
CHAPTER 19 
 
1. We have 
 

M fi =
1
V

d3re−iΔ.r∫ V (r)  

 
 If V(r) = V(r), that is, if the p9otential is central, we may work out the angular 
integration as follows:  
 

 M fi =
1
V

r2V (r)
0

∞

∫ dr dφ sinθdθe−iΔr cosθ

0

π

∫0

2π

∫  

 
with the choice of the vector Δ as defining the z axis. The angular integration yields 
 

 dφ sinθdθe− iΔr cosθ = 2π d(cosθ)e−iΔr cosθ

−1

1

∫ =
4π
Δr0

π

∫0

2π

∫ sinΔr  

 
so that 
 

   M fi =
1
V

4π
Δ

rdrV (r)sinΔr
0

∞

∫  

 
Note that this is an even function of Δ that is, it is a function of  Δ

2 = (p f − pi)
2 / h2  

 
2. For the gaussian potential 
 

M fi =
1
V

4πV0

Δ
rdr sin Δr

0

∞

∫ e−r 2 /a 2

 

 
Note that the integrand is an even function of r. We may therefore rewrite it as 
 

   rdr sinΔr
0

∞

∫ e− r2 / a2

=
1
2

rdr sinΔr
−∞

∞

∫ e− r2 / a2

 

 
The integral on the right may be rewritten as 
 

 
1
2

rdr sinΔr
−∞

∞

∫ e− r2 / a2

=
1
4i

rdr e−r 2 /a 2 +iΔr − c.c)( )−∞

∞

∫  

 
Now 
 

 
1
4i

rdr
−∞

∞

∫ e− r2 / a2 + iΔr =
1
i

∂
∂Δ

dr
−∞

∞

∫ e− r2 / a2 + iΔr = −i
∂

∂Δ
a πe−a 2Δ2 /4 = i

Δa3 π
2

e− a2Δ2 / 4  

 
Subtracting the complex conjugate and dividing by 4i gives  



 

    M fi =
1
V

a π( )3
V0e

−a 2Δ2 /4  

 
The comparable matrix element for the Yukawa potential is  
 

  M fi =
1
V

4π
Δ

VYb dr
0

∞

∫ e− r/ b sinΔr =
1
V

4πVY
b3

1+ b2Δ2  

 
We can easily check that the matrix elements and their derivatives with respect to Δ2 at 
Δ = 0 will be equal if  a = 2b and VY = 2 πV0 . 
 
The differential cross section takes its simplest form if the scattering involves the same 
particles in the final state as in the initial state.  The differential cross section is  
 

    
  

dσ
dΩ

=
μ 2

4π 2h4 | U (Δ) |2  

 
where μ  is the reduced mass and U(Δ) = VMfi . 
 We are interested in the comparison 
 

(dσ / dΩ)gauss

(dσ / dΩ)Yukawa
=

e−2b2Δ2

(1+ b2Δ2 )−2 = (1+ X )2 e−2X  

 
where we have introduced the notation  X = b2x2. This ratio, as a function of X, starts out 
at X  = 0 with the value of 1, and zero slope, but then it drops rapidly, reaching less than 
1% of its initial value when X = 4, that is, at Δ = 2/b.  
 
3. We use the hint to write 
 

  

dσ
dΩ

=
p2

πh2
dσ
dΔ2 =

μ 2

4π 2h4 4πV0
b3

1 + b2Δ2

2

 

 
The total cross section may be obtained by integrating this over Δ2 with the range given 
by    0 ≤ Δ2 ≤ 4 p2 / h2 , corresponding to the values of  cosθ  between –1 and + 1.. The 
integral can actually be done analytically. With the notation  k

2 = p2 /h2 the integral is 
 

 dΔ2

0

4k 2

∫ 1
(1 + b2Δ2)2 =

1
b2

dx
(1+ x)20

4 k 2b2

∫ =
4k 2

1 + 4k 2b2  

 
This would immediately lead to the cross section if the particles were not identical. For 
identical particles, there are symmetry problems caused by the Pauli Exclusion Principle 
and the fact that the protons have spin 1/2. The matrix elements are not affected by the 



spin because there is no spin-orbit coupling or any other spin dependence in the potential. 
However: 
In the spin triplet state, the spatial wave function of the proton is antisymmetric, while for 
the spin singlet state, the spatial wave function is symmetric. This means that in the 
original Born approximation we have  
 
