
CHAPTER 7 
 
1. (a) The system under consideration has rotational degrees of freedom, allowing it to 

rotate about two orthogonal axes perpendicular to the rigid rod connecting the two 
masses. If we define the z axis as represented by the rod, then the Hamiltonian has the 
form 

 

H =
Lx

2 + Ly
2

2I
=

L2 − Lz
2

2I
 

 
where I is the moment of inertia of the dumbbell. 
 
(b) Since there are no rotations about the z axis, the eigenvalue of Lz is zero, so that the 
eigenvalues of the Hamiltonian are 
 

   
  
E =

h2l(l +1)
2I

 

 
with   l = 0,1,2,3,… 
 
(c) To get the energy spectrum we need an expression for the moment of inertia. We use 
the fact that  
 
    I = Mred a2  
 
where the reduced mass is given by 
 

  Mred =
MC MN

MC + MN
=

12 ×14
26

Mnucleon = 6.46Mnucleon  

 
 
If we express the separation a in Angstroms, we get 
 
 I = 6.46 × (1.67 ×10−27kg)(10−10m / A)2aA

2 =1.08 ×10−46aA
2  

 
The energy difference between the ground state and the first excited state is   2h2 / 2I  
which leads to the numerical result 
 

 ΔE =
(1.05 ×10−34 J.s)2

1.08 ×10−46aA
2kg.m 2 ×

1
(1.6 ×10−19 J / eV )

=
6.4 ×10−4

aA
2 eV   

 

2. We use the connection  
x
r

= sinθ cosφ;
y
r

= sinθ sinφ;
z
r

= cosθ   to write 



Y1,1 = −
3

8π
eiφ sinθ = −

3
8π

(
x + iy

r
)

Y1,0 =
3

4π
cosθ =

3
4π

(
z
r
)

Y1,−1 = (−1)Y1,1
* =

3
8π

e−iφ sinθ =
3

8π
(
x − iy

r
)

 

 
Next we have 
 

Y2,2 =
15

32π
e2iφ sin2 θ =

15
32π

(cos2φ + i sin2φ)sin2 θ

=
15

32π
(cos2 φ − sin2 φ + 2isinφ cosφ)sin2 θ

=
15

32π
x2 − y2 + 2ixy

r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 

Y2,1 = −
15
8π

eiφ sinθ cosθ = −
15
8π

(x + iy)z
r2  

and 
 

Y2,0 =
5

16π
(3cos2 θ −1) =

5
16π

2z2 − x2 − y2

r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
We may use Eq. (7-46) to obtain the form for Y2,−1 and Y2,−2. 

3. We use L± = Lx ± iLy to calculate Lx =
1
2

(L+ + L− ); Ly =
i
2

(L− − L+) . We may now 

proceed 
 

〈l,m1 | Lx | l,m2 〉 =
1
2

〈l,m1 | L+ | l,m2 〉 +
1
2

〈l,m1 | L− | l,m2〉

〈l,m1 | Ly | l,m2 〉 =
i
2

〈l,m1 | L− | l,m2 〉 −
i
2

〈l,m1 | L+ | l,m2 〉
 

 
and on the r.h.s. we insert 
 

  

〈l,m1 | L+ | l,m2〉 = h (l − m2)( l + m2 +1)δm1 ,m2 +1

〈l,m1 | L− | l,m2〉 = h (l + m2 )(l − m2 +1)δm1 ,m2 −1

 

 

4. Again we use Lx =
1
2

(L+ + L−); Ly =
i
2

(L− − L+)  to work out 



 

  

  

Lx
2 =

1
4

(L+ + L−)(L+ + L−) =

=
1
4

(L+
2 + L−

2 + L2 − Lz
2 + hLz + L2 − Lz

2 − hLz )

=
1
4

L+
2 +

1
4

L−
2 +

1
2

L2 −
1
2

Lz
2

 

We calculate 

 

  

〈l,m1 | L+
2 | l,m2〉 = h (l − m2)(l + m2 +1)〈l,m1 | L+ | l,m2 +1〉

= h2 (l − m2 )(l + m2 +1)(l − m2 −1)(l + m2 + 2( )1/2δm1,m 2 +2
 

 

and 

 

〈l,m1 | L−
2 | l,m2〉 = 〈l,m2 | L+

2 | l,m1〉 * 

 

which is easily obtained from the preceding result by interchanging m1 and m2. 

