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PREFACE

Excerpts from the Preface to the First Edition
“l understand mathematics but | just can’t do proofs.”

Our experience has led us to believe that the remark above, though contradictory,
expresses the frustration many students feel as they pass from beginning calculus
to a more rigorous level of mathematics. This book developed from a series of
lecture notes for a course at Central Michigan University that was designed to
address this lament. The text is intended to bridge the gap between calculus and
advanced courses in at least three ways. First, it provides a firm foundation in the
major ideas needed for continued work. Second, it guides students to think and to
express themselves mathematically—to analyze a situation, extract pertinent
facts, and draw appropriate conclusions. Finally, we present introductions to
modern algebra and analysis in sufficient depth to capture some of their spirit and
characteristics.

Exercises marked with a solid star (*) have complete answers at the back of the
text. Open stars () indicate that a hint or a partial answer is provided. “Proofs to
Grade” are a special feature of most of the exercise sets. We present a list of claims
with alleged proofs, and the student is asked to assign a letter grade to each “proof”
and to justify the grade assigned. Spurious proofs are usually built around a single
type of error, which may involve a mistake in logic, a common misunderstanding
of the concepts being studied, or an incorrect symbolic argument. Correct proofs
may be straightforward, or they may present novel or alternate approaches. We
have found these exercises valuable because they reemphasize the theorems and
counterexamples in the text and also provide the student with an experience similar
to grading papers. Thus the student becomes aware of the variety of possible errors
and develops the ability to read proofs critically.

In summary, our main goals in this text are to improve the student’s ability to
think and write in a mature mathematical fashion and to provide a solid understand-
ing of the material most useful for advanced courses. Student readers, take comfort

viii
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Preface ix

from the fact that we do not aim to turn you into theorem-proving wizards. Few of
you will become research mathematicians. Nevertheless, in almost any mathemati-
cally related work you may do, the kind of reasoning you need to be able to do is
the same reasoning you use in proving theorems. You must first understand exactly
what you want to prove (verify, show, or explain), and you must be familiar with the
logical steps that allow you to get from the hypothesis to the conclusion. Moreover,
a proof is the ultimate test of your understanding of the subject matter and of math-
ematical reasoning.

We are grateful to the many students who endured earlier versions of the man-
uscript and gleefully pointed out misprints. We acknowledge also the helpful com-
ments of Edwin H. Kaufman, Melvin Nyman, Mary R. Wardrop, and especially
Douglas W. Nance, who saw the need for a course of this kind at CMU and did a
superb job of reviewing the manuscript.

To the Seventh Edition

The seventh edition is based on the same goals and core material as previous edi-
tions, but with new organization in several places and many new and revised expo-
sitions, examples, and exercises. In the expanded Preface to the Sudent, we have
gathered together preliminary ideas that should already be familiar to students
(including properties of the number systems, definitions of even, odd and prime
numbers, naive notions of sets, and the basic terminology of functions). This
arrangement makes the prerequisite material easier to locate and keeps the focus of
the text on the use of mathematical reasoning.

The rewritten introduction to concepts of elementary number theory in Section
1.7 is deliberately placed early in the text, before any discussion of inductive proofs
and the Well-Ordering Principle, as an opportunity to practice basic proof methods
on a coherent set of results about divisibility, the greatest common divisor, and lin-
ear combinations. Placing this content here (and accepting the Division Algorithm
without proof until inductive proofs are introduced in Chapter 2) allows students to
experience significant results that are achieved with relatively simple proof forms.
Later, students can observe the power of inductive methods to prove the Division
Algorithm and related results.

In Chapter 4 properties of one-to-one and onto functions are now grouped
more efficiently and there is a separate section on one-to-one correspondences and
permutations of a set. In Section 5.3 on countable sets, the major results (that sub-
sets and unions of countably many countable sets are countable) are moved up to
make them more accessible. In Chapter 7, there is even more emphasis on the
meaning of the completeness property of the real number system.

Chapter 1 introduces the propositional and predicate logic required by
mathematical arguments, not as formal logic, but as tools of reasoning for more
complete understanding of concepts (including some ideas of arithmetic, ana-
lytic geometry, and calculus with which the student is already familiar). We
present methods of proof and carefully analyze examples of each method, giving
special attention to the use of definitions and denials. The techniques in this
chapter are used and referred to throughout the text. In Chapters 2, 3, and 4 on
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X Preface

sets, relations, and functions, we emphasize writing and understanding proofs
that require the student to deal precisely with the concepts of set operations,
equivalence relations and partitions, and properties of injective and surjective
functions.

These first four chapters contain the core material of the text and, in addition,
offer the opportunity for further work in several optional sections: basics of number
theory (Section 1.7), combinatorial counting (Section 2.6), order relations and
graph theory (Sections 3.4 and 3.5), and image sets and sequences (Sections 4.5 and
4.6). See the diagram on the inside front cover for a diagram that highlights the core
and shows the prerequisite relationships among sections. For a one-semester
course, we recommend the core material along with any one of Chapters 5, 6, or 7,
or a selection of optional sections and excursions into one or two of the later chap-
ters—for example, Sections 4.6, 5.1, 5.2,5.3, 7.1, and 7.2.

Chapters 5, 6, and 7 make use of the skills and concepts the student has acquired
in the first four chapters, and thus are a cut above the earlier chapters in terms of level
and rigor. Chapter 5 emphasizes a working knowledge of cardinality: finite and infi-
nite sets, denumerable sets and the uncountability of the real numbers, and properties
of countable sets. We include sections on the ordering of cardinals and applications of
the Cantor-Schréder—Bernstein Theorem and a brief discussion of the Axiom of
Choice. In Chapter 6 we consider properties of algebras with a binary operation,
groups, substructures, and homomorphisms, and relate these concepts to rings and
fields. Chapter 7 considers the completeness property of the real numbers by tracing
its consequences: the Heine—Borel Theorem, the Bolzano—\Weierstrass Theorem, and
the Bounded Monotone Sequence Theorem, and back to completeness.

We sincerely thank our reviewers for the seventh edition: David Bayer,
Columbia University; Fernando Burgos, University of South Florida; Yves
Nievergelt, Eastern Washington University; and Don Redmond, Southern Illinois
University.

We also thank our reviewers of earlier editions: Mangho Ahuja, Southeast
Missouri State University; William Ballard, University of Montana; David
Barnette, University of California at Davis; Gerald Beer, California State
University-Los Angeles; Harry Conce, Mankato State University; Sherralyn
Craven, Central Missouri State University; Robert Dean, Stephen F. Austin State
University; Ron Dotzel, University of Missouri; Harvey Elder, Murray State
University; Michael J. Evans, North Carolina State University; Gerald Farrell.
California Polytechnic State University; Benjamin Freed, Clarion University of
Pennsylvania; Robert Gamble, Winthrop College; Dennis Garity, Oregon State
University; Robert P. Hunter, Pennsylvania State University; Jack Johnson,
Brigham Young University—Hawaii; L. Christine Kinsey, Canisuis College; Daniel
Kocan, State University of New York, Potsdam; James McKinney, California
Polytechnic State University; Blair Madore, The State University of New York at
Potsdam; Andrew Martin, Morehead State University; Edward Mosley, Lyon
College; Van C. Nall, University of Richmond; Yves Nievergelt, Eastern
Washington University; Yewande Olubummo, Spelman College; Hoseph H.
Oppenheim, San Francisco State University; John S. Robertson, Georgia College &
State University; Victor Schneider, University of Southwestern Louisiana; Dale
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Preface Xi

Schoenefeld, University of Tulsa; Kenneth Slonnegar, State University of New
York at Fredonia; Douglas Smith, University of the Pacific; Joseph Teeters,
University of Wisconsin; Mary Treanor, Valparaiso University; and Lawrence
Williams, University of Texas, San Antonio.

We also wish to thank Roger Lipsett for his suggestions after proofreading of
the final manuscript and the staff at Cengage for their exceptional professional
assistance in the development of this edition and previous editions.

Finally, we note that instructors who adopt this text can sign up for online
access to complete solutions for all exercises via Cengage’s Solution Builder serv-
ice at www.cengage.com/solutionbuilder.

Douglas D. Smith
Richard &. Andre
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PREFACE TO THE STUDENT

Welcome to the study of mathematical reasoning. The authors know that many stu-
dents approach this material with some apprehension and uncertainty. Some students
feel that “This isn’t like other mathematics courses,” or expect that the study of
proofs is something they won’t really have to do or won’t use later. These feelings
are natural as you move from calculation-oriented courses where the goals empha-
size performing computations or solving certain equations, to more advanced
courses where the goal may be to establish whether a mathematical structure has cer-
tain properties. This textbook is written to help ease the transition between these
courses. Let’s consider several questions students commonly have at the beginning
of a “transition” course.

Why write proofs?

Mathematicians often collect information and make observations about particular
cases or phenomena in an attempt to form a theory (a model) that describes patterns
or relationships among quantities and structures. This approach to the development
of a theory uses inductive reasoning. However, the characteristic thinking of the
mathematician is deductive reasoning, in which one uses logic to develop and
extend a theory by drawing conclusions based on statements accepted as true.
Proofs are essential in mathematical reasoning because they demonstrate that the
conclusions are true. Generally speaking, a mathematical explanation for a conclu-
sion has no value if the explanation cannot be backed up by an acceptable proof.

Why not just test and repeat enough examples to confirm
a theory?

After all, as is typically done in natural and social sciences, the test for truth of a
theory is that the results of an experiment conform to predictions, and that when
the experiment is repeated under the same circumstances the result is always the
same. The difference is that in mathematics we need to know whether a given

Xii
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Preface to the Student Xiii

statement is always true, so while the statement may be true for many (even infi-
nitely many) examples, we would never know whether another example might
show the statement to be false. By studying examples, we might conclude that the
statement

“x% — 3x 4 43 is a prime number”

is true for all positive integers x. We could reach this conclusion testing the first 10
or 20 or even the first 42 integers 1, 2, 3, ..., 42. In each of these cases and others,
such as 44, 45, 47, 48, 49, 50 and more, x> — 3x + 43 isa prime number. But the
statement is not always true because 432 — 3(43) + 43 = 1763, which is 41 - 43.
Checking examples is helpful in gaining insight for understanding concepts and
relationships in mathematics, but is not a valid proof technique unless we can
somehow check all examples.

Why not just rely on proofs that someone else has done?

One answer follows from the statement above that deductive reasoning character-
izes the way mathematicians think. In the sciences, a new observation may force a
complete rethinking of what was thought to be true; in mathematics what we know
to be true (by proof) is true forever unless there was a flaw in the reasoning. By
learning the techniques of reasoning and proof, you are learning the tools of the
trade.

The first goal of this text is to examine standard proof techniques, especially
concentrating on how to get started on a proof, and how to construct correct proofs
using those techniques. You will discover how the logical form of a statement can
serve as a guide to the structure of a proof of the statement. As you study more
advanced courses, it will become apparent that the material in this book is indeed
fundamental and the knowledge gained will help you succeed in those courses.
Moreover, many of the techniques of reasoning and proof that may seem so diffi-
cult at first will become completely natural with practice. In fact, the reasoning that
you will study is the essence of advanced mathematics and the ability to reason
abstractly is a primary reason why applicants trained in mathematics are valuable
to employers.

What am I supposed to know before beginning Chapter 1?

The usual prerequisite for a transition course is at least one semester of calculus. We
will sometimes refer to topics that come from calculus and earlier courses (for
example, differentiable functions or the graph of a parabola), but we won’t be solv-
ing equations or finding derivatives.

You will need a good understanding of the basic concepts and notations from
earlier courses. The list of definitions and relationships below includes the main
things you will need to have ready for immediate use at any point in the text.
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Xiv Preface to the Student

Be aware that definitions in mathematics, however, are not like definitions in ordi-
nary English, which are based on how words are typically used. For example, the ordi-
nary English word “cool” came to mean something good or popular when many people
used it that way, not because it has to have that meaning. If people stop using the word
that way, this meaning of the word will change. Definitions in mathematics have pre-
cise, fixed meanings. When we say that an integer is odd, we do not mean that it’s
strange or unusual. Our definition below tells you exactly what odd means. You may
form a concept or a mental image that you may use to help understand (such as “ends
in1,3,5,7,or9”), but the mental image you form is not what has been defined. For this
reason, definitions are usually stated with the “if and only if” connective because they
describe exactly—no more, no less—the condition(s) to meet the definition.

Sets

A set is a collection of objects, called the elements, or members of the set. When
the object x is in the set A, we write xe€ A; otherwise x ¢ A. The set
K = {6, 7, 8, 9} has four elements; we see that 7 € K but 3 ¢ K. We may use set-
builder notation to write the set K as

{x: xis an integer greater than 5 and less than 10},

which we read as “the set of x such that x is . . .” Observe that the set whose only
element is 5 is not the same as the number 5; that is, {5} # 5. The empty set J is
a set with no elements.

We say that A is a subset of B, and write A C B, if and only if every element of
Ais an element of B. If sets A and B have exactly the same elements, we say they
are equal and write A= B.

We use these notations for the number systems:

N = {1, 2, 3,...} is the set of natural numbers.
7=4...-3,-2,-1,0,1,2,...}is the set of integers.
Q is the set of all rational numbers.

R is the set of all real numbers.

C is the set of all complex numbers.

A set is finite if it is empty or if it has n elements for some natural number n.
Otherwise it is infinite. Thus the set {6, 7, 8, 9} is finite. All the number systems
listed above are infinite.

The Natural Numbers

The properties below describe the basic arithmetical and ordering structure of the set N.

1. Successor properties
1 is a natural number.
Every natural number x has a unique successor x + 1.
1 is not the successor of any natural number.
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Preface to the Student XV

2. Closure properties
The sum of two natural numbers is a natural number.
The product of two natural numbers is a natural number.
3. Associativity properties
Forallx,y,ze N, x4+ (y+2=(x+Yy)+2
Forall x, vy, ze N, x(y2) = (xy)z
4, Commutativity properties
Forallx,ye N, x+y=y+x
Forall x,y e N, xy = yx.
5. Distributivity properties
Forall x,y,ze N, x(y+ 2) = xy + xz
Forallx,y,ze N, (y+ 2x = yx + zx.

6. Cancellation properties
Forallx,y,ze N, ifx+z=y+ zthenx=y.
Forallx,y,ze N, if xz=yz thenx=y.

For natural numbers a and b we say a dividesb (or ais a divisor of b, or b is
a multiple of a) if and only if there is a natural number k such that b = ak. For
example, 7 divides 56 because there is a natural number (namely 8) such that
56 =7-8.

A natural number p is primeif and only if p is greater than 1 and the only nat-
ural numbers that divide p are 1 and p. A composite is a natural number that is
neither 1 nor prime.

The Fundamental Theorem of Arithmetic:

Every natural number larger than 1 is prime or can be expressed uniquely as a prod-
uct of primes. For example, 440 can be expressed as 440 = 23 .5 . 11. If we list the
prime factors in increasing order, then there is only one prime factorization: the
primes and their exponents are uniquely determined.

The Integers

The integers share properties 2 through 6 listed above for N (with the exception that
we can’t cancel z= 0 from the product xz = yz). Other important properties are:

Forallxin Z,x4+0=0,x-0=0and x+ (—x) =0.

Forall x,y,zinZ,ifx<yand z> 0, xy < yz

The product of two positive or two negative integers is positive; the product of
a positive and a negative is negative.

The natural numbers and integers provide excellent settings for developing an
understanding of the structure of a correct proof, so we will use the following defi-
nitions extensively in early examples of proof writing. In those proofs we make use
of the properties of number systems and the fact that every integer is either even or
odd, but not both.
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Xvi Preface to the Student

An integer x is even if and only if there is an integer k such that x = 2k. An inte-
ger x is odd if and only if there is an integer j such that x = 2j + 1. For integers a
and b with a=£ 0 we say a divides b if and only if there is an integer k such that
b = ak.

Real and Rational Numbers

We think of the real numbers as being all the numbers along the number line. Each
real number can be represented as an integer together with a finite or infinite deci-
mal part. We use the standard notations for intervals on the number line. For real
numbers aand b with a < b:

(a, b) ={x:xe Rand a < x < b} is the open interval from atob.

[a, b] ={x xe Rand a < x < b} is the closed interval from atob.

(@, 00)={xxeRanda<x} and (—oo,b)={xxeRandx < b} are
open rays.

[a, 0)={xxeRanda<x} and (—oo,b]={x:xeRandx < b} are
closed rays.

Note that the infinity symbol “oco™ is simply a notational convenience and does
not represent any real number. Also, one should be careful not to confuse (1, 6) with
{2, 3, 4, 5}, since (1, 6) is the set of all real numbers between 1 and 6 and contains,
for example, 2, 7, 4/13, and %7

The real number x is rational if and only if there are integers p and g, with
g # 0, such that x = p/q.

