CHAPTER 6

19. (a) We have
Ala> = ala>

It follows that
<alAla>=a<ala>=a

if the eigenstate of A corresponding to the eigenvalue a is normalized to unity.
The complex conjugate of this equation is

<alAla>* = <a|A’|ja> = a*

If A" = A, then it follows that a = a*, so that a is real.
13. We have

(wI(AB)" [w) =((AB)y |y)=(By |A" |y)=(y|B"A"|y)
This is true for every i, so that (AB)" = B*A"
2.

TrAB =Y (n|AB|n)= > (n|A1B|n)

=;;<n | Al m)m |B|n>=;;<m [BIn)n|A|m)

=Y (m|BlA|m)=) (m|BA|m)=TrBA
3. We start with the definition of |n> as
Imy=——(A")" 0)
“Vnt

We now take Eqg. (6-47) from the text to see that

Al n>=71n—!:°~(:°~+)n 10) =7r:]—!(N)”l 10) =7(;/jL1)!(A+)“ 0)=vn [n-1)

N
4. Let f(A")=).C,(A")".We then use Eq. (6-47) to obtain

n=1



Af (A7) |0)= AZCn(N)" |0y = ZHC?n(N)"‘1 |0)
df (A*)

Zc (A" [0y=——20)

dA+

5. We use the fact that Eq. (6-36) leads to

By A

p= iy T (A"~ A)

We can now calculate

)
<k|x|n>=‘/%}<k|A+A*|n>:‘/m(\/ﬁ<k|n—1>+\/F<k—l|n>)
_ /L i
- Zma)(ﬁé‘k,n—l-i_ I’]—’_:l'b‘k,ml)

which shows thatk =n + 1.

6. In exactly the same way we show that

. [moh N . [moh
kpIn)y=iyf == (k| A —A|n>=n‘/T(\/nH@,m—\/ﬁék,n1)
7. Let us now calculate

(k| px [ny=(k | plx|ny= D> <k |plaxq|x|n)
q

We may now use the results of problems 5 and 6. We get for the above

Z(J_é‘k -1q -V k+ k+1q (ﬁ5q,n—l +¥n +1§q,n+1)

= kg, VKD VKO 7D, 0~ K DO 7D,
S N (DN R GO

To calculate ¢k | xp |n) we may proceed in exactly the same way. It is also possible to
abbreviate the calculation by noting that since x and p are hermitian operators, it
follows that



klxp[n)y={n|px|k)*
so that the desired quantity is obtained from what we obtained before by

interchanging k and n and complex-conjugating. The latter only changes the overall
sign, so that we get

in
KIxpm)= -0 =N +DM +2)5 ., +¥ K +1)(K+2)J,,;,)
8.The results of problem 7 immediately lead to
(k[ xp—px|n)=ing,

9. This follows immediately from problems 5 and 6.

, h
X=4—(A+A"
2ma)( )

.| Mmoh , .
p=iy = (A = A)

10. We again use

to obtain the operator expression for

X% = Znil (A+A") A+ A*):% (A*+2ATA+(AY) +1)
w w

p*= ‘mTwh (A" - A)(A" - A)= —me(AZ—ZNAHA*)Z—l)

where we have used [A,A™] = 1.

The quadratic terms change the values of the eigenvalue integer by 2, so that they do not
appear in the desired expressions. We get, very simply

h
<n|x2|n>:m(2n+l)
<n|p2|n>=m7“m(2n+1)

14. Given the results of problem 9, and of 10, we have



(AX)* = _n (2n +1)
2M@
(apy =22 20 +1)
and therefore
1
AXAp = h(n + 5)
15. The eigenstate in Alo> = ajo> may be written in the form
|a)=f(A")[0)

It follows from the result of problem 4 that the eigenvalue equation reads

df (A%)

A (A7) 0) ==

0) = of (A") |0)

The solution of df (x) = o f(x) is f(x) = C e™ so that
| @)= Ce™ |0)

The constant C is determined by the normalization condition <oo> = 1
This means that

i_ a*Ag ()" (d)" poh
C2—<0|e *10)= Z =0l 3] & 10

) Z |0[ |2n |a|2

n=0
Consequently
C=gll®

We may now expand the state as follows

A" o
lay= D |nXn|a)= Y |nx0 7mce” 10

1 d\" .. "
=C§'”>ﬁ<o|(ﬁj e” I0>=ij|n>

The probability that the state |a> contains n quanta is



o[ 3 ()" olal’
n nl

P.=l(n|a)f=C
This is known as the Poisson distribution.
Finally
(@|N|a)y=(a|A'A|lay=a*a=|al

13. The equations of motion read

ax@® i _ipi® _ @)
0t xo1= 12 o= &
B0 fmgx(9), p(t] = -mo

This leads to the equation

d’x(t)
aw -9

The general solution is

x(t) :%gt2 + %H x(0)
14. We have, as always
x_p
dt m
Also
% :é[% M’ X’ +eéX, p]

