
 
 
CHAPTER 9 
 

1.  With           A+ =    

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
we have 
 

(A+ )2 =

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
 It follows that 
 

(A+ )3 =

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3.2.1 0 0 0 0
0 4.3.2 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
The next step is obvious: In the 5 x 5 format, there is only one entry in the bottom left-
most corner, and it is 4.3.2.1. 
 
2. [The reference should be to Eq. (6-36)  instead of Eq. (6-4) 
 
 

x =
h

2mω
(A + A+) =

h

2mω

0 1 0 0 0
1 0 2 0 0

0 2 0 3 0
0 0 3 0 4
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
from which it follows that 



  

x 2 =
h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

1 0 2.1 0 0
0 3 0 3.2 0
2.1 0 5 0 4.3
0 3,2 0 7 0
0 0 4.3 0 9

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
 
3. The procedure here is exactly the same.  
 
We have 
 

  

p = i
mhω

2
(A+ − A) = i

mhω
2

0 − 1 0 0 0
1 0 − 2 0 0

0 2 0 − 3 0
0 0 3 0 − 4
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
from which it follows that 
 

  

p2 =
mhω

2

1 0 − 2.1 0 0
0 3 0 − 3.2 0

− 2.1 0 5 0 − 4.3
0 − 3.2 0 7 0
0 0 − 4.3 0 9

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
4. We have 
  

 u1 = A+ u0  = 

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

  = 

0
1
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
 
 
 

 
 



                  
5. We write 

u2 =
1
2!

(A+)2 u0 =

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
1
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
Similarly 
 
 

u3 =
1
3!

(A+)3 u0 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3.2.1 0 0 0 0
0 4.3.2 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
0
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
and 
 

u4 =
1
4!

(A+)4 u0 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

4.3.2.1 0 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
0
0
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
The pattern is clear. un is represented by a column vector with all zeros, except a 1 in the 
(n+1)-th place. 
 
6. (a)   
 

 

  

〈H 〉 =
1
6

(1 2 1 0)hω

1 / 2 0 0 0
0 3 / 2 0 0
0 0 5 / 2 0
0 0 0 7 / 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
3
2

hω  

 

(b) 

  

〈x2 〉 =
1
6

(1 2 1 0)
h

2mω

1 0 2 0
0 3 0 6
2 0 5 0

0 0 0 7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
h

2mω
(3 +

2
3

)  



  

〈x〉 =
1
6

(1 2 1 0)
h

2mω

0 1 0 0
1 0 2 0

0 2 0 3
0 0 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
h

2mω
2
3

(1+ 2)

〈p2〉 =
1
6

(1 2 1 0)
mhω

2

1 0 − 2 0
0 3 0 − 6

− 2 0 5 0
0 − 6 0 7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
mhω

2
(3 −

2
3

)  

 
 
 
 

  

〈p〉 =
1
6

(1 2 1 0)i
mhω

2

0 − 1 0 0
1 0 − 2 0

0 2 0 − 3
0 0 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 0  

 
(c) We get 
 

  

(Δx)2 =
h

2mω
5
3

(1−
2

3
);(Δp)2 =

h

2mω
(3 −

2
3

)

(Δx)(Δp) = 2.23h

 

 
 

7. Consider  
 

−3 19 / 4eiπ / 3

19 / 4e− iπ /3 6
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
u1

u2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λ

u1

u2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
Suppose we choose u1=1. The equations then lead to  
 

   
(λ + 3) + 19 / 4eiπ / 3u2 = 0

19 / 4e−iπ /3 + (6 − λ)u2 = 0
 

 
(a) Dividing one equation by the other leads to  
 
   (λ + 3)(λ -  6) = -  19/4 
 



The roots of this equation are λ =- 7/2  and  λ  =  13/2. The values of u 2 corresponding to 
the two eigenvalues are 
 

   u2 (−7 / 2) =
1
19

e−iπ /3 ;u2(13 / 2) = − 19e−iπ /3  

 
(b) The normalized eigenvectors are 
 
 

  
1
20

19
−e−iπ / 3

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ ;
1
20

eiπ /3

19
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is easy to see that these are orthogonal. 
 
