CHAPTER 8

1. The solutions are of the form $\psi_{n_1 n_2 n_3}(x, y, z) = u_{n_1}(x) u_{n_2}(y) u_{n_3}(z)$

where
$$u_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$
, and so on. The eigenvalues are

$$E = E_{n_1} + E_{n_2} + E_{n_3} = \frac{\hbar^2 \pi^2}{2ma^2} (n_1^2 + n_2^2 + n_3^2)$$

2. (a) The lowest energy state corresponds to the lowest values of the integers $\{n_1, n_2, n_3\}$, that is, $\{1,1,1\}$ Thus

$$E_{ground} = \frac{\hbar^2 \pi^2}{2ma^2} \times 3$$

In units of
$$\frac{\hbar^2 \pi^2}{2ma^2}$$
 the energies are

- $\{1,1,1\} \rightarrow 3$ nondegenerate)
- $\{1,1,2\},(1,2,1\},(2,1,1) \rightarrow 6$ (triple degeneracy)
- $\{1,2,2\},\{2,1,2\},\{2,2,1\} \rightarrow 9$ (triple degeneracy)
- $\{3,1,1\},\{1,3,1\},\{1,1,3\} \rightarrow 11$ (triple degeneracy)
- $\{2,2,2\} \rightarrow 12$ (nondegenrate)
- $\{1,2,3\},\{1,3,2\},\{2,1,3\},\{2,3,1\},\{3,1,2\},\{3,2,1\} \rightarrow 14$ (6-fold degenerate)
- $\{2,2,3\},\{2,3,2\},\{3,2,2\} \rightarrow 17$ (triple degenerate)
- $\{1,1,4\},\{1,4,1\},\{4,1,1\} \rightarrow 18$ (triple degenerate)
- $\{1,3,3\},\{3,1,3\},\{3,3,1\} \rightarrow 19$ (triple degenerate)
- $\{1,2,4\},\{1,4,2\},\{2,1,4\},\{2,4,1\},\{4,1,2\},\{4,2,1\} \rightarrow 21 \text{ (6-fold degenerate)}$
- **3.** The problem breaks up into three separate, here identical systems. We know that the energy for a one-dimensional oscillator takes the values $\hbar\omega(n+1/2)$, so that here the energy eigenvalues are

$$E = \hbar \omega (n_1 + n_2 + n_3 + 3/2)$$

The ground state energy correspons to the *n* values all zero. It is $\frac{3}{2}\hbar\omega$.

4. The energy eigenvalues in terms of $\hbar\omega$ with the corresponding integers are

(0,0,0)	3/2	degeneracy 1
(0,0,1) etc	5/2	3
(0,1,1) (0,0,2) etc	7/2	6
(1,1,1),(0,0,3),(0,1,2) etc	9/2	10
(1,1,2),(0,0,4),(0,2,2),(0,1,3)	11/2	15
(0,0,5),(0,1,4),(0,2,3)(1,2,2)		
(1,1,3)	13/2	21

5. It follows from the relations $x = \rho \cos \phi, y = \rho \sin \phi$ that

$$dx = d\rho\cos\phi - \rho\sin\phi\mathrm{d}\phi$$
; $dy = d\rho\sin\phi + \rho\cos\phi\mathrm{d}\phi$

Solving this we get

 $d\rho = \cos\phi dx + \sin\phi dy; \rho d\phi = -\sin\phi dx + \cos\phi dy$ so that

$$\frac{\partial}{\partial x} = \frac{\partial \rho}{\partial x} \frac{\partial}{\partial \rho} + \frac{\partial \phi}{\partial \rho} \frac{\partial}{\partial \phi} = \cos \phi \frac{\partial}{\partial \rho} - \frac{\sin \phi}{\rho} \frac{\partial}{\partial \phi}$$

and

$$\frac{\partial}{\partial y} = \frac{\partial \rho}{\partial y} \frac{\partial}{\partial \rho} + \frac{\partial \phi}{\partial y} \frac{\partial}{\partial \phi} = \sin \phi \frac{\partial}{\partial \rho} + \frac{\cos \phi}{\rho} \frac{\partial}{\partial \phi}$$

