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CHAPTER 15 
 
1. With the perturbing potential given, we get 
 

  
C(1s → 2 p) =

eE0

ih
〈φ210 | z |φ100〉 dte iωt

0

∞

∫ e−γt  

 
where ω = (E21 – E10). The integral yields 1 / (γ − iω)  so that the absolute square of 
C(1s 2p) is 
 

 
  
P(1s → 2 p) = e2E0

2 | 〈φ210 | z |φ100 〉 |2

h2(ω2 + γ 2 )
 

 

We may use  | 〈φ210 | z | φ100 〉 |2 =
215

310 a0
2   to complete the calculation. 

 
2. Here we need to calculate the absolute square of  
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Let us first consider the time integral. We will assume that at t = 0 the system starts in the 
ground state. The time integral then becomes 
 

 
dteiω 21 t

0

∞

∫ sinωt =
1
2i

dt{ei(ω 21 +ω )t

0

∞

∫ − ei(ω 21 −ω )t} =
ω

ω 2 − ω21
2  

We have used the fact that an finitely rapidly oscillating function is zero on the average. 
In the special case that ω  matches the transition frequency, one must deal with this 
integral in a more delicate manner. We shall exclude this possibility. 
 
The spatial integral involves 
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The probability is therefore 
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P12 =

λ
h

⎛ 
⎝ 

⎞ 
⎠ 

2 16a
9π 2

⎛ 
⎝ 

⎞ 
⎠ 

2 ω2

(ω21
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(b) The transition from the n = 1 state to the n = 3 state is zero. The reason is that the 
eigenfunctions for all the odd values of n are all symmetric about x = a/2, while the 
potential (x – a/2) is antisymmetric about that axis, so that the integral vanishes. In fact, 
quite generally all transition probabilities (even   even) and (odd  odd) vanish. 
 
(c) The probability goes to zero as ω  0. 
 
3. The only change occurs in the absolute square of the time integral. The relevant one is 
 

dteiω 21 t

−∞

∞

∫ e− t 2 /τ 2

= πe−ω 2τ 2 / 4  

 
which has to be squared. 
When τ  ∞  this vanishes, showing that the transition rate vanishes for a very slowly 
varying perturbation. 
 
4. The transition amplitude is 
 

  

Cn→ m =
λ
ih

〈m |
h

2Mω
(A + A+) | n〉 dte iω (m −n )t

0

∞

∫ e−αt cosω1t

= −iλ 1
2Mhω

δm,n −1 n +δm,n +1 n +1( ) α − iω(m − n)
(α − iω(m − n))2 +ω1

2

 

 
(a) Transitions are only allowed for m = n ± 1. 
 
(b) The absolute square of the amplitude is, taking into account that (m – n)2 = 1,  

 

  

λ2

2Mhω
(nδm,n −1 + (n +1)δm ,n+1)

α 2 + ω2

(α 2 +ω1
2 − ω2 )2 + 4α 2ω2  

 
When ω1  ω, nothing special happens, except that the probability  appears to exceed 
unity when  α2 gets to be small enough. This is not possible physically, and what this 
suggests is that when the external frequency ω 1  matches the oscillator frequency, we get 
a resonance condition as α approaches zero. Under those circumstances first order 
perturbation theory is not applicable.   
When α  0, then we get a frequency dependence similar to that in  problem 2. 

 
 

5. The two particles have equal and opposite momenta, so that 
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Ei = ( pc)2 + mi
2c4  

 
The integral  becomes 
 

 
  

1
(2πh)6 dΩ p2dpδ Mc 2 − E1( p) − E2 (p)( )

0

∞

∫∫  

 
and it is only the second integral that is of interest to us. Let us change variables to  
 
    u = E1(p) + E2(p) 
 
then 
 

  du =
pc 2

E1
dp +

pc2

E2
dp = (E1 + E2 )

pdp
E1E2

 

 
and the momentum integral is 
 

p2dpδ Mc 2 − E1( p) − E2( p)( )
0

∞

∫ = p
E1E2du

uc 2(m1 + m2 )c 2

∞

∫ δ(Mc2 − u)

= p
E1E2

Mc 4

 

 
To complete the expression we need to express p in terms of the masses. 
 