The rationals are exactly the numbers along the number line that have termi-
nating or repeating decimal expressions. All other real numbers are irrational. In
Chapter 1 we will see a proof that /2 is irrational. The number systems R and @
share many of the arithmetic and ordering properties of the naturals and integers,
along with a new property:

Every number x except 0 has a multiplicative inverse; that is, there is a number
y such that xy = 1.
Complex Numbers

A complex number has the form a4 bi, where a and b are real numbers and
i = +/—1. The conjugate of a + bi is a — bi and (a + bi)(a — bi) = a® + b2 The
set of reals is a subset of the complex numbers because any real number x may be writ-
ten as x 4 0i. Complex numbers do not share the ordering properties of the reals.

Functions

A function (or a mapping) is a rule of correspondence that associates to each ele-
ment in a set A a unique element in a second set B. No restriction is placed on the
sets A and B, which may be sets of numbers, or functions, or vegetables. To denote
that f is a function from Ato B, we write

f:A—>B
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Preface to the Student xvii
and say “f maps Ato B.” If a € A and the corresponding element of B is b, we write
f(a)=h.

The elements of A are sometimes called the arguments or inputs of the function.
If f (@) = b we say that b is the image of a, or b is the value of the function f at a.
We also say that a is a pre-image of b.

For example, f: R — R given by f (x) = x? + 1 represents the correspondence
that assigns to each real number x the number that is one more than the square of x.
The image of the real number 2 is 5 and —3 is a pre-image of 10.

The features that make f a function from A to B are that every element of A
must have an image, that image must be in B, and most importantly, that no element
of A has more than one image. It is this single-valued property that make functions
so useful.

If f: A— B, the set A is the domain of f, denoted Dom(f), and B is the
codomain of f. The set

Rng (f) = {f(X): xe A}

of all images under the function f is called the range of f. The range of the function
f:R — Rgivenby f(x) =x%+ 1is[1, o).

It is sometimes convenient to describe a function by giving only a domain and
a rule. For functions whose domains and codomains are subsets of R, the domain is
sometimes left unspecified and assumed to be the largest possible subset of R for
which image values may be obtained. With this assumption, the domain of
g(X) = v/x+ 1is[—1, c0), because this is the largest set of real numbers for which
+/X+ 1 may be calculated.

When we say that f: A — B, it is required that Rng (f) < B. However, it may
be that some elements of the codomain are not images under the function f; that is,
the set Rng (f) may not be equal to B. In the special case when the range of f is
equal to B, we say f maps A onto B. It may also be that two different elements of
A have the same image in B. In the special case when any two different arguments
have different images, we say that f is one-to-one. Because the range of
f(X)=x?+1is[1, 00), f isnotonto R. Since f (3) and f (—3) have value 10, f
is not one-to-one.

What am | allowed to assume for a proof?

You may be given specific instructions for some proof writing exercises, but gener-
ally the idea is that you may use what someone studying the topic of your proof
would know. That is, when we prove something about intersecting lines we might
use facts about the slope of a line, but we probably would not use properties of
derivatives. This really is not much of a problem, except for our first proof exam-
ples, which deal with elementary concepts such as even and odd (because they pro-
vide meaningful examples and a familiar context in which to study logic and
reasoning). For these proofs we are allowed to use the properties of integers and
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Xviii Preface to the Student

natural numbers that we already know except what we already know about even-
ness and oddness.

Remember, we don’t expect you to become an expert at proving theorems
overnight. With practice—studying lots of examples and exercises—the skills will
come. Our goal is to help you write and think as mathematicians do, and to pres-
ent a solid foundation in material that is useful in advanced courses. We hope you
enjoy it.

Douglas D. Smith
Richard &. Andre
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CHAPTER 1

Logic and Proofs

We recommend that you read the Preface to the Student before beginning this first
chapter. Most of the terms and concepts in that Preface should be familiar to you,
but it is well worth making sure you know the terminology and notations we will
use throughout the book. It is especially important that you know precisely the def-
initions of such terms as: “divides,” “prime,” “rational,” and “even” and “odd.”

As described in the Preface, mathematics is concerned with the formation of a
theory (collection of true statements) that describes patterns or relationships
among quantities and structures. It is characterized by deductive reasoning, in
which one uses logic to develop and extend a theory by drawing conclusions based
on statements accepted as true. We give proofsto demonstrate that our conclusions
are true. This chapter will provide a working knowledge of the basics of logic and
how to construct a proof.

1.1 Propositions and Connectives

Our goal in this section is to understand truth values of propositions and how propo-
sitions can be combined using logical connectives.

Most sentences, such as “m > 3” and “Earth is the closest planet to the sun,”
have a truth value. That is, they are either true or false. We call these sentences
propositions. Other sentences, such as “What time is it?” and “Look out!” are inter-
rogatory or exclamatory; they express complete thoughts but have no truth value.

DEFINITION A proposition is a sentence that has exactly one truth
value: true, which we denote by T, or false, which we denote by F.

Some propositions, such as “72 = 60,” have easily determined truth values. It
will take years to determine the truth value of the proposition “The North Pacific
right whale will be an extinct species before the year 2525.” Other statements, such

1
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2 CHAPTER 1 Logic and Proofs

as “Euclid was left-handed,” are propositions whose truth values may never be
known.

Sentences like “She lives in New York City” and “x? = 36” are not proposi-
tions because each could be true or false depending upon the person to whom “she”
refers and what numerical value is assigned to x. We will deal with sentences like
these in Section 1.3.

The statement “This sentence is false” is not a proposition because it is neither
true nor false. It is an example of a par adox—a situation in which, from premises
that look reasonable, one uses apparently acceptable reasoning to derive a conclu-
sion that seems to be contradictory. If the statement “This sentence is false” is true,
then by its meaning it must be false. On the other hand, if the given statement is
false, then what it claims is false, so it must be true. The study of paradoxes such as
this has played a key role in the development of modern mathematical logic. A
famous example of a paradox formulated in 1901 by Bertand Russell* is discussed
in Section 2.1.

By applying logical connectives to propositions, we can form new propositions.

DEFINITION The negation of a proposition P, denoted ~P, is the
proposition “not P.” The proposition ~P is true exactly when P is false.

The truth value of the negation of a proposition is the opposite of the truth
value of the proposition. For example, the negation of the false proposition “7 is
divisible by 27 is the true statement “It is not the case that 7 is divisible by 2,” or “7
is not divisible by 2.”

DEFINITIONS Given propositions P and Q, the conjunction of P and
Q, denoted P A Q, is the proposition “P and Q.” P A Q is true exactly
when both P and Q are true.

The digunction of P and Q, denoted PV Q, is the proposition
“PorQ.” PV Qis true exactly when at least one of P or Q is true.

Examples. If Cis the proposition “19 is composite” and M is “45 is a multiple of
3,” we know C is false and M is true. Thus “19 is composite and 45 is a multiple of
3,” written using logical connectives as C A M, is a false proposition, while “19 is
composite or 45 is a multiple of 3,” which has form C v M, is true. The false propo-
sition “Either 19 is composite or 45 is not a multiple of 3” has the form C v ~M.

The English words but, while, and although are usually translated symbolically
with the conjunction connective, because they have the same meaning as and. For

* Bertrand Russell (1872-1970) was a British philosopher, mathematician, and advocate for social
reform. He was a strong voice for precision and clarity of arguments in mathematics and logic. He coau-
thored Principia Mathematica (1910-1913), a monumental effort to derive all of mathematics from a
specific set of axioms and well-defined rules of inference.
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1.1 Propositions and Connectives 3

example, we would write “19 is not composite, but 45 is a multiple of 3” in sym-
bolic form as: (~C) A M.

An important distinction must be made between a statement and the form of a
statement. In the previous example “19 is composite and 45 is a multiple of 3” is a
proposition with truth value F. We used the form C A M to represent this proposi-
tion, but theform C A M itself has no truth value unless C and M are assigned to be
specific propositions. If we let C be “Copenhagen is the capital of Denmark” and M
be “Madrid is the capital of Spain,” then C A M would have the value T.

To repeat: a propositional form does not have a truth value. Instead, each form
has a list of truth values that depend on the values assigned to its components. This
list is displayed by presenting all possible combinations for the truth values of its
components in a truth table. Since the connectives A and v involve two components,
their truth tables must list the four possible combinations of the truth values of those

components:
P Q PAQ P Q PvQ
T T T T T T
F T F F T T
T F F T F T
F F F F F F

Since the value of ~P depends only on the two possible values for P, its truth
table is

P ~P
T F
F T

Frequently you will encounter compound propositions formed from more than
two propositional variables. The propositional form (P A Q) v ~R has three vari-
ables P, Q, and R; it follows that there are 2° = 8 possible combinations of truth

values. The two main components are P A Q and ~R. We make truth tables for
these and combine them by using the truth table for V.

QO

PAQ ~R (PAQ) v~R

MATM AT AT A | T
R e e e B e B
mTTmmmMmA-4-+4-4 | O
mTTmTm—a4Tmmn-H
b Wi M B M e e e
e B e B i B e n B |

The statement “Either 7 is prime and 9 is even or else 11 is not less than 3” may
be symbolized by (P A Q) v ~R, where P is “7 is prime,” Q is “9 is even,” and R
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4 CHAPTER 1 Logic and Proofs

is “11 is less than 3.” We know P is true, Q is false and R is false. Therefore,
(P A Q) isfalse and ~Ris true. Thus (P A Q) v ~Ris true, in agreement with line
7 of the table. Thus the proposition “Either 7 is prime and 9 is even or else 11 is not
less than 3” is a true statement.

Some compound forms always yield the value true just because of the way they
are formed; others are always false.

DEFINITIONS A tautology is a propositional form that is true for
every assignment of truth values to its components.

A contradiction is a propositional form that is false for every assignment
of truth values to its components.

For example, the Law of Excluded Middle, P v ~P, is a tautology because
P v ~P is true when P is true and true when P is false. We know that a statement
like “The absolute value function is continuous or it is not continuous” must be true
because it has the form of the Law of Excluded Middle.

Example. Show that (P Vv Q) v (~P A ~Q) is a tautology.

The truth table for this propositional form is

P Q PvQ ~P ~Q ~PA~Q (PvQ) Vv (~PA~Q)
T T T F F F T
F T T T F F T
T F T F T F T
F F F T T T T

Since the last column is all true, (P v Q) v (~P A ~Q) is a tautology.

Both ~ (P v ~P) and Q A ~Q are examples of contradictions. The negation
of a contradiction is, of course, a tautology.

Writing a proof requires the ability to connect statements so that the truth
of any given statement in the proof follows logically from previous statements
in the proof, from known results, or from basic assumptions. Particularly
important is the ability to recognize or write a statement equivalent to another.
Sometimes, it is the form of a compound statement that may be used to find a
useful equivalent.

DEFINITION Two propositional forms are equivalent if and only
if they have the same truth tables.
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1.1 Propositions and Connectives 5

Example. The propositional forms P and ~(~P) are equivalent. The truth tables
for these forms may be combined in one table to show that they are the same:

P ~P  ~(~P)

T F T
F T F

The fact that P and ~ (~P) have the same truth value for each line of the truth
table means that whatever proposition we choose for P, the truth value of P and
~(~P) are identical.

Some of the most commonly used equivalent forms are presented in the fol-
lowing theorem.

Theorem 1.1.1 For propositions P, Q, and R, the following are equivalent:
@ P and ~(~P) Double Negation Law
Eg)) E X 8 :23 SX E } Commutative Laws
Eg)) E X Eg X g Zzg Eg X 8; X ? } Associative Laws
8) g C 8 X g Zzg EE)C 8; X EE C g } Distributive Laws
EB) :Eg C 8; 223 :E X :8 } DeMorgan’s* Laws

Proof.

(@  See the discussion above.

(h) By examining the fourth and seventh columns of their combined truth tables
as shown here,

PAQ ~(PAQ) ~P ~Q ~PVv~Q

MmM—T—H | DO
44 | O
mT -
b B e |
b B |
AT
-

we see that the truth tables for ~(P A Q) and ~P v ~Q are identical. Thus
~(P A Q) and ~P v ~Q are equivalent propositional forms.
Proofs of the remaining parts are left as exercises. ]

In addition to making tables to verify the remaining parts of Theorem 1.1.1,
you should also think about why two propositional forms are equivalent by looking

* Augustus DeMorgan (1806-1871) was an English logician and mathematician whose contributions
include his notational system for symbolic logic. He also introduced the term “mathematical induction”
(see Section 2.4) and developed a rigorous foundation for that proof technique.
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6 CHAPTER 1 Logic and Proofs

at their meanings. For part (h), negation is applied to a conjunction. The form
~ (P A Q) is true precisely when P A Q is false. This happens when one of P or Q
is false, or in other words, when one of ~P or ~Q is true. Thus, ~(P A Q) is
equivalent to ~P v ~Q. That is, to say “You don’t have both P and Q” is the same
as saying “You don’t have P or you don’t have Q.”

As an example of how this theorem might be useful in dealing with statements,
suppose we are told that the statement “The function f is increasing and concave
upward” is false. The statement has the form P A Q, where P is the statement “f is
increasing” and Q is the statement “f is concave upward.” The negation ~ (P A Q)
is “It is not the case that f is increasing and f is concave upward.” By part (h) above,
this is equivalent to ~P v ~Q, which is

“It is not the case that f is increasing or it is not the case that f is concave
upward.”

An easier way to say this is
“f is not increasing or f is not concave upward.”