 

The remaining two terms yield 

 

  
  

1
2

〈l,m1 | (L2 − Lz
2) | l,m2〉 =

h2

2
(l(l +1) − m2

2 )δm1,m 2
 

 

The remaining calculation is simple, since 

 

〈l,m1 | Ly
2 | l,m2 〉 = 〈l,m1 | L2 − Lz

2 − Lx
2 | l,m2 〉  

 

5. The Hamiltonian may be written as 

 



    
H =

L2 − Lz
2

2I1
+

Lz
2

2I3  

whose eigenvalues are 

 

   

  

h2 l(l +1)
2I1

+ m2 1
2I3

−
1
2I1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

where –l ≤ m ≤ l. 

(b) The plot is given on the right. 

(c) The spectrum in the limit that I1 >> I3  is just
 
E =

h2

2I3
m 2 ,  

with m = 0,1,2,…l. The m = 0 eigenvalue is nondegenerate,  while the other ones are 

doubly degenerate (corresponding to the negative values of m). 

 

6. We will use the lowering operator  
 
L− = he−iφ (−

∂
∂θ

+ icotθ
∂
∂φ

) acting on Y44. Since 

we are not interested in the normalization, we will not carry the  h  factor.  

Y43 ∝ e−iφ (−
∂
∂θ

+ i cotθ
∂

∂φ
) e4iφ sin4 θ[ ]

= e3iφ −4 sin3 θ cosθ − 4 cotθ sin4 θ{ }= −8e3iφ sin3 θ cosθ
 

Y42 ∝ e−iφ (−
∂

∂θ
+ i cotθ

∂
∂φ

) e3iφ sin3 θ cosθ[ ]
= e2iφ −3sin2 θ cos2 θ + sin4 θ − 3sin2 θ cos2 θ{ }=

= e2iφ −6sin2 θ + 7sin4 θ{ }

 

  

Y41 ∝ e−iφ (−
∂

∂θ
+ icotθ

∂
∂φ

) e2iφ (−6sin2 θ + 7sin4 θ[ ]
= eiφ 12sinθ cosθ − 28sin3 θ cosθ − 2 −6sinθ cosθ + 7sin3 θ cosθ( ){ }
= eiφ 24sinθ cosθ − 42sin3 cosθ{ }

 

 



Y40 ∝ e−iφ (−
∂

∂θ
+ i cotθ

∂
∂φ

) eiφ (4sinθ − 7sin3 θ)cosθ[ ]
= (−4cosθ + 21sin2 θ cosθ)cosθ + (4 sin2 θ − 7sin4 θ) − (4 cos2 θ − 7sin2 θ cos2 θ{ }

= −8 + 40sin2 θ − 35sin4 θ{ }

  

 

7. Consider the H given. The angular momentum eigenstates  | l,m〉  are eigenstates of the 

Hamiltonian, and the eigenvalues are 

   

   
  
E =

h2l(l +1)
2I

+αhm  

 

with    −l ≤ m ≤ l . Thus for every value of  l  there will be (2  l +1) states, no longer 

degenerate. 

