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The next step is obvious: In the 5 x 5 format, there is only one entry in the bottom left-
most corner, and it is v4.3.2.1.

2. [The reference should be to Eq. (6-36) instead of Eq. (6-4)
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from which it follows that






5. We write
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The pattern is clear. uy, is represented by a column vector with all zeros, excepta 1 in the
(n+1)-th place.
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Suppose we choose u;=1. The equations then lead to

(A +3)+19/4e"%u, =0
V197467 + (6- A)u, =0

(a) Dividing one equation by the other leads to

(A+3)(A- 6)=- 19/4



The roots of this equation are A =-7/2 and A = 13/2. The values of u ; corresponding to
the two eigenvalues are

uz(—7/2)=71—9ei”’3 U,(13/2) = —19e 7"

(b) The normalized eigenvectors are
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It is easy to see that these are orthogonal.

(c) The matrix that diagonalizes the original matrix is, according to Eq. (9-55)
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It is easy to check that
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8. We have, as a result of problem 7,

A=UA, U"

diag

From this we get
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The rest is rather trivial matrix multiplication.



9, The solution of
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One solution is clearly a=b=c=d with A =4. The eigenvector is Em

We next observe that if any two (or more) of a, b, c, d are not equal, then 4 =0. These
are the only possibilities, so that we have three eigenvalues all equal to zero. The
Eigenvectors must satisfy a+ b + ¢ + d =0, and they all must be mutually orthogonal.
The following choices will work
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10.An hermitian matrix A can always be diagonalized by a particular unitary matrix U,
such that
UAU+ = Adiag
Let us now take traces on both sides: TrUAU " = TrU 'UA = TrAwhile TrA;, = Zan

Where the a, are the eigenvalues of A.
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11. The product of two N x N matrices of the form M = |1 111 ...|is
1111 J
(NN N N .
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|N N N N ...|. Thus M? =N M . This means that the eigenvalues can only be
N N N

N or zero. Now the sum of the eigenvalues is the trgice of M which is N (see problem
10). Thus there is one eigenvalue N and (N —1) eigenvalues 0.
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12. We found that the matrix U = Tt J has the property that
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M, =U(L, /7)U". We may now calculate
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We can easily check that

and
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This was to be expected. The set M1, M, and M3 give us another representation of
angular momentum matrices.

13. We have AB = BA. Now let U be a unitary matrix that diagonalizes A. In our case we
have the additional condition that in
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all the diagonal elements are different. (We wrote this out for a 4 X 4 matrix)
Consider now

U[A,BJU "= UAU 'UBU " —UBU ‘UAU "= 0

This reads as follows (for a 4 x 4 matrix)
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If we look at the (12) matrix elements of the two products, we get, for example
aibiz = axbyo

and since we require that the eigenvalues are all different, we find that by, = 0. This
argument extends to all off-diagonal elements in the products, so that the only matrix
elements in UBU™ are the diagonal elements b;.

14. If M and M* commute, so do the hermitian matrices (M + M*) and i(M — M").
Suppose we find the matrix U that diagonalizes (M + M™). Then that same matrix
will diagonalize i( M — M"), provided that the eigenvalues of M + M" are all



different. This then shows that the same matrix U diagonalizes both M and M*
separately.

(The problem is not really solved, till we learn how to deal with the situation when
the eigenvalues of A in problem 13 are not all different).