A denial of a proposition P is any proposition equivalent to ~P. A proposition
has only one negation, ~P, but always has many denials, including ~P, ~~~P,
~~~n~~P, etc. DeMorgan’s Laws provide others ways to construct useful denials.

Example. A denial of “Either Miss Scarlet is not guilty or the crime did not take
place in the ballroom” is “The crime took place in the ballroom and Miss Scarlet is
guilty.” This can be verified by writing the two propositions symbolically as
(~S) v (~B) and B A S respectively, and checking that their truth tables have
exactly opposite values. We could also observe that B A Sis equivalentto SA B so
a denial of B A Sis equivalent to ~ (S A B), which we know by DeMorgan’s Laws
is equivalent to (~S) v (~B).

Example. The statement “Line L; has slope 3/5 or line L, does not have slope —4”
may be symbolized using the form P v ~Q, so its negation is ~ (P v ~Q). We can
write a simpler denial (~P) A Q by applying DeMorgan’s Laws and the Double
Negation Law. The simplified denial says “Line L; does not have slope 3/5 and line
L, has slope —4.”

Notice that someone might read the negation ~ (P v ~Q) as “It is not the case
that L; has slope 3/5 or line L, does not have slope —4.” This sentence is ambigu-
ous because without some further explanation, it is not clear if the phrase “It is not
the case” refers to the entire remainder of the sentence or to just “L; has slope 3/5.”

Ambiguities like the one above are sometimes allowable in English but can
cause trouble in mathematics. To avoid ambiguities, you should use delimiters,
such as parentheses (), square brackets [ ], and braces { }.

To avoid writing large numbers of delimiters, we use the following rules,
which we refer to as the hierarchy of connectives.

First, ~ always is applied to the smallest proposition following it.
Then, A always connects the smallest propositions surrounding it.
Finally, v connects the smallest propositions surrounding it.
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1.1 Propositions and Connectives 7

Thus, ~P v Q is an abbreviation for (~P) v Q, but ~(P v Q) is the only way to
write the negation of P v Q. Here are some other examples:

P Vv Q A Rabbreviates P v (Q A R).

P A ~Q Vv ~Rabbreviates [P A (~Q)] V (~R).

~P v ~Q abbreviates (~P) Vv (~Q).

~P A ~RV ~P A Rabbreviates [(~P) A (~R)] v [(~P) A R].

When the same connective is used several times in succession, parentheses
may be omitted. We reinsert parentheses from the left, so that P v Q v Riis really
(PVv Q) Vv R Forexample, RA P A ~P A Q abbreviates [(RA P) A (~P)] A Q,
whereas Rv P A ~P v Q, which does not use the same connective consecutively,
abbreviates (RV [P A (~P)]) v Q. Leaving out parentheses is not required;
some propositional forms are much easier to read with a few well-chosen “unnec-
essary” parentheses.

Exercises 1.1

1. Use your knowledge of number systems to determine whether each is true or
false.
(@) 11isarational number.
* (b) 5 is a rational number.
(c) There are exactly 3 prime numbers between 40 and 50.
(d) There are exactly 5 prime numbers less than 10.
(e) 29 is a composite number.
(f) Oisa natural number.
* (@) (54 2i)(5 — 2i) isareal number.
(h) 18 isamultiple of 12.

2. Which of the following are propositions? Give the truth value of each proposition.
(@) What time is dinner?
(b) Itis not the case that 5 + 7 is not a rational number.
* (C) x/2is arational number.
(d) 2x+ 3yis areal number.
(e) Either 3 + s is rational or 3 — 7 is rational.
* (f) Either 2 is rational and 7 is irrational, or 27 is rational.
(g) Either 57 is rational and 4.9 is rational, or 3z is rational.
(h) —% is rational, and either 37 < 10 or 37 > 15.
(i) Itis not the case that 39 is prime, or that 64 is a power of 2.
(3) There are more than three false statements in this book and this state-
ment is one of them.

3. Make truth tables for each of the following propositional forms.
* (@ PA~P. (b) Pv~P.
* () PA~Q (d) PA(QQV~Q).
* () (PAQ)V~Q ® ~(PAQ).
9 (Pv~Q)AR (h)y ~PA~Q.
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8 CHAPTER 1 Logic and Proofs

* (i) PA(QVR). () (PAQ)V (PAR).
(k) PAP. O (PAQ)V (RA~S).
4. 1f P, Q, and Rare true while Sand T are false, which of the following are true?
* (@ QA(RAYS). (b) QV(RAS).
* () (PvQ)A (RVYS). (d) (~Pv~Q)V (~Rv ~S).
() ~Pv~Q * () Qv AQVS).
* (@ (PVvS)AMPVT).
5. Use truth tables to prove the remaining parts of Theorem 1.1.1.
6. Which of the following pairs of propositional forms are equivalent?
* (@ PAPP. (by PVPP
* () PAQQAP. d) (~P)Vv(~Q), ~(Pv~Q).
* (& ~PA~Q ~(PA~Q). ® ~(PArQ),~PA~Q
* (@9 PAQ)VRPA(@QVR). (h)y PAQ)VRPV(QAR).
7. Determine the propositional form and truth value for each of the following:

(a) Itis not the case that 2 is odd.

(b) f(x) = e*isincreasing and concave up.

(c) Both 7 and 5 are factors of 70.

(d) Perth or Panama City or Pisa is located in Europe.

8. P, Q, and Rare propositional forms, and P is equivalent to Q, and Q is equiv-
alent to R. Prove that

* (&) QisequivalenttoP.
(b) Pisequivalentto R
(c) ~Qisequivalentto ~P.

9. Use atruth table to determine whether each of the following is a tautology, a
contradiction, or neither.
@ (PAQ)V(~PA~Q).
(b) ~(PA~P).

* (€ (PAQ)V(~PV~Q).
(d (AAB)V (AA~B)V (~AAB)V (~AA~B).
e (QA~P)A~(PAR).
) PVI(~QAP)A(RVQ)]

10. Suppose Ais a tautology and B is a contradiction. Are the following tautolo-

gies, contradictions, or neither?

* (a) AAB. (b) AA~B.

* () AvVB. (d) ~(~AAB).

11. Give a useful denial of each statement.

* (a) xisa positive integer. (Assume that x is some fixed integer.)
(b) Cleveland will win the first game or the second game.

* () 5>3.
(d) 641,371 is a composite integer.

* (€) Rosesare red and violets are blue.
(f) Tisnotbounded or T is compact. (Assume that T is a fixed object.)
(9) M isodd and one-to-one. (Assume that M is some fixed function.)
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1.2 Conditionals and Biconditionals 9

(h) The function f has positive first and second derivatives at xo. (Assume
that f is a fixed function and X is a fixed real number.)

(i)  The function g has a relative maximum at x = 2 or x = 4 and a relative
minimum at x = 3. (Assume that g is a fixed function.)

(j) Neither z< snor z <t is true. (Assume that z s, and t are fixed real
numbers.)

(k) Ris transitive but not reflexive. (Assume that R is a fixed object.)

12. Restore parentheses to these abbreviated propositional forms.

@ ~~Pv~QA~S

(b) QA ~SV~(~PAQ).

¢ PA~Q v~PA~RV~PAS

d ~PvQA~~PAQVR

13. Other logical connectives between two propositions P and Q are possible.

(@ The word or is used in two different ways in English. We have presented
the truth table for v, the inclusive or, whose meaning is “one or the other
or both.” The exclusive or, meaning “one or the other but not both” and
denoted @), has its uses in English, as in “She will marry Heckle or she
will marry Jeckle.” The “inclusive or” is much more useful in mathemat-
ics and is the accepted meaning unless there is a statement to the contrary.

* (i) Make a truth table for the “exclusive or” connective Q).

(ii) Show that AQ B is equivalentto (Av B) A ~(A A B).

(b) “NAND” and “NOR?” circuits are commonly used as a basis for flash
memory chips. A NAND B is defined to be the negation of “Aand B.” A
NOR B is defined to be the negation of “A or B.”

(i) Write truth tables for NAND and NOR connectives.

(i) Show that (ANAND B) v (ANOR B) is equivalent to (A NAND B).
(iii) Show that (A NAND B) A (A NOR B) is equivalent to (A NOR B).

1.2 Conditionals and Biconditionals

Sentences of the form “If P, then Q” are the most important kind of propositions in
mathematics. You have seen many examples of such statements in mathematics
courses: from precalculus, “If two lines in a plane have the same slope, then the
lines are parallel”; from trigonometry, “If sec 6 = 5, then sin 0 = ﬂ."; from calcu-
lus, “If f is differentiable at X, and f(xp) is a relative minimum for f, then
f'(x)=0."

DEFINITIONS For propositions P and Q, the conditional sentence
P = Q is the proposition “If P, then Q.” Proposition P is called the
antecedent and Q is the consequent. The conditional sentence P = Q is
true if and only if P is false or Q is true.
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10 CHAPTER 1 Logic and Proofs

The truth table for P = Qs

MH4TH | T
44 | O
—Amn—- |

According to this table, there is only one way that P = Q can be false: when P is
true and Q is false. Thus, this truth table agrees with the way we understand prom-
ises: the only situation where a promise is broken is when the antecedent is true but
the person making the promise fails to make the consequent true.

Example. Suppose someone says to a friend “If the concert is sold out, I’ll take you
sailing.” This promise is broken (the conditional sentence is false) only when the
concert was sold out (the antecedent is true) and the person who made the promise
did not take the other person sailing (the consequent is false). This is line 3 of the
truth table. In all other situations, the promise is true. If there were tickets left (lines
2 and 4 of the table), we don’t say the promise was broken, regardless of whether the
friends decided to go sailing. The promise is also kept in the situation where the con-
cert is sold out and the friends went sailing, which is line 1 of the table.

One curious consequence of the truth table for P = Q is that a conditional sen-
tence may be true even when there is no connection between the antecedent and the
consequent. The reason for this is that the truth value of P = Q depends only on the
truth value of components P and Q, not on their interpretation. For this reason all of
the following are true:

“If sin 7w = 1, then 6 is prime.” (line 4 of the truth table)
“13 > 7 = 2+ 3 =5." (line 1 of the truth table)
“m = 3 = Paris is the capital of France.” (line 2 of the truth table)

and both of these are false by line 3 of the truth table:

“If Saturn has rings, then (2 + 3)? = 22 4 32.”
“If 4 > 10, then 1 is a prime number.”

Other consequences of the truth table for P = Q are worth noting. When P is
false, it doesn’t matter what truth value Q has: P = Q will be true by lines 2 and 4.
When Q is true, it doesn’t matter what truth value P has: P = Q will be true by lines
1 and 2. Finally, when P and P = Q are both true (on line 1), Q must also be true.

Example. Both propositions

“If Isaac Newton was born in 1642, then 3 -5 = 15"
“If Isaac Newton was born in 1643, then 3 -5 = 15"

are true because the consequent “3 - 5 = 15” is true.
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1.2 Conditionals and Biconditionals 11

Our truth table definition for P = Q captures the same meaning for “If ...,
then ...” that you have always used in mathematics. For example, if we think of x
as some fixed real number, we all know that

“If x> 8, then x > 5”

is a true statement, no matter what number x we have in mind. Let’s examine why
we say this sentence is true for some specific values of x, where the antecedent P is
“x > 8” and the consequent Q is “x > 5.”

In the case x = 11, both P and Q are true, as in line 1 of the truth table. The case
X = 7 corresponds to the second line of the table, and for x = 3 we have the situation in
line 4. There is no case corresponding to line 3 because P = Q is true. Note that when
we say “If P, then Q" is true, we don’t claim that either P or Q is true. What we do say
is that no matter what number we think of, if it’s larger than 8, it’s also larger than 5.

Two propositions closely related to P = Q are its converse and contrapositive.

DEFINITION Let Pand Q be propositions.

The converseof P= QisQ = P.
The contrapositive of P = Qs (~Q) = (~P).

For the conditional sentence “If 7 is an integer, then 14 is even,” the converse
of the sentence is “If 14 is even, then 7 is an integer” and the contrapositive is “If
14 is not even, then 7 is not an integer.” The converse is false, but the sentence and
its contrapositive are true.

For the sentence “If 1 + 1 = 2, then /10 > 3,” the converse and contraposi-
tive are, respectively, “If V10 > 3, then 1 + 1 =2 ” and “If 4/10 is not greater
than 3, then 1 + 1 is not equal to 2.” In this example, all three sentences are true.

The previous two examples suggest that the truth values of a conditional sen-
tence and its contrapositive are related, but there seems to be little connection
between the truth values of P = Q and its converse. We describe the relationships
in the following theorem.

Theorem 1.2.1 For propositions P and Q,

(@ P = Qisequivalent to its contrapositive (~Q) = (~P).
(b) P = Qisnotequivalent to its converse Q = P.

Proof. The proofs are carried out by examination of the truth tables.

P Q P=Q ~P ~Q (~Q=(P) Q=P
T T T F F T T
FooT T T F T F
T F F F T F T
F F T T T T T
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12 CHAPTER 1 Logic and Proofs

(@ P = Qisequivalentto (~Q) = (~P) because the third column in the truth
table is identical to the sixth column in the table.

(b) P = Qisnotequivalent to Q = P because column 3 in the truth table dif-
fers from column 7 in rows 2 and 3. |

We have seen cases where a conditional sentence and its converse have the
same truth value. Theorem 1.2.1(b) simply says that this need not always be the
case—the truth values of P = Q cannot be inferred from its converse Q = P.

The next connective we need is the biconditional connective <. The double
arrow < reminds one of both < and =, and this is no accident, because P < Q
is equivalent to (P = Q) A (Q = P).

DEFINITION  For propositions P and Q, the biconditional sentence
P < Q is the proposition “P if and only if Q.” P < Q is true exactly
when P and Q have the same truth values. We also write P iff Q to abbre-
viate P if and only if Q.

The truth table for P < Qs

P Q P Q
T T T
F T F
T F F
F F T

Examples. The proposition “2% = 8 iff 49 is a perfect square” is true because both
components are true. The proposition “z = 22/7 iff/2 is a rational number” is true
because both components are false. The proposition “6 + 1 = 7 iff Lake Michigan
is in Kansas” is false because the truth values of the components differ.

Definitions, fully stated with the “if and only if” connective, are important
examples of biconditional sentences because they describe exactly the condition(s)
to meet the definition. Although sometimes a definition does not explicitly use the
iff wording, biconditionality does provide a good test of whether a statement could
serve as a definition or just a description.

Example. The statement “Vertical lines have undefined slope” could be used as a
definition because a line is vertical iff its slope is undefined. However, “A zebra is
a striped animal” is not a definition, because the sentence “An animal is a zebra iff
the animal is striped” is false.

Because the biconditional sentence P < Q is true exactly when the truth

values of P and Q agree, we can use the biconditional connective to restate the
meaning of equivalent propositional forms:
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1.2 Conditionals and Biconditionals 13

The propositional forms P and Q are equivalent precisely when P < Qisa
tautology.

Thus each statement in Theorem 1.1.1 may be restated using the < connec-
tive. For example, DeMorgan’s Laws are:

~(PAQ) < (~PVv~Q)and
~(PvQ) & (~PA~Q).

All of the statements in Theorem 1.1.1 are used regularly in proofs. The next theo-
rem contains several additional important pairs of equivalent propositional forms
that involve implication. They, too, will be used often.

Theorem 1.2.2 For propositions P, Q, and R,

(@ P= Qisequivalentto ~P Vv Q.

(b) P« Qisequivalentto (P= Q) A (Q= P).

() ~(P= Q)isequivalentto P A ~Q.

(d) ~(PAQ)isequivalentto P = ~Qandto Q= ~P.
() P=(Q= R)isequivalentto (PA Q) =R

() P=(QAR)isequivalentto (P= Q) A (P=R).
(@ (Pv Q)= Risequivalentto (P=R) A (Q=R).

Exercise 8 asks you to prove each part of Theorem 1.2.2. The natural way to
proceed is by constructing and then comparing truth tables, but you should also
think about the meaning of both sides of each statement of equivalence. With part
(a), for example, we reason as follows: P = Q is false exactly when P is true and
Q is false, which happens exactly when both ~P and Q are false. Since this happens
exactly when ~P v Q is false, the truth tables for P = Q and ~P v Q are identical.

Note that many of the statements in Theorems 1.1.1 and 1.2.2 are related. For
example, once we have established Theorem 1.1.1 and 1.2.2(a), we reason that part
(c) is correct as follows:

~(P = Q) is equivalent, by part (a), to

~ (~P v Q), which is equivalent, by Theorem 1.1.1(i), to
~(~P) A ~Q, which is equivalent, by Theorem 1.1.1(a), to
PA~Q.

Recognizing the structure of a sentence and translating the sentence into sym-
bolic form using logical connectives are aids in determining its truth or falsity. The
translation of sentences into propositional symbols is sometimes very complicated
because some natural languages such as English are rich and powerful with many
nuances. The ambiguities that we tolerate in English would destroy structure and
usefulness if we allowed them in mathematics.

Even the translations of simple sentences can present special problems. Sup-
pose a teacher says to a student

“If you score 74% or higher on the next test, you will pass this course.”
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14 CHAPTER 1 Logic and Proofs

This sentence clearly has the form of a conditional sentence, although almost every-
one will interpret the meaning as a biconditional.

Contrast this with the situation in mathematics where “If x =2, then x is a
solution to x? = 2x” must have only the meaning of the connective =, because
x? = 2x does not imply x = 2.

Shown below are some phrases in English that are ordinarily translated by
using the connectives = or <. In the accompanying examples, think of aand t as
fixed real numbers.

