CHAPTER 4.

1. The solution to the left side of the potential region is 
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As shown in  Problem 3-15, this corresponds to a flux
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The solution on the right side of the potential is 
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, and

as above, the flux is
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Both fluxes are independent of x. Flux conservation implies that the two 

are equal, and this leads to the relationship
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If we now insert 
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into the above relationship we get
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Identifying the coefficients of |A|2 and |D|2, and setting the coefficient of

AD* equal to zero yields
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Consider now the matrix 
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The unitarity of this matrix implies that 
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that is,
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These are just the conditions obtained above. They imply that the matrix Str
is unitary, and therefore the matrix S is unitary.

2. We have solve the problem of finding R and T  for this potential well in the text.We take V0 < 0. We dealt with wave function of the form  
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In the notation of Problem 4-1, we have found that if A = 1 and D = 0, then

C = S11 = T  and B = S21 = R.. To find the other elements of the S matrix we need to consider the same problem with A = 0 and D = 1. This can be solved explicitly by matching wave functions at the boundaries of the potential hole, but it is possible to take the solution that we have and reflect the “experiment” by the interchange x ( - x. We then find that S12 = R and

S22 = T. We can easily check that
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Also
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If we now look at the solutions for T and R in the text we see that the product of T and R* is of the form (-i) x (real number), so that its real part is zero. This confirms that the S matrix here is unitary.

3. Consider the wave functions on the left and on the right to have the forms
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Now, let us make the change  k ( - k and  complex conjugate everything. Now the two wave functions read
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Now complex conjugation and the transformation k ( - k  changes the original relations to 
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On the other hand, we are now relating outgoing amplitudes C*, B* to ingoing amplitude A*, D*, so that the relations of problem 1 read
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This shows that 
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. These result may be written in the matrix form  
[image: image20.wmf]  

S

(

k

)

=

S

+

(

-

k

)

.

4. (a) With the given flux, the wave coming in  from  
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, has the form    eikx , with unit amplitude. We now write the solutions in the various regions
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(b) We now have 
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The fact that there is total reflection at x = 0 implies that |R|2 = 1

5.  The denominator in (4-    ) has the form
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With k = ithis becomes
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The denominator vanishes when
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This implies that
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This condition is identical with  (4-   ).

The argument why this is so, is the following: When k = ithe wave functio on the left has the form 
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 and the wave function only make sense if this term is overpowered by the other term, that is when 
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We leave it to the student to check that the numerators are the same at k = i.

6.  The solution is    u(x) = Aeikx + Be-ikx        x < b



    = Ceikx  + De-ikx      x > b 

The continuity condition at x = b leads to 



    Aeikb  + Be-ikb  = Ceikb + De-ikb
And the derivative condition is


                      (ikAeikb –ikBe-ikb) - (ikCeikb –ikDe-ikb)= (/a)( Aeikb  + Be-ikb)


With the notation



Aeikb =  ; Be-ikb = ; Ceikb = ; De-ikb = 

These equations read



                        +  =  + 



ik( -  +  - ) = (/a)( + )


We can use these equations to write (,) in terms of (,) as follows
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We can now rewrite these in terms of A,B,C,D and we get for the S matrix
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Unitarity is easily established:
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The matrix elements become infinite when 2ika =. In terms of = -ik, this condition becomes  = -/2a = |/2a.

7. The exponent in T = e-S  is
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where A and B are turning points, that is, the points at which the quantity under the square root sign vanishes. 

We first simplify the expression by changing to dimensionless variables:
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The integral becomes
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                 with  
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where now y1 and y2 are the turning points. A sketch of the potential shows that y2 is very large. In that region, the –1 under the square root can be neglected, and to a good approximation y2 = 1/
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. The other turning point occurs for y not particularly large, so that we can neglect the middle term under the square root, and the value of y1 is 1. Thus we need to estimate
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The integrand has a maximum at 2y – 3y2= 0, that is at y = 2/3. We estimate the contribution from that point on by neglecting the –1 term in the integrand. We thus get
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To estimate the integral in the region 1 < y < 2/3 is more difficult. In any case, we get a lower limit on S by just keeping the above, so that