We have  
 

 
(m2c

2 )2 + p2c2 = (Mc2 − (m1c
2)2 + p2c 2 )2

= (Mc 2)2 − 2Mc 2E1( p) + (m1c
2)2 + p2c 2  

 
This yields 
 

   E1(p) =
(Mc 2)2 + (m1c

2 )2 − (m2c
2 )2

2Mc2  

 
and in the same way 
 

   E2( p) =
(Mc2 )2 + (m2c

2 )2 − (m1c
2)2

2Mc 2  

 
By squaring both sides of either of these we may find an expression for p2. 
The result of a short algebraic manipulation yields 
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 p2 =
c2

4M 2 (M − m1 − m2 )(M − m1 + m2)(M + m1 − m2 )(M + m1 + m2 ) 

 
6. The wave function of a system subject to the perturbing potential 
 

λ V(t) = V f(t) 
 

where f(0) = 0 and Limf (t) = 1
t→ ∞

, with df(t)/dt << ω f(t), is given by 

 
   

  
|ψ (t)〉 = Cm (t)e−iE m

0 t /h |
m
∑ φm 〉  

 
and to lowest order in V, we have 
 

  
  
Cm(t) =

1
ih

dt'eiωt'

0

t

∫ f (t')〈φm | V | φ0 〉  

 
where   ω = (Em

0 − E0
0) /h  and at time t = 0 the system is in the ground state. The time 

integral is 
 

dt'eiωt '

0

t

∫ f (t') = dt '
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t

∫ f (t')
d
dt'

eiωt'

iω
=
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iω

dt '
d
dt'

(eiωt '

0

t

∫ f (t')) −
1
iω

dt'eiωt'

0

t

∫ df (t') / dt'  

 
The second term is much smaller than the term we are trying to evaluate, so that we are 
left with the first term. Using f(0) = 0 we are left with eiωt / iω,  since for large times 
 f(t) = 1. When this is substituted into the expression for Cm(t) we get 
 

  Cm(t) = −
eiωt

(Em
0 − E0

0)
〈φm | V | φ0〉 m ≠ 0 

 
Insertion of this into the expression for |ψ(t)> yields 
 

  
  
|ψ (t)〉 =| φ0 〉 + e− iE0

0t / h 〈φm | V | φ0〉
E0

0 − Em
0

m ≠ 0
∑ |φm〉  

 
On the other hand the ground state wave function, to first order in V  is 
 

   | w0〉 =|φ0〉 +
〈φn | V | φ0 〉

E0
0 − En

0
n≠ 0
∑ | φn 〉  

 
It follows that 

  〈w0 |ψ (t)〉 = 1+ e− iE0
0t /h 〈φ0 | V | φm 〉〈φm |V |φ0 〉

(E0
0 − Em

0 )2
m ≠0
∑  
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Thus to order V the right side is just one.  
A fuller discussion may be found in D.J.Griffiths Introduction to Quantum Mechanics.i 
 
7. The matrix element to be calculated is 
 

  

M fi = −
e2

4πε0

d3r1∫ d3r2... d3rAΦ f
* (r1∫∫ ,r2, ..rA ) d3r∫

e−ip.r / h

V
1

| r − ri |i =1

Z

∑ ψ100(r)Φ i(r1,r2,..rA )
 

 
 

The summation is over I = 1,2,3,..Z , that is, only over the proton coordinates. The 
outgoing electron wave function is taken to be a plane wave, and the Φ  are the nuclear 
wave functions. Now we take advantage of the fact that the nuclear dimensions are tiny 
compared to the electronic ones. Since |rI | << |r |, we may write 
 

   
1

| r − ri |
=

1
r

+
r •ri

r3 + ... 