Use P = Q to translate: Examples:

If P, then Q. Ifa>5,thena> 3.

P implies Q. a> 5impliesa > 3.

P is sufficient for Q. a > 5 is sufficient for a > 3.

P only if Q. a>5onlyifa> 3.

Q,ifP. a> 3, ifa>>5.

Q whenever P. a > 3 whenever a > 5.

Q is necessary for P. a > 3 is necessary for a > 5.

Q, when P. a> 3, whena> 5.

Use P < Q to translate: Examples:

P if and only if Q. [t| = 2ifand only if t? = 4.

P if, but only if, Q. [t| =2 if, butonly if, t? = 4.

P is equivalent to Q. [t| =2 is equivalent to t* = 4.

P is necessary and sufficient for Q. [t] =2 isé necessary and sufficient
fort==4.

The word unlessis one of those connective words in English that poses special
problems because it has so many different interpretations. See Exercise 11.

Examples. In these sentence translations, we assume that S G, and e have been
specified. It is not necessary to know the meanings of all the words because the
form of the sentence is sufficient to determine the correct translation.

“Sis compact is sufficient for Sto be bounded” is translated
Sis compact = Sis bounded.

“A necessary condition for a group G to be cyclic is that G is abelian” is
translated

G is cyclic = G is abelian.
“Aset Sis infinite if Shas an uncountable subset” is translated
Shas an uncountable subset = Sis infinite.

“A necessary and sufficient condition for the graph G to be a tree is that
G is connected and every edge of G is a bridge” is translated

Gisatree < (Gis connected A every edge of G is a bridge).

Example. If we let P denote the proposition “Roses are red” and Q denote the
proposition “Violets are blue,” we can translate the sentence “It is not the case that
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1.2 Conditionals and Biconditionals 15

roses are red, nor that violets are blue” in at least two ways: ~(P v Q) or
(~P) A (~Q). Fortunately, these are equivalent by Theorem 1.1.1(h). Note that the
proposition “Violets are purple” requires a new symbol, say R, since it expresses a
new idea that cannot be formed from the components P and Q.

The sentence “17 and 35 have no common divisors” shows that the meaning,
and not just the form of the sentence, must be considered in translating; it cannot be
broken up into the two propositions: “17 has no common divisors” and “35 has no
common divisors.” Compare this with the proposition “17 and 35 have digits total-
ing 8,” which can be written as a conjunction.

Example. Suppose b is a fixed real number. The form of the sentence “If b is an
integer, then b is either even or odd” is P = (Q v R), where P is “b is an integer,”
Qis “biseven,” and Ris “bis odd.”

Example. Suppose a, b, and p are fixed integers. “If p is a prime number that
divides ab, then p divides a or b” has the form (P A Q) = (RV S), where P is “p
is a prime,” Q is “p divides ab,” Ris “p divides a,” and Sis “p divides b.”

The hierarchy of connectives in Section 1.1 that governs the use of parentheses
for propositional forms can be extended to the connectives = and <:
The connectives ~, A, Vv, =, and < are always applied in the order listed.
Thus, ~ applies to the smallest possible proposition, then A is applied with the next
smallest scope, and so forth. For example,

P = ~Q Vv R« Sisan abbreviation for (P= [(~Q) VR]) & S
P v ~Q < R= Sisan abbreviation for [P v (~Q)] & (R=9),

and

P = Q = Ris an abbreviation for (P= Q) = R

Exercises 1.2

1. Identify the antecedent and the consequent for each of the following condi-
tional sentences. Assume that a, b, and f represent some fixed sequence,
integer, or function, respectively.

* (@) If squares have three sides, then triangles have four sides.

(b) If the moon is made of cheese, then 8 is an irrational number.
(c) bdivides 3 only if b divides 9.

* (d) The differentiability of f is sufficient for f to be continuous.
(e) Asequence ais bounded whenever a is convergent.

* (f)  Afunction f is bounded if f is integrable.

(99 1+2=3isnecessaryforl+1=2.
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16 CHAPTER 1 Logic and Proofs

(h) The fish bite only when the moon is full.
* (i)  Atime of 3 minutes, 48 seconds or less is necessary to qualify for the
Olympic team.
2. Write the converse and contrapositive of each conditional sentence in Exercise 1.

3. What can be said about the truth value of Q when
(8 PisfalseandP = Q istrue? (b) Pistrueand P = Qs true?
(c) PistrueandP = Q isfalse? (d) Pisfalseand P < Qs true?
(e) Pistrueand P < Qs false?

4. ldentify the antecedent and consequent for each conditional sentence in the
following statements from this book.

(@ Theorem 1.3.1(a) (b) Exercise 3 of Section 1.6
(c) Theorem2.1.4 (d) The PMI, Section 2.4

(e) Theorem 2.6.4 (fy  Theorem 3.4.2

(g) Theorem 4.2.2 (h) Theorem 5.1.7(a)

5. Which of the following conditional sentences are true?
* (@) If triangles have three sides, then squares have four sides.
(b) If ahexagon has six sides, then the moon is made of cheese.
* (¢) If7+4+6=14,then5+5=10.
(d) If5<2,thenl0<7.
* (e) If one interior angle of a right triangle is 92°, then the other interior
angle is 88°.
(f)y If Euclid’s birthday was April 2, then rectangles have four sides.
(g) 5isprimeif V2 is not irrational.
(h) 1+ 1=2issufficient for 3 > 6.

6. Which of the following are true?
* (a) Triangles have three sides iff squares have four sides.
(b) 7+5=12iff1+1=2.
* (c) biseveniff b+ 1isodd. (Assume that b is some fixed integer.)
(d) mis odd iff P is odd. (Assume that mis some fixed integer.)
(€ 5+6=6+5iff741=10.
(f) Aparallelogram has three sides iff 27 is prime.
(g) The Eiffel Tower is in Paris if and only if the chemical symbol for
helium is H.
(h) V10 + /13 < V11 + V12iff /13 — V12 < +/11 — V10,
(i) x?=0iff x> 0. (Assume that x is a fixed real number.)
(i) X2 —y?=0iff (x—y)(x+y) = 0. (Assume that x and y are fixed real

numbers.)
(k) x?+y?=50iff (x+y)?>=50. (Assume that x and y are fixed real
numbers.)
7. Make truth tables for these propositional forms.
@ P=(QAP). * (b)) (~P=Q)Vv (Q&P)
* () ~Q=(Q&P). d) (PvQ)= (PAQ).

e (PAQV(QAR)=PVR
® [(Q=9A(Q=R)]=[(PvQ)= (SVR)]
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1.2 Conditionals and Biconditionals 17

Prove Theorem 1.2.2 by constructing truth tables for each equivalence.

Determine whether each statement qualifies as a definition.

(@ y="f(x)isalinear function when its graph is a straight line.

(b) y=Tf(x) is a quadratic function when it contains an x? term.

() mis a perfect square when m = n? for some integer n.

(d) Atriangle is a right triangle when the sum of two of its interior angles
is 90°.

(e) Two lines are parallel when their slopes are the same number.

(f) Asundial is an instrument for measuring time.

Rewrite each of the following sentences using logical connectives. Assume

that each symbol f, Xo, 0, X, S B represents some fixed object.

(@) If f has a relative minimum at %o and if f is differentiable at xo, then
f'(x0) = 0.

(b) If nisprime, then n= 2 or nis odd.

() Anumber x s real and not rational whenever x is irrational.

(d) Ifx=1orx=—1,then |x| =1.

(e) fhasacritical point at xq iff f'(Xg) = 0 or f'(xg) does not exist.

(f) Sis compact iff Sis closed and bounded.

(g) Bisinvertible is a necessary and sufficient condition for det B # 0.

(h) 6>=n—-3onlyifn>4orn> 10.

(i) xis Cauchy implies X is convergent.

(i) fiscontinuous at X whenever XIi_)mXO f(X) = f(Xg).

(k) If fis differentiable at X, and f is strictly increasing at Xo, then f'(xo) > 0.

Dictionaries indicate that the conditional meaning of unless is preferred, but

there are other interpretations as a converse or a biconditional. Discuss the

translation of each sentence.

(@ 1'will go to the store unless it is raining.

(b) The Dolphins will not make the playoffs unless the Bears win all the rest
of their games.

(c) You cannot go to the game unless you do your homework first.

(d) You won’t win the lottery unless you buy a ticket.

Show that the following pairs of statements are equivalent.

@ (PvQ)=Rand ~R= (~P A ~Q).

(b) (PAQ)=Rand (PA~R)=~Q.

(0 P=(QAR)and (~QV ~R) = ~P.

(d P=(QVvR)and (PA~R)= Q.

(& (P=Q)=Rand(PA~Q)VR

(f) P Qand(~PVvQ)A(~QVP).

Give, if possible, an example of a true conditional sentence for which

(@) the converse is true. (b) the converse is false.

(c) the contrapositive is false. (d) the contrapositive is true.
Give, if possible, an example of a false conditional sentence for which
(@) the converse is true. (b) the converse is false.

(c) the contrapositive is false. (d) the contrapositive is true.
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18 CHAPTER 1 Logic and Proofs

15. Give the converse and contrapositive of each sentence of Exercises 10(a), (b),
(c), and (d). Tell whether each converse and contrapositive is true or false.

16. Determine whether each of the following is a tautology, a contradiction, or neither.
* (8 [(P=Q)=P]=P.
(b) P=PA(PVQ).
(0 P=QsPA~Q
* (d) P=[P=(P=Q)
(e PA(QV~Q)< P
6 QA P=Q)]=P
@ (P=Q < ~(~PvQ)Vv(~PAQ)
(h)y [P=QVR)]=[Q=R)Vv(R=P)
i) PA(P=QA~Q
) (PvQ)=Q=P.
k) [P=QAR)]=[R= (P=Q)]
N [P=QAR]I=R= (P=Q).
17. The inverse, or opposite, of the conditional sentence P = Q is ~P = ~Q.
(8 Show that P = Q and its inverse are not equivalent forms.
(b) For what values of the propositions P and Q are P = Q and its inverse
both true?
(c) Which is equivalent to the converse of a conditional sentence, the con-
trapositive of its inverse, or the inverse of its contrapositive?

1.3 Quantifiers

Unless there has been a prior agreement about the value of x, the statement “x > 3" is
neither true nor false. A sentence that contains variables is called an open sentence or
predicate, and becomes a proposition only when its variables are assigned specific val-
ues. For example, “x > 3” is true when X is given the value 7 and false when x = 2.
When P is an open sentence with a variable x, the sentence is symbolized by
P(x). Likewise, if P has variables x3, Xo, X3, . . ., X, the sentence may be denoted by
P(x1, X2, X3, - - -, Xn)- FOr example, for the sentence “x + y = 32" we write P(X, Y, 2),
and we see that P(4, 5, 3) is true because 4 + 5 = 3(3), while P(1, 2, 4) is false.
The collection of objects that may be substituted to make an open sentence a
true proposition is called the truth set of the sentence. Before a truth set can be
determined, we must be given or must decide what objects are available for consid-
eration; that is, we must have specified a univer se of discour se. In many cases the
universe will be understood from the context. For a sentence such as “x likes choco-
late,” the universe is presumably the set of all people. We will often use the number
systems N, Z, Q, R, and C as our universes. (See the Preface to the Student.)

Example. The truth set of the open sentence “x?> < 5” depends upon the collection
of objects we choose for the universe of discourse. With the universe specified as the
set N, the truth set is {1, 2}. For the universe Z, the truth set is {—2, —1, 0, 1, 2}.
When the universe is R, the truth set is the open interval (— V5, ﬁ).
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1.3 Quantifiers 19

DEFINITION  With a universe specified, two open sentences P(x) and
Q(X) are equivalent iff they have the same truth set.

Examples. The sentences “3x 4+ 2 = 20" and “x= 6" are equivalent open sen-
tences in any of the number systems we have named. On the other hand, “x? = 4”
and “x = 2” are not equivalent when the universe is R. They are equivalent when
the universe is N.

The notions of truth set, universe, and equivalent open sentences should not be
new concepts for you. Solving an equation such as (x*> + 1)(x — 3) = 0 is a matter
of determining what objects x make the open sentence “(x? + 1)(x — 3) = 0" true.
For the universe R, the only solution is x = 3 and thus the truth set is {3}. But if we
choose the universe to be C, the equation may be replaced by the equivalent open
sentence (X + i)(x — i)(x — 3) = 0, which has truth set (solutions) {3, i, —i}.

A sentence such as

“There is a prime number between 5060 and 5090”

is treated differently from the propositions we considered earlier. To determine
whether this sentence is true in the universe N, we might try to individually exam-
ine every natural number, checking whether it is a prime and between 5060 and
5090, until we eventually find any one of the primes 5077, 5081, or 5087 and con-
clude that the sentence is true. (A quicker way is to search through a complete list
of the first thousand primes.) The key idea here is that although the open sentence
“x is a prime number between 5060 and 5090” is not a proposition, the sentence

“There is a number x such that x is a prime number between 5060 and 5090”

does have a truth value. This sentence is formed from the original open
sentence by applying a quantifier.

DEFINITION For an open sentence P(x), the sentence (IX)P(X) is
read “There exists x such that P(x)” or “For some X, P(x).” The sentence
(IX)P(X) is true iff the truth set of P(X) is nonempty. The symbol 3 is
called the existential quantifier.

An open sentence P (x) does not have a truth value, but the quantified sentence
(3X) P(x) does. One way to show that (3x) P (x) is true for a particular universe is
to identify an object a in the universe such that the proposition P () is true. To show
(IX) P(x) is false, we must show that the truth set of P (x) is empty.

Examples. Let’s examine the truth values of these statements for the universe R:

@ (3(x=3)
(b) (3> =0)
© (I =-1)

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



20 CHAPTER 1 Logic and Proofs

Statement (a) is true because the truth set of x > 3 contains 3, 7.02, and many other
real numbers. Thus the truth set contains at least one real number. Statement (b) is
true because the truth set of x?> = 0 is precisely {0} and thus is nonempty. Since the
open sentence x> = —1 is never true for real numbers, the truth set of x? = —1 is
empty. Statement (c) is false.

In the universe N, only statement (a) is true. The three statements are all true
in the universe {0, 5, i} and all three statements are false in the universe {1, 2}.

Sometimes we can say (3x) P (X) is true even when we do not know a specific
object in the universe in the truth set of P(X), only that there (at least) is one.

Example. Show that (3X)(x” — 12x3 4 16x — 3 = 0) is true in the universe of real
numbers.

For the polynomial f(x) = x" — 12x3+ 16x — 3, f(0) = —3 and f(1) =2.
From calculus, we know that f is continuous on [0, 1]. The Intermediate Value Theo-
rem tells us there is a zero for f between 0 and 1. Even if we don’t know the exact value
of the zero, we know it exists. Therefore, the truth set of x” — 12x3 + 16x —3 =0
is nonempty. Hence (3x)(x” — 12x3 4 16x — 3 = 0) is true.

The sentence “The square of every number is greater than 3” uses a different
quantifier for the open sentence “x? > 3.” To decide the truth value of the given
sentence in the universe N it is not enough to observe that 3% > 3, 4% > 3, and so
on. In fact, the sentence is false in N because 1 is in the universe but not in the truth
set. The sentence is true, however, in the universe [1.74, co) because with this uni-
verse the truth set for x> > 3 is the same as the universe.

DEFINITION  For an open sentence P(X), the sentence (Vx) P (x) is read
“For all x, P(X)” and is true iff the truth set of P(X) is the entire universe.
The symbol V is called the universal quantifier.

Examples. For the universe of all real numbers,

(VX)(X + 2 > X) is true.

(VX)(x > 0 v x=0 Vv x < 0)istrue. That is, every real number is positive,
zero or negative.

(YX)(x > 3) is false because there are (many) real numbers x for

which x > 3 is false.

(YX)(|x| > 0) is false, because 0 is not in the truth set.

There are many ways to express a quantified sentence in English. Look for key
words such as “for all,” “for every,” “for each,” or similar words that require uni-
versal quantifiers. Look for phrases such as “some,” “at least one,” “there exist(s),”
“there is (are),” and others that indicate existential quantifiers.

You should also be alert for hidden quantifiers because natural languages allow for
imprecise quantified statements where the words “for all” and “there exists” are not
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present. Someone who says “Polynomial functions are continuous” means that “All
polynomial functions are continuous,” but someone who says “Rational functions have
vertical asymptotes” must mean “Some rational functions have vertical asymptotes.”

We agree that “All apples have spots” is quantified with V, but what form does
it have? If we limit the universe to just apples, a correct symbolization would be
(¥YX)(x has spots). But if the universe is all fruits, we need to be more careful. Let
A(X) be “x is an apple” and S(x) be “x has spots.” Should we write the sentence as
(YX[A(X) A S(X)] or (VX)[A(X) = S(X)]?

The first quantified form, (VX)[A(X) A S(X)], says “For all objects x in the uni-
verse, X is an apple and x has spots.” Since we don’t really intend to say that all fruits are
spotted apples, this is not the meaning we want. Our other choice, (VX)[A(X) = S(X)],
is the correct one because it says “For all objects x in the universe, if x is an apple then
x has spots.” In other words, “If a fruit is an apple, then it has spots.”

Now consider “Some apples have spots.” Should this be (IX)[A(X) A S(X)] or
(F[A(X) = S(X)]? The first form says “There is an object x such that it is an apple
and it has spots,” which is correct. On the other hand, (3X)[A(X) = S(X)] reads
“There is an object x such that, if it is an apple, then it has spots,” which does not
ensure the existence of apples with spots. The sentence (IX)[A(X) = S(X)] is true
in every universe for which there is an object x such that either x is not an apple or
x has spots, which is not the meaning we want.

In general, a sentence of the form “All P(X) are Q(X)” should be symbolized