We now need to work out

$$\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} =$$

$$(\cos\phi \frac{\partial}{\partial \rho} - \frac{\sin\phi}{\rho} \frac{\partial}{\partial \phi})(\cos\phi \frac{\partial}{\partial \rho} - \frac{\sin\phi}{\rho} \frac{\partial}{\partial \phi}) + (\sin\phi \frac{\partial}{\partial \rho} + \frac{\cos\phi}{\rho} \frac{\partial}{\partial \phi})(\sin\phi \frac{\partial}{\partial \rho} + \frac{\cos\phi}{\rho} \frac{\partial}{\partial \phi})$$

A little algebra leads to the r.h.s. equal to

$$\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}$$

The time-independent Schrodinger equation now reads

$$-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}\Psi(\rho,\phi)}{\partial\rho^{2}} + \frac{1}{\rho^{2}}\frac{\partial^{2}\Psi(\rho,\phi)}{\partial\phi^{2}}\right) + V(\rho)\Psi(\rho,\phi) = E\Psi(\rho,\phi)$$

The substitution of $\Psi(\rho,\phi) = R(\rho)\Phi(\phi)$ leads to two separate ordinary differential equations. The equation for $\Phi(\phi)$, when supplemented by the condition that the solution is unchanged when $\phi \rightarrow \phi + 2\pi$ leads to

$$\Phi(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$
 $m = 0, \pm 1, \pm 2, ...$

and the radial equation is then

$$\frac{d^2R(\rho)}{d\rho^2} - \frac{m^2}{\rho^2}R(\rho) + \frac{2mE}{\hbar^2}R(\rho) = \frac{2mV(\rho)}{\hbar^2}R(\rho)$$

6. The relation between energy difference and wavelength is

$$2\pi\hbar\frac{c}{\lambda} = \frac{1}{2}m_{red}c^2\alpha^2\left(1 - \frac{1}{4}\right)$$

so that

$$\lambda = \frac{16\pi}{3} \frac{\hbar}{m_e c \alpha^2} \left(1 + \frac{m_e}{M} \right)$$

where M is the mass of the second particle, bound to the electron. We need to evaluate this for the three cases: $M = m_P$; $M = 2m_p$ and $M = m_e$. The numbers are

$$\lambda(in \ m) = 1215.0226 \times 10^{-10} (1 + \frac{m_e}{M})$$
= 1215.68 for hydrogen
= 1215.35 for deuterium
= 2430.45 for positronium

7. The ground state wave function of the electron in tritium (Z = 1) is

$$\psi_{100}(\mathbf{r}) = \frac{2}{\sqrt{4\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

This is to be expanded in a complete set of eigenstates of the Z=2 hydrogenlike atom, and the probability that an energy measurement will yield the ground state energy of the Z=2 atom is the square of the scalar product

$$\int d^3 r \frac{2}{\sqrt{4\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0} \frac{2}{\sqrt{4\pi}} 2 \left(\frac{2}{a_0}\right)^{3/2} e^{-2r/a_0}$$
$$= \frac{8\sqrt{2}}{a_0^3} \int_0^\infty r^2 dr e^{-3r/a_0} = \frac{8\sqrt{2}}{a_0^3} \left(\frac{a_0}{3}\right)^3 2! = \frac{16\sqrt{2}}{27}$$

Thus the probability is $P = \frac{512}{729}$

8. The equation reads

$$-\nabla^{2}\psi + \left(-\frac{E^{2} - m^{2}c^{4}}{\hbar^{2}c^{2}} - \frac{2Z\alpha E}{\hbar c} \frac{1}{r} - \frac{(Z\alpha)^{2}}{r^{2}}\right)\psi(\mathbf{r}) = 0$$

