
 
 
CHAPTER 17 
 
1. We start with Eq. (17-19) . We define k  as the z axis. This means that the 

polarization vector, which is perpendicular to k  has the general form 
 

ε (λ ) = ˆ i cosϕ + ˆ j sinϕ  
 
This leads to  
 

    
  
B = ∇ × A = −i

h

2ε0ωV
kˆ k × (ˆ i cosϕ + ˆ j sinϕ) = B0(ˆ j cosϕ − ˆ i sinϕ) 

 
 
We are now interested in  
 

 
  
M = B0

gp − gn

2
h

2
X 0{(σ y

( p ) −σ y
(n ))cosϕ − (σ x

( p) − σ x
(n))sinϕ}X1

m  

 
The operators are of the form 
 

 σycosϕ −σ xsinϕ =
0 −icosϕ

icosϕ 0
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

0 sinϕ
sinϕ 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is simple to work out the “bra” part of the scalar product 
 
 

 
1
2

χ +
( p)χ −

(n) − χ −
( p)χ +

(n)( ) 0 −ie −iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
p

−
0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
n

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
with the help of  
 

         χ +
0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 1 0( ) 0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 0 −ie−iϕ( )= −ie− iϕ χ −  

 
and 
 

 χ −
0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 0 1( ) 0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = ieiϕ 0( )= ieiϕ χ +  

 
This implies that the “bra” part is 
 



1
2

χ +
( p)χ −

(n) − χ −
( p)χ +

(n)( ) 0 −ie −iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
p

−
0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
n

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

= − 2i(e−iϕ χ −
( p)χ −

(n) + eiϕ χ +
( p )χ +

(n ))

= − 2i e−iϕ X 1
−1 + eiϕ X 1

1( )
 

 
For the “ket” state we may choose  Xtriplet = αX1

1 + βX1
0 +γX1

−1, and then the matrix 
element is 

 

  
M = −i 2B0

gp − gn

2
h

2
(eiϕα + e− iϕγ ) 

 
 

2. We are interested in finding out for what values of l, m, the matrix element 
 

  

1
2

〈l,m | (ε.p)(k.r) + (ε.r)(p.k) | 0,0〉  

 
does not vanish. We use the technique used in Eq. (17-22) to rewrite this in the form 
 

 

  

1
2

ime

h
〈l,m | [H 0,ε.r]( k.r) + (ε.r)[H0,k.r] | 0.0〉 =

ime

2h
〈l,m | H0 (ε.r)(k.r) − (ε.r)H 0(k.r) + (ε.r)H 0(k.r) − (ε.r)(k.r)H 0 | 0,0〉 =

ime

2h
(El,m − E0,0)〈l,m | (ε.r)(k.r) | 0,0〉

 

 
Let us now choose k to define the z axis, so that k = ( 0,0,k). Since ε is perpendicular to k 
, we may choose it to be represented by ε = (cosα, sinα, 0). Then, with the usual polar 
coordinates, we have 
 

(ε.r)(k.r) = k(cosαsinθcosφ + sinαsinθsinφ)cosθ =
= ksinθcosθ cos(φ −α )  

 
This is a linear combination of Y21(θ,φ) and Y2,−1(θ,φ) . Thus the angular integral is of 

the form  dΩYl ,m
* Y2,±1∫ Y0,0  , and since Y0,0 is just a number, the integral is proportional to 

  δl ,2 . 
There is also a selection rule that requires m = ± 1. This comes about because of our 
choice of axes. 
 
