
CHAPTER 11 
 
1. The first order contribution is 
 

  
En

(1) = λ〈n | x2 | n〉 = λ
h

2mω
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

〈n | (A + A+ )(A + A+ ) | n〉  

 
To calculate the matrix element 〈n | A2 + AA + + A+A + (A+)2 | n〉  we note that  
 
A+ | n〉 = n +1 | n +1〉 ; 〈n | A = n +1〈n +1 |  so that (1) the first and last terms give 

zero, and the second and third terms yield  (n + 1) + (n – 1)=2n. Thus the first order shift 
is  
 

   
  
En

(1) = λ
h

mω
n⎛ 

⎝ 
⎞ 
⎠  

 
The second order calculation is quite complicated. What is involved is the calculation of 
 

 
  
En

(2) = λ2 h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2 〈n | (A + A+)2 | m〉〈m | (A + A+ )2 | n〉
hω(n − m)m ≠n

∑  

 
This is manageable but quite messy.  The suggestion is to write 
 

  H =
p2

2m
+

1
2

mω2 x2 + λx2  

 
This is just a simple harmonic oscillator with frequency   
 

ω* = ω 2 + 2λ / m = ω +
λ

ωm
−

1
2

λ2

ω 3m2 + ...  

 
Whose spectrum is   
 

  
En = hω * (n +

1
2

) = hω(n +
1
2

) +
λh

ωm
(n +

1
2

) −
λ2h

2ω3m 2 (n +
1
2

) + ...  

 
The extra factor of 1/2 that goes with each n is the zero-point energy. We are only 

interested in the change in energy of a given state |n> and thus subtract the zero-point 
energy to each order of λ. Note that the first order λ calculation is correct. 

 
2. The eigenfunction of the rotator are the spherical harmonics. The first order energy 

shift for l = 1 states is given by 
 



ΔE = 〈1,m | E cosθ |1,m〉 = E dφ sinθdθ cosθ | Y1.m |2
0

π

∫0

2π

∫  
 

 
For m = ±1,  this becomes  
 

  2πE sinθdθ cosθ
3

8π
⎛ 
⎝ 

⎞ 
⎠ 0

π

∫ sin2 θ =
3E
4

duu(1− u2) = 0
−1

1

∫  

 
The integral for m = 0 is also zero. This result should have been anticipated. The 
eigenstates of L2 are also eigenstates of parity.  The perturbation cosθ  is odd under the 
reflection r  - r  and therefore the expectation value of an odd  operator will always be 
zero. Since the perturbation represents the interaction with an electric field, our result 
states that a symmetric rotator does not have a permanent electric dipole moment. 
 
The second order shift is more complicated. What needs to be evaluated is  
 

 ΔE(2) = E 2 | 〈1,m | cosθ | L,M〉 |2

E1 − ELL ,M (L ≠1)
∑  

 

with 
  
EL =

h2

2I
L(L +1) . The calculation is simplified by the fact that only L = 0 and L = 2 

terms contribute. This can easily be seen from the table of spherical harmonics. For L =1 
we saw that the matrix element vanishes. For the higher values we see that   
cosθY1,±1 ∝Y2,±1  and cosθY1,0 ∝ aY2,0 + bY0,0 . The orthogonality of the spherical harmonics 
for different values of L takes care of the matter. Note that because of the φ integration, 
for m = ±1 only the L = 2 ,M = ± 1 term contributes, while for the m = 0 term, there will 
be contributions from L = 0 and L = 2, M = 0. Some simple integrations lead to 
 

  
  
ΔEm =±1

(2) = −
2IE 2

h2
1

15
; ΔEm = 0

(2) = −
2IE 2

h2
1
60

  

 
3. To lowest order in V0  the shift is given by 
 

ΔE =
2
L

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
V0

L
dxxsin2

0

L

∫
nπx
L

=
2V0

L2
L
π

⎛ 
⎝ 

⎞ 
⎠ 

2

duusin2 nu =
V0

π 20

π

∫ duu(1− cos2nu) =
1
20

π

∫ V0

 

 
The result that the energy shift is just the value of the perturbation at the mid-
point is perhaps not surprising, given that the square of the eigenfunctions do not, 
on the average, favor one side of the potential over the other. 
 



4. The matrix  

E λ 0 0
λ E 0 0
0 0 2E σ
0 0 σ 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  consists of two boxes which can be diagonalized 

separately. The upper left hand box involves solving  
E λ
λ E

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = η

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

The result is that the eigenvalues are η = E ± λ.  The corresponding eigenstates are easily 

worked out and are 
1
2

1
±1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  for the two cases. 