(VX[P(X) = Q(X)]. And, in general, a sentence of the form “Some P (x) are Q(x)”
should be symbolized (IX)[P(X) A Q(X)].

Examples. The sentence “For every odd prime x less than 10, x? + 4 is prime”
means that if x is prime, and odd, and less than 10, then x? + 4 is prime. It is writ-
ten symbolically as

(YX)(xis prime A xisodd A X < 10 = X2 + 4 is prime).

The sentence “Some functions defined at 0 are not continuous at 0” can be written
symbolically as (3f)(f is defined at 0 A f is not continuous at 0).

Example. The sentence “Some real numbers have a multiplicative inverse” could
be symbolized

(3X)(x is a real number A x has a real multiplicative inverse).

However, “x has an inverse” means there is some number that is an inverse for x
(hidden quantifier), so a more complete symbolic translation is

(IX)[x is a real number A (3y)(y is a real number A xy = 1)].

Example. One correct translation of “Some integers are even and some integers
are odd” is

(IX)(xis even) A (IX)(x is odd)
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because the first quantifier (3x) extends only as far as the word “even.” After that,
any variable (even x again) may be used to express “some are odd.” It would be
equally correct and sometimes preferable to write

(3X)(x is even) A (Ty)(y is odd),
but it would be wrong to write
(3X)(x is even A xis odd),
because there is no integer that is both even and odd.
Several of our essential definitions given in the Preface to the Sudent are in

fact quantified statements. For example, the definition of a rational number may be
symbolized:

r is a rational number iff (Ip)(3QY(peZAqeZ ANQ#OAT = g)

Statements of the form “Every element of the set A has the property P” and
“Some element of the set A has property P occur so frequently that abbreviated
symbolic forms are desirable. “Every element of the set A has the property P” could
be restated as “If x € A, then . . .” and symbolized by

(Vx e A P(X).
“Some element of the set A has property P” is abbreviated by
(Ix e A P(X).

Examples. The definition of a rational number given above may be written as
r is a rational number iff (3pe Z2)(3qe Z)(Q# O AT = %).

The statement “For every rational number there is a larger integer” may be symbol-
ized by

(VX)[xe Q@ = (32(ze Zand z > X)]
or
(Vxe Q)(Fze Z)(z> X).

DEFINITION Two quantified sentences are equivalent in a given
univer se iff they have the same truth value in that universe. Two quanti-
fied sentences are equivalent iff they are equivalent in every universe.

Example. (VvX)(x > 3) and (Vx)(x > 4) are equivalent in the universe of integers
(because both are false), the universe of natural numbers greater than 10 (because
both are true), and in many other universes. However, if we chose a number
between 3 and 4, say 3.7, and let U be the universe of real numbers larger than 3.7,
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then (VX)(x > 3) is true and (Vx)(x > 4) is false in U. The sentences are not equiv-
alent in this universe, so they are not equivalent sentences.

As was noted with propositional forms, it is necessary to make a distinction
between a quantified sentence and its logical form. With the universe all inte-
gers, the sentence “All integers are odd” is an instance of the logical form
(YX) P (X), where P(X) is “xis odd.” The form itself, (¥x) P(x), is neither true nor
false, but becomes false when “x is odd” is substituted for P(x) and the universe
is all integers.

The pair of quantified forms (IX)([P(X) A Q(X)] and (ZX)([Q(X) A P(X)] are
equivalent because for any choices of P and Q, P A Q and Q A P are equivalent
propositional forms. Another pair of equivalent sentences is (VX)[P(X) = Q(X)]
and (VX)[~Q(X) = ~P(X)].

The next two equivalences are essential for reasoning about quantifiers.

Theorem 1.3.1 If A(X) is an open sentence with variable x, then

@  ~(VX)A(X) is equivalent to (Ix) ~A(X).
(b) ~(3X)A(X) is equivalent to (¥YX) ~A(X).

Proof.
(@) Let U be any universe.
The sentence ~ (Vx) A(X) is true in U

iff (VX)A(X) is falsein U

iff the truth set of A(X) is not the universe

iff the truth set of ~A(X) is nonempty

iff (3X) ~A(X) is true in U.
(b)  The proof of this part is Exercise 7. =

Theorem 1.3.1 is helpful for finding useful denials (that is, simplified forms of

negations) of quantified sentences. For example, in the universe of natural numbers,
the sentence “All primes are odd” is symbolized (VX)(x is prime = x is odd). The
negation is ~(Vx)(x is prime = x is odd). By applying Theorem 1.3.1(a), this
becomes (3x)[~(x is prime = x is odd)]. By Theorem 1.2.2(c) this is equivalent to

(3X)[x is prime A ~(x is odd)]. We read this last statement as “There exists a num-
ber that is prime and is not odd” or “Some prime number is even.”

Example. A simplified denial of (VX)(3Y)(F2(Vu)(AVIX+ Y+ z> 2u+ V)
begins with its negation
~(YX)(IY)(TD) (VU)(IV)(X + Y + 2> 2U + V).

After 5 applications of Theorem 1.3.1, beginning with the outermost quantifier
(¥Xx), we arrive at the simplified form

(VYY) EU)(YVV)(X+ Y+ zZ < 2u+ V).

Example. For the universe of all real numbers, find a denial of “Every positive
real number has a multiplicative inverse.”
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The sentence is symbolized (VX)[x > 0 = (3y)(xy = 1)]. The negation and
successively rewritten equivalents are:

~(V9[x> 0= (3y)(xy =1)]
(3) ~[x> 0= (Fy)(xy=1)]
(I[x > 0 A ~(EFy)xy = 1)]
(I)[x > 0 A (Vy) ~(xy = 1)]
(3)[x > 0 A (vy)(xy # 1)]

This last sentence may be translated as “There is a positive real number that has no
multiplicative inverse.”

Example. For the universe of living things, find a denial of “Some children do not
like clowns.”

The sentence is (3x) [xis achild A (Vy)(yisaclown = xdoes not like y)]. Its
negation and several equivalents are:

~(3x) [xisachild A (Vy)(yisaclown = xdoes not like y)]

(VX) ~[xisachild A (Vy)(yisaclown = xdoes not like y)]
(VX)[xisachild = ~(Vy)(yisaclown = xdoes not likey)]
(VX)[xisachild = (3y) ~(yisaclown = x does not likey)]
(VX)[xisachild = (Jy)(yisaclown A ~xdoes not likey)]
(VX)[xisachild = (3y)(yisaclown A xlikesy)]

The denial we seek is “Every child has some clown that he/she likes.”

We sometimes hear statements like the complaint one fan had after a great Little
League baseball game. “The game was fine,” he said, “but everybody didn’t get to
play.” We easily understand that the fan did not mean this literally, because otherwise
there would have been no game. The meaning we understand is “Not everyone got to
play” or “Some team members did not play.” Such misuse of quantifiers, while toler-
ated in casual conversations, is always to be avoided in mathematics.

The 3! quantifier, defined next, is a special case of the existential quantifier.

DEFINITION  For an open sentence P (X), the proposition (3!x) P(X) is
read “there existsa unique x such that P(x)” and is true iff the truth set
of P(x) has exactly one element. The symbol 3! is called the unique exis-
tential quantifier.
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Recall that for (3x) P(X) to be true it is unimportant how many elements are in
the truth set of P(X), as long as there is at least one. For (3!x) P(x) to be true, the
number of elements in the truth set of P(X) is crucial—there must be exactly one.

In the universe of natural numbers, (3!X) (x is even and x is prime) is true
because the truth set of “x is even and x is prime” contains only the number 2. The
sentence (3!X)(x% = 4) is true in the universe of natural numbers, but false in the
universe of all integers.

Theorem 1.3.2 If A(X) is an open sentence with variable x, then

@ (GEAXNAX = (I AX).
(b) (@) A(X) is equivalent to (IX) AX) A (YV)(Y2(AY) A A(D = Yy = 2).

Part (a) of Theorem 1.3.2 says that 3! is indeed a special case of the quantifier
3. Part (b) says that “There exists a unique x such that A(x)” is equivalent to “There
is an x such that A(x) and if both A(y) and A(2), then y = z” The proofs are left to
Exercise 11.

Exercises 1.3

1. Translate the following English sentences into symbolic sentences with quan-
tifiers. The universe for each is given in parentheses.
* (@) Not all precious stones are beautiful. (All stones)
(b) All precious stones are not beautiful. (All stones)
(c) Some isosceles triangle is a right triangle. (All triangles)
(d) No right triangle is isosceles. (All triangles)
(e) All people are honest or no one is honest. (All people)
(f) Some people are honest and some people are not honest. (All people)
(g) Every nonzero real number is positive or negative. (Real numbers)
* (h) Every integer is greater than —4 or less than 6. (Real numbers)
(i) Every integer is greater than some integer. (Integers)
* (j) No integer is greater than every other integer. (Integers)
(k) Between any integer and any larger integer, there is a real number. (Real
numbers)
* (1) There is a smallest positive integer. (Real numbers)
* (m) No one loves everybody. (All people)
(n) Everybody loves someone. (All people)
(o) For every positive real number x, there is a unique real number y such
that 2¥ = x. (Real numbers)

2. For each of the propositions in Exercise 1, write a useful denial, and give a
translation into ordinary English.

3. Translate these definitions from the Preface to the Sudent into quantified
sentences.
(@) The integer x is even.
(b) The integer x is odd.
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() The integer a dividesthe integer b.
(d) The natural number nis prime.
(e) The natural number n is composite.

4. Translate these definitions in this text into quantified sentences. You need not
know the specifics of the terms and symbols to complete this exercise.
(&) The relation Ris symmetric. (See page 147.)
(b) The relation Ris transitive. (See page 147.)
(c) The function f is one-to-one. (See page 208.)
(d) The operation * is commutative. (See page 277.)

5. The sentence “People dislike taxes” might be interpreted to mean “All people
dislike all taxes,” “All people dislike some taxes,” “Some people dislike all
taxes,” or “Some people dislike some taxes.” Give a symbolic translation for
each of these interpretations.

6. Let T={17}, U ={6}, V={24}, and W= {2, 3, 7, 26}. In which of these
four different universes is the statement true?

* a) (3Ix)(xis odd = x > 8).

b) (Ix)(xisodd A x > 8).
¢ (YX)(xisodd = x> 8).
d) (VX (xisodd A x > 8).

7. (a) Complete this proof of Theorem 1.3.1(b):
Proof: Let U be any universe.
The sentence ~ (3x) A(X) is true in U
iff ...
iff (VX) ~A(X) is true in U.
(b) Give a proof of part (b) of Theorem 1.3.1 that uses part (a).

8.  Which of the following are true? The universe for each statement is given in
parentheses.
@ (Y(x+x=x). (R)
* (b) (Y)(x+x=x). (N)
(€ (I@x+3=6x+7).(N)
(d) (IE=x).[R)
* (6 (INE=x).(R)
) (3INEE2—-x=5+8(1—x). (R)
@ (VX% +6x+ 5= 0). (R)
*x(h) (YX)(X? + 4x + 5> 0). (R)
(i)  (3X)(x? — x+ 41 is prime). (N)
()  (YX)(x* — x+ 41 is prime). (N)
(K)  (YX)(x® + 172 + 6x + 100 > 0). (R)
) (VY(WIx<y= (FW)(x <w <y)]. (Q)
9. Give an English translation for each. The universe is given in parentheses.
@ (Y(x=1).(N)
* (b)) (3X(x=0Ax=0).(R)
(©)  (VX)(xisprime A X5 2 = xis odd). (N)
*(d)  (3X(logex = 1). (R)
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~ (3¢ < 0). (R)
(A = 0). (R)
(VX)(x is odd = X2 is odd). ()

Which of the following are true in the universe of all real numbers?

@
(b)
(©
(d)
(e
Q)
(9)
(h)
(i)
0);
(k)

(V)(EY)(x+y=0).
(F)(vVY(x+y=0).
(INEYE + y? = —1).
(Y)[x> 0= (3y)(y <0 A xy > 0)].
(YW(EX) (YD) (xy = x2).

() (YY) (x < ).

(YY) (39X = Y).

Ay <0Ay+3>0).
(EN(VY)(x = y?).
(YWEX (X =Y?).
ENAEY)(YW)W > x — ).

Let A(X) be an open sentence with variable x.

Q)
(b)
(©
(d)
()
Q)
(b)
(©
(d)

Prove Theorem 1.3.2 (a).

Show that the converse of Theorem 1.3.2 (a) is false.

Prove Theorem 1.3.2 (b).

Prove that (3!'X) A(X) is equivalent to (IX)[AX) A (YY)(A(Y) = x=VY)].
Find a useful denial for (3!x) A(X).

Write the symbolic form for the definition of “f is continuous at a.”
Write the symbolic form of the statement of the Mean Value Theorem.
Write the symbolic form for the definition of “lim f (x) = L.”

Write a useful denial of each sentence in parts )E;),a(b), and (c).

Which of the following are denials of (3!x) P (x)?

Q)
(b)
(©
(d)

(VX)P(X) Vv (VX) ~P(X).

(Vx) ~P(X) v (3Y)(3D(y # z A P(y) A P(2).
(V[P = BY)(P(Y) A X#Y)].

~ (Y(YWI(PC) A P(Y)) = x=Y].

Riddle: What is the English translation of the symbolic statement Y33Vv?

1.4 Basic Proof Methods |

In mathematics, a theorem is a statement that describes a pattern or relationship
among quantities or structures and a proof is a justification of the truth of a theo-
rem. Before beginning to examine valid proof techniques it is recommended that
you review the comments about proofs and the definitions in the Preface to the
Sudent.

We cannot define all terms nor prove all statements from previous ones. We

begin with an initial set of statements, called axioms (or postulates), that are
assumed to be true. We then derive theorems that are true in any situation where the

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



28 CHAPTER 1 Logic and Proofs

axioms are true. The Pythagorean* Theorem, for example, is a theorem whose
proof is ultimately based on the five axioms of Euclidean’ geometry. In a situation
where the Euclidean axioms are not all true (which can happen), the Pythagorean
Theorem may not be true.

There must also be an initial set of undefined ter ms—concepts fundamental to the
context of study. In geometry, the concept of a point is an undefined term. In this text
the real numbers are not formally defined. Instead, they are described in the Preface to
the Student as the decimal numbers along the number line. While a precise definition of
a real number could be given*, doing so would take us far from our intended goals.

From the axioms and undefined terms, new concepts (new definitions) can be
introduced. And finally, new theorems can be proved. The structure of a proof for a par-
ticular theorem depends greatly on the logical form of the theorem. Proofs may require
some ingenuity or insightfulness to put together the right statements to build the justifi-
cation. Nevertheless, much can be gained in the beginning by studying the fundamental
components found in proofs and examples that exhibit them. The four rules that follow
provide guidance about what statements are allowed in a proof, and when.

Some steps in a proof may be statements of axioms of the basic theory upon
which the discussion rests. Other steps may be previously proved results. Still other
steps may be assumptions you wish to introduce. In any proof you may

At any time state an assumption, an axiom, or a previously proved result.

The statement of an assumption generally takes the form “Assume P” to alert
the reader that the statement is not derived from a previous step or steps. We must
be careful about making assumptions, because we can only be certain that what we
proved will be true when all the assumptions are true. The most common assump-
tions are hypotheses given as components in the statement of the theorem to be
proved. We will discuss assumptions in more detail later in this section.

The statement of an axiom is usually easily identified as such by the reader
because it is a statement about a very fundamental fact assumed about the theory.
Sometimes the axiom is so well known that its statement is omitted from proofs, but
there are cases (such as the Axiom of Choice in Chapter 5) for which it is prudent
to mention the axiom in every proof employing it.

Proof steps that use previously proven results help build a rich theory from the
basic assumptions. In calculus, for example, before one proves that the derivative

. . . . X .
of sin x is cos x, there is a proof of the separate result that lim =1 1ltis

AX—0  AX
easier to prove this result first, then cite the result in the proof of the fact that the
derivative of sin x is cos x.

* Pythagoras, latter half of the 6th century, B.c.E., was a Greek mathematician and philosopher who
founded a secretive religious society based on mathematical and metaphysical thought. Although
Pythagoras is regularly given credit for the theorem named for him, the result was known to Babylonian
and Indian mathematicians centuries earlier.

T Euclid of Alexandria, circa 300 B.c.E., made his immortal contribution to mathematics with his famous
text on geometry and number theory. His Elements sets forth a small number of axioms from which
additional definitions and many familiar geometric results were developed in a rigorous way. Other
geometries, based on different sets of axioms, did not begin to appear until the 1800s.

T See the references cited in Section 7.5.
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An important skill for proof writing is the ability to rewrite a complex state-
ment in an equivalent form that is more useful or helps to clarify its meaning.
You may:

At any time state a sentence equivalent to any statement earlier in the proof.

This replacement rule is often used in combination with the equivalences of
Theorems 1.1.1 and 1.2.2 to rewrite a statement involving logical connectives. For
example, suppose we have been able to establish the step

“It is not the case that x is even and prime.”

Because the form of this statement is ~ (P A Q), where P is “Xx is even” and Q is “x
is prime,” we may deduce that

“X is not even or x is not prime,”

which has form ~P v ~Q. We have applied the replacement rule, using one of De
Morgan’s Laws. A working knowledge of the equivalences of Theorems 1.1.1 and
1.2.2 is essential.

The replacement rule allows you to use definitions in two ways. First, if you are
told or have shown that x is odd, then you can correctly state that for some natural
number k, x = 2k + 1. You now have an equation to use. Second, if you need to
prove that x is odd, then the definition gives you something equivalent to work
