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CHAPTER 14 
 
1. The spin-part of the wave function is the triplet 
 

ms = 1 χ +
(1)χ +

(2)

ms = 0
1
2

(χ +
(1)χ −

(2) + χ −
(1)χ +

(2))

ms = −1 χ−
(1)χ−

(2)

 

 
This implies that the spatial part of the wave function must be antisymetric under the 
interchange of the coordinates of the two particles. For the lowest energy state, one of the 
electrons will be in an n = 1, l = 0 state. The other will be in an n = 2, l = 1, or l = 0 state. 
The possible states are 
 

   

1
2

u100 (r1)u21m(r2 ) − u100 (r2)u21m (r1)( ) m = 1,0,−1

1
2

u100 (r1)u200 (r2 ) − u100 (r2)u200 (r1)( )
 

 
Thus the total number of states with energy E2 + E1 is 3 x 4 = 12 
 
2. For the triplet state, the first order perturbation energy shifts are given by 
 

ΔE21m = d3r1∫∫ d3r2 |
1
2

u100 (r1)u21m(r2 ) − u100 (r2)u21m (r1)( )|2
e2

4πε0 | r1 − r2 |

ΔE200 = d3r1∫∫ d3r2 |
1
2

u100(r1)u200 (r2) − u100 (r2)u200 (r1)( )|2
e2

4πε0 | r1 − r2 |

 

The l = 1 energy shift uses tw-electron wave functions that have an orbital angular 
momentum 1. There is no preferred direction in the problem, so that there cannot be any 
dependence on the eigenvalue of Lz. Thus all three m values have the same energy. The l 
= 0 energy shift uses different wave functions, and thus the degeneracy will be split. 
Instead of a 12-fold degeneracy we will have a splitting into 9 + 3 states.  
 The simplification of the energy shift integrals reduces to the simplification of the 
integrals in the second part of Eq. (14-29). The working out of this is messy, and we only 
work out the l = 1 part. 
The integrals   d3r1∫∫ d3r2 → r1

2dr10

∞

∫ r2
2dr20

∞

∫ dΩ1 dΩ2∫∫  and the angular parts only come 
through the u210  wave function and through the 1/r12 term. We use Eqs. (14-26) – (14-29) 
to get, for the direct integral 
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e2

4πε0

r1
2dr10

∞

∫ r2
2dr20

∞

∫ R10(r1)
2 R21(r2)

2

dΩ1∫ dΩ2∫ 1
4π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 3
4π

cosθ2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

PL(cosθ12)
r<

L

r>
L +1

L
∑

 

 
where θ12 is the angle between r1 and r2. We make use of an addition theorem which 
reads 
 

PL(cosθ12) = PL (cosθ1)PL (cosθ2)

+ 2
(L − m)!
(L + m)!m =1

∑ PL
m (cosθ1)PL

m(cosθ2)cos mφ2
r<

L

r>
L +1

 

 
Since the sum is over m = 1,2,3,…the integration over φ2 eliminates the sum, and for all 
practical purposes we have 
 

PL
L
∑ (cosθ12)

r<
L

r>
L +1 = PL

L
∑ (cosθ1)PL(cosθ2 )

r<
L

r>
L +1  

 
The integration over dΩ1 yields 4πδL0  and in our integral we are left with 

dΩ2∫ (cosθ2)
2 = 4π / 3.  The net effect is to replace the sum by  1 / r> to be inserted into 

the radial integral. 
(b) For the exchange integral has the following changes have to be made: In the radial 
integral,  
 
 R10(r1)

2 R21(r2)
2 → R10(r1)R21(r1)R10(r2 )R21(r2 ) 

 
In the angular integral 
 

  
1
4π

3
4π

(cosθ2)
2 →

3
(4π )2 cosθ1 cosθ2  

 
In the azimuthal integration again the m ≠ 0 terms disappear, and in the rest there is a 
product of  two integrals of the form 
 

  dΩ
3

4π∫ cosθPL (cosθ) =
4π
3

δL1  

 

The net effect is that the sum is replaced by  
1
3

r<

r>
2  inserted into the radial integral. 

