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CHAPTER 14

1. The spin-part of the wave function is the triplet
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This implies that the spatial part of the wave function must be antisymetric under the interchange of the coordinates of the two particles. For the lowest energy state, one of the electrons will be in an n = 1, l = 0 state. The other will be in an n = 2, l = 1, or l = 0 state.

The possible states are
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Thus the total number of states with energy E2 + E1 is 3 x 4 = 12

2. For the triplet state, the first order perturbation energy shifts are given by
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The l = 1 energy shift uses tw-electron wave functions that have an orbital angular momentum 1. There is no preferred direction in the problem, so that there cannot be any dependence on the eigenvalue of Lz. Thus all three m values have the same energy. The l = 0 energy shift uses different wave functions, and thus the degeneracy will be split. Instead of a 12-fold degeneracy we will have a splitting into 9 + 3 states. 


The simplification of the energy shift integrals reduces to the simplification of the integrals in the second part of Eq. (14-29). The working out of this is messy, and we only work out the l = 1 part.

The integrals   
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 and the angular parts only come through the u210  wave function and through the 1/r12 term. We use Eqs. (14-26) – (14-29) to get, for the direct integral
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where 12 is the angle between r1 and r2. We make use of an addition theorem which reads
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Since the sum is over m = 1,2,3,…the integration over 2 eliminates the sum, and for all practical purposes we have
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The integration over d1 yields 4πL0  and in our integral we are left with
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[image: image9.wmf]  

1

/

r

>

to be inserted into the radial integral.

(b) For the exchange integral has the following changes have to be made: In the radial integral, 
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In the angular integral
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In the azimuthal integration again the m ≠ 0 terms disappear, and in the rest there is a product of  two integrals of the form
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The net effect is that the sum is replaced by  
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 inserted into the radial integral.

For the l = 0 case the same procedure will work, leading to 
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The radial integrals are actually quite simple, but there are many terms and the calculation is tedious, without teaching us anything about physics. 

To estimate which of the(l = 0,l = 0) or the (l = 0, l = 1) antisymmetric combinations has a lower energy we approach the problem physically. In the two-electron wave function, one of the electrons is in the n = 1, l = 0 state. The other electron is in an n = 2 state. Because of this, the wave function is pushed out somewhat. There is nevertheless some probability that the electron can get close to the nucleus. This probability is larger for the l = 0 state than for the l = 1 state. We thus expect that the state in which both electrons have zero orbital angular momentum is the lower-lying state. 

3. In the ground state of ortho-helium, both electroNs have zero orbital angular momentum. Thus the only contributions to the magnetic moment come from the electron spin. An electron interacts with the magnetic field according to 
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The value of g is 2, and thus coefficient of B takes on the values 
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, where 
m1 = 1,0,-1. 

4. We assume that is properly normalized, and is of the form
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The normalization condition implies that
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so that
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Now
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where use has been made of the normalization condition.Thus the expectation value of H differs from the exact value by terms of order ||2.

5. We need to calculate 
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With a little algebra, and using 
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This takes its minimum value when 
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. This is easily worked out, and leads to 
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The true ground state energy is bound to lie below this value. The true value is 
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 so that our result is pretty good.

4. The Schrodinger equation for a bound state in an attractive potential,  with l = 0 reads
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With the notation  x = r/r0 , u0(x) = x x), 
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 this becomes 
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Consider, now an arbitrary function w(x) which satisfies w(0)= 0 (like u0(0)) , and define
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We are asked to prove that if  
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 and w (x) = u0(x) + u(x) , then as u(x) ( 0,  ( 0.  We work to first order in u(x) only. Then the right hand side of the above equation, written in abbreviated form becomes
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In the above, the first term is just 
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The first term on the right vanishes because the eigenfunction vanishes at infinity and because u(0) = 0. Thus the second term in the equation for 
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Thus 
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5. We want to minimize 
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  subject to the condition that 
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The condition is that 
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Similarly 
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Thus the minimization condition yields solutions of an eigenvalue equation for H.

6. Consider the expectation value of H evaluated with the normalized trial wave function 
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Then an evaluation of the expectation value of H yields, after some algebra,
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The question is: can we find a value of   such that this is negative. If so, then the true value of the ground state energy will necessarily be more negative. We are given the fact that the potential is attractive, that is, V(x) is never positive. We write V(x) = - |V(x)| and ask whether we can find a value of  such that
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For any given |V(x)| we can always find a square “barrier” that is contained in the positive form of |V(x)|. If the height of that barrier is V0 and it extends from –a to +a , for example, then the left side of the above equation is always larger than
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Our question becomes: Can we find a  such that
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It is clear that for small   such that 2a2 << 1, the left hand side is approximated by 
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. This is linear in  so that we can always find a  small enough so that the left hand side is larger than the right hand side.

7. The data indicates a resonance corresponding to a wavelength of 20.61 nm. This corresponds to an energy of 


[image: image52.wmf]  

h

c

l

=

2

p

(

1

.

054

´

10

-

34

J

.

s

)(

3

´

10

8

m

/

s

)

(

20

.

61

´

10

-

9

m

)(

1

.

602

´

10

-

19

J

/

eV

)

=

60

.

