
CHAPTER 6 
 
19. (a) We have 

A|a> = a|a> 
 

It follows that  
   <a|A|a> = a<a|a> = a 
 
if the eigenstate of A corresponding to the eigenvalue a is normalized to unity.  
The complex conjugate of this equation is 
 
  <a|A|a>* = <a|A+|a> = a* 
 
If A+ = A, then it follows that a = a*, so that a is real. 
 
13. We have  
 

〈ψ | (AB)+ |ψ 〉 = 〈(AB)ψ |ψ 〉 = 〈Bψ | A+ |ψ 〉 = 〈ψ | B+A+ |ψ 〉  
 

This is true for every ψ, so that  (AB)+ = B+A+ 
 
2.                

TrAB = 〈n | AB | n〉 = 〈n | A1B | n〉
n
∑

n
∑

= 〈n | A | m〉〈m | B | n〉 =
m
∑

n
∑ 〈m | B | n〉〈n | A | m〉

m
∑

n
∑

= 〈m | B1A | m〉 =
m
∑ 〈m | BA | m〉 =

m
∑ TrBA

 

 
3. We start with the definition of  |n>  as 
 

| n〉 =
1
n!

(A+)n | 0〉  

 
We now take Eq. (6-47) from the text to see that 
 

A | n〉 =
1
n!

A(A+)n | 0〉 =
n
n!

(A+ )n−1 | 0〉 =
n

(n −1)!
(A+ )n −1 | 0〉 = n | n −1〉  

 

4. Let  f (A+) = Cn
n=1

N

∑ (A+)n . We then use Eq. (6-47) to obtain 

 



Af (A+) | 0〉 = A Cn
n=1

N

∑ (A+)n | 0〉 = nCn (A+)n−1

n=1

N

∑ | 0〉

=
d

dA+ Cn
n =1

N

∑ (A+)n | 0〉 =
df (A+)

dA+ | 0〉
 

 
5. We use the fact that Eq. (6-36) leads to  
 

  

x =
h

2mω
(A + A+ )

p = i mωh

2
(A+ − A)

 

 
We can now calculate 
 

  

〈k | x | n〉 =
h

2mω
〈k | A + A+ | n〉 =

h

2mω
n〈k | n −1〉 + k 〈k −1 | n〉( )

= h

2mω
nδk ,n−1 + n +1δ k ,n+1( )

 

 
which shows that k = n ± 1. 
 
6. In exactly the same way we show that  
 

     
  
〈k | p | n〉 = i

mωh

2
〈k | A+ − A | n〉 = i

mωh

2
( n +1δk ,n+1 − nδ k,n −1)  

 
7. Let us now calculate  
 

〈k | px | n〉 = 〈k | p1x | n〉 = 〈k | p | q〉〈q | x | n〉
q
∑  

We may now use the results of problems 5 and 6. We get for the above 
 

  

ih
2

( k
q
∑ δ k −1,q − k +1δk +1,q )( nδq ,n−1 + n +1δ q ,n+1)

=
ih
2

( knδkn − (k +1)nδ k+1,n−1 + k(n +1)δ k −1,n +1 − (k +1)(n +1)δ k+1,n+1)

=
ih
2

(−δ kn − (k +1)(k + 2)δ k +2,n + n(n + 2)δ k,n +2 )

 

 
To calculate 〈k | xp | n〉  we may proceed in exactly the same way. It is also possible to 
abbreviate the calculation by noting that since x and p are hermitian operators, it 
follows that  



  〈k | xp | n〉 = 〈n | px | k〉* 
 
so that the desired quantity is obtained from what we obtained before by 
interchanging  k and n and complex-conjugating. The latter only changes the overall 
sign, so that we get 
 

  
〈k | xp | n〉 = −

ih
2

(−δ kn − (n +1)(n + 2)δ k ,n+ 2 + (k +1)(k + 2)δ k +2,n)  

 
8.The results of problem 7 immediately lead to 
 
    〈k | xp − px | n〉 = ihδkn  
 
9.  This follows immediately from problems 5 and 6.  
 
10. We again use 
 

  

x =
h

2mω
(A + A+ )

p = i mωh

2
(A+ − A)

 

 
to obtain the operator expression for 
 

  
x 2 =

h

2mω
(A + A+)(A + A+) =

h

2mω
(A2 + 2A+ A + (A+)2 +1)

p2 = −
mωh

2
(A+ − A)(A+ − A) = −

mωh

2
(A2 − 2A+A + (A+)2 −1)

 

 
where we have used [A,A+] = 1. 
 