For the lower left hand box we have to solve  
2E σ
σ 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

a
b

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ξ

a
b

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . Here we find that the 

eigenvalues are ξ = E ± E 2 + σ 2 . The corresponding eigenstates are  
 

 N
σ

−E ± E 2 + σ 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  respectively, with 

1
N 2 = σ 2 + (−E ± E 2 + σ 2 )2 . 

 
5. The change in potential energy is given by 
 

V1 = −
3e2

8πε0R
3 R2 −

1
3

r2⎛ 
⎝ 

⎞ 
⎠ +

e2

4πε0r
r ≤ R

= 0 elsewhere
 

 
Thus 
 
 ΔE = d3rψ nl

* (r)V1ψ nl (r) = r 2dr
0

R

∫∫ V1Rnl
2 (r) 

 
We may now calculate this for various states. 
 

n = 1   ΔE10 = 4
Z
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

r2dr
0

R

∫ e−2Zr /a0 −
3e2

8πε0R
3 R2 −

1
3

r 2⎛ 
⎝ 

⎞ 
⎠ +

e2

4πε0r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
With a change of variables to x = r/Za0  and with ρ = ZR/a0  this becomes 
 

 ΔE10 = 4
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dx −

3
2ρ

+
x2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e−2x  

 
Since  x << 1 we may approximate  e−2x ≈1− 2x , which simplifies the integrals. What 
results is 
 



   ΔE10 =
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

4
10

ρ2 + ...⎛ 
⎝ 

⎞ 
⎠  

 
A similar calculation yields 
 

ΔE20 =
1
2

Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dx(1− x)2 −

3
2ρ

+
x2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e− x ≈
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
20

ρ2 + ...⎛ 
⎝ 

⎞ 
⎠   

and 
 

  ΔE21 =
1

24
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dxx 2 −

3
2ρ

+
x 2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e−x ≈
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
1120

ρ4 + ...⎛ 
⎝ 

⎞ 
⎠  

 
6. We need to calculate  λ〈0 | x4 | 0〉 . One way of proceeding is to use the expression 
 

  
x =

h

2mω
(A + A+)  

 
Then 
 

 

  

λ〈0 | x4 | 0〉 = λ
h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2

〈0 | (A + A+)(A + A+)(A + A+)(A + A+) | 0〉
 

The matrix element is 
 

〈0 | (A + A+ )(A + A+ )(A + A+)(A + A+) | 0〉 =

〈0 | A+ (A + A+)(A + A+)A+ | 0〉 =

〈1| (A + A+)(A + A+) |1〉 =

〈0 | + 2〈2 |[ ]| 0〉 + 2 | 2〉[ ]= 3

 

 

Thus the energy shift is 
  
ΔE = 3λ

h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2

 

 
It is easy to see that the same result is obtained from 
 

   
  

dx(λx 4 )
mω
hπ

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e− mωx 2 /2h
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ −∞

∞

∫
2

 

 
 
 

 
  



7. The first order perturbation  shift is 
 

ΔEn =
2ε
b

dx
0

b

∫ sin
πx
b

sin
nπx

b
⎛ 
⎝ 

⎞ 
⎠ 

2

=
2ε
π

dusinu(sin nu)2

0

π

∫

=
2ε
π

1 +
1

4n2 −1
⎛ 
⎝ 

⎞ 
⎠ 

 

 
8. It follows from    [p, x] = −ih  that 
 

  

−ih = 〈a | px − xp | a〉 =

= {〈a | p | n〉〈n | x | a〉 − 〈a | x | n〉〈n | p | a〉}
n

∑  

 
Now 
 

  
〈a | p | n〉 = m〈a |

dx
dt

| n〉 =
im
h

〈a | Hx − xH | n〉 =
im
h

(Ea − En )〈a | x | n〉  

 
Consequently 
 

  
〈n | p | a〉 = 〈a | p | n〉* = −

im
h

(Ea − En )〈n | x | a〉  

 
Thus 
 

  
−ih =

2im
hn

∑ (Ea − En )〈a | x | n〉〈n | x | a〉  

 
from which it follows that 
 

  
  

(En − Ea )
n
∑ | 〈a | x | n〉 |2=

h2

2m
 

 
9. For the harmonic oscillator, with |a> = |0>, we have 
 

  
〈n | x | 0〉 =

h

2mω
〈n | A+ | 0〉 =

h

2mω
δn ,1  

 
 
This means that in the sum rule, the left hand side is 
 



    
  
hω

h

2mω
⎛ 
⎝ 

⎞ 
⎠ =

h2

2m
 

 
as expected. 
 
