b2va

(2). We write, with simplified notation, 
 
    v1 = α u1 + β u2 
    v2 = γ u1 + δ u2 
 
 The b1 - eigenvalue equation reads 
 
      b1v1 = B ( α u1 + β u2) = α (b11 u1 + b12u2) + β (b21u1 + b22u2) 
 
We write the l.h.s. as b1(α u1 + β u2). We can now take the coefficients  
of u1 and u2  separately, and get the following equations 
 
   α (b1 – b11) = βb21 

   β (b1 – b22)  = αb12 
 
The product of the two equations yields a quadratic equation for b1, whose solution is 
 

  b1 =
b11 + b22

2
±

(b11 − b22)2

4
+ b12b21  

 
We may choose the + sign for the b1 eigenvalue. An examination of the equation 
involving v2 leads to an identical equation, and we associate the – sign with the b2 
eigenvalue. Once we know the eigenvalues, we can find the ratios α/β and γ/δ. These 
suffice, since the normalization condition implies that 
 
    α2 + β2 = 1  and γ2 + δ2 = 1 
 
15. The equations of motion for the expectation values are 
 



  

d
dt

〈x〉 =
i
h

〈[H ,x]〉 =
i
h

〈[
p2

2m
, x]〉 =

i
mh

〈 p[ p, x]〉 = 〈
p
m

〉

d
dt

〈p〉 =
i
h

〈[H, p]〉 = −
i
h

〈[p,
1
2

mω1
2x 2 +ω2x]〉 = −mω1

2 〈x〉 −ω2

 

 
16. We may combine the above equations to get 
 

d2

dt2 〈x〉 = −ω1
2〈x〉 −

ω2

m
 

 
The solution of this equation is obtained by introducing the variable 
 

  X = 〈x〉 +
ω2

mω1
2  

 
The equation for X reads  d2X/dt2 = - ω1

2 X, whose solution is  
 
  X = Acosω1   t + Bsinω1  t 
 
This gives us  
 

  〈x〉t = −
ω2

mω1
2 + Acosω1t + B sinω1t  

 
At t = 0   

 
〈x〉0 = −

ω2

mω1
2 + A

〈p〉0 = m d
dt

〈x〉t = 0 = mBω1

 

 
We can therefore write A and B in terms  of the initial values of < x > and 
< p >,  
 

 〈x〉t = −
ω2

mω1
2 + 〈x〉0 +

ω2

mω1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ cosω1t +

〈p〉 0

mω1
sinω1t  

 
17. We calculate as above, but we can equally well use Eq. (5-53) and (5-57),  
to get 
 

  

d
dt

〈x〉 =
1
m

〈 p〉

d
dt

〈p〉 = −〈
∂V (x, t)

∂x
〉 = eE 0cosωt

 

Finally 



 

  
d
dt

〈H 〉 = 〈
∂H
∂t

〉 = eE0ω sinωt〈x〉  

 
18. We can solve the second of the above equations to get 
 

〈p〉 t =
eE 0

ω
sinωt + 〈p〉 t =0  

 
This may be inserted into the first equation, and the result is 
 

  〈x〉t = −
eE0

mω 2 (cosωt −1) +
〈 p〉t = 0 t

m
+ 〈x〉t = 0  

 
   

 
 
 
 
 
 
 
  
 
 

 
 

   
 
      
 
 
 
 

 

  