 

  

d3∫ r
e−ik '.r m eik '.r

2
V (r)

eik .r m e−ik .r

2
=

d3rV (r)e−i(k '−k ).r∫ m d3rV (r)e− i(k +k' ). r∫
 

 
 

The first term has the familiar form 
 

 4πV0
b3

1+ b2Δ2 = 4πV0
b3

1 + 2b2k2 (1− cosθ)
 

 
and the second term is obtained by changing cosθ  to  - cosθ.. Thus the cross section 
involves  
 

 

  

d(cosθ)
1

1+ 2b2k2 − 2b2k2 cosθ
m

1
1+ 2b2k2 + 2b2k2 cosθ

⎛ 
⎝ 

⎞ 
⎠ 

2

→ dz
1

1 + a − az
m

1
1 + a + az

⎛ 
⎝ 

⎞ 
⎠ 

2

−1

1

∫
−1

1

∫

=
4

1+ 2a
m

2
a(1 + a)

ln(1+ 2a)

 

 
where a = 2b2k2. 
 
Thus the total cross section is 
 

 
  
σ =

8πμ 2b6

h4 V0
2 4

1+ 4k2b2
⎛ 
⎝ 

⎞ 
⎠ m

1
k 2b2(1 + 2k 2b2)

ln(1 + 4k 2b2)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
The relation to the center of mass energy follows from   E = p2 / 2μ = h2k2 / 2μ , so that 
 

  
k2 =

2μE
h2 =

(1.67 ×10−27 kg)(100 ×1.6 ×10−13J )
(1.054 ×10−34 J.s)2  

 
With b = 1.2 x 10-1`5 m, we get  (kb)2 = 3.5, so that  σ = 4.3 x 10-28 m2 = 4.3 x 10-24 cm2 = 
3.4 barns. 
 



4. To make the table, we first of all make a change of notation: we will represent the 
proton spinors by χ±  and the neutron spinors by  η± .  To work out the action of   

 
σ p • σ n = σ pzσ nz + 2(σ p+σ n− +σ p−σ n+)  

 
on the four initial combinations, we will use σ+χ + = σ − χ − = 0; σ +χ− = χ +; σ −χ + = χ−  

and similarly for the neutron spinors. Thus 
 

 

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ +η+ = χ+η+

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ +η− = −χ+η− + 2χ −η+

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ −η+ = −χ−η+ + 2χ +η−

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ −η− = χ−η−

 

 
From this we get  for the matrix A + Bσ p •σ n , with rows and columns labeled by (++), 
(+-),(-+). (--)the following 
 

 A + Bσ p • σ n =

A + B 0 0 0
0 A − B 2B 0
0 2B A − B 0
0 0 0 A + B

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
The cross sections will form a similar matrix, with the amplitudes replaced by the 
absolute squares, i.e. |A+B|2, |2B|2, and |A-B|2. 
 
 
5. Consider n – p scattering again. If the initial proton spin is not specified, then we 

must add the cross sections for all the possible initial proton states and divide byt 2, 
since a priori there is no reason why in the initial state there should be more or less of 
up-spin protons. We also need to sum over the final states. Note that we do not sum 
amplitudes because the spin states of the proton are distinguishable. 

Thus, for initial neutron spin up and final neutron spin up we have 
 

σ(+ | +) =
1
2

σ (++,++) +σ (++,−+) + σ(−+,++) + σ (−+,−+)( ) 

 
where on the r.h.s. the first label on each side refers to the proton and the second to 
the neutron.  We thus get 
 

 σ(+ | +) =
1
2

| A + B |2 + | A − B |2( )=| A |2 + | B |2  

 
Similarly 
 



 
σ(− | +) =

1
2

σ (+−,++) + σ (+−,−+) +σ (−−,++) +σ (−−,−+)( )