For the l = 0 case the same procedure will work, leading to  
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e2

4πε0
r1

2dr10

∞

∫ r2
2dr20

∞

∫ 1
r>

R10(r1)R20(r2 )[ ]R10(r1)R20(r2) − R10(r2)R20(r1)[ ] 

 
The radial integrals are actually quite simple, but there are many terms and the 

calculation is tedious, without teaching us anything about physics.  
To estimate which of the(l = 0,l = 0) or the (l = 0, l = 1) antisymmetric 

combinations has a lower energy we approach the problem physically. In the two-
electron wave function, one of the electrons is in the n = 1, l = 0 state. The other electron 
is in an n = 2 state. Because of this, the wave function is pushed out somewhat. There is 
nevertheless some probability that the electron can get close to the nucleus. This 
probability is larger for the l = 0 state than for the l = 1 state. We thus expect that the state 
in which both electrons have zero orbital angular momentum is the lower-lying state.  

 
3. In the ground state of ortho-helium, both electroNs have zero orbital angular 

momentum. Thus the only contributions to the magnetic moment come from the 
electron spin. An electron interacts with the magnetic field according to  

 

H = −
ge

2me
s1 •B −

ge
2me

s2 • B = −
ge

2me
S• B  

 

The value of g is 2, and thus coefficient of B takes on the values 
 
−

eh

2me
m1 , where  

m1 = 1,0,-1.  
 
4. We assume that ψ   is properly normalized, and is of the form 
 
    |ψ 〉 =|ψ 0 〉 + ε | χ〉  
 
The normalization condition implies that 
 
 〈ψ |ψ 〉 =1 = 〈ψ 0 |ψ 0 〉 + ε * 〈χ |ψ 0〉 + ε〈ψ 0 | χ〉 +εε *〈χ | χ〉  
 
so that 
 
  ε * 〈χ |ψ 0 〉 + ε〈ψ 0 | χ〉 +εε *〈χ | χ〉 = 0 
 
Now 
 

 

〈ψ | H |ψ 〉 = 〈ψ 0 + εχ | H |ψ 0 +εχ〉

= E0 + ε * E0〈χ |ψ 0〉 +εE0〈ψ 0 | χ〉+ |ε |2 〈χ | H | χ〉

= E0 + | ε |2 〈χ | H − E0 | χ〉
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where use has been made of the normalization condition.Thus the expectation value of H 
differs from the exact value by terms of order |ε|2. 
 
5. We need to calculate  
 

 

  

E(α) =

4πr2dre−αr −
h2

2m
d2

dr 2 +
2
r

d
dr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

1
2

mω 2r2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e−αr

0

∞

∫
4πr 2dre−2αr

0

∞

∫
 

 
With a little algebra, and using dyy n

0

∞

∫ e−y = n!, we end up with 
 

  
  
E(α) =

h2α 2

2m
+

3mω 2

2α 2  

 
This takes its minimum value when dE(α ) / dα = 0 . This is easily worked out, and leads 
to   α

2 = 3mω / h . When this is substituted into E(α) we get 
 
      Emin = 3hω  
 

The true ground state energy is bound to lie below this value. The true value is 
  

3
2

hω  so 

that our result is pretty good. 
 
4. The Schrodinger equation for a bound state in an attractive potential,  with l = 0 reads 
 

  
−

h2

2m
d2

dr 2 +
2
r

d
dr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ψ (r)− |V0 | f (

r
r0

)ψ (r) = −EBψ (r)  

 
With the notation  x = r/r0 , u0(x) = x ψ(x), 

 
λ = 2m | V0 | r0

2 /h2; α 2 = 2mEB r0
2 / h2  this 

becomes  

  
d2u0 (x)

dx 2 −α 2u0 (x) + λf (x)u0(x) = 0 

 
Consider, now an arbitrary function w(x) which satisfies w(0)= 0 (like u0(0)) , and define 
 

  η[w] =

dx
dw(x)

dx
⎛ 
⎝ 

⎞ 
⎠ 

2

+ α 2w2(x)
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 0

∞

∫
dxf (x)w2 (x)

0

∞

∫
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We are asked to prove that if  η = λ + δλ  and w (x) = u0(x) + δ u(x) , then as δ u(x)  0, 
δλ  0.  We work to first order in δu(x) only. Then the right hand side of the above 
equation, written in abbreviated form becomes 
 

u0'
2 +α 2u0

2( )+ 2 u0 'δu' +α 2u0δu( )∫∫
f u0

2 + 2u0δu( )∫
=

=
u0 '2 +α 2u0

2( )∫
fu0

2∫
− 2

u0 'δu' +α 2u0δu( )∫
fu0

2∫
u0'

2 +α 2u0
2( )∫

fu0
2∫

 

 
In the above, the first term is just η[u0], and it is easy to show that this is just λ. The 
same form appears in the second term. For the first factor in the second term we use 
 

   dx u0 'δu'( )∫ = dx
d
dx∫ u0'δu( )− dxu0' 'δu∫  

 
The first term on the right vanishes because the eigenfunction vanishes at infinity and 
because δu(0) = 0. Thus the second term in the equation for η[w] becomes 
 

   
2
fu0

2∫
δu −u0' ' +α 2u0 − λfu0[ ]∫   

 
Thus η → λ  as δu  0. 
 
