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CHAPTER 13 
 

1. (a) electron-proton system  mr =
me

1 + me / M p
= (1− 5.45 ×10−4 )me  

(b) electron-deuteron system  mr =
me

1 + me / Md
= (1− 2.722 ×10−4)me  

(c) For two identical particles of mass m, we have mr =
m
2

 

 
2. One way to see that P12 is hermitian, is to note that the eigenvalues ±1 are both real. 

Another way is to consider  
 

  

i, j
∑ dx1∫ dx2ψ ij

* (x1, x2)P12ψ ij (x1, x2 ) =

i, j
∑ dx1dx2∫ ψ ij

* (x1, x2)ψ ji(x2, x1) =

j,i
∑ dy1∫ dy2ψ ji

* (y2,y1)ψ ij(y1,y2) = dy1∫ dy2 (P12ψ ij(y1,y2)) *ψ ij (y1,y2 )
j,i
∑

 

 
3. If the two electrons are in the same spin state, then the spatial wave function must be 

antisymmetric. One of the electrons can be in the ground state, corresponding to n = 
1, but the other must be in the next lowest energy state, corresponding to n = 2. The 
wave function will be  

ψ ground (x1, x2) =
1
2

u1(x1)u2(x2) − u2(x1)u1(x2)( ) 

 

4. The energy for the n-th level is 
 
En =

h2π 2

2ma 2 n2 ≡ εn2  

Only two electrons can go into a particular level, so that with N electrons, the lowest 
N/2 levels must be filled. The energy thus is 
 

   Etot = 2εn2

n =1

N /2

∑ ≈ 2ε
1
3

N
2

⎛ 
⎝ 

⎞ 
⎠ 

3

=
εN 3

12
 

 
If N is odd, then the above is uncertain by a factor of εN 2  which differs from the 
above by  (12/N )ε, a small number if N  is very large. 
 

5. The problem is one of two electrons interacting with each other. The form of the 
interaction is a square well potential. The reduction of the two-body problem to a 
one-particle system is straightforward. With the notation  
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x = x1 − x2;X =
x1 + x2

2
;P = p1 + p2 , the wave function has the form  

ψ (x1, x2) = eiPX u(x), where u(x) is a solution of  
 

  
−

h2

m
d2u(x)

dx 2 + V (x)u(x) = Eu(x) 

 
Note that we have taken into account the fact that the reduced mass is m/2. The spatial 
interchange of the two electrons corresponds to the exchange x  -x .Let us denote the 
lowest bound state wave function by u0(x) and the next lowest one by u1(x). We know 
that the lowest state has even parity, that means, it is even under the above interchange, 
while the next lowest state is odd under the interchange. Hence, for the two electrons in a 
spin singlet state, the spatial symmetry must be even, and therefor the state is u0(x), while 
for the spin triplet states, the spatial wave function is odd, that is, u1(x). 
 

6. With  P = p1 + p2; p =
1
2

( p1 − p2); X =
1
2

(x1 + x2); x = x1 − x2 , the Hamiltonian 

becomes 
 

  H =
P 2

2M
+

1
2

Mω2 X 2 +
p2

2μ
+

1
2

μω2 x2  

 
with M = 2m the total mass of the system, and µ = m/2 the reduced mass. The energy 
spectrum is the sum of the energies of the oscillator describing the motion of the center of 
mass, and that describing the relative motion. Both are characterized by the same angular 
frequency ω  so that the energy is 
 

  E = hω(N +
1
2

) + hω(n +
1
2

) = hω(N + n +1) ≡ hω(ν +1)  

 
The degeneracy is given by the number of ways the integer ν can be written as the sum of 
two non-negative integers. Thus, for a given ν   we can have 

 
 (N,n) = (ν,0),(ν −1,1),(ν − 2,2),...(1,ν −1).(0,ν) 
 

so that the degeneracy is ν + 1. 
 
Note that if we treat the system as two independent harmonic oscillators characterized by 
the same frequency, then the energy takes the form 
 

  
  
E = hω(n1 +

1
2

) + hω(n2 +
1
2

) = hω(n1 + n2 +1) ≡ hω(ν +1)  

 
which is the same result, as expected. 
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7. When the electrons are in the same spin state, the spatial two-electron wave function 
must be antisymmetric under the interchange of the electrons. Since the two electrons 
do not interact, the wave function will be a product of the form  

 
1
2

(un (x1)uk (x2) − uk(x1)un (x2))  

 

with energy  
  
E = En + Ek =

h2π 2

2ma2 (n2 + k2) .  The lowest state corresponds to n = 1,  

k = 2, with n2 + k2 = 5 . The first excited state would normally be the (2,2) state, but this 
is not antisymmetric, so that we must choose (1,3) for the quantum numbers. 
 
8. The antisymmetric wave function is of the form 
 

N
π
μ 2 e− μ 2(x1 − a)2 /2e−μ 2 (x2 + a)2 / 2 − e− μ 2(x1 + a)2 /2e−μ 2 (x2 − a)2 / 2( )

= N
π
μ 2 e−μ 2a 2

e− μ 2(x1
2 + x2

2 )/ 2 e− μ 2(x2 − x1 )a − e− μ 2(x1 − x2 )a( )
 

 
Let us introduce the center of mass variable X and the separation x  by 
 

   x1 = X +
x
2

; x2 = X −
x
2

 

 
The wave function then becomes 
 

   ψ = 2N
π
μ 2 e− μ 2a2

e−μ 2X 2

e−μ 2x 2 / 4 sinhμ 2ax  

To normalize, we require 
 
 dX dx |ψ |2

−∞

∞

∫−∞

∞

∫ =1 
 
Some algebra leads to the result that 
 

   N
π
μ 2 =

1
2

1

1− e−2μ 2a2
 

 
The second factor is present because of the overlap. If we want this to be within 1 part in 
a 1000 away from 1, then we require that e−2(μa )2

≈1/ 500 , i.e. µa = 1.76, or a = 0.353 

nm
  
Rfi =

4
π

(Zα)3 d2

a0
2

mc2

2ΔE
mc 2

h
. 