= 1
2

| 2B |2( )= 2 | B |2
 

 
Thus 
 

  P =
| A |2 + | B |2 −2 | B |2

| A |2 + | B |2 +2 | B |2
=

| A |2 − | B |2

| A |2 +3 | B |2
 

 
6. For triplet  triplet scattering we have (with the notation  (S,Sz) 
 
(1,1) (1,1)   〈χ+η+ | χ+η+ 〉 = A + B  
 
(1,-1) (1,-1)  〈χ−η− | χ−η− 〉 = A + B  
 

(1,0)  (1,0)    〈
χ+η− + χ−η+

2
|
χ+η− + χ−η+

2
〉 =

1
2

A − B + 2B + 2B + A − B( ) = A + B  

 

(0,0) (0.0) 〈
χ+η− − χ −η+

2
|
χ +η− − χ−η+

2
〉 =

1
2

A − B − 2B − 2B + A − B( ) = A − 3B  

 

(0,0) (1,0) 〈
χ+η− − χ −η+

2
|
χ +η− + χ −η+

2
〉 =

1
2

A − B + 2B − 2B − A + B( ) = 0  

 
We can check this by noting that (in units of  h , 
 

 
A + Bσ p • σ n = A + 4Bs p • sn = A + 2B(S2 − s p

2 − sn
2 )

= A + 2B S(S +1) −
3
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

 
For S = 1 this is A + B,  For S = 0,  it is A – B , and since 〈S = 1| S2 − 3 / 2 | S = 0〉 = 0 by 
orthogonality of the triplet to singlet states, we get the same result as above. 
 
7. We have, with x = kr and cosθ = u, 
 

I(x) = dug(u)e− iux

−1

1

∫ = dug(u)
i
x−1

1

∫
d

dx
e−iux

=
i
x

du
d
du−1

1

∫ g(u)e− iux( )−
i
x

du
dg
du

⎛ 
⎝ 

⎞ 
⎠ −1

1

∫ e− iux
 

 
The first term vanishes since g(±1)=0. We can proceed once more, and using the fact that 
the derivatives of g(u)  also vanish at  u = ± 1, we find  



 

  I(x) =
−i
x

⎛ 
⎝ 

⎞ 
⎠ 

2

du
d2g
du2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1

1

∫ e− ixu  

 
and so on. We can always go beyond any pre-determined power of 1/x  so that I(x) goes 
to zero faster than any power of (1/x). 
 
7. We proceed as in the photoelectric effect.  There the rate, as given in Eq.(19-111) is 
 

  
R =

2πV
h

dΩ∫ mpe

(2πh)3 | M fi |2  

 
Here m is the electron mass, and pe is the momentum of the outgoing.electron.The factor 
arose out of the phase space integral 
 

 dpp2∫ δ
p2

2m
− Eγ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = d

p2

2m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∫ mpδ

p2

2m
− Eγ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = mpe  

 
with pe determined by the photon energy, as shown in the delta function. In the deuteron 

photodisintegration process, the energy conservation is manifest in δ
p2

M
− Eγ + EB

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . 

The delta function differs in two respects: first, some of the photon energy goes into 
dissociating the deuteron, which takes an energy EB ; second,  in the final state two 
particles of equal mass move in in equal and opposite directions, both with momentum of 
magnitude p, so that the reduced mass Mred  = M/2  appears.  Thus the factor mpe will be 
replaced by  Mp/2, where the momentum of the particle is determined by the delta 
function. 
 Next, we consider the matrix element. The final state is the same as given in Eq. 
(19-114) with pe replaced by p , and with the hydrogen-like wave function replaced by 
the deuteron ground state wave function.  We thus have 
 

 
  

dσ
dΩ

=
2π
h

(VMp / 2)
(2πh)3

V
c

e
M

⎛ 
⎝ 

⎞ 
⎠ 

2
h

2ε0ωV
1
V

(ε • p)2 d3rei(k − p /h )•rψ d (r)∫
2
 

 
 
We need to determine the magnitude of  the factor eik•r .  The integral is over the wave 
function of the deuteron. If the ground state wave function behaves as e−αr , then the 
probability distribution goes as e−2αr , and we may roughly take 1/2α  as the “size” of the 
deuteron. Note that    α

2 = MEB / h2 . As far as k is concerned, it is given by 
 

    
  
k =

pγ

h
=

Eγ

hc
 

 