 
The 1/r term gives no contribution because 〈Φ f | Φ i〉 = 0. This is a short-hand way of 
saying that the initial and final nuclear states are orthogonal to each other, because they 
have different energies. Let us now define 
 

  d = d3r1∫
j =1

Z

∑ d3r2∫ .. d3rA∫ Φ f
* (r1,r2, ..)r jΦ i(r1,r2, ..) 

 
The matrix element then becomes 
 

   
  
M fi = −

e2

4πε0
d3r

e−ip .r /h

V∫ d• r
r 3 ψ100(r) 

 
The remaining task is to evaluate this integral.  
First of all note that the free electron energy is given by 
 

   
p2

2m
= ΔE + | E100 | 

 
where ΔE is the change in the nuclear energy. Since nuclear energies are significantly 
larger than atomic energy, we may take for p the value p = 2mΔE . 
To proceed with the integral we choose p to define the z axis, and write   p / h = k . We 
write the r coordinate in terms of the usual angles θ  and φ . We thus have 
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d3re−ip.r / h∫
d.r
r 3 ψ100 (r) =

dΩ dre−ikr cosθ

0

∞

∫∫ (dx sinθ cosφ + dy sinθ sinφ + dz cosθ)
2
4π

Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/ 2

e− Zr/ a0

 

 
The solid angle integration involves dφ

0

2π

∫ , so that the first two terms above disappear. 
We are thus left with 
 

 

1
π

Z
ao

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

2πdz d(cosθ) dr
0

∞

∫ cosθe− ikr cosθ

−1

1

∫ e−Zr /a0 =

1
π

Z
ao

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

2π (d.ˆ p ) d(cosθ)
cosθ

(Z / a0 + ikcosθ)−1

1

∫
 

 
The integral, with the change of variables cosθ = u becomes 
 

 

du
u

Z / a0 + iku−1

1

∫ =

du
u(Z / a0 − iku)
(Z / a0 )2 + k2u2 =

−1

1

∫

−ik du
u2

(Z / a0)
2 + k2u2−1

1

∫
−i
k2 dw

w2

(Z / a0 )2 + w2−k

k

∫ = −
2i
k2 k −

a0

Z
arctan(

a0k
Z

)⎡ 
⎣ 

⎤ 
⎦ 

 

 

Note now that  
  

ka0

Z
=

kh
mcZα

=
2ΔE

Z 2mc 2α 2 =
1
Z

ΔE
(13.6eV )

. If Z is not too large, then the 

factor is quite large, because nuclear energies are in the thousands or millions of electron 
volts. In that case the integral is simple: it is just  
 

  
  

1
π

Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

(2π )
d• p
p2 (−2ih) 1−

πhZ
2a0 p

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 
We evaluate the rate using only the first factor in the square bracket. We need the 
absolute square of the matrix element which is 
 

  
  
(−

e2

4πε0 V
)216πh2 Z

a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3
(d.p)2

p4  

The transition rate per nucleus is 
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Rfi =
2π
h

d3 pV
(2πh)3 δ(

p2

2m∫ − ΔE) | Mfi |2

=
2π
h

d3 pV
(2πh)3 δ(

p2

2m∫ − ΔE)
1
V

e2

4πε0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

16πh2 Z
a0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3
(d• p)2

p4

 

 
In carrying out the solid angle integration we get 
 

   dΩ(d• p)2∫ =
4π
3

| d |2 p2  

 

so that we are left with some numerical factors times dpδ(p2 / 2m − ΔE ) =
m

2ΔE∫  

Putting all this together we finally get 
 

   
  
Rfi =

16
3

(Zα)3 d2

a0
2

mc2

2ΔE
mc2

h
 

 
We write this in a form that makes the dimension of the rate manifest. 
 
 
 
 
  
 
  
 
 
 
 
  
 
 
 
 