17

eV


above the ground state. The ground state has energy – 78.98 eV, while the ground state of He+ has a binding energy of a hydrogenlike atom with Z = 2, that is, 54.42 eV. This means that the ionization energy of He is (78.98-54.42)eV = 24.55 eV above the ground state. Thus when the (2s)(2p) state decays into He+ and an electron, the electron has an energy of  (60.17 – 24.55)eV = 35.62 eV. This translates into 
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The first excited state of the He+ ion lies 54.42(1-1/4)=40.82 eV above the ground state of He+ , and this is above the (2s)(2p) state. 

8. To calculate the minimum of 
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we set 
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. This implies that
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This is equivalent to
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Let us now assume that H depends on some parameter .. To calculate the minimum we must choose our parameters 
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 to depend on i.  We may rewrite the starting equation by emphasizing the dependence of everything on , as follows
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Let us now differentiate with respect to  , noting that  
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We get
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Since we have shown that
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we obtain the result that 
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With normalized trial wave functions we end up with
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A comment: The Pauli theorem in Supplement 8-A has the same form, but it deals with exact eigenvalues and exact wave functions. Here we find that the same form applies to approximate values of the eigenvalue and eigenfunctions,  provided that these are chosen to depend on parameters {} which minimize the expectation value of the Hamiltonian (which does not depend on these parameters).
9. With the trial wave function 
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we can calculate 
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We minimize this by setting 
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. When this is inserted into the expression for E, we get
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This is quite close to the exact value, for which the coefficient is 1.060

10. With the Hamiltonian 
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we first choose (1/2m) as the parameter in the Feynman-Hellmann theorem. This leads to 
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If we choose   as the parameter, then
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11. We start from
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We now choose for the trial vector one in which all the entries are zero, except that at the k-th position there is 1, so that 
[image: image75.wmf]  

a

i

=

d

ik

. This leads to






[image: image76.wmf]  

E

0

£

H

kk

     (k is not summed over)

We may choose k = 1,2,3,…Thus the lowest eigenvalue is always smaller than the the smallest of the diagonal elements.

12. With the system’s center of mass at rest, the two-body problem reduces to a one-body problem, whose Hamiltonian is
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where  µ is the reduced mass, whose value is m/2. 

(a) The two particles are in an l = 0 state which means that the ground state wave function only depends on r, which is symmetric under the interchange of the two particles (Recall that 
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). Thus the electrons must be in a spin-singlet state, and the ground state wave function is 
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where 
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(We use u0(x) from Eq. (6-55)).

(b) To proceed with this we actually have to know something about the solutions of the simple harmonic oscillator in three dimensions. The solution of this was required by Problem 13 in Chapter 8. We recall that the solutions are very similar to the hydrogen atom problem. There are two quantum numbers, nr and l. Here l = 0, so that the first excited singlet state must correspond to nr = 1. In the spin triplet state, the spin-wave function is symmetric, so that the spatial wave function must be antisymmetric. This is not possible with l = 0!

To actually obtain the wave function for the first excited singlet state, we look at the equation for H(), with H() of the form a + b. Since




[image: image81.wmf]  

d

2

H

d

r

2

+

2

(

1

r

-

r

)

dH

d

r

+

4

H

=

0


We get H ()= 1-22/3 and the solution is 





[image: image82.wmf]  

u

1

(

r

)

=

N

(

1

-

2

3

r

2

)

e

-

r

2

/

2


where 
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so that
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(c) The energy shift to lowest order is
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13. The energy is given by


[image: image87.wmf]  

  

E

=

1

2

M

red

w

2

(

R

-

R

0

)

2

+

h

2

J

(

J

+

1

)

2

M

red

R

2


If we treat the vibrational potential classically, then the lowest state of energy is characterized by R = R0.  The vibrational motion changes the separation of the nuclei in the molecule. The new equilibrium point is given by R1 , which is determined by the solution of
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Let  R1 = R0 + . Then to first order in , 
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If we now insert the new value of R1 into the energy equation, we find that only the rotational energy is changed (since the vibrational part is proportional to 2). The rotational energy is now
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The sign of the second term is negative. The sign is dictated by the fact that the rotation stretches the molecule and effectively increases its moment of inertia.

14. In the transition J = 1 ( J = 0 we have
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so that
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The internuclear separation is therefore 0.113 nm, and the momentu of inertia is
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15. (a) The two nuclei are identical. Since the two-electron state is a spatially symmetric spin 0 state, we can ignore the electrons in discussing the lowest energy states of the molecule. In the ground state, the two protons will be in the symmetric L = 0 state, so that they must be in a spin-antisymmetric  S = 0 state. 

For the spin-symmetric S = 1 state, the spatial wave function must be antisymmetric, so that the lowest energy state will have L = 1.

(b) The lowest energy state that lies above the ground state of L = 0, and is also a spin S = 0 state must have L = 2. Thus the change in energy in the transition is
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We have used the fact that the reduced mass of the two-proton system is Mp/2.

For the S = 1 system, the state above the lowest L = 1 state is the L = 3 state, and here
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The singlet and triplet wavelengths are easily calculated once we know R. Note that these are not exactly the same, but can be looked up.
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