Numerically we get, with EB =2.2 MeV, and Eγ  = 10 MeV,  k/2α = 0.11, which means 
that we can neglect the oscillating factor. Thus in the matrix element we just need 

d3reik•r∫ ψ d (r).  The wave function to be used is 
 

   ψ d (r) =
N
4π

e−α (r− r0 )

r
r > r0   

N is determined by the normalization condition 
 

   
N 2

4π
4πr2

r0

∞

∫ dr
e−2α (r− r0 )

r2 = 1 

 
So that 
 
    N 2 = 2α  
The matrix element involves 
 
   

 

N
4π

4π
k

rdr
r0

∞

∫ sinkr
e−α (r− r0 )

r
=

= N 4π
k

dx
0

∞

∫ sink(x + r0)e
−αx

=
N 4π

k
dx sinkr0 Re(e−x (α − ik)( )

0

∞

∫ + coskr0 Im(e−x (α −ik )))

=
N 4π

k
α

α 2 + k 2 sin kr0 +
k

α 2 + k2 coskr0
⎛ 
⎝ 

⎞ 
⎠ 

 

 
The square of this is 
 
4πN 2

k2 r0
2 αr0

α 2r0
2 + k2r0

2 sin kr0 +
kr0

α 2r0
2 + k 2r0

2 coskr0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

 

 
It follows that 
 

dσ
dΩ

= 2
e2

4πε0hc
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

pr0

Mω
(αr0)

αr0

α 2r0
2 + k 2r0

2 sinkr0 +
kr0

α 2r0
2 + k2r0

2 coskr0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

 

 
We can easily check that this has the correct dimensions of an area. 
 

For numerical work we note that  αr0 = 0.52; kr0 = 0.26 EMeV  and 
 
hω = EB +

p2

M
. 

 



9. The change in the calculation consists of replacing the hydrogen wave function 
 

1
4π

2
Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

e−Zr /a0  

 
by 
 

   

ψ (r) = N
4π

sinqr
r

r < r0

=
N
4π

e−κr

r
r > r0

 

 
where the binding energy characteristic of the ground state of the electron determines κ 
as follows 
 
   κ 2 = 2me | EB | /h2 = (mecα /h)2  
 
with α = 1/137. The eigenvalue condition relates q to κ  as follows: 
 
   qr0 cotqr0 = −κr0  
 
where  
 

 `  
  
q2 =

2meV0

h2 −κ 2⎛ 
⎝ 

⎞ 
⎠  

 
and V0 is the depth of the square well potential. The expression for the differential cross 
section is obtained from Eq. (19-116) by dividing by  4(Z/a0)2 and replacing the wave 
function in the matrix element by the one written out above, 
 

  
  

dσ
dΩ

=
2π
h

me pe

(2πh)3
1
c

e
me

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
h

2ε0ω
pe

2

4π
( ˆ ε .ˆ p )2 d3rei(k − p e /h ).rψ(r)∫

2
 

 
We are interested in the energy-dependence of the cross section, under the assumptions 
that the photon energy is much larger than the electron binding energy and that the 
potential has a very short range. The energy conservation law states that under these 
assumptions    hω = pe

2 / 2me . The factor in front varies as pe
3 / ω ∝ pe ∝ Eγ  , and thus 

we need to analyze the energy dependence of 
 

d3rei(k −p e / h). rψ (r)∫
2
. The integral has the 

form 
 

  d3reiQ.r∫ ψ (r) =
4π
Q

rdr sinQrψ (r)
0

∞

∫  



 

where   Q = k − pe /h  so that 
  
Q2 = k 2 +

pe
2

h2 − 2
kpe

h
( ˆ k .ˆ p ) .   

Now 
  
h2k 2 / pe

2 = h2ω 2 / pe
2c 2 = hω

pe
2 / 2m
pe

2c 2 =
hω

2mec
2 . We are dealing with the 

nonrelativistic regime, so that this ratio is much smaller than 1. We will therefore neglect 
the k –dependence, and replace Q by pe/  h.  The integral thus becomes 
 

