CHAPTER 15

1. With the perturbing potential given, we get
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3 a. to complete the calculation.

We may use (@ | 2| doo) =
2. Here we need to calculate the absolute square of
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Let us first consider the time integral. We will assume that at t = O the system starts in the

ground state. The time integral then becomes
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We have used the fact that an finitely rapidly oscillating function is zero on the average.

In the special case that @ matches the transition frequency, one must deal with this
integral in a more delicate manner. We shall exclude this possibility.

The spatial integral involves
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The probability is therefore
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(b) The transition from the n = 1 state to the n = 3 state is zero. The reason is that the
eigenfunctions for all the odd values of n are all symmetric about x = a/2, while the
potential (x — a/2) is antisymmetric about that axis, so that the integral vanishes. In fact,
quite generally all transition probabilities (even = even) and (odd = odd) vanish.

(c) The probability goes to zero as @ = 0.

3. The only change occurs in the absolute square of the time integral. The relevant one is
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which has to be squared.
When 7 =2 o this vanishes, showing that the transition rate vanishes for a very slowly
varying perturbation.

4. The transition amplitude is
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(a) Transitions are only allowed form=n £ 1.
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(b) The absolute square of the amplitude is, taking into account that (m — n)* = 1,
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When an = ®, nothing special happens, except that the probability appears to exceed
unity when o gets to be small enough. This is not possible physically, and what this
suggests is that when the external frequency @, matches the oscillator frequency, we get
a resonance condition as « approaches zero. Under those circumstances first order
perturbation theory is not applicable.

When « - 0, then we get a frequency dependence similar to that in problem 2.

5. The two particles have equal and opposite momenta, so that
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The integral becomes
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and it is only the second integral that is of interest to us. Let us change variables to

u = Ei(p) + E2(p)

then
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and the momentum integral is
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To complete the expression we need to express p in terms of the masses.
We have
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By squaring both sides of either of these we may find an expression for p.
The result of a short algebraic manipulation yields
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6. The wave function of a system subject to the perturbing potential
AV(t) = V()

where f(0) = 0 and Limf (t)=1, with df(t)/dt << @ f(t), is given by
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and to lowest order in V, we have
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where o= (E,) — E;) /7 and at time t = 0 the system is in the ground state. The time
integral is
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The second term is much smaller than the term we are trying to evaluate, so that we are
left with the first term. Using f(0) = 0 we are left with e'” /i, since for large times
f(t) = 1. When this is substituted into the expression for Cy(t) we get
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Insertion of this into the expression for |y(t)> yields
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On the other hand the ground state wave function, to first order in V is
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It follows that
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Thus to order V the right side is just one.
A fuller discussion may be found in D.J.Griffiths Introduction to Quantum Mechanics.i

7. The matrix element to be calculated is
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The summation is over | =1,2,3,..Z, that is, only over the proton coordinates. The
outgoing electron wave function is taken to be a plane wave, and the @ are the nuclear
wave functions. Now we take advantage of the fact that the nuclear dimensions are tiny
compared to the electronic ones. Since |r| | << |r |, we may write
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The 1/r term gives no contribution because (®, |®,)= 0. This is a short-hand way of

saying that the initial and final nuclear states are orthogonal to each other, because they
have different energies. Let us now define
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The matrix element then becomes
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The remaining task is to evaluate this integral.
First of all note that the free electron energy is given by
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where AE is the change in the nuclear energy. Since nuclear energies are significantly
larger than atomic energy, we may take for p the value p=+2mAE .

To proceed with the integral we choose p to define the z axis, and write p/7=k. We
write the r coordinate in terms of the usual angles 8 and ¢ . We thus have



ipen dr
jd re *"" e 3 Vi (F)=

3/2
dQ| dre *?(d sin#cosg+ d, sin dsing +d Cosg_L_j 22
.[ Io ( X ¢ y ¢ z ) /_472_ aO

2
The solid angle integration involves fo d¢, so that the first two terms above disappear.
We are thus left with
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The integral, with the change of variables cosd= u becomes
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factor is quite large, because nuclear energies are in the thousands or millions of electron
volts. In that case the integral is simple: it is just
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We evaluate the rate using only the first factor in the square bracket. We need the
absolute square of the matrix element which is
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The transition rate per nucleus is
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In carrying out the solid angle integration we get
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so that we are left with some numerical factors times J.dpcS(p /12m— AE) = ‘, OAE

Putting all this together we finally get
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We write this in a form that makes the dimension of the rate manifest.