toward: It suffices to show that x can be expressed as x = 2k + 1, for some natural
number k. You’ll find it useful in writing proofs to keep in mind these two ways we
use definitions.

Example. If a proof contains the line “The product of real numbers a and b is
zero,” we could assert that “Either a = 0 or b = 0.” In this example, the equivalence
of the two statements comes from our knowledge of the real numbers that
(@b=0)«< (a=00rb=0).

Tautologies are important both because a statement that has the form of a tau-
tology may be used as a step in a proof, and because tautologies are used to cre-
ate rules for making deductions in a proof. The tautology rule says that you may:

At any time state a sentence whose symbolic trandation is a tautology.

For example, if a proof involves a real number X, you may at any time assert “Either
x> 0 or x < 0,” since this is an instance of the tautology P v ~P.

The rules above allow us to reword a statement or say something that’s always
true or is assumed to be true. The next rule is the one that allows us to make a con-
nection so that we can get from statement P to a different statement Q.

The most fundamental rule of reasoning is modus ponens, which is based on
the tautology [P A (P = Q)] = Q. As we have seen in Section 1.2, what this
means is that when P and P = Q are both true, we may deduce that Q must also be
true. The modus ponensrule says you may:

At any time after P and P = Q appear in a proof, statethat Q istrue.
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Example. From calculus we know that if a function f is differentiable on an inter-
val (&, b), then f is continuous on the interval (a, b). A proof writer who had already
written:

f is differentiable on the interval (a, b)
could use modus ponens to write as a subsequent step:
Therefore f is continuous on the interval (a, b).

This deduction uses the statements D, D = C, and C, where D is the statement “f is
differentiable on interval (a, b)” and C is “f is continuous on the interval (a, b).”

Notice that in this example it would make the proof shorter and easier to read
if we didn’t write out the sentence D = C in the proof. This is because the connec-
tion between differentiability and continuity is a well-known theorem, which the
proof writer may assume that the reader knows.

When we use modus ponens to deduce statement Q from P and P = Q, the
statement P could be an instance of a tautology, a simple or compound proposition
whose components are either hypotheses, axioms, earlier statements deduced in the
proof, or statements of previously proved theorems. Likewise, P = Q may have
been deduced earlier in the proof or may be a previous theorem, axiom, or tautology.

Example. You are at a crime scene and have established the following facts:

(1) [Ifthe crime did not take place in the billiard room, then Colonel Mustard is guilty.
(2) The lead pipe is not the weapon.

(3) Either Colonel Mustard is not guilty or the weapon used was a lead pipe.

From these facts and modus ponens, you may construct a proof that shows the
crime took place in the billiard room:

Proof.
Statement (1) ~B=M
Statement (2) ~L
Statement (3) ~Mv L
Statements (1) and (2) and (3) (~B=>M) A~LA(~M VL)
Statements (1), (2), and (3) [B=M) A~LA(~MVL)]=B

imply the crime took place is a tautology (see Exercise 2).
in the billiard room.
Therefore, the crime took place B
in the billiard room. =

The last three statements above are an application of the modus ponens rule:
We deduced Q from the statements P and P= Q, where Q is B and P is
(~B= M) A~LA(~MVL).
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The previous example shows the power of pure reasoning: It is the forms of the
propositions and not their meanings that allowed us to make the deductions.

Because our proofs are always about mathematical phenomena, we also need
to understand the subject matter of the proof—the concepts involved and how they
are related. Therefore, when you develop a strategy to construct a proof, keep in
mind both the logical form of the theorem’s statement and the mathematical con-
cepts involved.

You won’t find truth tables displayed or referred to in proofs that you encounter
in mathematics: It is expected that readers are familiar with the rules of logic and
correct forms of proof. As a general rule, when you write a step in a proof, ask your-
self if deducing that step is valid in the sense that it uses one of the four rules above.
If the step follows as a result of the use of a tautology, it is not necessary to cite the
tautology in your proof. In fact, with practice you should eventually come to write
proofs without purposefully thinking about tautologies. What is necessary is that
every step be justifiable.

The first—and most important—proof method is the direct proof of statement
of the form P = Q, which proceeds in a step by step fashion from the antecedent P
to the consequent Q. Since P = Qs false only when P is true and Q is false, it suf-
fices to show that this situation cannot happen. The direct way to proceed is to
assume that P is true and show (deduce) that Q is also true. A direct proof of P = Q
will have the following form:

DIRECT PROOFOFP = Q
Proof.
Assume P.

Theréfore, Q.
Thus, P = Q. =

Some of the examples that follow actually involve quantified sentences. Since
we won’t consider proofs with quantifiers until Section 1.6, you should imagine for
now that a variable represents some fixed object. Out first example proves the famil-
iar fact that “If x is odd, then x + 1 is even.” You should think of x as being some
particular integer.

Example. Let x be an integer. Prove that if x is odd, then x + 1 is even.

Proof. (ThetheoremhastheformP = Q, wherePis“xisodd” and Qis“x+ 1
iseven.”) Let x be an integer. (\We may assume this hypothesis since it is given
in the statement of the theorem.) Suppose X is odd. (We assume that the antecedent
P istrue. The goal isto derive the consequent Q as our last step.) From the defi-
nition of odd, x = 2k + 1 for some integer k. (This deduction is the replacement
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of P by an equivalent statement—the definition of “ odd.” We now have an equa-

tion to use.) Then x+ 1= (2k+ 1) + 1 for some integer k. (This is another

replacement using an algebraic property of N.) Since

2k+1)+1=2k+2=2(k+1), x+1 is the product of 2 and an integer.
(Another equivalent using algebra.) Thus x + 1 is even. (We have deduced Q.)

Therefore, if xis an odd integer, then x + 1 is even. (Weconcludethat P = Q.)

|

In this example, we did not worry about what would happen if x were not odd.
Remember that it is appropriate to assume P is true when giving a direct proof of
P = Q. (If Pis false, it does not matter what the truth of Q is; the statement we are
trying to prove, P = Q, will be true.) The process of assuming that the antecedent
is true and proceeding step by step to show the consequent is true is what makes this
type of proof direct.

This example also includes parenthetical comments offset by (...) and in ital-
ics to explain how and why a proof is proceeding as it is. Such comments are not a
requisite part of the proof, but are inserted to help clarify the workings of the proof.
The proof above would stand alone as correct with all the comments deleted, or it
could be written in shorter form, as follows.

Proof. Let x be an integer. Suppose x is odd. Then x = 2k + 1 for some integer k.
Then x+1=02k+1)+1=2k+2=2(k+1). Since k+ 1 is an integer and
X+ 1=2(+ 1), x+ 1liseven.

Therefore, if X is an odd integer, then x + 1 is even. |

Great latitude is allowed for differences in taste and style among proof
writers. Generally, in advanced mathematics, only the minimum amount of
explanation is included in a proof. The reader is expected to know the defini-
tions and previous results and be able to fill in computations and deductions as
necessary. In this text, we shall include parenthetical comments for more com-
plete explanations.

Example. Suppose a, b, and c are integers. Prove that if a divides b and b divides
¢, then a divides c.

Proof. Let a, b, and ¢ be integers. (\We start by assuming that the hypothesis is
true.) Suppose a divides b and b divides c. (The antecedent is the compound sen-
tence“ adividesb and b dividesc.”) Then b = ak for some integer kand ¢ = bmfor
some integer m. (\\e replaced the assumptions by equival ents using the definition of
“divides.” Notice that we did not assume that k and m are the same integer.) (To
show that a divides ¢, we must write ¢ as a multiple of a.) Therefore,
¢ = bm= (akim = a(km). Then cis a multiple of a. (We usethefact that if kand m
are integers, then kmisan integer.)

Therefore, if adivides b and b divides c, then a divides c. =
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Both of the above examples and many more to follow use the following strat-
egy for developing a direct proof of a conditional sentence:

1. Determine precisely the hypotheses (if any) and the antecedent and consequent.
2. Replace (if necessary) the antecedent with a more usable equivalent.

3. Replace (if necessary) the consequent by something equivalent and more read-
ily shown.

4. Beginning with the assumption of the antecedent, develop a chain of state-
ments that leads to the consequent. Each statement in the chain must be
deducible from its predecessors or other known results.

As you write a proof, be sure it is not just a string of symbols. Every step of
your proof should express a complete sentence. Be sure to include important con-
nective words.

Example. Suppose a, b, and c are integers. Prove that if a divides b and a divides
¢, then adivides b — c.

Proof. Suppose a, b, and c are integers and a divides b and a divides c. (Now use
the definition of divides.) Then b = an for some integer n and ¢ = am for some
integer m. Thus, b — ¢ =an — am=a(n — m). Since N — mis an integer (using
the fact that the difference of two integersisan integer ), adivides b — c. ]

Our next example of a direct proof, which comes from an exercise in precalcu-
lus mathematics, involves a point (x, y) in the Cartesian plane (Figure 1.4.1). It uses
algebraic properties available to students in such a class.

Example. Prove that if X < —4 and y > 2, then the distance from (x, y) to (1, —2)
is at least 6.

Proof. Assume that x < —4 and y > 2. Then x — 1 < —5, s0 (x — 1)? > 25. Also
y+ 2> 4,50 (y+ 2)> > 16. Therefore,

VX= 172+ (y+ 2> > /25 + 16 > /36,

so the distance from (x, y) to (1, —2) is at least 6. ]
y
(Xv y) L [
L yo2
L1 I — i I X
Xx=-4 ~
[ .(11 _2)
Figure 1.4.1
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To get a sense of how a proof of P = Q should proceed, it is sometimes useful
to “work backward” from what is to be proved: To show that a consequent is true,
decide what statement could be used to prove it, another statement that could be
used to prove that one, and so forth. Continue until you reach a hypothesis, the
antecedent, or a fact known to be true. After doing such preliminary work, construct
a proof “forward” so that your conclusion is the consequent.

Example. Let a and b be positive real numbers. Prove that if a <b, then
b2 —a?>0.

Proof. (Working backward, rewrite b> —a?> 0 as (b —a)(b+ a) > 0. This
inequality will be true when both b —a > 0 and b + a > 0. The first inequality
b — a > 0 will be true because we will assume the antecedent a < b. The second
inequality b + a > 0 istrue because of our hypothesisthat a and b are positive. We
now proceed with the direct proof.) Assume a and b are positive real numbers and
that a < b. Since both a and b are positive, b+ a > 0. Since a<b, b—a=> 0.
Because the product of two positive real numbers is positive, (b — a)(b + a) > 0.
Therefore b> — a2 > 0. ]

Itis often helpful to work both ways—backward from what is to be proved and
forward from the hypothesis—until you reach a common statement from each
direction.

Example. Prove that if x? < 1, then x> — 7x > — 10.
Working backward from x> — 7x > —10, we note that this can be deduced from
x? — 7x + 10 > 0. This can be deduced from (x — 5)(x — 2) > 0, which could be
concluded if we knew that x — 5 and x — 2 were both positive or both negative.
Working forward from x> < 1, we have —1 < x < 1, so x < 1. Therefore,
x <5 and x < 2, from which we can conclude that x—5 <0 and x — 2 < 0,
which is exactly what we need.

Proof. Assume that x2 < 1. Then —1 < x < 1. Therefore x < 1. Thus x < 5 and
X < 2, and so we have x —5 < 0 and x — 2 < 0. Therefore, (x — 5)(x — 2) > 0.
Thus X2 — 7x + 10 > 0. Hence X2 — 7x > —10. [

We now consider direct proofs of statements of the form P = Q when either P
or Q is itself a compound proposition. We have in fact already constructed proofs
of statements of the form (P A Q) = R When we give a direct proof of a statement
of this form, we have the advantage of assuming both P and Q at the beginning of
the proof, as we did in the proof (above) that if a divides b and a divides c, then a
divides b — c.

A proof of a statement symbolized by P = (Q A R) would probably have two
parts. In one part we prove P = Q and in the other part we prove P = R We
would use this method to prove the statement “If two parallel lines are cut by a
transversal, then corresponding angles are equal and corresponding lines are
equal.”
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To prove a conditional sentence whose consequent is a disjunction, that is, a
sentence of the form P = (Q Vv R), one often proves either the equivalent
PA~Q= R or the equivalent P A ~R= Q. For instance, to prove “If the
polynomial f has degree 4, then f has a real zero or f can be written as the product
of two irreducible quadratics,” we would prove “If f has degree 4 and no real zeros,
then f can be written as the product of two irreducible quadratics.”

A statement of the form (P v Q) = R has the meaning: “If either P is true or Q
is true, then Ris true,” or “In case either P or Q is true, R must be true.” A natural
way to prove such a statement is by cases, so the proof outline would have the form:

Casel. Assume P....Therefore R
Case2. Assume Q....Therefore R

This method is valid because of the tautology
[(PVvQ =R+« [P=RA(Q=R)]

The statement “If a quadrilateral has opposite sides equal or opposite angles equal,
then it is a parallelogram” is proved by showing both “A quadrilateral with opposite
sides equal is a parallelogram” and “A quadrilateral with opposite angles equal is a
parallelogram.”

The two similar statement forms (P= Q) =R and P=(Q=R) have
remarkably dissimilar direct proof outlines. For (P = Q) = R, we assume P = Q
and deduce R. We cannot assume P; we must assume P = Q. On the other hand, in
a direct proof of P = (Q = R), we do assume P and show Q = R. Furthermore,
after the assumption of P, a direct proof of Q = R begins by assuming Q is true as
well. This is not surprising since P = (Q = R) is equivalentto (P A Q) = R

The main lesson to be learned from this discussion is that the method of proof
you choose will depend on the form of the statement to be proved. The outlines we
have given are the most natural, but not the only ways, to construct correct proofs.
Of course constructing a proof also requires knowledge of the subject matter.

Example. Suppose n is an odd integer. Then n=4j + 1 for some integer j, or
n = 4i — 1 for some integer i.

Proof. Suppose nis odd. Then n=2m+ 1 for some integer m. (A little experi-
mentation shows that when m is even, for example when n is 2(—2) + 1,
2(0) + 1, 2(2) + 1, 2(4) + 1, etc., n has the form 4j + 1; otherwise n has the form
4i — 1. Wenow show that (P v Q) = (R, vV Ry), wherePis“miseven,” Qis“m
isodd,” Ry is“n=4j+ 1 for some integer j,” and R, is “n=4i — 1 for some
integer i.” The method we chooseisto showthat P= R; and Q = R,.)

Casel. If mis even, then m=2j for some integer j, and so n=2(2j)) +1 =
4 + 1.

Case2. If mis odd, then m= 2k + 1 for some integer k. In this case, n =
2(2k+ 1)+ 1=4k+ 3 =4(k+ 1) — 1. Choosing i to be the integer
k+ 1, we have n=4i — 1. =
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The form of proof known as proof by exhaustion consists of an examination
of every possible case. The statement to be proved may have any form P. For exam-
ple, to prove that every number X in the closed interval [0, 5] has a certain property,
we might consider the cases x=0, 0 < X < 5, and x = 5. The exhaustive method
was our method in the example above, and in the proof of Theorem 1.1.1, where we
examined all four combinations of truth values for two propositions. Naturally, the
idea of proof by exhaustion is appealing only when the number of cases is small, or
when large numbers of cases can be systematically handled. Care must be taken to
ensure that all possible cases have been considered.

Example. Let x be a real number. Prove that — x| < X < |X].

Proof. (Snce the absolute value of x is defined by cases (|x| =X if x> 0;
|X| = —xif x < 0) this proof will proceed by cases.)

Casel. Suppose x> 0. Then|x|= x. Since x>0, we have —x < X. Hence,
—X < X < X, Which is —| x| < x <|x| in this case.

Case2. Suppose x < 0. Then|x| = —x. Since X < 0, x < —x. Hence, we have
X< X< =%Xo0r—(—x) <x=< —x whichis —|x| < x <|x].

Thus, in all cases we have — x| < X <|X]. ]

There have been instances of truly exhausting proofs involving great numbers of
cases. In 1976, Kenneth Appel and Wolfgang Haken of the University of lllinois
announced a proof of the Four-Color Theorem. The original version of their proof of
the famous Four-Color Conjecture contains 1,879 cases and took 3 %years to develop.*

Finally, there are proofs by exhaustion with cases so similar in reasoning that
we may simply present a single case and alert the reader with the phrase “without
loss of generality” that this case represents the essence of arguments for the other
cases. Here is an example.

Example. Prove that for the integers mand n, one of which is even and the other