5. We want to minimize 〈ψ | H |ψ 〉 = ai

*

i, j
∑ H ijaj   subject to the condition that  

〈ψ |ψ 〉 = ai
*

i
∑ ai =1.  The method of Lagrange multipliers instructs us to minimize 

 
  F(ai

*,ai) = ai
*

ij
∑ H ijaj − λ ai

*

i
∑ ai  

 
The condition is that ∂F / ∂ai

* = 0 . The condition implies that 
 
    H ij

j
∑ a j = λai  

Similarly ∂F / ∂ai = 0  implies that 
 
    ai

*

i
∑ H ij = λaj

*  

 
Thus the minimization condition yields solutions of an eigenvalue equation for H. 
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6. Consider the expectation value of H evaluated with the normalized trial wave 

function  
 

ψ (x) =
β
π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2

e− β 2x 2 / 2  

 
Then an evaluation of the expectation value of H yields, after some algebra, 
 

 

  

E(β ) = dxψ *
−∞

∞

∫ (x) −
h2

2m
d2

dx 2 +V (x)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ψ (x)

=
β
π

dx
h2

2m
(β 2 − β 4 x 2)e− β 2x 2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

−∞

∞

∫ +
β
π

dxV (x)e− β 2x 2

−∞

∞

∫

=
h2β 2

2m
+

β
π

dxV (x)e−β 2x 2

−∞

∞

∫

  

 
The question is: can we find a value of β  such that this is negative. If so, then the true 
value of the ground state energy will necessarily be more negative. We are given the fact 
that the potential is attractive, that is, V(x) is never positive. We write V(x) = - |V(x)| and 
ask whether we can find a value of β such that 
 

  

β
π

dx | V (x) | e−β 2x 2

−∞

∞

∫ >
h2β 2

2m
 

 
For any given |V(x)| we can always find a square “barrier” that is contained in the positive 
form of |V(x)|. If the height of that barrier is V0 and it extends from –a to +a , for 
example, then the left side of the above equation is always larger than 
 

    L(β ) =
β
π

V0 dxe−β 2x 2

−a

a

∫  

 
Our question becomes: Can we find a β such that 
 

    
  

4m
h2 L(β) > β 2  

 
It is clear that for small β  such that β2a2 << 1, the left hand side is approximated by  

  
2a

β
π

4mV0

h2 . This is linear in β so that we can always find a β small enough so that the 

left hand side is larger than the right hand side. 
 
7. The data indicates a resonance corresponding to a wavelength of 20.61 nm. This 

corresponds to an energy of  
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h
c
λ

=
2π (1.054 ×10−34 J.s)(3 ×108 m / s)

(20.61×10−9 m)(1.602 ×10−19J / eV )
= 60.17eV  

 
above the ground state. The ground state has energy – 78.98 eV, while the ground state of 
He+ has a binding energy of a hydrogenlike atom with Z = 2, that is, 54.42 eV. This 
means that the ionization energy of He is (78.98-54.42)eV = 24.55 eV above the ground 
state. Thus when the (2s)(2p) state decays into He+ and an electron, the electron has an 
energy of  (60.17 – 24.55)eV = 35.62 eV. This translates into 
v = 2E / m = 3.54 ×106 m / s . 
The first excited state of the He+ ion lies 54.42(1-1/4)=40.82 eV above the ground state of 
He+ , and this is above the (2s)(2p) state.  
 
 
8. To calculate the minimum of  
 

E(α1,α2, ...) =
〈ψ (α1,α2, ...) | H |ψ (α1,α 2,...)〉

〈ψ (α1,α 2,...) |ψ (α1,α2, ...)〉
 

 
we set ∂E / ∂αi = 0, i =1,2,3.... This implies that 

 

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉

〈ψ |ψ 〉
−

〈ψ | H |ψ 〉 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂α i

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

〈ψ |ψ 〉2 = 0  

 
This is equivalent to 
 

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉 =

E(α1,α2, ..) 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Let us now assume that H depends on some parameter λ.. To calculate the minimum we 
must choose our parameters αi  to depend on λi.  We may rewrite the starting equation by 
emphasizing the dependence of everything on λ, as follows 
 
