
 
 
CHAPTER 16. 
 
1. The perturbation caused by the magnetic field changes the simple harmonic oscillator 
Hamiltonian  H0 to the new  Hamiltonian H 
 

   H = H 0 +
q

2m
B• L  

 
If we choose B to define the direction of the z axis, then the additional term involves B Lz.  
When H acts on the eigenstates of the harmonic oscillator, labeled by |nr, l, ml >, we get 
 

  
  
H | nr,l,ml 〉 = hω(2nr + l +

3
2

+
qBh

2m
ml

⎛ 
⎝ 

⎞ 
⎠ | nr,l,ml〉  

 
Let us denote qB/2m by ωB . Consider the three lowest energy states: 
 
nr = 0, l = 0, the energy is   3hω / 2. 

 
nr = 0, l = 1 This three-fold degenerate level with unperturbed energy  5hω / 2, splits into 
three nondegenerate energy levels with energies 

 

  

  

E = 5hω / 2 + hωB
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The next energy level has quantum numbers nr  = 2, l = 0 or nr = 0, l = 2. We thus have a 
four-fold degeneracy with energy  7hω / 2. The magnetic field splits these into the levels 
according to the ml value. The energies are 

 

  

  

E = 7hω / 2 + hωB
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nr =1,0 

 
2, The system has only one degree of freedom, the angle of rotation θ. In the absence of 
torque, the angular velocity ω = dθ/dt  is constant. The kinetic energy is  

E =
1
2

Mv2 =
1
2

(M 2v 2R2)
MR2 =

1
2

L2

I
 

 



where L = MvR is the angular momentum, and I the moment of inertia. Extending this to 
a quantum system implies the replacement of L2 by the corresponding operator. This 
suggests  that  
 

    H =
L2

2I
 

 
(b) The operator L can also be written as p x R.  
When the system is placed in a constant magnetic field, we make the replacement 
 

 p → p− qA = p− q(−
1
2

r × B) = p +
q
2

r × B  

 
The operator r represents the position of the particle relative to the axis of rotation, and 
this is equal to R. We may therefore write 
 

 L = R × p → R × (p +
q
2

R × B) = L +
q
2

R(R•B) − R2B( ) 

 
If we square this, and only keep terms linear in B , then it follows from (R.B) = 0, that 
 

 H =
1
2I

L2 − qR2L• B( )=
L2

2I
−

q
2M

L • B =
L2

2I
−

qB
2M

Lz  

 
The last step is taken because we choose the direction of B to define the z axis. 
 
The energy eigenvalues are therefore 
 

   
  
E =

h2l(l +1)
2I

−
qBh

2M
ml  

 
where ml = l, l − 1, l − 2,...− l . Note that the lowest of the levels corresponds to ml = l. 
 
3. In the absence of  a magnetic field, the frequency for the transition n = 3 to n = 2 is 

determined by 
 

2πhν =
1
2

mc2α 2 1
4

−
1
9

⎛ 
⎝ 

⎞ 
⎠  

 
so that 
 

           
  
ν =

mc2α 2

4πh
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The lines with Δml = ± 1 are shifted upward (and downward)  relative to the Δml = 0 
(unperturbed ) line. The amount of the shift is given by 
 

    
  
hΔν =

ehB
2mc

 

 
so that 
 

        Δν =
eB

4πmc
 

 
Numerically ν = 0.4572 x 1015 Hz and with B = 1 T, Δν = 1.40 x 1010 Hz. Thus the 
frequencies are ν and ν(1 ± Δν / ν). Thus the wavelengths are c /ν and  
  (c / ν)(1m Δν /ν) . This leads to the three values λ = 655.713 nm, with the other lines 
shifted down/up by 0.02 nm. 
 