Compare this with the hydrogenlike atom case

$$-\nabla^2 \psi(\mathbf{r}) + \left(\frac{2mE_B}{\hbar^2} - \frac{2mZe^2}{4\pi\varepsilon_0\hbar^2} \frac{1}{r}\right) \psi(\mathbf{r}) = 0$$

and recall that

$$-\nabla^2 = -\frac{d^2}{dr^2} - \frac{2}{r} \frac{d}{dr} + \frac{\ell(\ell+1)}{r^2}$$

We may thus make a translation

$$E^{2} - m^{2}c^{4} \rightarrow -2mc^{2}E_{B}$$

$$-\frac{2Z\alpha E}{\hbar c} \rightarrow -\frac{2mZe^{2}}{4\pi\varepsilon_{0}\hbar^{2}}$$

$$\ell(\ell+1) - Z^{2}\alpha^{2} \rightarrow \ell(\ell+1)$$

Thus in the expression for the hydrogenlike atom energy eigenvalue

$$2mE_B = -\frac{m^2Z^2e^2}{4\pi\varepsilon_0\hbar^2} \frac{1}{(n_e + \ell + 1)^2}$$

we replace ℓ by ℓ^* , where $\ell^*(\ell^*+1) = \ell(\ell+1) - (Z\alpha)^2$, that is,

$$\ell^* = -\frac{1}{2} + \left[\left(\ell + \frac{1}{2} \right)^2 - (Z\alpha)^2 \right]^{1/2}$$

We also replace $\frac{mZe^2}{4\pi\varepsilon_0\hbar}$ by $\frac{Z\alpha E}{c}$ and $2mE_B$ by $-\frac{E^2-m^2c^4}{c^2}$

We thus get

$$E^{2} = m^{2}c^{4} \left[1 + \frac{Z^{2}\alpha^{2}}{(n_{r} + \ell * + 1)^{2}} \right]^{-1}$$

For $(Z\alpha) \ll 1$ this leads to

$$E - mc^{2} = -\frac{1}{2}mc^{2}(Z\alpha)^{2}\frac{1}{(n_{r} + \ell * + 1)^{2}}$$

This differs from the nonrelativisric result only through the replacement of ℓ by ℓ^* .

9. We use the fact that

$$\langle T \rangle_{nl} - \frac{Ze^2}{4\pi\varepsilon_0} \langle \frac{1}{r} \rangle_{nl} = E_{nl} = -\frac{mc^2(Z\alpha)^2}{2n^2}$$

Since

$$\frac{Ze^2}{4\pi\varepsilon_0} \langle \frac{1}{r} \rangle_{nl} = \frac{Ze^2}{4\pi\varepsilon_0} \frac{Z}{a_0 n^2} = \frac{Ze^2}{4\pi\varepsilon_0} \frac{2mc\alpha}{\hbar n^2} = \frac{mc^2 Z^2 \alpha^2}{n^2}$$

we get

$$\langle T \rangle_{nl} = \frac{mc^2 Z^2 \alpha^2}{2n^2} = \frac{1}{2} \langle V(r) \rangle_{nl}$$

10. The expectation value of the energy is

$$\langle E \rangle = \left(\frac{4}{6}\right)^2 E_1 + \left(\frac{3}{6}\right)^2 E_2 + \left(-\frac{1}{6}\right)^2 E_2 + \left(\frac{\sqrt{10}}{6}\right)^2 E_2$$
$$= -\frac{mc^2 \alpha^2}{2} \left[\frac{16}{36} + \frac{20}{36} \frac{1}{2^2}\right] = -\frac{mc^2 \alpha^2}{2} \frac{21}{36}$$

Similarly

$$\langle \mathbf{L}^2 \rangle = \hbar^2 \left[\frac{16}{36} \times 0 + \frac{20}{36} \times 2 \right] = \frac{40}{36} \hbar^2$$

Finally

$$\langle L_z \rangle = \hbar \left[\frac{16}{36} \times 0 + \frac{9}{36} \times 1 + \frac{1}{36} \times 0 + \frac{10}{36} \times (-1) \right]$$