 
4π
Q

N
4π

drsinQr sinqr + drsinQre−κr

r0

∞

∫0

r0∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
The first integral is 
 
1
2

dr
0

r0

∫ cos(Q− q)r − cos(Q + q)r( )=

1
2

sin(Q − q)r0

Q− q
−

sin(Q + q)r0

Q + q
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ≈ −

1
Q

cosQr0 sinqr0

 

 
where, in the last step we used Q >> q. The second integral is 
 

Im dr
r0

∞

∫ e−r(κ − iQ ) = Im
e−r0 (κ −iQ )

κ − iQ
≈

cosQr0

Q
e−κr0  

 
The square of the matrix element is therefore 
 

 
4πN 2

Q2
1

Q2 cosQr0(e
−κr0 − sinqr0 )( )2

 

 
The square of the cosine may be replaced by 1/2, since it is a rapidly oscillating factor, 
and thus the dominant dependence is 1/Q4 , i.e. 1 / Eγ

2. Thus the total dependence on the 
photon energy is 1 / Eγ

3/2  or 1 / pe
3 , in contrast with the atomic 1 / pe

7 dependence. 
 
10. The differential rate for process I,  a + A  b + B in the center of momentum frame 

is 
 

  

dRI

dΩ
=

1
(2 ja +1)(2JA +1)

1
(2πh)3 pb

2 dpb

dEb
MI

spins
∑ 2

 

 
The sum is over all initial and final spin states. Since we have to average (rather than 
sum) over the initial states, the first two factors are there to take that into account. The 
phase factor is the usual one, written without specification of how Eb   depends on pb.  
The rate for the inverse process II, b + B  a + A is, similarly 
 



  
  

dRII

dΩ
=

1
(2 jb +1)(2JB +1)

1
(2πh)3 pa

2 dpa

dEa
MII

spins
∑ 2

 

 
By the principle of detailed balance the sum over all spin states of the square of the 
matrix elements for the two reactions are the same provided that these are at the same 
center of momentum energies. Thus 
 
   MI

spins
∑ 2

= MII
spins
∑ 2

 

 
Use of this leads to the result that 
 

   
(2 ja +1)(2JA +1)

pb
2(dpb / dEb )

dRI

dΩ
=

(2 jb +1)(2JB +1)
pa

2 (dpa / dEa )
dRII

dΩ
 

 
Let us now apply this result to the calculation of the radiative capture cross section for the 
process N + P  D + γ.  We first need to convert from rate to cross section. This is 
accomplished by multiplying the rate R by the volume factor V, and dividing by the 
relative velocity of the particles in the initial state. For the process I, the photo-
disintegration γ + D  N + P , the relative velocity is c, the speed of light. For process II, 
the value is pb/mred = 2pb/M . Thus 
 

   
dσ I

dΩ
=

V
c

dRI

dΩ
;

dσ II

dΩ
=

MV
2pb

dRII

dΩ
 

 
Application of the result obtained above leads to  
 

 

dσ II

dΩ
= MV

2 pb

dRII

dΩ

=
MV
2pb

pa
2 (dpa / dEa )

(2 jb +1)(2JB +1)
×

(2 ja +1)(2JA +1)
pb

2 (dpb / dEb )
c
V

dσ I

dΩ

 

 
We can calculate all the relevant factors. We will neglect the binding energy of the 
deuteron in our calculation of the kinematics. 
First 
 

  
(2 jγ +1)(2JD +1)
(2 jP +1)(2JN +1)

=
2 × 3
2 × 2

=
3
2

 

 
Next, in the center of momentum frame, the center of mass energy is 
 

   W = pac +
pa

2

2MD
≈ pac +

pa
2

4 M
 

 



so that (dEa / dpa ) = c +
pa

2M
. In reaction II,  

 

   W = 2 ×
pb

2

2M
=

pb
2

M
 

 
so that (dEb / dpb ) = 2 pb / M . There is a relation between pa and pb since the values of W 
are the same in both cases. This can be simplified. For photon energies up to say 50 MeV 
or so, the deuteron may be viewed as infinitely massive, so that there is no difference 
between the center of momentum. This means that it is a good approximation to write 
W = Eγ = pac = pb

2 / M .  We are thus finally led to the result that 
 

   
dσ(NP → Dγ )

dΩ
=

3
2

Eγ

Mc 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

dσ (γD → NP)
dΩ

  

 
   

 
 

 
 
 
 
     
 
     
 
         
 

 
 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 
   
 
   
 
 
 
 
  


