
CHAPTER 10 
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2, We note that the matrix has the form 
 

  
σz cosα +σ x sinα cosβ + σ y sinα sinβ ≡ σ • n
n = (sinαcosβ,sinα sinβ,cosα )

   

 
This implies that the eigenvalues must be ± 1. We can now solve 
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For the + eigenvalue we have u cosα + v sinα e-Iβ   =  u. We may rewrite this in the form  
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From this we get 
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The – eigenstate can be obtained in a similar way, or we may use the requirement of 
orthogonality, which directly leads to  
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has the property that 
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as is easily checked. 
 
 The construction is quite simple.  
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To construct S+ we use   (S+ )mn = hδm ,n+1 (l − m +1)(l + m)  and get 
 
 

   

  

S+ = h

0 3 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
We can easily construct S- = (S+)+. We can use these to construct 
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and 
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The eigenstates in the above representation are very simple: 
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5.  We first need the eigenstates of  (3Sx + 4Sy)/5. The eigenvalues will be ±   h / 2since the 
operator is of the form S• n, where n is a unit vector (3/5,4/5,0).The equation to be 
solved is 
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In paricular we want the eigenstate for the –ve eigenvalue, that is, we want to solve 
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This is equivalent to (3-4i) v = -5u  A normalized state is  
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The required probability is the square of  
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This number is 65/250 = 13/50. 
 
6. The normalized eigenspinor of Sy corresponding to the negative eigenvalue was found  

in problem 1. It is
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which is 65/130 = 1/2. 
 
7. We make use of  σxσ y = iσ z = -σyσ x and so on, as well as σx

2 = 1and so on, to work 
out 

 
(σ x Ax +σ y Ay +σ z Az )(σ xBx +σ yBy +σ z Bz )

= AxBx + AyBy + AzBz + iσ z (AxBy − AyBx ) + iσ y (AzBx − AxBz ) + iσ x (AyBz − AzBy )
= A •B + iσ • A × B

 

 
 

8. We may use the material in Eq. (10-26,27)., so that at time T, we start with 
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with ω = egB / 4me . This now serves as an initial state for a spin 1/2 particle placed in a 
magnetic field pointing in the y direction. The equation for ψ is according to Eq. (10-23) 
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a(t) = a(T )cosω(t − T ) − b(T )sinω(t − T )
b(t) = b(T )cosω(t − T ) + a(T )sinω(t − T )
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So that     
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The amplitude that a measurement of Sx   yields  h / 2 is 
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Thus the probability is  P = cos4 ωT + sin4 ωT =
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9. If we set an arbitrary matrix 
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we see that allowing A, Bx … to be complex we can match all of the α,β,…. 
 
(b) If the matrix M = A + σ • B is to be unitary, then we require that 
 

 
(A +σ • B)(A * +σ • B*) =

| A |2 +Aσ • B* +A *σ • B + B• B* +iσ • B × B* = 1
 

 
which can be satisfied if  
 

  

| A |2 + | Bx |2 + | By |2 + | Bz |2= 1

ABx * +A * Bx + i(ByBz *−By * Bz ) = 0
.........

 

 
If the matrix M is to be hermitian, we must require that A and all the components of B 
be real. 
 
10. Here we make use of the fact that (σ • a)(σ • a) = a •a ≡ a2  in the expansion 
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11. We begin with the relation 
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from which we obtain σ1 • σ 2 = 2S(S +1) − 3. This = -3 for a singlet and +1 for a 
triplet state.  
We now choose ˆ e  to point in the z direction, so that the first term in S12 is equal to  
3σ1zσ 2z .  
(a) for a singlet state the two spins are always in opposite directions so that the 

first term is –6 and the second is +3. Thus 
 

S12Xsinglet = 0 
   

(b) For a triplet the first term is +1 when Sz = 1 and Sz = -1 and –1 when Sz =0. 
This means that S12 acting on a triplet state in the first case is 3-1= 2, and in 
the second case it is –3-1= - 4. Thus 

 
(S12 − 2)(S12 + 4)Xtriplet = 0   

 
 
12. The potential may be written in the form  
 
  V(r) = V1(r) + V2(r)S12 + V3(r)[2S(S +1) − 3] 
 
For a singlet state S12

  has expectation value zero, so that 
 
   V(r) = V1(r) – 3V3(r) 
 
For the triplet state S12 has a value that depends on the z component of the total spin. 
What may be relevant 
for a potential energy is an average, assuming that the two particles have equal 
probability of being in any one of the three Sz states. In that case the average value of Sz is 
(2+2-4)/3= 0 
 

13.  (a) It is clear that for the singlet state, ψ singlet =
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(χ +
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electrons is in the “up” state, the other must be in the “down” state. 
 
(b). Suppose that we denote the eigenstates of Sy by ξ± . These are, as worked out in 
problem 1,  
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The spinors for particle (1) may be expanded in terms of the ξ±  thus: 
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Similarly, for particle (2), we want to expand the spinors in terms of the η± , the 
eigenstates of Sx 
 

          η+
(2) =

1
2

1
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ; η−

(2) =
1
2

1
−1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  
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We now pick out, in the expansion of the singlet wave function the coefficient of ξ+

(1)η+
(2)  

and take its absolute square.Some simple algebra shows that it is  
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9. The state is (cosα1χ+

(1) + sinα1e
iβ1 χ−

(1))(cosα2 χ+
(2) + sinα2e

iβ 2 χ−
(2)) . We need to calculate 

the scalar product of this with the three triplet wave functions of the two-electgron 
system. It is easier to calculate the probability that the state is found in a singlet state, 
and then subtract that from unity. 

 The calculation is simple 
 

 
〈

1
2

(χ+
(1)χ−

(2) − χ −
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(2)) | (cosα1χ+
(1) + sinα1e
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The absolute square of this is the singlet probability. It is  

 Ps =
1
2

(cos2 α1 sin2 α 2 + cos2 α2 sin2 α1 + 2sinα1 cosα1 sinα1 cosα 2 cos(β1 − cosβ2 )) 

and   
     Pt  = 1 - Ps 
  
 



 
 
14. We use J = L +S so that J2 = L2 + S2 + 2L.S, from which we get 
 

L • S =
1
2

J (J +1) − L(L +1) − 2[ ] 
 

since S = 1. Note that we have taken the division by  h
2  into account. For J = L + 1 this  

takes on the value L; for J = L, it takes on the value –1, and for J = L – 1 it is –L – 1. 
We therefore find 
 

  

J = L +1: V = V1 + LV2 + L2V3

J = L V = V1 − V2 +V3

J = L −1 V = V1 − (L +1)V2 + (L +1)2V3

 

  
  
 
 