odd, m? + r? has the form 4k + 1 for some integer k.

Proof. Let mand n be integers. Without loss of generality, we may assume that m
is even and n is odd. (The case where mis odd and n is even is similar.) Then there
exist integers s and t such that m=2s and n=2t+ 1. Therefore, m? 4+ =
(292 4+ (2t +1)2 =42 + 42+ 4t + 1 = 4(P +t2 + 1) + 1. Since L +t2+t is an
integer, M 4 n? has the form 4k + 1 for some integer k. m

* The Four-Color Theorem involves coloring regions or countries on a map in such a way that no two
adjacent countries have the same color. It states that four colors are sufficient, no matter how intertwined
the countries may be. The fact that the proof depended so heavily on the computer for checking cases
raised questions about the nature of proof. Verifying the 1,879 cases required more than 10 billion cal-
culations. Many people wondered whether there might have been at least one error in a process so
lengthy that it could not be carried out by one human being in a lifetime. Haken and Appel’s proof has
since been improved, and the Four-Color Theorem is accepted; but the debate about the role of comput-
ers in proof continues.
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Exercises 1.4

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof. Since the statements may contain terms with which
you are not familiar, you should not (and perhaps could not) provide any
details of the proof.

*» (@) Outline a direct proof that if (G, *) is a cyclic group, then (G, =) is

abelian.

(b) Outline a direct proof that if B is a nonsingular matrix, then the determi-
nant of B is not zero.

(c) Suppose A, B, and C are sets. Outline a direct proof that if A is a subset
of B and B is a subset of C, then A'is a subset of C.

(d) Outline a direct proof that if the maximum value of the differentiable
function f on the closed interval [a, b] occurs at xo, then either
Xo=aor xg=bor f'(xg) =0.

(e) Outline a direct proof that if A is a diagonal matrix, then A is invertible
whenever all its diagonal entries are nonzero.

2. Atheorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1, outline
(a) adirect proof of the theorem.
(b) adirect proof of the converse of the theorem.

3. Verify that [(~B= M)A ~LA(~M Vv L)]= B is a tautology. See the
example on page 30.

4. These facts have been established at a crime scene.
(i)  If Professor Plum is not guilty, then the crime took place in the kitchen.
(it)  If the crime took place at midnight, Professor Plum is guilty.
(iii) Miss Scarlet is innocent if and only if the weapon was not the candlestick.
(iv) Either the weapon was the candlestick or the crime took place in the
library.
(v) Either Miss Scarlet or Professor Plum is guilty.

Use the above and the additional fact(s) below to solve the case. Explain your
answer.
*» (@) The crime lab determines that the crime took place in the library.

(b) The crime lab determines that the crime did not take place in the library.

(c) The crime lab determines that the crime was committed at noon with the
revolver.

(d) The crime took place at midnight in the conservatory. (Give a complete
answer.)

5. Letxandy be integers. Prove that
(a) ifxandy are even, then x + y is even.
(b) if xis even, then xy is even.
(c) ifxandy are even, then xy is divisible by 4.
(d) if xandy are even, then 3x — 5y is even.
(e) ifxandyareodd, then x + y is even.
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(f)
(9)
* (h)
(i)

if xand y are odd, then 3x — 5y is even.

if xand y are odd, then xy is odd.

if x is even and y is odd, then x + y is odd.
if xis even and y is odd, then xy is even.

6. Letaand b be real numbers. Prove that

(@)
(b)
(©)
(d)
(€
(f)

|ab| = |allb].
la—b| =|b—al.
al lal

‘B‘ = b/’ forb=£0.

la+b] < |a| + |b].
if |a] < b, then—-b<ac<h.
if -b <a<hbthen|a] <h.

7. Suppose a, b, ¢, and d are integers. Prove that

(@
* (b)
(©
(d)
(e
()
* (9)
(h)
* (i)
()
(k)
0}
(m)

2a — 1isodd.

if ais even, then a+ 1 is odd.

if ais odd, then a + 2 is odd.

a(a+1)iseven.

1 divides a.

adivides a.

if aand b are positive and a divides b, then a < b.
if adivides b, then a divides bc.

if aand b are positive and ab =1, thena=b = 1.
if aand b are positive, a divides b and b divides a, then a = b.
if adivides b and c divides d, then ac divides bd.
if ab divides c, then adivides c.

if ac divides bc, then a divides b.

8. Give two proofs that if n is a natural number, then n? 4 n + 3 is odd.

(@)
(b)

Use two cases.
Use Exercises 7(d) and 5(h).

9. Leta, b, and c be integers and x, y, and z be real numbers. Use the technique
of working backward from the desired conclusion to prove that

(@)

(b)
(©
(d)
()

if x and y are nonnegative, then er Yo Wy

Where in the proof do we use the fact that x and y are nonnegative?

if adivides b and a divides b + c, then a divides 3c.

if ab > 0 and bc < 0, then ax? 4 bx 4 ¢ = 0 has two real solutions.

if X34+ 2x2 < 0, then 2x 4+ 5 < 11.

if an isosceles triangle has sides of length x, y, and z, where x =y and
zZ= «/iy then it is a right triangle.

10. Recall that except for degenerate cases, the graph of Ax? 4 Bxy + Cy? +
Dx+Ey+F=0is

an ellipse iff B> — 4AC < 0,
a parabola iff B> — 4AC =0,
a hyperbola iff B — 4AC > 0.
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* (@) Prove that the graph of the equation is an ellipse whenever A > C >
B> 0.
(b) Prove that the graph of the equation is a hyperbola if AC <0 or
B<C<4A<O.
(c) Prove that if the graph is a parabola, then BC = 0 or A = B?/(4C).

Proofs to Grade 11. Exercises throughout the text with this title ask you to examine “Proofs to
Grade.” These are allegedly true claims and supposed “proofs” of the claims.
You should decide the merit of the claim and the validity of the proof and then
assign a grade of

A (correct), if the claim and proof are correct, even if the proof is not the
simplest or the proof you would have given.

C (partially correct), if the claim is correct and the proof is largely cor-
rect. The proof may contain one or two incorrect statements or justi-
fications, but the errors are easily correctable.

F (failure), if the claim is incorrect, or the main idea of the proof is incor-
rect, or there are too many errors.

You must justify assignments of grades other than A and if the proof is incor-
rect, explain what is incorrect and why.
*» (@) Suppose ais an integer.
Claim. If ais odd then a® + 1 is even.
“Proof.” Leta. Then, by squaring an odd we get an odd. An odd plus
odd is even. So a + 1 is even. ]
(b) Suppose a, b, and c are integers.
Claim. If adivides b and adivides c, then a divides b + c.
“Proof.”  Suppose a divides b and a divides c. Then for some integer
g, b=aq, and for some integer g, c=aq. Then b+ c=aq+ aq =
2aq = a(2q), so adivides b + c. u
*» (c) Suppose xis a positive real number.
Claim. The sum of x and its reciprocal is greater than or equal to 2.
That is,

X+ > 2.

x|

“Proof.” Multiplying by x, we get x>+ 1>2x. By algebra,
x? —2x+1>0. Thus, (x—1)2>0. Any real number squared is

greater than or equal to zero, so X + % > 2 is true. |
* (d) Suppose mis an integer.

Claim. If n? is odd, then mis odd.

“Proof.” Assume m is odd. Then m= 2k + 1 for some integer k.

Therefore, m? = (2k + 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1, which is

odd. Therefore, if n? is odd, then mis odd. u

(e) Suppose ais an integer.

Claim. a®+ a?iseven.

“Proof.” a°+ a®>=a?(a+ 1), which is always an odd number times

an even number. Therefore, a3 + a? is even. [
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1.5 Basic Proof Methods 11

In the last section, we saw that the method of direct proof for P = Q proceeds as a
chain of statements from the antecedent to the consequent. This is the most basic
form of proof and is the foundation for several other proof techniques. The tech-
niques in this section are based on tautologies that replace the statement to be
proved by an equivalent statement or statements. We call these indirect proofs.

A proof by contraposition or contrapositive proof for a conditional sentence
P = Q makes use of the tautology (P = Q) < (~Q = ~P). Since P= Q and
~Q = ~P are equivalent statements, we first give a proof of ~Q = ~P and then
conclude by replacement that P = Q.

PROOF BY CONTRAPOSITIONOFP= Q
Proof.
Assume ~Q.

Therefore, ~P.
Thus, ~Q = ~P
Therefore, P = Q. |

This method can work well when the connection between denials of P and Q are
easier to understand than the connection between P and Q themselves, or when the
statement of either P and Q is itself a negation.

In the following examples of proof by contraposition we use familiar proper-
ties of inequalities and the property that every integer is either even or odd, but not
both. As in the last section, we assume that variables represent fixed quantities.

Example. Let mbe an integer. Prove that if n? is even, then mis even.
Proof. (The antecedent isP, “n? iseven” and the consequent is Q, “ miseven.”)
Suppose that the integer m is not even. (Suppose ~Q.) Then m is odd so
m= 2k + 1 for some integer k. Then
M = (2k + 1)? = 4k% + 4k + 1 = 2(2k? + 2K) + 1.

Since n? is twice an integer, plus 1, n? is odd. (Sncek isan integer, 2k? + 2kisan
integer.) Therefore, n? is not even. (We have concluded ~P.)

Thus, if mis not even, then n? is not even. By contraposition, if n? is even,

then mis even. ]

Example. Let x and y be real numbers such that x < 2y. Prove that if
7xy < 3x2 + 2y, then3x <.
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Proof. Suppose x and y are real numbers and x < 2y. (Let P be 7xy < 3x% 4 2y?
and Q be 3x<vy.) Suppose 3x>y. (We assume ~Q.) Then 2y — x>0
and 3x—y>0. Therefore, (2y —X)(3x—Yy) =7xy —3x> —2y?* > 0. Hence,

7xy > 3x% + 2y°.
We have shown that if 3x >y, then 7xy > 3x? + 2y?. Therefore, by contra-
position, if 7xy < 3x? + 2y%, then3x <. n

Another indirect proof technique is proof by contradiction. The logic behind
such a proof is that if a statement cannot be false, then it must be true. Thus, to
prove by contradiction that a statement P is true, we temporarily assume that P is
false and then see what would happen. If what happens is an impossibility—that is,
a contradiction—then we know that P must be true. Here is an example of a proof
by contradiction.

Example. Prove that the graphs of y = x2 + x + 2 and y = x — 2 do not intersect.

Proof. Suppose the graphs of y = x? + x+ 2 and y = x — 2 do intersect at some
point (a, b). (Suppose ~P.) Since (a, b) is a point on both graphs, b = a®> + a + 2
and b=a — 2. Therefore,a— 2 =a® + a+ 2, so & = —4. Thus, a® < 0. But ais
a real number, so a > 0. This is impossible. (The statement a> <0 A &> 0 isa
contradiction.) Therefore, the graphs do not intersect. |

A proof by contradiction is based on the tautology P < [(~P) = (Q A ~Q)].
That is, to prove a proposition P, we prove (~P) = (Q A ~Q) for some proposition Q.
In the example above, Q is the statement a2 < 0. A proof by contradiction has the fol-
lowing form:

PROOF OF P BY CONTRADICTION
Proof.
Suppose ~P.

Therefore, Q.
Therefore, ~Q.

Hence, Q A ~Q a contradiction.
Thus, P. [

Two aspects about proofs by contradiction are especially noteworthy. First, this
method of proof can be applied to any proposition P, whereas direct proofs and
proofs by contraposition can be used only for conditional sentences. Second, the
proposition Q does not appear on the left side of the tautology. The strategy of prov-
ing P by proving ~P = (Q A ~Q), then, has an advantage and a disadvantage. We
don’t know what proposition to use for Q, but any proposition that will do the job
is a good one. This means a proof by contradiction may require a spark of insight to
determine a useful Q.
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The next proof by contradiction is a classical result whose proof can be traced
back to Hippasus, a disciple of Pythagoras, circa 500 B.c.E. One of several legends
has it that Hippasus proved that /2 is not a rational number while traveling by ship
with his Pythagorean colleagues. The Pythagoreans, steadfast believers that all
numbers are rational*, supposedly threw him into the sea to drown.

The proof relies on the definition of a rational number: r is rational iff r = 2
for some integers a and b, with b =£ 0. We may assume that that a and b have no
common factors, because otherwise we would simply reduce % by cancelling any
common factors.

Example. /2 is an irrational number.

. . a
Proof. Assume that +/2 is a rational number. (We assume ~P.) Then V2= b for

some integers aand b, where b = 0 and a and b have no common factors. ( The state-
2

. a a
ment Q is “a and b have no common factors.”) From fz =5 we have 2 = o

which implies that 2b? = a?. Therefore a? is even and so a is even. (Recall the exam-
ple we proved on page 40.) It follows that there exists an integer k such that a = 2k
and therefore

2b? = a2
= (2K)?
= 4K?,

Thus b? = 2k, which shows b? is even. Therefore b is even. Since both a and b are
even, aand b do have a common factor of 2. (e have deduced the statement ~Q.)
This is a contradiction. We conclude that ﬁ is irrational. [ |

Recall that a natural number greater than 1 is prime iff its only positive divisors
are 1 and itself. The next proof by contradiction, attributed to Euclid, shows that there
are infinitely many primes. By this we mean that it is impossible to list all of the prime
numbers from the first to the kth (last) one, where k is a natural number. It uses the
fundamental result that every natural number greater than 1 has a prime divisor.

Example. The set of primes is infinite.

Proof. Suppose the set of primes is finite. (Suppose ~P. This means that the set of
primes has k elements for some natural number k. Then the set of all primes can be
listed, fromthefirst oneto the kth (last) one.) Let p1, p2, Ps, - - -, Pk be all those primes.
Let nbe one more than the product of all of them: n= (pyp2ps3. .. px) + 1. (Wemade
up a number n which will not have any of the p; as prime factors.) Then n is a natural
number, so n has a prime divisor g. Since q is prime, g > 1. (The Q statement is

*You may wonder why J2is important or why it should be the first number to be proved irrational. The
ancient Greeks geometers constructed numbers (lengths of line segments) using only a compass and a
straightedge. It’s easy to construct a square with sides of length 1, for which the length of a diagonal is
/2. The fundamental Pythagorean belief that all numbers that arise in nature are either integers or ratios
of integers is disproved by the irrationality of /2.
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“g > 1.”) Since qis a prime and py, P2, Ps, - - -, Pk are all the primes, q is one of the
pi in the list. Thus, q divides the product p; p. ps. . . P Since q divides n, q divides
the difference n — (p.p2ps. - - Px). But this difference is 1, so g = 1. (Thisis ~Q.)
From the contradiction, g > 1 and g = 1, we conclude that the assumption that the
set of primes is finite is false. Therefore, the set of primes is infinite. |

Example. Prove the square shown in Figure 1.5.1(a) cannot be completed to form
a “magic square” whose rows, columns, and diagonals all sum to the same number.

1 2 3 1 2 3 a
4 5 6 b 4 5 6
7 8 7 c 8 d
9 10 e 9 f 10
(a) (b)
Figure 1.5.1

Proof. Suppose the square can be completed with entries a, b, ¢, d, e, f, as shown
in Figure 1.5.1(b). Since the sums of the second row and second column are the
same, b 4+ 15 = ¢ + 15. Thus, b = c. Comparing the sums of the first column and
the lower-left to upper-right diagonal, 1+b+7+e=e+c+5+a Thus,
a = 3 and the first row sums to 9. Thus, the “magic sum” is 9. (Thisisour Q state-
ment.) But the main diagonal sum (1 + 4 + 8 4+ 10 = 23) isnot 9. (Thisisour ~Q
statement.) This is a contradiction. We conclude that the square cannot be
completed. ]

Proofs of biconditional sentences P < Q often make use of the tautology
(P Q) < (P= Q) A (Q= P). Proofs of P < Q generally have the following
two-part form:

TWO-PART PROOFOFP < Q
Proof.
(i) Show P = Q.
(i) Show Q= P.
Therefore, P < Q. u

The separate proofs of parts (i) and (ii) may use different methods. Often the
proof of one part is easier than the other. This is true, for example, of the proof that

“The natural number p is prime iff there is no positive integer greater than 1
and less than or equal to «&that divides x.”

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



44 CHAPTER 1 Logic and Proofs

It immediately follows from the definition of prime that “x is prime” implies “there

is no positive integer greater than 1 and less than or equal to V/x that divides x.” The
converse requires more thought and is an exercise in the next section.

The parity of an integer is the attribute of being either odd or even. The integer 31
has odd parity while 42 has even parity. The integers 12 and 15 have opposite parity.
The next example is a proof of a biconditional statement about parity with a two part
proof. Both parts of the proof have two cases. The proof we give is not the shortest pos-
sible, but it does illustrate the two part approach to proving a biconditional statement.

Example. Let mand n be integers. Then mand n have the same parity iff m? + n?
is even.

Proof.
(i) Suppose mand n have the same parity. We have two cases.

(@ If both mand n are even then m= 2k and n = 2j for some integers k
and j. Then m? 4+ n? = (2K)? + (2j)? = 2(2k? + 2j?), which is even.

(b) If both m and n are odd then m=2k+1 and n=2j+1 for
some integers k and j. Then m? +n?>=(k+ 1)+ (2j + 1)?=
2(2k? 4 2K + 2j2 + 2j + 1), which is even.

In both cases m? + n? is even.

(i)  Suppose m? + r? is even. (To show that n has the same parity as m, we use
some previous examples and exercises about even and odd integers.) Again
we have two cases.

(@ If mis even, then n? is even. Therefore, since n? + n? is even and n?
is even, n> = (m? + n?) — n¥ is even. From n? is even, we conclude
that n is even.

