CHAPTER 12.

1. With a potential of the form
V(r)= % mae’r’

the perturbation reduces to
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where | is the orbital angular momentum, s is the spin of the particle in the well (e.g. 1/2
for an electron or a nucleon) and j is the total angular momentum. The possible values of
jare I1+s, 1+s-11+s-2, ...|l-5|.

The unperturbed energy spectrum is given by E, |, = 7e(2n, + | +i23). Each of the

levels characterized by | is (2l + 1)-fold degenerate, but there is an additional degeneracy,
not unlike that appearing in hydrogen. For example n,=2, 1 =0.n,=1,1=2,n,=0,1=4
all have the same energy.

A picture of the levels and their spin-orbit splitting is given below.

2. The effects that enter into the energy levels corresponding to n = 2, are (1) the basic
Coulomb interaction, (ii) relativistic and spin-orbit effects, and (iii) the hyperfine
structure which we are instructed to ignore. Thus, in the absence of a magnetic field,
the levels under the influence of the Coulomb potential consist of 2n? = 8 degenerate
levels. Two of the levels are associated with | = 0 (spin up and spin down) and six



levels with | = 0, corresponding to m; = 1,0,-1, spin up and spin down. The latter can
be rearranged into states characterized by J, L? and J,. There are two levels
characterized by j =1 -1/2 = 1/2 and four levels with j = | + 1/2 = 3/2. These energies
are split by relativistic effects and spin-orbit coupling, as given in Eq. (12-16). We
ignore reduced mass effects (other than in the original Coulomb energies). We
therefore have
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(b) The Zeeman splittings for a given j are
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Numerically ——m.c’a* ~1.132x10°eV , while for B=2.5T =14.47x107eV,
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so under these circumstances the magnetic effects are a factor of 13 larger than the
relativistic effects. Under these circumstances one could neglect these and use Eq. (12-
26).

3. The unperturbed Hamiltonian is given by Eq. (12-34) and the magnetic field interacts
both with the spin of the electron and the spin of the proton. This leads to
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Let us now introduce the total spin F =S + 1. It follows that
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We next need to calculate the matrix elements of aS, +bl, for eigenstates of F> and F, .
These will be exactly like the spin triplet and spin singlet eigenstates. These are
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And for the singlet state (F = 0)
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Thus the magnetic field introduces mixing between the |1,0> state and the |0.0> state.
We must therefore diagonalize the submatrix
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The second submatrix commutes with the first one. Its eigenvalues are easily determined
to be +y AZ/4 + (a—b)? /4 so that the overall eigenvalues are

~Al4+yA? 14+ (a-b)? 14

Thus the spectrum consists of the following states:



F=1F,=1 E=A/4+(@+h)/2

F=1,F,=-1 E=Al4-(a+b)/2

F=10:F,=0 E=—A/4=(A’/4+(a-b)/4

We can now put in numbers.
For B=10"T, the values, in units of 10° eV are 1.451, 1.439, 0(10™°), -2.89
For B = 1T, the values in units of 10° eV are 57.21,-54.32, 54.29 and 7 x 10°®.

4. According to Eq. (12-17) the energies of hydrogen-like states, including relativistic +
spin-orbit contributions is given by
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The wavelength in a transition between two states is given by

where AE is the change in energy in the transition. We now consider the transitions
n=3,j=3/2 >n=1,j=1/2 andn=3,j=1/2> n=1,j=1/2.. The corresponding
energy differences (neglecting the reduced mass effect) is
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We can write these in the form

(3,3/12>1,1/2) AE, (1 +%(Za)2)
(3,1/2>1,1/2) AE, (1 +1—18 (Za)?)
where
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The corresponding wavelengths are



(3,312>1,1/2) /10(1—%(205)2): 588.995x10°m

(3,1/2>1,1/2) /10(1—1—18(205)2) =589.592 x10°m

We may use the two equations to calculate Ao and Z. Dividing one equation by the other
we get, after a little arithmetic Z = 11.5, which fits with the Z = 11 for Sodium.

(Note that if we take for A, the average of the two wavelengths, then , using

Ay = 27C | AE, =971 1 2mc(Zax)?, we get a seemingly unreasonably small value of Z =
0.41 This is not surprising. The ionization potential for sodium is 5.1 eV instead of
Z%(13.6 eV), for reasons that will be discussed in Chapter 14)
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4. The relativistic correction to the kinetic energy term is _2mcz(%j . The energy

shift in the ground state is therefore
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To calculate <0 | r*| 0> and < 0| r*| 0 > we need the ground state wave function. We
know that for the one-dimensional oscillator it is
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so that for the three dimensional oscillator it is

( ma)\\ 3 e—m{ur2/2h

Uy (1) = U (XU (Y)U(2) = | —~)
It follows that

0]r*]0y = jw4m2dr(w\ 3lzrze"““”z’h =
~Jo \ 1) B

@ 3/2 h 5/2 w . _y2
AT (Gs) Lo

3n

- 2mo



We can also calculate
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We made use of I: dzz"e*=T(n+1)=nI(n) and F(%) =r

Thus
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6. (a) WithJ=1and S =1, the possible values of the orbital angular momentum, such
that j=L+S,L+S-1...|L—-S|] canonly be L =0,1,2. Thus the possible states are
’s,°P,°D; . The parity of the deuteron is (-1)" assuming that the intrinsic parities of
the proton and neutron are taken to be +1. Thus the S and D states have positive
parity and the P state has opposite parity. Given parity conservation, the only possible
admixture can be the °D; state.

(b)The interaction with a magnetic field consists of three contributions: the
interaction of the spins of the proton and neutron with the magnetic field, and the L.B
term, if L is not zero. We write
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We take the neutron and proton masses equal (= M) and the reduced mass of the two-
particle system for equal masses is M/2. For the °S; stgate, the last term does not
contribute.



If we choose B to define the z axis, then the energy shift is
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It is easy to check that the last term has zero matrix elements in the triplet states, so
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that we are left with E(gp + gn)% , Where S; is the z-component of the total spin..
Hence
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where mg is the magnetic quantum number (ms = 1,0,-1) for the total spin. We may
therefore write the magnetic moment of the deuteron as
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The experimental measurements correspond to g4 = 0.8574 which suggests a small
admixture of the °D; to the deuteron wave function.