= $-\frac{1}{36} \hbar$

11. We change notation from α to β to avoid confusion with the fine-structure constant that appears in the hydrogen atom wave function. The probability is the square of the integral

$$\int d^3r \left(\frac{\beta}{\sqrt{\pi}}\right)^{3/2} e^{-\beta^2 r^2/2} \frac{2}{\sqrt{4\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$$

$$= \frac{4}{\pi^{1/4}} \left(\frac{Z\beta}{a_0}\right)^{3/2} \int_0^\infty r^2 dr e^{-\beta^2 r^2/2} e^{-Zr/a_0}$$

$$= \frac{4}{\pi^{1/4}} \left(\frac{Z\beta}{a_0}\right)^{3/2} \left(-2\frac{d}{d\beta^2}\right) \int_0^\infty dr e^{-\beta^2 r^2/2} e^{-Zr/a_0}$$

The integral cannot be done in closed form, but it can be discussed for large and small $a_0\beta$.

12. It follows from
$$\langle \frac{d}{dt}(\mathbf{p} \bullet \mathbf{r}) \rangle = 0$$
 that $\langle [H, \mathbf{p} \bullet \mathbf{r}] \rangle = 0$

Now

$$\left[\frac{1}{2m}p_{i}p_{i}+V(r),x_{j}p_{j}\right]=\frac{1}{m}(-i\hbar)p^{2}+i\hbar x_{j}\frac{\partial V}{\partial x_{j}}=-i\hbar\left(\frac{p^{2}}{m}-\mathbf{r}\bullet\nabla\mathbf{V}(\mathbf{r})\right)$$

As a consequence

$$\langle \frac{\mathbf{p}^2}{m} \rangle = \langle \mathbf{r} \bullet \nabla \mathbf{V}(r) \rangle$$

If

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

then

$$\langle \mathbf{r} \bullet \nabla V(r) \rangle = \langle \frac{Ze^2}{4\pi\varepsilon_0 r} \rangle$$

so that

$$\langle T \rangle = \frac{1}{2} \langle \frac{Ze^2}{4\pi\varepsilon_0 r} \rangle = -\frac{1}{2} V(r) \rangle$$

13. The radial equation is

$$\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)R(r) + \frac{2m}{\hbar^2}\left(E - \frac{1}{2}m\omega^2r^2 - \frac{l(l+1)\hbar^2}{2mr^2}\right)R(r) = 0$$

With a change of variables to $\rho = \sqrt{\frac{m\omega}{\hbar}}r$ and with $E = \lambda\hbar\omega/2$ this becomes

$$\left(\frac{d^2}{d\rho^2} + \frac{2}{\rho}\frac{d}{d\rho}\right)R(\rho) + \left(\lambda - \rho^2 - \frac{l(l+1)}{\rho^2}\right)R(\rho) = 0$$

We can easily check that the large ρ behavior is $e^{-\rho^2/2}$ and the small ρ behavior is ρ^l . The function $H(\rho)$ defined by

$$R(\rho) = \rho^l e^{-\rho^2/2} H(\rho)$$

obeys the equation

$$\frac{d^2H(\rho)}{d\rho^2} + 2\left(\frac{l+1}{\rho} - \rho\right)\frac{dH(\rho)}{d\rho} + (\lambda - 3 - 2l)H(\rho) = 0$$

Another change of variables to $y = \rho^2$ yields

$$\frac{d^{2}H(y)}{dy^{2}} + \left(\frac{l+3/2}{y} - 1\right)\frac{dH(y)}{dy} + \frac{\lambda - 2l - 3}{4y}H(y) = 0$$

This is the same as Eq. (8-27), if we make the replacement

$$2l \rightarrow 2l + 3/2$$

$$\lambda - 1 \rightarrow \frac{\lambda - 2l - 3}{4}$$

This leads to the result that

$$\lambda = 4n_r + 2l + 3$$

or, equivalently

$$E = \hbar \omega (2n_r + l + 3/2)$$

While the solution is $L_a^{(b)}(y)$ with $a = n_r$ and b = (2l + 3)/4