The quadratic terms change the values of the eigenvalue integer by 2, so that they do not 
appear in the desired expressions. We get, very simply 
 

  

  

〈n | x 2 | n〉 =
h

2mω
(2n +1)

〈n | p2 | n〉 =
mωh

2
(2n +1)

 

 
14. Given the results of problem 9, and of 10, we have 

 



  

(Δx)2 =
h

2mω
(2n +1)

(Δp)2 =
hmω

2
(2n +1)

 

 
and therefore  
    

   
  
ΔxΔp = h(n +

1
2

)  

 
15. The eigenstate in  A|α> = α|α> may be written in the form 
 

| α〉 = f (A+) | 0〉  
 

It follows from the result of problem 4 that the eigenvalue equation reads 
 

  Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉 = αf (A+) | 0〉  

 
The solution of   df (x) = α f(x)  is  f(x) = C eαx   so that  
 
   | α〉 = CeαA +

| 0〉  
 
The constant C is determined by the normalization condition <α|α> = 1 
This means that 
 

  

1
C2 = 〈0 | eα *AeαA +

| 0〉 =
(α*)n

n!n =0

∞

∑ 〈0 |
d

dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉

=
| α |2n

n!n =0

∞

∑ 〈0 | eαA +

| 0〉 =
|α |2n

n!n= 0

∞

∑ = e |α |2
 

 
Consequently 
 
   C = e−|α |2 /2  
 
We may now expand the state as follows 
 

  
| α〉 = | n〉〈n |α〉 = | n〉〈0 |

An

n!n
∑

n
∑ CeαA+

| 0〉

= C | n〉
1
n!n

∑ 〈0 |
d

dA+
⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉 = C
α n

n!
| n〉

 

 
The probability that the state |α> contains n quanta is 



 

  Pn =| 〈n | α〉 |2= C2 | α |2n

n!
=

(|α |2 )n

n!
e−|α | 2

 

 
This is known as the Poisson distribution. 
 
Finally 
 
 〈α | N |α〉 = 〈α | A+A | α〉 = α *α =|α |2  
 
13. The equations of motion read 

      

  

dx( t)
dt

=
i
h

[H, x(t)]=
i
h

[
p2(t)
2m

,x(t)] =
p(t)
m

dp( t)
dt

=
i
h

[mgx(t), p(t)] = −mg
 

 
This leads to the equation 
 

  
d2x(t)

dt2 = −g  

 
The general solution is 
 

  x(t) =
1
2

gt2 +
p(0)
m

t + x(0) 

 
14. We have, as always 
 

dx
dt

=
p
m

 

 
Also 
 

  

  

dp
dt

=
i
h

[
1
2

mω2 x2 + eξx, p]

=
i
h

1
2

mω 2x[x, p] +
1
2

mω 2[x, p]x + eξ[x, p]⎛ 
⎝ 

⎞ 
⎠ 

= −mω 2x − eξ

 

 
Differentiating the first equation with respect to t and rearranging leads to 
 

 
d2x
dt2 = −ω 2x −

eξ
m

= −ω2 (x +
eξ

mω 2 )  

 



The solution of this equation is 
 

 

x +
eξ

mω2 = Acosωt + B sinωt

= x(0) +
eξ

mω 2
⎛ 
⎝ 

⎞ 
⎠ cosωt +

p(0)
mω

sinωt
 

 
We can now calculate the commutator  [x(t1),x(t2)], which should vanish  
when t1 = t2. In this calculation it is only the commutator [p(0), x(0)] that  
plays a role. We have 
 

  

[x( t1),x(t2)] = [x(0)cosωt1 +
p(0)
mω

sinωt1,x(0)cosωt2 +
p(0)
mω

sinωt2 ]

= ih
1

mω
(cosωt1 sinωt2 − sinωt1 cosωt2

⎛ 
⎝ 

⎞ 
⎠ =

ih
mω

sinω(t2 − t1)
 

 
 
16. We simplify the algebra by writing  
 

  

mω
2h

= a;
h

2mω
=

1
2a

 

 
Then 
 

  
  

n!
hπ
mω

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

un (x) = vn(x) = ax −
1

2a
d
dx

⎛ 
⎝ 

⎞ 
⎠ 

n

e− a2x 2

 

 
Now with the notation y = ax we get 
 

  

v1(y) = (y −
1
2

d
dy

)e−y 2
= (y + y)e− y 2

= 2ye− y 2

v2(y) = (y −
1
2

d
dy

)(2ye −y 2

) = (2y 2 −1 + 2y2 )e−y 2

= (4 y2 −1)e−y 2

 

 
Next 
 



 

v3(y) = (y −
1
2

d
dy

) (4 y2 −1)e−y 2[ ]
= 4y 3 − y − 4y + y(4 y2 −1)( )e− y 2

= (8y 3 − 6y)e− y 2

 

 

