
CHAPTER 12. 
 
1. With a potential of the form 
 

V(r) =
1
2

mω2r 2  

 
the perturbation reduces to  
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2m 2c 2 S• L
1
r

dV (r)
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=
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4mc2 (J2 − L2 − S2)

=
(hω)2

4mc2 j( j +1) − l(l +1) − s(s +1)( )
 

 
where l is the orbital angular momentum, s is the spin of the particle in the well (e.g. 1/2 
for an electron or a nucleon) and j is the total angular momentum. The possible values of 
j are  l + s, l + s – 1, l + s –2, …|l – s|. 

 The unperturbed energy spectrum is given by  
 
Enr l = hω(2nr + l +

3
2

). Each of the 

levels characterized by l is (2l + 1)-fold degenerate, but there is an additional degeneracy, 
not unlike that appearing in hydrogen. For example nr =2, l = 0. nr =1, l = 2 , nr = 0, l = 4 
all have the same energy.   
A picture of the levels and their spin-orbit splitting is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The effects that enter into the energy levels corresponding to n = 2, are (I) the basic 

Coulomb interaction, (ii) relativistic and spin-orbit effects, and (iii) the hyperfine 
structure which we are instructed to ignore. Thus, in the absence of a magnetic field, 
the levels under the influence of the Coulomb potential consist of 2n2 = 8 degenerate 
levels. Two of the levels are associated with l = 0 (spin up and spin down) and six 



levels with l = 0, corresponding to ml  = 1,0,-1, spin up and spin down. The latter can 
be rearranged into states characterized by J2, L2 and Jz. There are two levels 
characterized by j = l –1/2 = 1/2 and four levels with j = l + 1/2 = 3/2. These energies 
are split by relativistic effects and spin-orbit coupling, as given in Eq. (12-16). We 
ignore reduced mass effects (other than in the original Coulomb energies).  We 
therefore have 
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(b) The Zeeman splittings for a given j  are 
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Numerically   
1

128
mec

2α 4 ≈1.132 ×10−5eV , while for B = 2.5T 
 

ehB
2me

= 14.47 ×10−5 eV , 

so under these circumstances the magnetic effects are a factor of 13 larger than the 
relativistic effects. Under these circumstances one could neglect these and use Eq. (12-
26). 
 
3. The unperturbed Hamiltonian is given by Eq. (12-34) and the magnetic field interacts 

both with the spin of the electron and the spin of the proton. This leads to  
 

  
H = A

S• I
h2 + a

Sz

h
+ b

Iz

h
 

 
Here  
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Let us now introduce the total spin F = S +  I. It follows that  
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We next need to calculate the matrix elements of  aSz + bIz  for eigenstates of F2  and Fz . 
These will be exactly like the spin triplet and spin singlet eigenstates. These are 
  
 

〈1,1| aSz + bIz |1,1〉 = 〈χ +ξ+ | aSz + bIz | χ+ξ+〉 = 1
2
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1
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〈1,−1 | aSz + bIz |1,−1〉 = 〈χ −ξ− | aSz + bIz | χ−ξ−〉 = −
1
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And for the singlet state (F = 0) 
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〈χ +ξ− − χ −ξ+ | aSz + bIz | χ+ξ− − χ+ξ− 〉 = 0  

Thus the magnetic field introduces mixing between the |1,0> state and the |0.0> state. 
We must therefore diagonalize the submatrix 
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The second submatrix commutes with the first one. Its eigenvalues are easily determined 
to be ± A2 / 4 + (a − b)2 / 4 so that the overall eigenvalues are 
 
   −A / 4 ± A2 / 4 + (a − b)2 / 4  
 
Thus the spectrum consists of the following states: 
 



F = 1, Fz = 1  E = A / 4 + (a + b) / 2  
 
F =1, Fz = -1  E = A / 4 − (a + b) / 2 
 
F = 1,0; Fz = 0  E = −A / 4 ± (A2 / 4 + (a − b)2 / 4  
 
We can now put in numbers.  
For B = 10-4 T,  the values, in units of 10-6 eV are 1.451, 1.439, 0(10-10), -2.89 
For B = 1 T, the values in units of 10-6 eV are 57.21,-54.32, 54.29 and 7 x 10-6. 
 
