CHAPTER 16.

1. The perturbation caused by the magnetic field changes the simple harmonic oscillator Hamiltonian  H0 to the new  Hamiltonian H
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If we choose B to define the direction of the z axis, then the additional term involves B Lz. 

When H acts on the eigenstates of the harmonic oscillator, labeled by |nr, l, ml >, we get
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Let us denote qB/2m by B . Consider the three lowest energy states:

nr = 0, l = 0, the energy is 
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nr = 0, l = 1 This three-fold degenerate level with unperturbed energy 
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, splits into three nondegenerate energy levels with energies
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The next energy level has quantum numbers nr  = 2, l = 0 or nr = 0, l = 2. We thus have a four-fold degeneracy with energy 
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 The magnetic field splits these into the levels according to the ml value. The energies are
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2, The system has only one degree of freedom, the angle of rotation . In the absence of torque, the angular velocity  = d/dt  is constant. The kinetic energy is 
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where L = MvR is the angular momentum, and I the moment of inertia. Extending this to a quantum system implies the replacement of L2 by the corresponding operator. This suggests  that 
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(b) The operator L can also be written as p x R. 

When the system is placed in a constant magnetic field, we make the replacement



[image: image11.wmf]  

p

®

p

-

q

A

=

p

-

q

(

-

1

2

r

´

B

)

=

p

+

q

2

r

´

B


The operator r represents the position of the particle relative to the axis of rotation, and this is equal to R. We may therefore write
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If we square this, and only keep terms linear in B , then it follows from (R.B) = 0, that
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The last step is taken because we choose the direction of B to define the z axis.

The energy eigenvalues are therefore
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where 
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. Note that the lowest of the levels corresponds to ml = l.

3. In the absence of  a magnetic field, the frequency for the transition n = 3 to n = 2 is determined by
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so that
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The lines with ml = ± 1 are shifted upward (and downward)  relative to the ml = 0 (unperturbed ) line. The amount of the shift is given by
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so that
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Numerically  = 0.4572 x 1015 Hz and with B = 1 T,  = 1.40 x 1010 Hz. Thus the frequencies are  and 
[image: image20.wmf]  

n

(

1

±

D

n

/

n

)

. Thus the wavelengths are c / and 
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. This leads to the three values  = 655.713 nm, with the other lines shifted down/up by 0.02 nm.

4. The Hamiltonian is
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Let us choose E = (E, 0, 0 ) and B = ( 0, 0, B), but now we choose the gauge such  that

A = (0, Bx, 0). This leads to 




[image: image23.wmf]  

H

=

1

2

m

p

x

2

+

(

p

y

-

qBx

)

2

+

p

z

2

(

)

-

qEx

=

=

1

2

m

(

p

x

2

+

p

y

2

+

p

z

2

-

2

qBp

y

x

+

q

2

B

2

x

2

-

2

mqEx

)


Let us now choose the eigenstate to be a simultaneous eigenstate of H, pz  (with eigenvalue  zero) and py  (with eigenvalue  
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). Then the Hamiltonian takes the form
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This is the Hamiltonian for a shifted harmonic oscillator with a constant energy added on.

We may write this in the form
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Thus the energy is
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with n = 0,1,2,3,…

5. We first need to express everything in cylindrical coordinates.  Since we are dealing with an infinite cylinder which we choose to be aligned with the z axis,, nothing depends on z, and we only deal with the  and   coordinates. We only need to consider the Schrodinger  equation in the region  
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We start with
[image: image29.wmf]  

H

=

1

2

m

e

P

x

2

+

P

y

2

(

)


where
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To write this in cylindrical coordinates we use Eq. (16-33) and the fact that for the situation at hand
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where  is the magnetic flux in the interior region. When all of this is put together, the equation
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takes the form
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To solve this, we use the separation of variables technique. Based on previous experience, we write
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The single-valuedness  of the solution implies that m = 0,±1,±2,±3,…

With the notation  
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 the equation for f() becomes
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If we now introduce 
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 the equation takes the form
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This is Bessel’s equation. The most general solution has the form
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If we now impose the boundary conditions  
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 we end up with 
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and
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The two equations can only be satisfied if
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This is the eigenvalue equation,  and the solution k clearly depends on the order  of the Bessel functions, that is, on the flux enclosed in the interior cylinder.
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