SOLUTIONS MANUAL

CHAPTER 1

1.  The energy contained in a volume dV is
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when the geometry is that shown in the figure.  The energy from this source that emerges through a hole of area dA is
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The total energy emitted is

.  
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By definition of the emissivity, this is equal to 
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2. We have
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This density will be maximal when 
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Where 
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A solution of this is x = 4.965 so that 
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In example 1.1 we were given an estimate of the sun’s surface temperature as 6000 K. From this we get
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3.  The relationship is 
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where K is the electron kinetic energy and W is the work function.  Here
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With K = 1.60 eV, we get  W = 1.95 eV

4. We use 
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since W cancels. From ;this we get
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5. The maximum energy loss for the photon occurs in a head-on collision, with the photon scattered backwards.  Let the incident photon energy be 
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 .  The energy conservation equation reads
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and the momentum conservation equation reads
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We get 
[image: image24.wmf]  

E

+

pc

-

mc

2

=

2

h

n

 from which it follows that





[image: image25.wmf]  

p

2

c

2

+

m

2

c

4

=

(

2

h

n

-

pc

+

mc

2

)

2


so that





[image: image26.wmf]  

pc

=

4

h

2

n

2

+

4

h

n

mc

2

4

h

n

+

2

mc

2


The energy loss for the photon is the kinetic energy of the proton 
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6. Let 
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 be the incident photon energy, 
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 the final photon energy and p the outgoing electron momentum. Energy conservation reads
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We write the equation for momentum conservation, assuming that the initial photon moves in the x –direction and the final photon in the y-direction. When multiplied by c it read







 
[image: image35.wmf]  

i

(

h

n

)

=

j

(

h

n

'

)

+

(

i

p

x

c

+

j

p

y

c

)


Hence 
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From this we get
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We may use this to calculate the kinetic energy of the electron
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Also
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which gives the direction of the recoiling electron.

7. The photon energy is
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The momentum conservation for collinear motion (the collision is head on for maximum energy loss), when squared, reads
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Here 
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 = ±1, with the upper sign corresponding to the photon and the electron moving in the same/opposite direction, and similarly for 
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The square of the energy conservation equation,   with E expressed in terms of momentum and mass reads
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After we cancel the mass terms and subtracting, we get
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From this can calculate 
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  and rewrite the energy conservation law in the form
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The energy loss is largest if 
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It follows that 
[image: image55.wmf]  

1

E

'

=

1

E

+

16

h

n

 with everything expressed in MeV. This leads to

 E’ =(100/1.64)=61 MeV  and the energy loss is 39MeV.

8.we have ’ = 0.035 x 10-10 m, to be inserted into 
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Therefore  = ’ = (3.50-1.23) x 10-12 m = 2.3 x 10-12 m.

The energy of the X-ray photon is therefore
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9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal and opposite to that of the emitted photon. We therefore have its magnitude given by 
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10. The formula 
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Thus the minimum energy for electrons is
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For Helium atoms the mass is 
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11. We use 
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 with   = 15 x 10-9 m to get
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For  = 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger. Thus  K =6.10 eV.

12. For a circular orbit of radius r, the circumference is 2πr. If n wavelengths  are to fit into the orbit, we must have 2πr = n = nh/p. We therefore get the condition
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which is just the condition that the angular momentum in a circular orbit is an integer in units of 
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a = 2.87 x 10-10 m. For n = 2, we require sin2 = 2 sin1. Since the angles are very small,  2 = 21. So that the angle is 10o.

14. The relation F = ma leads to  mv 2/r = mr that is, v = r. The angular momentum quantization condition  is mvr = n
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The analog of the Rydberg formula is
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The frequency of radiation in the classical limit is just the frequency of rotation 
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 which agrees with the quantum frequency when  n – n’ = 1. When the selection rule n = 1 is satisfied, then the classical and quantum frequencies are the same

for all n. 

15. With V(r) = V0 (r/a)k , the equation describing circular motion is
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so that
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The angular momentum quantization condition mvr = n( reads
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We may use the result of this and the previous equation to calculate
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In the limit of k >>1, we get
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Note that V0 drops out of the result. This makes sense if one looks at a 

picture of the potential in the limit of large k. For r< a the potential is 

effectively zero. For r > a it is effectively infinite, simulating a box with

infinite walls. The presence of V0 is there to provide something with the

dimensions of an energy. In the limit of the infinite box with the quantum

 condition there is no physical meaning to V0 and the energy scale is 

provided by 
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16. The condition L = n( implies that 
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In a transition from n1 to n2 the Bohr rule implies that the frequency of the 

radiation is given
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Let n1 = n2 + n. Then in the limit of large n we have 
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Classically the radiation frequency is the frequency of rotation which is

 = L/I , i.e. 
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We see that this is equal to 
[image: image88.wmf]  
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when n = 1.

17. The energy gap between low-lying levels of rotational spectra is of the order of
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, where M is the reduced mass of the two nuclei, and R is their separation. (Equivalently we can take 2 x m(R/2)2 = MR2). Thus
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This implies that 
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