4. According to Eq. (12-17) the energies of hydrogen-like states, including relativistic + 
spin-orbit contributions is given by  
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The wavelength in a transition between two states is given by 
 

   
  
λ =

2πhc
ΔE

 

 
where ΔE is the change in energy in the transition. We now consider the transitions 
n =3, j = 3/2   n = 1, j = 1/2  and n = 3 , j = 1/2  n = 1, j = 1/2.. The corresponding 
energy differences (neglecting the reduced mass effect) is 
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We can write these in the form 
 

(3,3/2 1,1/2)  ΔE0(1 +
13
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The corresponding wavelengths are 



 

(3,3/2 1,1/2)  λ0 (1−
13
48

(Zα )2 ) = 588.995 ×10−9 m  

 

(3,1/2 1,1/2)  λ0 (1−
1
18

(Zα)2) = 589.592 ×10−9 m  

 
We may  use the two equations to calculate λ0 and Z. Dividing one equation by the other 
we get, after a little arithmetic Z = 11.5, which fits with the Z = 11 for Sodium. 
(Note that if we take for λ0 the average of the two wavelengths, then , using 
  λ0 = 2πhc / ΔE0 = 9πh / 2mc(Zα )2 , we get a seemingly unreasonably small value of Z = 
0.4! This is not surprising. The ionization potential for sodium is 5.1 eV instead of 
Z2(13.6 eV), for reasons that will be discussed in Chapter 14) 
 
 

4. The relativistic correction to the kinetic energy term is  −
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shift in the ground state is therefore 
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To calculate < 0 | r2 | 0 >  and < 0 | r4 | 0 > we need the ground state wave function. We 
know that for the one-dimensional oscillator it is  
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so that for the three dimensional oscillator it is 
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It follows that 
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We can also calculate 
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We made use of  dzzn

0

∞

∫ e− z = Γ(n +1) = nΓ(n) and Γ(
1
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) = π  

Thus 
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6. (a)  With J = 1 and S = 1, the possible values of the orbital angular momentum, such 

that  j = L + S, L + S –1…|L – S|  can only be L = 0,1,2. Thus the possible states are 
3S1,

3P1,
3D1 . The parity of the deuteron is (-1)L  assuming that the intrinsic parities of 

the proton and neutron are taken to be +1. Thus the S and D states have positive 
parity and the P state has opposite parity. Given parity conservation, the only possible 
admixture can be the 3D1  state. 
 
(b)The interaction with a magnetic field consists of three contributions: the 
interaction of the spins of the proton and neutron with the magnetic field, and the L.B 
term, if L is not zero. We write 
 
    H = −M p • B − Mn •B − ML • B  
 

where  
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We take the neutron and proton masses equal (= M ) and the reduced mass of the two-
particle system for equal masses is M/2. For the 3S1  stgate, the last term does not 
contribute.  



 If we choose B  to define the z axis, then the energy shift is 
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We write 
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It is easy to check that the last term has zero matrix elements in the triplet states, so 

that we are left with  
  

1
2

(gp + gn )
Sz

h
, where Sz is the z-component of the total spin.. 

Hence 
 

   
  
〈3S1 | H1|

3 S1〉 = −
3Bh

2M
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2
ms  

 
where ms  is the magnetic quantum number (ms = 1,0,-1) for the total spin. We may 
therefore write the magnetic moment of the deuteron as 

      μeff = −
e

2M
gp + gn

2
S = −(0.8793)

e
2M

S  

 
The experimental measurements correspond to gd = 0.8574  which suggests a small 
admixture of the 3D1  to the deuteron wave function. 
  

  
 
    
 
  
 