.  
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9. Since 
 

ψ = 2
e−(μa)2

1− e−2(μa )2
e−(μX )2

e−(μx )2 / 4 sinhμ 2ax  

 
the probability density for x is obtained by integrating the square of  ψ over all X. This is 
a simple Gaussian integral, and it leads to 
 

  P(x)dx =
2e−2(μa )2

1− e−2(μa)2

π
2

1
μ

e−(μx )2 /2 sinh2 (μ 2ax)dx  

 
It is obvious that 
 
   〈X〉 = dXXe−2(μX )2

= 0
−∞

∞

∫   
 
since the integrand os an odd function of X. 
 
10. If we denote µx by y, then the relevant quantities in the plot are e−y 2 / 2 sinh2 2y  and  

e−y 2 / 2 sinh2(y / 2). 
 

11. Suppose that the particles are bosons. Spin is irrelevant, and the wave function for the 
two particles is symmetric. The changes are minimal. The wave function is 

 

ψ = 2N
π
μ 2 e− μ 2a2

e−μ 2X 2

e−μ 2x 2 / 4 coshμ 2xa  

 
with 
 

   N
μ 2

π
=

1
2

1

1+ e−2μ 2a 2
 

 
and 
 

  P(x) =
2e−2μ 2a2

1 + e−2μ 2a2

π
μ 2

e− μ 2x 2 /2 cosh2(μ 2ax)  

 
The relevant form is now P(y) = e− y 2 /2 cosh2 κy  which peaks at y = 0 and has extrema at 
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−y coshκy + 2κ sinhκy = 0 , that is, when 
 
    tanhκy = y / 2κ  
 
which only happens if 2κ 2 > 1. Presumably, when the two centers are close together, then 
the peak occurs in between; if they are far apart, there is a slight rise in the middle, but 
most of the time the particles are around their centers at ± a. 
 
12. The calculation is almost unchanged. The energy is given by 
 

  
E = pc =

hπc
L

n1
2 + n2

2 + n3
2   

 
so that in Eq. (13-58) 
 
    R

2 = n1
2 + n2

2 + n3
2 = (EF /hcπ )2 L2  

 
Thus 
 

   
  
N =

π
3

EFL
πhc

⎛ 
⎝ 

⎞ 
⎠ 

3

 

 
and 
 

   
  
EF = πhc

3n
π

⎛ 
⎝ 

⎞ 
⎠ 

1/3

 

 
13. The number of triplets of positive integers {n1,n2,n3} such that 
 

  
n1

2 + n2
2 + n3

2 = R2 =
2mE
h2π 2 L2  

 
is equal to the numbers of points that lie on an octant of a sphere of radius R, within a 

thickness of Δn = 1. We therefore need 
1
8

4πR2dR .  To translate this into E we use  

  2RdR = (2mL2 / h2π 2)dE . Hence the degeneracy of states is 
 

 
  
N(E)dE = 2 ×

1
8

4πR(RdR) = L3 m 2m
h3π 2 E dE  

 
To get the electron density we had to multiply by 2 to take into account that there are two 
electrons per state. 
 
14. Since the photons are massless, and there are two photon states per energy state, this 

problem is identical to problem 12. We thus get  
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n1

2 + n2
2 + n3

2 = R2 =
E

hπc
⎛ 
⎝ 

⎞ 
⎠ 

2

L2  

 
or   R = EL /hπc . Hence 
 

  
  
N(E)dE =

1
8

4πR2dE = L3 E 2

h3c 3π 2 dE  

 
15. The eigenfunctions for a particle in a box of sides L1,L2, L3 are of the form of a 

product  
 

u(x,y,z) =
8

L1L2L3
sin

n1πx
L1

sin
n2πy

L2
sin

n3πz
L3

 

 
and the energy for a massless partticle, for which E = pc is 
 

  
  
E = hcπ

n1
2

L1
2 +

n2
2

L2
2 +

n3
2

L3
2 = hcπ

n1
2 + n2

2

a2 +
n3

2

L2  

 
Note that a << L . thus the low-lying states will have n1 = n2 = 1, with n3 ranging from 1 
upwards. At some point the two levels n1 = 2, n2=1 and n1=1 and n2 = 2 will provide a 
new “platform” upon which n3 = 1,2,3,… are stacked. With a = 1 nm and L = 103 nm, for 
n1 = n2 = 1 the n3 values can go up to 103 before the new platform starts. 
 
16. For nonrelativistic particles we have 
 

  
E =

h2

2m
n1

2 + n2
2

a2 +
n3

2

L2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
17. We have 
 

  
EF =

h2π 2

2M
3n
π

⎛ 
⎝ 

⎞ 
⎠ 

2/ 3

 

 
where M is the nucleon mass, taken to be the same for protons and for neutrons, and 

where n is the number density. Since there are Z protons in a volume 
4π
3

r0
3 A , the number 

densities for protons and neutrons are 
 

  np =
3

4πr0
3

Z
A

; nn =
3

4πr0
3

A − Z
A
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Putting in numbers, we get 
 

   EFp = 65
Z
A

⎛ 
⎝ 

⎞ 
⎠ 

2/ 3

MeV ; EFn = 65 1−
Z
A

⎛ 
⎝ 

⎞ 
⎠ 

2/3

MeV  

 
For A = 208, Z = 82 these numbers become  EFp = 35MeV; EFn = 47MeV .  

 
 