(c) The matrix that diagonalizes the original matrix is, according to Eq. (9-55) 
 
 

U =
1
20

1 − 19eiπ /3

19e− iπ / 3 1
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is easy to check that 
 

   U + AU =
13 / 2 0

0 −7 / 2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
8. We have, as a result of problem 7,  
 

A = UAdiagU
+  

 
From this we get  
 

                 eA = UeAdiagU + = U
e13/ 2 0
0 e−7/2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ U
+  

 
The rest is rather trivial matrix multiplication. 
 
 
 
 
   
 
   
 



 
 
 
  
9,  The solution of  
 

   

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

a
b
c
d

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

= λ

a
b
c
d

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
is equivalent to solving 
 
  a + b + c + d = λa = λb = λc = λd 
 

One solution is clearly  a = b = c = d   with  λ  = 4. The eigenvector is  
1
2

1
1
1
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
We next observe that if any two (or more) of a , b , c , d are not equal, then λ = 0. These 
are the only possibilities, so that we have three eigenvalues all equal to zero. The 
Eigenvectors must satisfy  a + b + c + d = 0, and they all must be mutually orthogonal. 
The following choices will work 
 

 
1
2

1
−1
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
;

1
2

0
0
1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
;

1
2

1
1

−1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
10.An hermitian matrix A can always be diagonalized by a particular unitary matrix U, 
such that 
 

UAU + = Adiag  
 

Let us now take traces on both sides:  TrUAU + = TrU +UA = TrA while TrAdiag = an
n
∑  

Where the an  are the eigenvalues of A. 
 



11. The product  of two N x N matrices of the form M =  

1 1 1 1 ...
1 1 1 1 ...
1 1 1 1 ...
1 1 1 1 ...
. . . . ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 is 

N N N N ...
N N N N ...
N N N N ...
N N N N ...
. . . . ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

.  Thus M2 = N M . This means that the eigenvalues can only be 

N or zero. Now the sum of the eigenvalues is the trqice of M  which is N (see problem 
10). Thus there is one eigenvalue N and (N –1) eigenvalues 0. 

 

12. We found that the matrix  U =
1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ ⎟  has the property that 

  M 3 = U(Lz / h)U + . We may now calculate 
 
         
 
 

 
and 

 
We can easily check that 
 

  

M2 ≡ U(Ly / h)U + =

=
1
2

1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 −i 0
i 0 −i
0 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 −i 0
0 0 2
1 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

  

M1 ≡ U (Lx /h)U + =

=
1
2

1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 1 0
1 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 −i 0
0 0 2
1 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 



[M1, M2 ] =
0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ −

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

=
0 1 0
−1 0 0
0 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ = iM3

 

 
This was to be expected. The set M1, M2 and M3  give us another representation of 
angular momentum matrices. 
 
13. We have  AB = BA. Now let U be a unitary matrix that diagonalizes A. In our case we 

have the additional condition that in 
 

UAU + = Adiag =

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
all the diagonal elements are different. (We wrote this out for a 4 x 4 matrix) 
Consider now  
 

 
U[A,B]U + = UAU +UBU + −UBU +UAU + = 0

 

This reads as follows (for a 4 x 4 matrix) 
 

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
If we look at the (12) matrix elements of the two products, we get, for example 
 
   a1b12 = a2b12 
 
and since we require that the eigenvalues are all different, we find that b12 = 0. This  
argument extends to all off-diagonal elements in the products, so that the only matrix 
elements in UBU= are the diagonal elements bii. 
 
14. If M and M+ commute, so do the hermitian matrices (M + M+) and i(M – M+).  

Suppose we find the matrix U that diagonalizes (M + M+). Then that same matrix 
will diagonalize  i( M – M+), provided that the eigenvalues of M + M+ are all 



different. This then shows that the same matrix U diagonalizes both M and M+ 
separately. 
(The problem is not really solved, till we learn how to deal with the situation when 
the eigenvalues of  A in problem 13  are not all different). 

 
 