8. We calculate  

  

[x,Lx ] = [x, ypz − zpy] = 0
[y,Lx ] = [y, ypz − zpy] = z[py, y] = −ihz

[z,Lx] = [z, ypz − zpy] = −y[ pz,z] = ihy
[x,Ly ] = [x,zpx − xpz ] = −z[px ,x] = ihz

[y,Ly ] = [y,zpx − xpz ] = 0
[z,Ly] = [z,zpx − xpz ] = x[ pz,z] = −ihx

 

 

The pattern is cyclical  (x ,y)  i  hz  and so on, so that we expect (and can check) that 

   

  

[x,Lz ] = −ihy
[y,Lz ] = ihx
[z,Lz ] = 0

   

9. We again expect a cyclical pattern. Let us start with 

  [px,Ly ] = [px,zpx − xpz ] = −[px, x]pz = ihpz  

and the rest follows automatically. 

 

10. (a)  The eigenvalues of Lz are known to be 2,1,0,-1,-2 in units of  h . 

(b) We may write 



(3 / 5)Lx − (4 / 5)Ly = n•L  

where n is a unit vector, since nx
2 + ny

2 = (3 / 5)2 + (−4 / 5)2 = 1. However, we may well 

have chosen the n direction as our selected z direction, and the eigenvalues for this are 

again 2,1,0,-1,-2. 

(c) We may write 

   
2Lx − 6Ly + 3Lz = 22 + 62 + 32 2

7
Lx −

6
7

Ly + 3Lz
⎛ 
⎝ 

⎞ 
⎠ 

= 7n•L
 

Where n is yet another unit vector. By the same argument we can immediately state that 

the eigenvalues are 7m i.e. 14,7,0,-7,-14. 

 

11. For our purposes, the only part that is relevant is 
 

 

xy + yz + zx
r 2 = sin2 θ sinφ cosφ + (sinφ + cosφ)sinθ cosθ

=
1
2

sin2 θ
e2iφ − e−2iφ

2i
+ sinθ cosθ

eiφ − e− iφ

2i
+

eiφ + e− iφ

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Comparison with the table of Spherical Harmonics shows that all of these involve 
combinations of   l = 2 functions. We can therefore immediately conclude that the 
probability of finding   l = 0 is zero, and the probability of finding  6h2  iz one, since this 
value corresponds to   l = 2.A look at the table shows that 
 

e2iφ sin2 θ =
32π
15

Y2,2; e−2iφ sin2 θ =
32π
15

Y2,−2

eiφ sinθ cosθ = − 8π
15

Y2,1; e− iφ sinθ cosθ = 8π
15

Y2,−1

 

 
Thus 
 
xy + yz + zx

r 2 =
1
2

sin2 θ
e2iφ − e−2iφ

2i
+ sinθ cosθ

eiφ − e−iφ

2i
+

eiφ + e− iφ

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

=
1
4i

32π
15

Y2,2 −
1
4 i

32π
15

Y2,−2 −
−i +1

2
8π
15

Y2,1 +
i +1
2

8π
15

Y2,−1

 

 
This is not normalized. The sum of the squares of the coefficients is 



2π
15

+
2π
15

+
4π
15

+
4π
15

=
12π
15

=
4π
5

, so that for normalization purposes we must multiply 

by 
5

4π
. Thus the probability of finding m = 2 is the same as getting m = -2, and it is  

 

   P±2 =
5

4π
2π
15

=
1
6

 

 
Similarly P1 = P-1 , and since all the probabilities have add up to 1, 
 

    P±1 =
1
3

 

 
12.Since the particles are identical, the wave function eimφ  must be unchanged under the 
rotation φ  φ + 2π/N. This means that m(2π/N ) = 2nπ, so that m = nN, with n = 
0,±1,±2,±3,… 
The energy is 

   
  
E =

h2m2

2MR2 =
h2N 2

2MR2 n2  

 
The gap between the ground state (n = 0) and the first excited state (n =1) is 
 

   
  
ΔE =

h2N 2

2MR2 → ∞ as N → ∞  

 
If the cylinder is nicked, then there is no such symmetry and m = 0,±1,±23,…and 
 

    
  
ΔE =

h2

2MR2  

 
  
 
 
 
 
 

   

 

 

 

 

 



 
 
 

 
 
   
 
 
 

 
 