The rest is substitution  
  
y =

mω
2h

x  

 
17. We learned in problem 4 that  
 

Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉  

 
Iteration of this leads to  
 

  An f (A+ ) | 0〉 =
dn f (A+)

dA+ n | 0〉  

 
We use this to get 

eλA f (A+) | 0〉 =
λn

n!n= 0

∞

∑ An f (A+) | 0〉 =
λn

n!n= 0

∞

∑ d
dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

f (A+) | 0〉 = f (A+ + λ ) | 0〉  

 
18. We use the result of problem 16 to write 
 

eλA f (A+)e−λA g(A+) | 0〉 = eλA f (A+)g(A+ − λ) | 0〉 = f (A+ + λ)g(A+) | 0〉  
 
Since this is true for any state of the form g(A+)|0> we have 
 
   eλA f (A+)e−λA = f (A+ + λ ) 
 
In the above we used the first formula in the solution to 16, which depended on the 
fact that  [A,A+] = 1. More generally we have the Baker-Hausdorff form, which we 
derive as follows: 
 Define 
   F(λ) = eλA A+e−λA  
 
Differentiation w.r.t. λ  yields 
 

 
dF(λ)

dλ
= eλA AA+e−λA − eλA A+ Ae−λA = eλA [A,A+ ]e−λA ≡ eλAC1e

−λA  

 
Iteration leads to  



 

  

d2F(λ)
dλ2 = eλA[A,[A,A+ ]]e−λA ≡ eλAC2e

−λA

.......
dnF(λ )

dλn = eλA [A,[A,[A,[A, ....]]..]e−λA ≡ eλACne
−λA

 

 
with A appearing n times in Cn. We may now use a Taylor expansion for 
 

F(λ +σ ) =
σ n

n!n =0

∞

∑ dn F(λ )
dλn =

σ n

n!n =0

∞

∑ eλACne
−λA  

 
If we now set λ = 0 we get 
 

    F(σ ) =
σ n

n!n =0

∞

∑ Cn  

 
which translates into 
 

eσA A+e−σA = A+ + σ[A, A+] +
σ 2

2!
[A,[A, A+]] +

σ 3

3!
[A,[A,[A, A+ ]]] + ... 

 
Note that if [A,A+] = 1 only the first two terms appear, so that 
 
  eσA f (A+)e−σA = f (A+ + σ[A,A+]) = f (A+ + σ ) 
 

19. We follow the procedure outlined in the hint. We define F(λ) by 
 

eλ(aA + bA + ) = eλaA F(λ)  
 
Differentiation w.r.t λ  yields 
 

(aA + bA+ )eλaA F(λ) = aAeλAF (λ ) + eλaA dF(λ )
dλ

 

 
The first terms on each side cancel, and multiplication by e−λaA  on the left yields 
 

  
dF(λ)

dλ
= e−λaA bA+eλaA F(λ ) = bA+ − λab[A,A+ ]F(λ ) 

 
When [A,A+] commutes with A. We can now integrate w.r.t. λ  and after integration  
Set λ = 1. We then get 
 
  F(1) = ebA + − ab[A ,A + ] /2 = ebA +

e−ab / 2 



 
so that 
 
  eaA + bA +

= eaAebA +

e−ab / 2  
 
20. We can use the procedure of problem 17, but a simpler way is to take the hermitian  

conjugate of the result. For a real function f  and λ real, this reads 
 
   e−λA+

f (A)eλA +

= f (A + λ ) 
 

 
Changing λ to -λ yields  
 
   eλA +

f (A)e−λA +

= f (A − λ)  
 
The remaining steps  that lead to 
 
  eaA + bA +

= ebA +

eaA eab /2  
are identical to the ones used in problem 18. 
 

20. For the harmonic oscillator problem we have 
 

  
x =

h

2mω
(A + A+)  

 
This means that eikx  is of the form given in problem 19 with  a = b = ik h / 2mω  
 
This leads to  
 
    eikx = eik h/ 2m ω A +

eik h /2mω Ae− hk 2 / 4mω  
 
Since A|0> = 0 and <0|A+ = 0, we get 
 
     〈0 | eikx | 0〉 = e− hk 2 / 4mω  
 
21. An alternative calculation, given that  u0 (x) = (mω / πh)1/ 4 e−mωx 2 /2h , is 
 

 
  

mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxeikx

−∞

∞

∫ e−mωx 2h =
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxe
−

m ω
h

(x −
ikh

2mω
)2

−∞

∞

∫ e
−

hk 2

4 mω  

 

The integral is a simple gaussian integral and 
 

dy
−∞

∞

∫ e−m ωy 2 / h =
hπ
mω

 which just 

cancels the factor in front. Thus the two results agree. 
 



 
 
 

 
    
 
    
 
 

 
   
 
  
 
   
 
 
  
 
 

 
    

 
 
 
 

 
 

 
 
 
 

 
 

 
 

 
 
 
 


