CHAPTER 16.

1. The perturbation caused by the magnetic field changes the simple harmonic oscillator
Hamiltonian Hg to the new Hamiltonian H
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If we choose B to define the direction of the z axis, then the additional term involves B L,.
When H acts on the eigenstates of the harmonic oscillator, labeled by |n;, I, m; >, we get
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Let us denote gB/2m by ws . Consider the three lowest energy states:
n.=0,1=0,the energy is 3w /2.

nr =0, I = 1 This three-fold degenerate level with unperturbed energy 5% /2, splits into
three nondegenerate energy levels with energies
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The next energy level has quantum numbers n, =2, 1=0o0rn, =0, | = 2. We thus have a
four-fold degeneracy with energy 77w /2. The magnetic field splits these into the levels
according to the m, value. The energies are
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2, The system has only one degree of freedom, the angle of rotation 6. In the absence of
torque, the angular velocity = dédt is constant. The kinetic energy is
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where L = MVR is the angular momentum, and | the moment of inertia. Extending this to
a quantum system implies the replacement of L? by the corresponding operator. This
suggests that

(b) The operator L can also be written as p x R.
When the system is placed in a constant magnetic field, we make the replacement

g
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P—>p-0A=p-q(-5rxB)=p+5rxB

The operator r represents the position of the particle relative to the axis of rotation, and
this is equal to R. We may therefore write

L=R><p—>R><(p+%RxB)=L+%(R(ROB)—RZB)

If we square this, and only keep terms linear in B, then it follows from (R.B) = 0, that
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The last step is taken because we choose the direction of B to define the z axis.

The energy eigenvalues are therefore
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where m, =1 -11-2,...— 1. Note that the lowest of the levels corresponds to m; = I.

3. Inthe absence of a magnetic field, the frequency for the transitionn=3ton=2 s
determined by
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The lines with Am; = + 1 are shifted upward (and downward) relative to the Am; =0
(unperturbed ) line. The amount of the shift is given by

hAv=iB
2mc
so that
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Numerically v=0.4572 x 10" Hz and with B =1 T, Av= 1.40 x 10'° Hz. Thus the
frequencies are vand W1+ Av/v). Thus the wavelengths are ¢ /vand

(c/v)(LF Av/v). This leads to the three values A = 655.713 nm, with the other lines
shifted down/up by 0.02 nm.

4. The Hamiltonian is
H === (p-GA) —qEer
2m

Let us choose E = (E, 0,0) and B = (0, 0, B), but now we choose the gauge such that
A = (0, Bx, 0). This leads to

H =2i (p? +(p, —aBX)’ + p! )~ gExX =
m
= ﬁ(pi + p; + p; —20Bp, x + *B*x* — 2mqEXx)
Let us now choose the eigenstate to be a simultaneous eigenstate of H, p, (with

eigenvalue zero) and p, (with eigenvalue 7k). Then the Hamiltonian takes the form
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This is the Hamiltonian for a shifted harmonic oscillator with a constant energy added on.
We may write this in the form
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Thus the energy is



E=- hEE mE h(q—B)(n+%)

withn=0,1,2,3,...

5. We first need to express everything in cylindrical coordinates. Since we are dealing
with an infinite cylinder which we choose to be aligned with the z axis,, nothing depends
on z, and we only deal with the pand ¢ coordinates. We only need to consider the
Schrodinger equation in the region a< p<bh.
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We start withH = >
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To write this in cylindrical coordinates we use Eq. (16-33) and the fact that for the
situation at hand
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where @ is the magnetic flux in the interior region. When all of this is put together, the

equation
Hy(gp) =Ew(pp)

takes the form
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To solve this, we use the separation of variables technique. Based on previous
experience, we write

v(p.e) = f(p)e™
The single-valuedness of the solution implies that m = 0,£1,+2,+3, ...

With the notation k* = 2m_E /#’ the equation for () becomes
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If we now introduce z=kp and v=m +ﬂ the equation takes the form
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This is Bessel’s equation. The most general solution has the form
f(p) =AJ, (ko) + BN, (kp)
If we now impose the boundary conditions f(ka) = f (kb) =0 we end up with
AJ,(ka) +BN (ka)=0
and
AJ, (kb) + BN (kb)=0
The two equations can only be satisfied if
J,(ka)N, (kb)—J (kb)N  (ka) =0

This is the eigenvalue equation, and the solution k clearly depends on the order v of the
Bessel functions, that is, on the flux enclosed in the interior cylinder.