S > 0.21/2
The factor eS  must be multiplied by a characteristic time for the particle to move back and forth inside the potential with energy 
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 which is necessarily of order 1/.  Thus the estimated time is longer than
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8. The barrier factor is eS  where
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where b is given by the value of x at which the integrand vanishes, that is, with 2mE/
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We now introduce the variable f = (R0/b) 
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for f << 1. This is to be multiplied by the time of traversal inside the box. The important factor is f-2l.  It tells us that the lifetime is proportional to (kR0)-2l  so that it grows as a power of l  for small k. Equivalently we can say that the probability of decay falls as (kR0)2l.

9. The argument fails because the electron is not localized inside the potential. In fact, for weak binding, the electron wave function extends over a region R = 1/ = 
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10. For a bound state, the solution for x > a must be of the form
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 If f(E) is a constant, then we immediately know .. Even if f(E) varies only slightly over the energy range that overlaps small positive E, we can determine the binding energy in terms of the reflection coefficient. For positive energies the wave function u(x)  for x > a has the form e-ikx  + R(k)eikx, and matching yields
 
[image: image56.wmf]  

 



[image: image57.wmf]  

f

(

E

)

»

-

a

=

-

ik

e

-

ika

-

Re

ika

e

-

ika

+

Re

ika

=

-

ik

1

-

Re

2

ika

1

+

Re

2

ika


so that
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We see that |R|2 = 1.

11. Since the well is symmetric about x = 0, we need only match wave functions at x = b and a. We look at E < 0, so that we introduce and 2 = 2m|E|/
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 and 

       q2 = 2m(V0-|E|)/
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Even solutions:




   u(x)  =  coshx

0 < x < b




= A sinqx + B cosqx      b < x < a 




             = C e-x

   a < x
Matching 
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 at x = b and at x = a leads to the equations
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From the first equation we get
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and from the second
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Equating these, cross-multiplying, we get after a little algebra
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from which it immediately follows that
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Odd Solution

Here the only difference is that the form for u(x) for 0  <  x < b   is sinhx. The result of this is that we get the same expresion as above, with tanhb  replaced by cothb.

11. (a) The condition that there are at most two bound states is equivalent to stating that there is at most one odd bound state. The relevant figure is Fig. 4-8, and we ask for the condition that there be no intersection point with the tangent curve that starts up at 3π/2. This means that 
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for y ≤ 3π/2. This translates into y2 with y < 3π/2, i.e.   < 9π2/4.

(b) The condition that there be at most three bound states implies that there be at most two even bound states, and the relevant figure is 4-7. Here the conditon is that y < 2π so that  < 4π2.

(c) We have y = π so that the second even bound state have zero binding energy. This means that  = π2. What does this tell us about the first bound state? All we know is that y is a solution of Eq. (4-54) with  = π2.  

Eq.(4-54) can be rewritten as follows:
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so that the even condition is 
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 still leaves us with a transcendental equation. All we can say is that the binding energy f the even state will be larger than that of the odd one.
13.(a)  As b ( 0, tanq(a-b) ( tanqa and the r.h.s. reduces to /q. Thus we get, for the even solution

tanqa = /q 

and, for the odd solution,






tanqa  = - q/.

These are just the single well conditions.

(b) This part is more complicated. We introduce notation c = (a-b), which will be held fixed. We will also use the notation z = b. We will also use the subscript “1” for the even solutions, and “2” for the odd solutions. For b large,
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The eigenvalue condition for the even solution now reads
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The condition for the odd solution is obtained by just changing the sign of the e-2z  term, so that
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In both cases q2 + 2 = 2mV0/
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 is fixed.  The two eigenvalue conditions only differ in the e-2z terms, and the difference in the eigenvalues is therefore proportional to e-2z , where z here is some mean value between

1 b and 2b. 

This can be worked out in more detail, but this becomes an exercise in Taylor expansions with no new physical insights.
14. We write
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The first term vanishes because   goes to zero rapidly. We next rewrite
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Now
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The first term vanishes, and the second term is unity.  We do the same with the second term, in which only the second integral
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remains. Putting all this together we get
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so that
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