CHAPTER 8

1. The solutions are of the form v, . (x,3,2) = u, (x)u, (y)u,, (z)

2 . nnx .
where u, (x) = J: sin— ,and so on. The eigenvalues are
a a
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E=E +E, +E, = S (n +n, +ny)

2. (a) The lowest energy state corresponds to the lowest values of the integers
{ni,nz,n3}, thatis, {1,1,1)Thus

nn’
ground = m x 3
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In units of ——— the energies are
2ma
{111} >3 nondegenerate)

{1,1,2},(1,2,1},(2,1,1} - 6 (triple degeneracy)
{1,2,2}{2,1,2}{2,2,1}> 9 (triple degeneracy)
{3,1,1},{1,3,1},{1,1,3}> 11 (triple degeneracy)

{2,2,2}> 12 (nondegenrate)
{1,2,3}{1,3,2}{2,1,3},{2,3,1}.{3,1,2} {3,2,1}~> 14 (6-fold degenerate)
{2,2,3},{2,3,2},{3,2,2}>17 (triple degenerate)
{1,1,4}{1,4,1}{4,1,1}>18 (triple degenerate)
{1,3,3},{3,1,3},{3,3,1}> 19 (triple degenerate)
{1,2,4}{1,4,2}{2,1,4}{2,4,1} {4,1,2} {4,2,1}>21 (6-fold degenerate)

3. The problem breaks up into three separate, here identical systems. We know that the
energy for a one-dimensional oscillator takes the values 7ia(n +1/2), so that here the
energy eigenvalues are

E=hom, +n,+n,+3/2)

.3
The ground state energy correspons to the » values all zero. It is > ho.

4. The energy eigenvalues in terms of Zwwith the corresponding integers are

(0,0,0) 32 degeneracy 1
(0,0,1) etc 5/2 3
(0,1,1) (0,0,2) etc 712 6
(1,1,1),(0,0,3),(0,1,2) etc 9/2 10
(1,1,2),(0,0,4),(0,2,2),(0,1,3) 11/2 15

(0,0,5),(0,1,4),(0,2,3)(1,2,2)
(1,1,3) 13/2 21



(0,0,6),(0,1,5),(0,2,4),(0,3,3)

(1,1,4),(1,2,3),(2,2,2), 15/2 28
(0,0,7),(0,1,6),(0,2,5),(0,3,4)
(1,1,5),(1,2,4),(1,3,3),(2,2,3)  17/2 36

(0,0,8),(0,1,7),(0,2,6),(0,3,5)
(0,4,4),(1,1,6),(1,2,5),(1,3,4)
(2,2,4),(2,3,3) 19/2 45
(0,0,9),(0,1,8),(0,2,7),(0,3,6)
(0,4,5)(1,1,7),(1,2,6),(1,3,5)
(1,4,4),(2,.25) (2,3,4),(3,33)  21/2 55

5. It follows from the relations x = pcos¢,y = psin ¢ that
dx = dpcos¢— psingdg; dy =dpsing + pcosgd g
Solving this we get

dp = cosgdx + sin ¢dy; pd¢ = —singdx + coSgdy
so that

0 _%p0 20 _ .0 singd
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0 _p0 200 .0 00540
o " vop oy os Mt T, 54
We now need to work out
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The time-independent Schrodinger equation now reads

(a ¥(od) 1 V()
2m

6p pZ a¢2 j + V(p)\P(p1¢) = ElP(p’ ¢)
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The substitution of ¥ (p,¢) = R(p)®P(¢) leads to two separate ordinary differential
equations. The equation for ®(¢), when supplemented by the condition that the solution
is unchanged when ¢ > ¢+ 2z leads to

1
D(g) = 72—4””’ m=0,+1+2,...
7T
and the radial equation is then

dR(p) m’

_2mV(p)
0 R( P + (p) = R(p)

hZ
6. The relation between energy difference and wavelength is

1 1
27hs == m,,,C 20(2(1 Z)

so that

167 *h (1 m,)

iz?mec z 5 M)

where M is the mass of the second particle, bound to the electron. We need to evaluate
this for the three cases: M = mp; M =2my and M = me. The numbers are