10. For the n = 3 Stark effect, we need to consider the following states: 
 
 

l = 2 :  ml = 2,1,0,-1,-2 
l = 1 :  ml = 1,0,-1 
l = 0 :  ml  =  0 
 
In calculating matrix element of z  we have selection rules Δ l = 1 (parity forbids 
Δ l = 0) and, since we are dealing with z, also Δ ml  = 0. Thus the possible matrix 
elements that enter are  

   
〈2,1| z |1,1〉 = 〈2,−1| z |1,−1〉 ≡ A
〈2,0 | z |1,0〉 ≡ B
〈1,0 | z | 0,0〉 ≡ C

 

 
The matrix to be diagonalized is  
 

  

0 A 0 0 0 0 0
A 0 0 0 0 0 0
0 0 0 B 0 0 0
0 0 B 0 C 0 0
0 0 0 C 0 0 0
0 0 0 0 0 0 A
0 0 0 0 0 A 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
The columns and rows are labeled by (2,1),(1,1) (2,0) (1,0),(0,0),(2,-1), (1,-1). 
 
The problem therefore separates into three different matrices. The eigenvalues of 
the submatrices that couple the (2,1) and (1,1) states, as well as those that couple 
the (2,-1) and (1,-1) states are  
 
   λ = ± A 
 
where   
 
 A = dΩY21

*∫ cosθY11 r 2drR32(r)rR31(r)
0

∞

∫  
 



The mixing among the ml = 0 states involves the matrix  
0 B 0
B 0 C
0 C 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 

Whose eigenvalues are λ = 0, ± B2 + C2 .. Here 

 
B = dΩY20

* cosθY10∫ r2dr
0

∞

∫ R32(r)rR31(r)

C = dΩY10
* cosθY00∫ r 2dr

0

∞

∫ R31(r)rR30(r)
 

 
 

The eigenstates of the A submatrices are those of σx , that is 
1
2

1
±1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . The eigenstates of 

the central 3 x 3 matrix are 
 

1
B2 + C2

C
0

−B

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

;
1

2(B2 + C2)

B
± B2 + C2

C

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 

 
with the first one corresponding to the  λ  = 0 eigenvalue. 
 
11. For a one-dimensional operator (labeled by the x variable) we introduced the raising 

and lowering operators A+  and A.  We were able to write the Hamiltonian in the 
form 

  
Hx = hω(A+ A +

1
2

) 

 
We now do the same thing for the harmonic oscillator labeled by the y variable. The 
raising and lowering operators will be denoted by B+ and B, with 
 

    
  
Hy = hω(B+ B +

1
2

) 

 
The eigenstates of  Hx + Hy  are 
 

   | m,n〉 =
(A+) n

n!
(B+)m

m!
| 0,0〉  

 
where the ground state has the property that  A |0,0> = B |0.0> = 0 
 
The perturbation  may be written in the form 
 



  
  
H1 = 2λxy =

hλ
mω

(A + A+)(B + B+ ) 

 
(a) The first order shift of the ground state is  
 
    〈0,0 | H1 | 0,0〉 = 0 
 
since every single of the operators A,…B+ has zero expectation value in the ground state. 
 
(b) Consider the two degenerate states  |1,0> and |0,1>. The matrix elements of interest to 
us are 
 <1,0|(A+A+)(B  + B+)|1,0> = <0,1|(A+A+)(B  + B+)|0,1> = 0 
 
<1,0|(A+A+)(B  + B+)|0,1> = <0,1|(A+A+)(B  + B+)|1,0> = <1,0|(A+A+)(B  + B+)|1,0> = 1 
 
Thus in degenerate perturbation theory  we must diagonalize the matrix 
 

    
0 h
h 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 

where 
  
h =

λh

mω
.  The eigenvalues are ±h , and the degenerate levels are split to 

 

    E = hω(1±
λ

mω 2 )  

 
(c) The second order expression is 
 

  

λh

mω
⎛ 
⎝ 

⎞ 
⎠ 

2 | 〈0,0 | (A + A+)(B + B+) | k,n〉 |2

−hω(k + n)k ,n
∑ =

−
λ2h

mω 3

| 〈1,1| k,n〉 |2

(k + n)k ,n
∑ = −

λ2h

2mω3

 

 
The exact solution to this problem may be found by working with the potential at a 
classical level. The potential energy is 
 