   E(λ )〈ψ (λ) |ψ(λ )〉 = 〈ψ (λ) | H |ψ(λ )〉  
 

Let us now differentiate with respect to λ , noting that  
∂

∂λ
=

∂αi

∂λi
∑ ∂

∂α i
 

We get 
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dE(λ)
dλ

〈ψ (λ ) |ψ (λ)〉 + E(λ )
∂αi

∂λi
∑ 〈

∂ψ
∂αi

|ψ (λ )〉 + 〈ψ (λ ) |
∂ψ (λ)

∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

= 〈ψ (λ ) |
∂H
∂λ

|ψ (λ)〉 +
∂αi

∂λi
∑ 〈

∂ψ
∂α i

| H |ψ (λ )〉 + 〈ψ (λ) | H |
∂ψ (λ)

∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Since we have shown that 
 

   

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉 =

E(α1,α2, ..) 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
we obtain the result that  
 

   
dE(λ)

dλ
〈ψ (λ ) |ψ (λ)〉 = 〈ψ (λ ) |

∂H
∂λ

ψ (λ)〉  

 
With normalized trial wave functions we end up with 
 

  
dE(λ)

dλ
= 〈ψ (α1,α2,..) |

∂H
∂λ

|ψ (α1,α2,..)〉  

 
A comment: The Pauli theorem in Supplement 8-A has the same form, but it deals with 
exact eigenvalues and exact wave functions. Here we find that the same form applies to 
approximate values of the eigenvalue and eigenfunctions,  provided that these are chosen 
to depend on parameters {α} which minimize the expectation value of the Hamiltonian 
(which does not depend on these parameters). 
 
 
 
9. With the trial wave function  
 

ψ (x) =
β
π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2

e− β 2x 2 / 2  

 
we can calculate  
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E(β ) =
β
π

dxe −β 2x 2 /2

−∞

∞

∫ −
h2

2m
d2

dx 2 + λx 4⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ e−β 2x 2 /2

=
β
π

dxe−β 2x 2

−∞

∞

∫
h2

2m
(β 2 − β 4 x2 ) + λx4⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

=
h2β 2

2m
+

3λ
4β 4

 

 

We minimize this by setting ∂E / ∂β = 0 , which leads to  
 
β 2 =

6mλ
h2

⎛ 
⎝ 

⎞ 
⎠ 

1/3

. When this is 

inserted into the expression for E, we get 
 

  
  
Emin =

h2

2m
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/3

(4λ)1/ 3 61/ 3

4
+

3
4

1
62/ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = 1.083

h2

2m
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/ 3

λ1/ 3  

 
This is quite close to the exact value, for which the coefficient is 1.060 
 
10. With the Hamiltonian  
 

H =
p2

2m
+ λx 4  

 
we first choose (1/2m) as the parameter in the Feynman-Hellmann theorem. This leads to  
 

  
  
〈0 | p2 | 0〉 =

∂Emin

∂(1 / m)
= 0.890(h4 mλ )1/3  

 
If we choose λ  as the parameter, then 
 

  
  
〈0 | x 4 | 0〉 =

∂Emin

∂λ
= 0.353

h2

2mλ
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/3

 

 
 
11. We start from 
 

E0 ≤
〈ψ | H |ψ 〉

〈ψ |ψ 〉
=

ai
*Hija j

ij
∑

ai
*ai

i
∑

 

 
We now choose for the trial vector one in which all the entries are zero, except that at the 
k-th position there is 1, so that ai = δ ik . This leads to 
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    E0 ≤ H kk      (k is not summed over) 
 
We may choose k = 1,2,3,…Thus the lowest eigenvalue is always smaller than the the 
smallest of the diagonal elements. 
 
12. With the system’s center of mass at rest, the two-body problem reduces to a one-body 

problem, whose Hamiltonian is 
 

H =
p2

2μ
+

1
2

μω 2r2  

 
where  µ is the reduced mass, whose value is m/2.  
(a) The two particles are in an l = 0 state which means that the ground state wave 
function only depends on r, which is symmetric under the interchange of the two particles 
(Recall that r =| r1 − r2 |). Thus the electrons must be in a spin-singlet state, and the 
ground state wave function is  
 