 
 



3. In the transition under consideration, the radial part of the transition rate is 
unchanged. The only change has to do with the part of the matrix element that deals 
with the dependence on the polarization of the photon emitted in the transition. 
Eq. (17-44), for example shows that δm ,1 is multiplied by εx

2 + εy
2  = 1− εz

2 and this 
factor carries some information about the direction of the photon momentum, even 
though that does not appear explicitly in the matrix element.  We proceed as follows: 
The direction of the polarization of the initial atomic state defines the z axis. Let the 
photon momentum direction be given by 
 
   ˆ d = ˆ i sinΘcosΦ + ˆ j sinΘsinΦ + ˆ k cosΘ  
 
We may define two unit vectors perpendicular to this. For the first one we take ˆ d × ˆ k , 
which, after being divided by the sine of the angle between these two vectors, i.e. by 
sinΘ , yields  

  ˆ ε 1 = − ˆ i sinΦ + ˆ j cosΦ  
 
The other one is ˆ ε 2 = ˆ d × ˆ ε 1 (two vectors perpendicular to each other), which leads to  
 
   ˆ ε 2 = ˆ i cosΘcosΦ + ˆ j cosΘsinΦ − ˆ k sinΘ  
 
In the coordinate system in which ˆ d  represents the z axis, the ει  vectors represent the 
x and y axes,  and since the photon polarization must lie in that new x – y plane, we 
see that the polarization vector has the form 
 
    ε = cosχ ˆ ε 1 + sin χ ˆ ε 2  
 
Thus  

εz = ˆ k •ε = − sin χ sinΘ , 
εx = ˆ i • ε = cos χ sinΦ + sin χcosΘcosΦ,

εy = ˆ j • ε = −cos χ cosΦ + sin χcosΘsinΦ  

and 
  εx

2 + εy
2 = 1−εz

2 =1− sin2 χ sin2 Θ  
 
Thus the final answer (using Eq. (17-44) is 
 

 dΓ =
α
2π

ω3

c2
215

310
1
2

δm,1
⎛ 
⎝ 

⎞ 
⎠ 1− sin2 χ sin2 Θ( )d(cosΘ)dΦ  

 
The dependence on the polarization appears in the sin2 χ  term. 
 
 
 



   
 
 
 
4. First of all, we need to recognize what  2p  1s means for the harmonic oscillator 
in three dimensions. The numbers “2” and “1” usually refer to the principal quantum 
number, e.g     n = nr + l +1 for the hydrogen atom. Here the energy spectrum is 
characterized by   2nr + l +1, and it is this combination that we call the principal quantum 
number. Thus we take the 2p  1s transition to mean   (nr = 0,l =1) → (nr = 0,l = 0) . 
 To solve this problem we recognized that nothing changes in the angular 
integration that was done for the 2p  1s transition in hydrogen. The only change in the 
matrix element involves the radial functions. In hydrogen we calculated 
 
   r 3

0

∞

∫ R21(r)R10(r)dr  
 
using the radial functions for hydrogen. Here the same integral appears, except that the 
radial functions are those of the three-dimensional harmonic oscillator. Here, the properly 
normalized eigenfunctions are 
 

  
  
R10(r) =

2
π 1/ 4

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

3/ 2

e− mωr2 / 2h  

 
and  
 

  
  
R21(r) =

8
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 1
π1/4

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

5/4

re− mωr2 / 2h  

 
Note that these functions appear in the solution to problem 8-13. Given these, the integral 
that yields the matrix element is straightforward. We have 
 

  

M =
8
3

⎛ 
⎝ 

⎞ 
⎠ 

1/2 2
π 1/ 2

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2

drr 4

0

∞

∫ e−mωr2 / h =

=
4

π1/2
2
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2
h

mω
⎛ 
⎝ 

⎞ 
⎠ 

5/2 1
2

dxx 3/2

0

∞

∫ e−x

=
4

π1/2

2
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2 h

mω
⎛ 
⎝ 

⎞ 
⎠ 

5/2 1
2

3π 1/ 2

4

 

 

The square of this is 
  

3h

2mω
. We check that this has the dimensions of a (length)2 as 

required. To get the decay rate, we just take the hydrogen result and make the substitution 
 

  
  
| Mhydrogen |2=

215

39 a0
2 →| M |2=

3h

2mω
 



 
This then leads to the rate 
 

  
  
R =

4
9

α
ω3

c 2 | M |2=
2α
3

hω
mc2

⎛ 
⎝ 

⎞ 
⎠ ω   

 
  
 
 