   
1
2

mω 2(x 2 + y2) + λxy  

 
Let us carry out a rotation in the x – y plane. The kinetic energy does not change since p2 
is unchanged under rotations. If we let 
 

   
x = x 'cosθ + y 'sinθ
y = −x 'sinθ + y 'cosθ

 



 
then the potential energy, after a little rearrangement,  takes the form 
 

 (
1
2

mω 2 − λ sin2θ)x '2 +(
1
2

mω 2 + λ sin2θ)y '2 +2λcos2θx ' y'  

 
If we choose cos2θ = 0, so that sin2θ = 1, this reduces to two decoupled harmonic 
oscillators. The energy is the sum of the two energies.  Since 
 

    

1
2

mωx
2 =

1
2

mω 2 − λ

1
2

mωy
2 =

1
2

mω 2 + λ
 

 
the total energy for an arbitrary excited state is 
 

   Ek,n = hωx(k +
1
2

) + hωy (n +
1
2

) 

 
where 
 

 

  

hωx = hω(1− 2λ / mω 2)1/ 2 = hω −
hλ
mω

−
hλ2

2m 2ω3 + ...

hωy = hω(1 + 2λ / mω2 )1/2 = hω +
hλ
mω

−
hλ2

2m 2ω3 + ...
 

 
12. Thespectral line corresponds to the transition (n = 4,l = 3)  (n = 3,l = 2). We must 
therefore examine what happens to these energy levels under the perturbation 
 

    H1 =
e

2m
L •B  

 

We define the z axis by the direction of B , so that the perturbation is 
eB
2m

Lz . 

In the absence of the perturbation the initial state is (2l + 1) = 7-fold degenerate, with the 
Lz level unchanged, and the others moved up and down in intervals of eB/2m. 
The final state is 5-fold degenerate, and the same splitting occurs,  
with the same intervals. If transitions with zero or ±1 change in Lz/  h , 
the lines are as shown in the figure on the right. 
 
 
 
 
 
 



What will be the effect of a constant electric field parallel to B?  
The additional perturbation is therefore 
 
   H2 = −eE0 • r = −eE0z  
 
and we are only interested in what this does to the energy level  
structure. The perturbation acts as in the Stark effect. The effect 
of H1 is to mix up levels that are degenerate, corresponding 
to a given ml  value with different values of l. For example, 
the l = 3, ml = 2 and the l = 2, ml = 2 degeneracy (for n = 4)will 
be split. There will be a further breakdown of degeneracy. 
 
13. The eigenstates of the unperturbed Hamiltonian are eigenstates of σz . They are 
 

1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   corresponding to E = E0  and  

0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   corresponding to E = - E0.  

 
The first order shifts are given by 
 

  
1 0( )λ α u

u * β
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λα

0 1( )λ α u
u * β

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λβ

 

 
for the two energy levels.  
The second order shift for the upper state involves summing over intermediate states that 
differ from the initial state. Thus, for the upper state, the intermediate state is just the 
lower one, and the energy denominator is E0 – (- E0) = 2E0. Thus the second order shift is 
 

 
λ2

2E0
1 0( ) α u

u * β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0

1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0 1( ) α u

u* β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1

0
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

λ2 | u |2

2E0
 

 
For the lower state we get  
 

 
λ2

−2E0
0 1( ) α u

u* β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1

0
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1 0( ) α u

u * β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0

1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = −

λ2 | u |2

2E0
 

 
The exact eigenvalues can be obtained from 
 

  det
E0 +α −ε u

u * −E0 + β −ε
= 0 

 
This leads to  



 

  
ε = λ

α + β
2

± (E0 − λ
α − β

2
)2 + λ2 | u |2

= λ
α + β

2
± (E0 − λ

α − β
2

)(1+
1
2

λ2 | u |2

E0
2 + ...

 

 
 
(b) Consider now 
 

   H =
E0 u
v −E0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

    
where we have dropped the α  and β  terms. The eigenvalues are easy to determine, and 
they are  
 
   ε = ± E0

2 + λ2uv  
 

The eigenstates are written as 
a
b

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  and they satisfy 

 

  
E0 u
v −E0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ a

b
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = ± E0

2 + λ2uv
a
b

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
For the upper state we find that the un-normalized eigenstate is 
 

   
λu

E0
2 + λ2uv − E0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
For the lower state it is 
 

   
−λu

E0
2 + λ2uv + E0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The scalar product 
 
   −λ2 | u |2 + (E0

2 + λ2uv) − E0
2[ ]= λ2u(u* −v) ≠ 0  

 
which shows that the eigenstates are not orthogonal unless v = u*. 
 
 
 
 