Min m)=1215.0226x10"°(1 +%)

=1215.68  for hydrogen
=1215.35 for deuterium
= 2430.45 for positronium

7. The ground state wave function of the electron in tritium (Z =1) is

» 1 3/2 .
l//loo(r)=m -] e
0

This is to be expanded in a complete set of eigenstates of the Z = 2 hydrogenlike atom,
and the probability that an energy measurement will yield the ground state energy of the
Z = 2 atom is the square of the scalar product
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Thus the probability is P = 229
8. The equation reads
E’—m’c" 2ZaE1l (Za)’
Ve T LD, m=0

e he r r?
Compare this with the hydrogenlike atom case

) 2mE,, 2mzezgj _
v l//(r)-’_[ n? Are i’ r w(r)=0

and recall that

& 2d ()
dr*  rdr 7

We may thus make a translation

E*-m%* - -2mc’E,
_ZZaE_»_ZmZé

hc A7g,h?
((0+1) - Z2a® = (0 +1)

Thus in the expression for the hydrogenlike atom energy eigenvalue

m?z%e? 1

Ameh? (n, + 0 +1)°

2mE, =
we replace ¢ by ¢*, where ¢*((*+1)= ((¢ +1) - (Za)’, that is,

€*=—% +{(€+%} —(Za)ZT

mZe® ZoF E*—m’c
We also replace b and 2mE, by - ————
P Are,h ¥ = My DY c?




We thus get

A B
E2 — 2 4 l
m‘j{'kmr+£*+nz}
For (Za) << 1 this leads to
1

1
E —mc*=—-=mc*(Za)*

2 (n, +0*+1)?

This differs from the nonrelativisric result only through the replacement of /by /*.

9. We use the fact that

ze 1 me’(Za)*
T, —— =F =——F
< >nl 47[80 <r>nl nl 2”2
Since
Ze® <1> 3 zé 7 3 Ze® 2mca_m02220(2
brey ' r'" brg, an®  Adme, hn® n?
we get
252 2
meZ°a 1
(1), = .7 =3 Q)

10. The expectation value of the energy is

(E)= (%) E + (g} E,+ (—?13) E,+ [@] E,

~ mela? 21
2 36

o162 1]
2 36 3622

Similarly

2y 42| 16 @}_4_02
(L)-h{36x0+36x2 =25

Finally
(L.)= h[E X O+£ ><1+i X O+E X (—1)}
36 36 36 36
1
=——"

36



11. We change notation from « to £ to avoid confusion with the fine-structure constant
that appears in the hydrogen atom wave function. The probability is the square of the
integral
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The integral cannot be done in closed form, but it can be discussed for large and small

apf.

12. It follows from (% (per))=0 that (H,per])=0

Now
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As a consequence
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13. The radial equation is



2 2
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(d_ _,__in(,,)_,__m(E __ma,Z,,Z_M)R(,,): 0
rdr 2 2mr

With a change of variables to p= ‘,m?a)r and with E = 2w /2 this becomes

& 2d D)
(dpﬁpdp)R(p)Jr(ﬂ P jR(p)—O

—p?12

We can easily check that the large o behavior is e and the small p behavior is /.

The function H(p) defined by

R(p)= ple” "H(p)

obeys the equation

d2H(p) 2(1+1_ dH(p) . . B
0 + P pj p +(1-3-2)H(p)=0

Another change of variables to y = o” yields

d*H(y) [1+3/2 NdH(y) A-20-3
0 + 5 —1) 0 + 1y H(y)=0

This is the same as Eq. (8-27), if we make the replacement

21 > 21+3/2
A-21-3
4

A-1—>

This leads to the result that
A=4n,+2[+3

or, equivalently
E=ho(2n, +1+312)

While the solution is Z\”(y) with a = n.and b = (2/ + 3)/4