   ψ (r) = u0 (r)Xsinglet  
 
where  

   
  
u0 (r) = u0(x)u0 (y)u0(z) =

μω
hπ

⎛ 
⎝ 

⎞ 
⎠ 

3/4

e− μωr2 / 2h  

 
(We use u0(x) from Eq. (6-55)). 
(b) To proceed with this we actually have to know something about the solutions of the 

simple harmonic oscillator in three dimensions. The solution of this was required by 
Problem 13 in Chapter 8. We recall that the solutions are very similar to the hydrogen 
atom problem. There are two quantum numbers, nr and l. Here l = 0, so that the first 
excited singlet state must correspond to nr = 1. In the spin triplet state, the spin-wave 
function is symmetric, so that the spatial wave function must be antisymmetric. This 
is not possible with l = 0! 
To actually obtain the wave function for the first excited singlet state, we look at the 
equation for H(ρ), with H(ρ) of the form a + bρ2. Since 
 

  
d2H
dρ2 + 2(

1
ρ

− ρ)
dH
dρ

+ 4H = 0  

 
We get H (ρ)= 1-2ρ2/3 and the solution is  
 

   u1(r) = N (1−
2
3

ρ2 )e− ρ 2 /2  
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where 
  
ρ =

μω
h

⎛ 
⎝ 

⎞ 
⎠ 

1/2

r . The normalization constant is obtained from the requirement 

that 
 

   
  
N 2 r2

0

∞

∫ dr(1−
2μω
3h

r2 )2 e−μωr2 / h = 1 

 
so that 
 

   
  
N 2 =

6
π

μω
h

⎛ 
⎝ 

⎞ 
⎠ 

3/2

 

 
(c) The energy shift to lowest order is 
 

  
ΔE = r 2dr C

δ(r)
r 2

⎡ 
⎣ 

⎤ 
⎦ 0

∞

∫ N 2 (1−
2μω
3h

r 2)2e−μ ωr 2 /h = CN 2  

 
13. The energy is given by 
 

  
E =

1
2

Mredω
2 (R − R0 )2 +

h2J (J +1)
2Mred R2  

 
If we treat the vibrational potential classically, then the lowest state of energy is 
characterized by R = R0.  The vibrational motion changes the separation of the nuclei in 
the molecule. The new equilibrium point is given by R1 , which is determined by the 
solution of 
 

  
  

∂E
∂R

⎛ 
⎝ 

⎞ 
⎠ 

R1

= 0 = Mredω
2 (R1 − R0) −

J(J +1)h2

MredR1
3  

 
Let  R1 = R0 + Δ. Then to first order in Δ,  
 

    
  
Δ =

J(J +1)h2

Mred
2 ω 2R0

3  

 
If we now insert the new value of R1 into the energy equation, we find that only the 
rotational energy is changed (since the vibrational part is proportional to Δ2). The 
rotational energy is now 
 

  

  

Erot =
J(J +1)h2

2Mred R0
2(1 + 2Δ / R0)

=
J(J +1)h2

2Mred R0
2 − (J(J +1))2 h4

Mred
3 ω2R0

6
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The sign of the second term is negative. The sign is dictated by the fact that the rotation 
stretches the molecule and effectively increases its moment of inertia. 
 
14. In the transition J = 1  J = 0 we have 
 

  
ΔE =

h2

2Mred R2 (2 − 0) =
2πhc

λ
 

so that 

  

  

R2 =
hλ
2πc

1
Mred

=
hλ
2πc

1
Mnucleon

1
12

+
1
16

⎛ 
⎝ 

⎞ 
⎠ =

= (1.127 ×10−10 m)2
 

The internuclear separation is therefore 0.113 nm, and the momentu of inertia is 
 
   MredR

2 = 1.45 ×10−46 kg.m 2  
 
15. (a) The two nuclei are identical. Since the two-electron state is a spatially symmetric 

spin 0 state, we can ignore the electrons in discussing the lowest energy states of the 
molecule. In the ground state, the two protons will be in the symmetric L = 0 state, so 
that they must be in a spin-antisymmetric  S = 0 state.  
For the spin-symmetric S = 1 state, the spatial wave function must be antisymmetric, 
so that the lowest energy state will have L = 1. 
 
(b) The lowest energy state that lies above the ground state of L = 0, and is also a 
spin S = 0 state must have L = 2. Thus the change in energy in the transition is 
 

   
  
ΔE =

h2

M pR
2 2(2 +1) − 0( ) =

6h2

M pR
2 =

2πhc
λs

 

 
We have used the fact that the reduced mass of the two-proton system is Mp/2. 
For the S = 1 system, the state above the lowest L = 1 state is the L = 3 state, and here 
 

   
  
ΔE =

h2

M pR
2 3(3 +1) −1(1+1)( ) =

10h2

M pR
2 =

2πhc
λt

 

 
The singlet and triplet wavelengths are easily calculated once we know R. Note that 
these are not exactly the same, but can be looked up. 
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