 
 
4. The Hamiltonian is 
 

   H =
1

2m
p− qA( )2

− qE• r  

 
Let us choose E = (E, 0, 0 ) and B = ( 0, 0, B), but now we choose the gauge such  that 
A = (0, Bx, 0). This leads to  
 

  
H =

1
2m

px
2 + (py − qBx)2 + pz

2( )− qEx =

= 1
2m

( px
2 + py

2 + pz
2 − 2qBpy x + q2B2x 2 − 2mqEx)

 

 
Let us now choose the eigenstate to be a simultaneous eigenstate of H, pz  (with 
eigenvalue  zero) and py  (with eigenvalue   hk ). Then the Hamiltonian takes the form 
 

 
  
H =

h2k2

2m
+

1
2m

px
2 +

1
2m

qBx − hk − mE / B( )2
−

1
2m

hk + mE / B)2( ) 

 
This is the Hamiltonian for a shifted harmonic oscillator with a constant energy added on. 
We may write this in the form 
 

  
  
H = −

hkE
B

−
mE 2

2B2 +
1
2

m
q2B2

m2
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⎠ ⎟ 

2

 

 
Thus the energy is 
 



  
  
E = −

hkE
B

−
mE 2

2B2 + h
qB
m

⎛ 
⎝ 

⎞ 
⎠ (n +

1
2

)  

 
with n = 0,1,2,3,… 
 
5. We first need to express everything in cylindrical coordinates.  Since we are dealing 
with an infinite cylinder which we choose to be aligned with the z axis,, nothing depends 
on z, and we only deal with the ρ and φ  coordinates. We only need to consider the 
Schrodinger  equation in the region  a ≤ ρ ≤ b.  
 

 We start with H =
1

2me
Πx

2 + Πy
2( ) 

where 
 

  Πx = −ih
∂
∂x

+ eAx; Πy = −ih
∂
∂y

+ eAy  

 
To write this in cylindrical coordinates we use Eq. (16-33) and the fact that for the 
situation at hand 
 

  Ax = −sinϕ Aϕ ; Ay = cosϕ Aϕ; Aϕ =
Φ

2πρ
 

 
where Φ is the magnetic flux in the interior region. When all of this is put together, the 
equation 
   Hψ (ρ,ϕ) = Eψ (ρ,ϕ) 
 
takes the form 
 

 
  
Eψ = −

h2

2me

∂ 2ψ
∂ρ2 +

1
ρ

∂ψ
∂ρ

+
1
ρ2

∂ 2ψ
∂ϕ 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ − 2ihe

Φ
2π

1
ρ2

∂ψ
∂ϕ

+
e2

ρ2
Φ
2π
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2

ψ  

 
To solve this, we use the separation of variables technique. Based on previous 
experience, we write 
 
    ψ (ρ,ϕ) = f (ρ)eimϕ  
 
The single-valuedness  of the solution implies that m = 0,±1,±2,±3,… 
 
With the notation    k

2 = 2meE / h2  the equation for f(ρ) becomes 
 

  
  
−k 2 f (ρ) =

d2 f
dρ2 +

1
ρ

df
dρ

− m +
eΦ
2πh

⎛ 
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⎞ 
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2

f  

 



If we now introduce z = kρ  and  
 
ν = m +

eΦ
2πh

 the equation takes the form 

 

  
d2 f (z)

dz2 +
1
z

df (z)
dz

+ 1−
ν 2

z2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ f (z) = 0  

 
This is Bessel’s equation. The most general solution has the form 
 
  f (ρ) = AJν (kρ) + BNν (kρ)  
 
If we now impose the boundary conditions  f (ka) = f (kb) = 0  we end up with  
 
   AJν (ka) + BNν (ka) = 0 
 
and 
 
   AJν (kb) + BNν (kb) = 0 
 
The two equations can only be satisfied if 
 
  Jν (ka)Nν (kb) − Jν (kb)Nν (ka) = 0  
 
This is the eigenvalue equation,  and the solution k clearly depends on the order ν of the 
Bessel functions, that is, on the flux enclosed in the interior cylinder. 
 
 
 
 
 
 
 
    
 
    

  
  
 