=711@mw2x[x,p]+i2lmw2[x,p]x )

=—Ma’X -eé

Differentiating the first equation with respect to t and rearranging leads to

d’x , e& ef

2
—Z =X =—0 (X+—=
- (x+°2)



The solution of this equation is

X + e§2 = Acoswt + Bsinat
mw
= (x(0)+ e )coswt+ p(0 )sma)t
Mw

We can now calculate the commutator [x(t1),x(t2)], which should vanish

when t; = t,. In this calculation it is only the commutator [p(0), x(0)] that
plays a role. We have

[x(tl),x(tz)]z[x(O)coswtl+@sina)tl,x(0)coswtz+ pO)
mao m
(1 . . )

in .
mkmw(coswtlsma)t2 —sma;ticoswtzj = ma)sma)(tz— t)

——=sinat, |

16. We simplify the algebra by writing

o =~ [_h 1
V2rn =& Yome -

Then

1/

‘/_\_) u. (xX)=v,(x) = (ax—zla dd\ e

Now with the notation y = ax we get
1 d 7y2 7y2 7y2
vi(y)= (y—-—)e =(y+y)e” =2ye

V,(y) = (y— )(ZyE‘y) @y’ -1+2y%)e”

— (4y> -’

Next



Ld [,y oy
v =0-3 )@y -ve ]
= (@ -y- 4y +y@ay -Dp”

— By*-6y)e™”

. . ,m
The rest is substitution y = 2—;0x

17. We learned in problem 4 that

o dF(AD)
Iteration of this leads to
- d"f(A")
A"f(AT)|0)= 0
(A7) [0) A |0)
We use this to get
e 1(A)10) = S EA 1A 0= X (-1 (a0 = f(a + 2)]0)
Z < 'nilda*)

18. We use the result of problem 16 to write
JA +\ —AA + A + + + +
e” f(A)e " g(A)[0y=e"f(A)g(A" - 2)[0)= (A" +A)g(A") |0)
Since this is true for any state of the form g(A")|0> we have
e f(A)e ™ = f(A"+ 1)
In the above we used the first formula in the solution to 16, which depended on the
fact that [A,A"] = 1. More generally we have the Baker-Hausdorff form, which we
derive as follows:
Define
F(1) =e™A'e™
Differentiation w.r.t. 4 yields

F
% — elAAA+e—/1A _ e/lAA+Ae—/1A — eZA [A’A+]e—ﬂA = e/lACle—ﬂA

Iteration leads to



d’ F(/I)
dA?

d"F(4)
da"

/1A[A [A A ]] —A _elACZe—lA

= e*[A[A[A[A,...]]. ] = eC e

with A appearing n times in C,. We may now use a Taylor expansion for

2 " dF(/l) 20 A
F(A+o)= 2 = = e Cee

n

If we now set 4 =0 we get

o0

Fl@)=Y=C,

which translates into

2 3

e”Ae T = A +0[AA]+ [A[AA]]+ T [ATATA AT .

Note that if [A,A"] = 1 only the first two terms appear, so that
e f(AN)e ™ = f(A"+o[AA]) = (A" +0)
19. We follow the procedure outlined in the hint. We define F(1) by

Differentiation w.r.t 4 yields

(@A +bA")e™ F(1) = aAe™F (1) + em%
The first terms on each side cancel, and multiplication by e *** on the left yields

dF(4)

- —e™bAe™F(1)=bA" - 1ab[A A" ]F (1)

When [A,A"] commutes with A. We can now integrate w.r.t. A and after integration
Set 4 =1. We then get

F(l)z ebA*—ab[A,A*]/Z — ebA+e7ab/2



so that

aA+bA* aA bA* -ab/2
e =€ € €

20. We can use the procedure of problem 17, but a simpler way is to take the hermitian
conjugate of the result. For a real function f and A real, this reads

e™ f(Ae® = f(A+2)

Changing A to -1 yields
e™ f(A)e™ =f(A-2)

The remaining steps that lead to

aA+bA* bA* JaA _ab/2
e =€ € €

are identical to the ones used in problem 18.

20. For the harmonic oscillator problem we have

/ 7]
=4s—(A+A"
X 2ma)( +A)

This means that e is of the form given in problem 19 with a= b= ikvz /2me

This leads to

ikx ikd n/2m wA* _ikdn2moA —ik?/4mo
e =€ € e

Since A|0> =0 and <0JA" = 0, we get
<0 |eikx |O> _ e—hk2/4mw

21. An alternative calculation, given that u,(x) = (ma/ 27)"*e ™" is

mo ik k.
K h I dx e|kx ~-max®h (mh) .[ dx e_ h T me)ze 4dma
7l 7l

The integral is a simple gaussian integral and E dye ™" = ‘/% which just

cancels the factor in front. Thus the two results agree.






