CHAPTER 17

1. We start with Eq. (17-19) . We define k as the z axis. This means that the
polarization vector, which is perpendicular to k has the general form

Y =icosg + jsing

This leads to
B=VxA=-i PRy, kk x (icosg+ jsing) = B,(jcose — ising)
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The operators are of the form
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It is simple to work out the “bra” part of the scalar product
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This implies that the “bra” part is
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For the “ket” state we may choose X, = @X; + X, +7X; ", and then the matrix
element is

M ——iv2B, 22 ;g” g(ei"’a +e7%)

2. We are interested in finding out for what values of I, m, the matrix element
1
5(6, m|(ep)(k.r)+ (er)(pk)|0,0)

does not vanish. We use the technique used in Eq. (17-22) to rewrite this in the form

%% (M| [Hyer](kr)+ (r)[Hg k] [0.0) =
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Let us now choose k to define the z axis, so that k = ( 0,0,k). Since € is perpendicular to k
, we may choose it to be represented by € = (cose, sine, 0). Then, with the usual polar
coordinates, we have

(er)(kr)=k(cosasin@osg + sinasinésing) coséd =
= ksindcosdcos(¢p — )

This is a linear combination of Y,,(6,4) and Y, (6.¢). Thus the angular integral is of

the form JdQYﬁmYZVﬂYO’0 , and since Y, is just a number, the integral is proportional to

0y,
There is also a selection rule that requires m = £ 1. This comes about because of our
choice of axes.



3. Inthe transition under consideration, the radial part of the transition rate is
unchanged. The only change has to do with the part of the matrix element that deals
with the dependence on the polarization of the photon emitted in the transition
Eq. (17-44), for example shows that &, , is multiplied by g+ g/ = 1- g’ and this
factor carries some information about the direction of the photon momentum, even
though that does not appear explicitly in the matrix element. We proceed as follows:
The direction of the polarization of the initial atomic state defines the z axis. Let the
photon momentum direction be given by

~

d=isin@cos®d + ]sin@sinCD +Kcos®

We may define two unit vectors perpendicular to this. For the first one we take d x k,
which, after being divided by the sine of the angle between these two vectors, i.e. by
sin®, yields A A

§ =—isin® + jcosd

The other one is &, = dx & (two vectors perpendicular to each other), which leads to
Z, = 1C0s@CosD + jcosOsind — Ksin®

In the coordinate system in which d represents the z axis, the g, vectors represent the
x and y axes, and since the photon polarization must lie in that new x —y plane, we
see that the polarization vector has the form

£=COS & +sin ye,

Thus A
g =Keg=—sinysin®,
& = e g=C0s ysSin® +sin ycos®cosd,
g = ]og:—cos;(coscb +sin ycos®sin®
and

& +é& =1-¢g =1-sin’ ysin’®
Thus the final answer (using Eq. (17-44) is
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The dependence on the polarization appears in the sin” y term.



4, First of all, we need to recognize what 2p - 1s means for the harmonic oscillator
in three dimensions. The numbers “2” and “1” usually refer to the principal quantum
number, e.g n=n,+/¢+1 for the hydrogen atom. Here the energy spectrum is
characterized by 2n, + ¢ +1, and it is this combination that we call the principal quantum
number. Thus we take the 2p = 1s transition to mean (n,=0,/=1) —»(n, =0,/ =0).

To solve this problem we recognized that nothing changes in the angular
integration that was done for the 2p = 1s transition in hydrogen. The only change in the
matrix element involves the radial functions. In hydrogen we calculated
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using the radial functions for hydrogen. Here the same integral appears, except that the
radial functions are those of the three-dimensional harmonic oscillator. Here, the properly
normalized eigenfunctions are

Ru(1)= 2] e

and
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Note that these functions appear in the solution to problem 8-13. Given these, the integral
that yields the matrix element is straightforward. We have
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The square of this is an_ha) . We check that this has the dimensions of a (length)® as

required. To get the decay rate, we just take the hydrogen result and make the substitution

: 2%, 3n.
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This then leads to the rate
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