(b) If mis odd, then n? is odd. Therefore, since m? 4 n? is even and n?
is odd, n? = (m? 4 n?) — n¥ is odd. From n? is odd, we conclude that

nis odd.
Hence, if mis even, then nis even, and if mis odd, then nis odd. Therefore,
mand n have the same parity. [

In some cases it is possible to prove a biconditional sentence P < Q that uses
the “iff” connective throughout. This amounts to starting with P and then replacing it
with a sequence of equivalent statements, the last one being Q. With n intermediate
statements Ry, Ry, . . ., Ry, a biconditional proof of P < Q has the form:

BICONDITIONAL PROOFOFP < Q
Proof.
Piff R

iff R

iff R,
iff Q. ]
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Example. The triangle in Figure 1.5.2 has sides of length &, b, and c. Use the Law
of Cosines to prove that the triangle is a right triangle with hypotenuse c if and only
if a% + b? = c2

a

Figure 1.5.2

Proof. By the Law of Cosines, a® + b? = ¢® — 2ab cos 6, where 6 is the angle
between the sides of length a and b. Therefore,

a2+ b?2=c? iff 2abcosf#=0
iff cos6=0
iff 6 =90°.

Thus, a? + b? = ¢? iff the triangle is a right triangle with hypotenuse c. [

As the following example shows, many theorems are amenable to more than
one proof technique. Two of the proofs below will use the fact that if a prime (2 in
our case) divides the product of two integers, then it must divide at least one of the
integers. This property, known as Euclid’s Lemma, will be proved in Section 1.7.

Example. For given integers x and y, give a direct proof, a proof by contraposition,
and a proof by contradiction of the following statement: If x and y are odd integers,
then xy is odd.

Direct Proof. Assume X is odd and y is odd. Then integers mand n exist so that
x=2m+ 1landy=2n+ 1. Thus,

Xy =(2m+ 1)(2n + 1)
=4mn+2m+2n+1
=2(2mn+ m+n) + 1.

Thus xy is an odd integer. u
Proof by Contraposition. (Thecontrapositiveof xisodd A yisodd = xyisoddisthe
statement Xy iseven = ~(xisodd A yisodd), or equivalently,

xyiseven = (xiseven Vv yiseven).)

Assume xy is even. Thus, 2 is a factor of xy. But since 2 is a prime number and
2 divides the product xy, then either 2 divides x or 2 divides y by Euclid’s Lemma.
We have shown that if Xy is even, then either x or y is even. Thus, if x and y are odd,
then xy is odd. =

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



46 CHAPTER 1 Logic and Proofs

Proof by Contradiction. Suppose that the statement “If x and y are odd integers, then
xy is odd” is false. Then x is odd and y is odd, and xy is not odd. Since Xy is not odd, xy
is even. Therefore 2 divides xy. Then by Euclid’s Lemma, 2 divides x or 2 divides y.
Thus either x is even or y is even. But x is odd and y is odd. This is a contradiction. We
conclude that if xand y are odd integers, then xy is odd. =

By now you may have the impression that, given a set of axioms and defini-
tions of a mathematical system, any properly stated proposition in that system can
be proved true or proved false. This is not the case. There are important examples
in mathematics of consistent axiom systems (so that there exist structures satisfy-
ing all the axioms) for which there are statements such that neither the statement
nor its negation can be proved. It is not a matter of these statements being difficult
to prove or that no one has yet been clever enough to devise a proof; it has been
proved that there can be no proof of either the statement or its negation within the
system. Such statements are called undecidable in the system because their truth is
independent of the truth of the axioms.

The classic case of an undecidable statement involves the fifth of five postu-
lates that Euclid set forth as his basis for plane geometry: “Given a line and a point
not on that line, exactly one line can be drawn through the point parallel to the line.”
For centuries, some thought Euclid’s axioms were not independent, believing that
the fifth postulate could be proved from the other four. It was not until the 19th cen-
tury that it became clear that the fifth postulate was undecidable. There are now the-
ories of Euclidean geometry for which the fifth postulate is assumed true and
non-Euclidean geometries for which it is assumed false. Both are perfectly reason-
able subjects for mathematical study and application.

Exercises 1.5

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof by the given method. Since the statements may con-
tain terms with which you are not familiar, you should not (and perhaps could
not) provide any details of the proof.

* (a) Outline a proof by contraposition that if (G, *) is a cyclic group, then (G, *)

is abelian.
(b) Outline a proof by contraposition that if B is a nonsingular matrix, then
the determinant of B is not zero.

* (c) Outline a proof by contradiction that the set of natural numbers is not

finite.
(d) Outline a proof by contradiction that the multiplicative inverse of a
nonzero real number X is unique.

* (e) Outline a two-part proof that the inverse of the function f from Ato B is

a function from B to A if and only if f is one-to-one and onto B.
(f)  Outline a two-part proof that a subset A of the real numbers is compact
if and only if Ais closed and bounded.
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2. Atheorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1,
(@) outline a proof of the theorem by contraposition.
(b) outline a proof of the converse of the theorem by contraposition.
(c) outline a proof of the theorem by contradiction.
(d) outline a proof of the converse of the theorem by contradiction.
(e) outline a two-part proof that A and B are invertible matrices if and only
if the product AB is invertible.

3. Letx, Yy, and zbe integers. Write a proof by contraposition to show that
* (@) ifxiseven,then x+ 1is odd.

(b) if xis odd, then x + 2 is odd.

(c) if x?is not divisible by 4, then x is odd.

(d) if xy is even, then either x or y is even.

(e) if x4+ yiseven, then x and y have the same parity.

(f) if xyis odd, then both x and y are odd.

(g) if 8 does not divide x?> — 1, then x is even.

(h) if x does not divide yz, then x does not divide z

4. Write a proof by contraposition to show that for any real number x,
(@ ifx*+2x<0,thenx<O.

* (b) ifx*—5x+6<0,then2 <x< 3.
() ifx®+ x>0, then x> 0.

5. Acircle has center (2, 4).
(@) Prove that (—1, 5) and (5, 1) are not both on the circle.
(b) Prove that if the radius is less than 5, then the circle does not intersect
the liney =x — 6.
() Provethatif (0, 3) is not inside the circle, then (3, 1) is not inside the circle.
6. Suppose aand b are positive integers. Write a proof by contradiction to show
that
(@) ifadividesb,thena < b.
» (b) ifabisodd, then both aand b are odd.
(c) ifaisodd, thena+ 1iseven.
(d) ifa— bisodd, thena+ bis odd.
(e) ifa<bandab < 3,thena=1.

7. Suppose a, b, ¢, and d are positive integers. Write a proof of each bicondi-
tional statement.
(@) acdivides bcif and only if a divides b.
(b) a+ 1divides band bdividesb + 3ifand only ifa=2andb=3.
(c) aisoddifandonlyifa+ 1iseven.
(d a+c=band2b—a=difandonlyifa=b—candb+ c=d.

8. Let mand nbe integers. Then prove that mand n have different parity iff

m? — n? is odd.
9. Prove by contradiction that if nis a natural number, then
n n
> .
n+1 n+2
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10. Prove that «@ is not a rational number.

11. Three real numbers, x, y, and z, are chosen between 0 and 1 with0 < x <y <
z < 1. Prove that at least two of the numbers X, y, and zare within % unit from
one another.

Proofsto Grade 12. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(8) Suppose mis an integer.
Claim. If n? is odd, then mis odd.
“Proof.”  Assume that n? is not odd. Then n? is even and n? = 2k for
some integer k. Thus 2K is a perfect square; that is, V2k is an integer.
If \/ﬁ( is odd, then Jﬁ(: 2n + 1 for some integer n, which means
M =2k=(2n+1)2 =4’ +4n+1=2(2n°+2n)+ 1. Thus n? is
odd, contrary to our assumption. Therefore V/2k=m must be even.
Thus if n? is not odd, then m is not odd. Hence if m? is odd, then m
is odd. =
* (b) Suppose t is a real number.
Claim. Iftis irrational, then 5t is irrational.
“Proof.”  Suppose 5t is rational. Then 5t = p/q, where p and g are
integers and q # 0. Therefore, t = p/(50), where p and 5q are integers
and 59 #0, so t is rational. Therefore, if t is irrational, then 5t is
irrational. u
(c) Suppose x and y are integers.
Claim. Ifxandy are even then x + y is even.
“Proof.” Suppose x and y are even but X + y is odd. Then, for some
integer k, X + y = 2k + 1. Therefore, x + y + (—2)k = 1. The left side
of the equation is even because it is the sum of even numbers. However,
the right side, 1, is odd. Since an even cannot equal an odd, we have a
contradiction. Therefore, x +y is even. u
(d) Suppose a, b, and c are integers.
Claim. If adivides both b and c, then a divides b + c.
“Proof.”  Assume that a does not divide b 4 c. Then there is no integer
k such that ak = b+ c. However, a divides b, so am=b for some
integer m; and a divides c, so an=c for some integer n. Thus
am+ an = a(m+ n) = b 4 c. Therefore k= m+ n is an integer satis-
fying ak = b + c. Thus the assumption that a does not divide b + c is
false, and a does divide b + c. =

1.6 Proofs Involving Quantifiers

Recall that in our first example of a direct proof in Section 1.4 we proved the state-
ment “If x is odd then x 4 1 is even.” That statement has the meaning “For every
integer x, if xis odd then x + 1 is even.” We dealt with the quantifier in that exam-
ple by asking you to think of the variable x as some fixed integer. This section dis-
cusses specifically the proof methods for statements with quantifiers.
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To prove a proposition of the form (Vx) P(x), we must show that P(x) is true
for every object x in the universe. A direct proof is begun by letting x represent an
arbitrary object in the universe, and then showing that P(x) is true for that object.
In the proof we may use only properties of x that are shared by every element of the
universe. Then, since x is arbitrary, we can conclude that (Vx) P(X) is true.

Thus a direct proof of (Vx)P(x) has the following form:

DIRECT PROOF OF (Vx) P (x)

Proof.

Let x be an arbitrary object in the universe. (The universe should be
named or its objects described.)

Hence P (X) is true.
Since x is arbitrary, (VX)P(X) is true. |

Acreview of the proof examples in Sections 1.4 and 1.5 shows that whenever the
statement was universally quantified, the proof given had the form of a complete
proof, because each begins with an assumption such as “Let x be an integer” or “Let
x and y be real numbers.”

Example. Prove that for every natural number n, 4n?> — 6.8n + 2.88 > 0.

Proof. (The statement hasthe form (¥x) P (X), where the universeisN and P(x) is
“4n®> — 6.8n+ 2.88 > 0.”) Let n be a natural number. Then n>1, so n— .8
and n — .9 are both positive. Therefore 4(n — .8)(n — .9) = 4n’ — 6.8n + 2.88 is
positive. We conclude that 4n? — 6.8n + 2.88 > 0 for all natural numbers n. ]

Since the open sentence P (x) in (Vx) P (X) will often be a combination of other
open sentences joined by the logical connectives, the selection of an appropriate
proof technique will depend on the logical form of P (x). In the next example P (X)
has the form of a conditional sentence.

Example. If xis an even integer, then x? is an even integer.

Proof. (The statement has the form (VX)(A(X) = B(x)), where the universe is Z,
A(X) is“xiseven,” and B(X) is “x? iseven.”) Let x € Z. (\We give a direct proof of
A(X) = B(X), which we begin by assuming A(X).) Assume X is even. Then x = 2k for
some integer k. Thus x? = (2k)? = 2(2k?). Since 2k is an integer, X2 is even. Since x
is arbitrary, we have that for all x € Z,if x is even, then x? is even. ]

It is essential in a direct proof of (Vx)P(X) that the first step assume nothing
about x other than it is an object in the universe. In the example above there are two
assumptions about the variable x — for two very different reasons. The assumption
“Let x € Z” appears first because we are assuming X is an object in the universe.
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We make the statement “Assume X is even” because we are initiating a direct proof
of a conditional sentence, which starts by assuming the antecedent.

It is a mistake to give an example (or several examples) of the statement “If x
is even, then x? is even” and then claim that the statement has been proved for all
natural numbers n. Examples may sometimes help decide whether a statement is
true. Examples can also help guide our thinking about how to proceed with a proof.
However, we cannot prove that a universally quantified statement is true by show-
ing that it’s true for selected values of the variable.

The next example involves two quantifiers.
. X+Yy. .
Example. For all rational numbers x and y, — is a rational number.

Proof. (The statement hasthe form (Vx) (Vy) P (X, y), where the universeis @ and

L X . . .
P(x,y) is “ ty isrational.”) Let x and y be rational numbers. Then

X+y 1<p s)_ 1<pt+qs)_ pt + gs
2 2 2 - ‘

qt)” 2\ ¢ 20t

Both pt 4+ gsand 2qt are integers and 2qt # 0. (The sums and products of integers
are integers. The product of three nonzero numbers is not zero.) Therefore,

y is a rational number. [

The method of proof by contradiction is often used to prove statements of the
form (Vx)P(x). Since ~(VX)P(x) is equivalent to (3x) ~P(x), the form of the
proof is as follows:

PROOF OF (Vx)P(x) BY CONTRADICTION
Proof.

Suppose ~ (VX) P(X).

Then (3X) ~P(X).

Let t be an object such that ~P(t).

Therefore Q A ~Q.
Thus (3X) ~P(X) is false, so (YX) P(x)is true. u

The following example of a proof by contradiction comes from an exercise in
a trigonometry class. It uses algebraic and trigonometric properties available to stu-
dents in the class.

T

Example. Prove that forall x e (O, 5),sin X+ cos X > 1.

Proof. (The statement hasthe form('x) P (x), where the universeisthe open interval
(0, %) and P (x) is“sin x + cos x > 1.”) Suppose that the statement is false. Then there
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exists a real number t, with0 < t < % suchthatsint 4+ cos t < 1. (e have deduced
(3t) ~ P(t).) Since the functions sin x and cos x are positive for every x € (0, %)
sint > 0and cost > 0. Therefore,

O<sint4cost<1

0< (sint+cost)?<12=1
0 <sint4 2sintcost4 cos’t < 1
0<1+42sintcost<1

—1<2sintcost < 0.

(We use the identity sin? t + cos?t = 1.) But 2 sin t cos t < 0 is impossible since
both sintand cos t are positive. Therefore, if 0 < X < g thensinx+cosx>1. =

Notice the different roles that the symbols “x” and “t” play in the above exam-
ple. The variable x is used to express the statement of the theorem and also appears
as the independent variable in the sine and cosine functions. The symbol t represents
some fixed value in (O, %) with the property that sint 4 cos t < 1.

There are several ways to prove existence theorems—that is, propositions of the
form (3x) P(x). In a constructive proof we actually name an object a in the universe
such that P (a) is true, which directly verifies that the truth set of P(X) is nonempty.
Some constructive proofs are quite easy to devise. For example, to prove that “There
is an even prime natural number,” we simply observe that 2 is prime and 2 is even.

Other constructive proofs have eluded mathematicians for centuries. The
question of whether any nth power is a sum of fewer than n nth powers was
raised by Leonard Euler* in the mid 1700s. A computer search in 1968 discov-
ered a fifth power that was the sum of four fifth powers. Here is an example for
fourth powers.

Example. Prove that there exists a natural number whose fourth power is the sum
of three other fourth powers.

Proof. 20,615,673 is one such number because
20615673 = 2682440* 4 1536539* + 18796760". ]

Another strategy to prove (3x) P(x) is to show that there must be some object
for which P(x) is true, without ever actually producing a particular object. Both
Rolle’s Theorem and the Mean Value Theorem from calculus are good examples of
this. Here is another.

* Leonard Euler (1707-1783) was a brilliant Swiss mathematician who spent much of his career at the
Imperial Russian Academy of Sciences in St. Petersburg and the Berlin Academy. He made profound
contributions to calculus, number theory, and graph theory as well as physics and astronomy. He was the
first to introduce the idea of function and the familiar f(x) notation.
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Example. Prove that the polynomial

r(x) =x"*—2x%4+5x-0.3
has a real zero.

Proof. (The universe is R. The statement has the form (3t)(r (t) = 0).) By the
Fundamental Theorem of Algebra’, r () has 71 zeros that are either real or complex.
Since the polynomial has real coefficients, its nonreal zeros come in pairs (by the
Complex Root Theorem). Hence the number of nonreal zeros is even, and that leaves
an odd number of real zeros. Therefore, r (X) has at least one real zero. u

Existence theorems may also be proved by contradiction. The proof technique
has the following form:

PROOF OF (3x)P(x) BY CONTRADICTION
Proof.

Suppose ~(3X) P(X).

Then (vX) ~ P(X)

Therefore, ~Q A Q, a contradiction.
Thus ~(3X) P(X) is false.
Therefore (3X) P(X) is true. [

The core of a proof of (3x) P(X) by contradiction involves making deductions
from the statement (¥x) ~ P(X).

Example. Starting at 9 am. on Monday a hiker walked from a base camp up a
mountain trail and reached the summit at exactly 3 p.m. The hiker camped for the
night and then hiked back down the same trail, again starting at 9 a.m. On this second
walk the hiker stopped to look at a scenic overlook, but walked faster on other parts
of the trail and returned to the starting point in exactly six hours. Prove that there is
some point on the trail that the hiker passed at the identical time on the two days.

Proof. Clearly, the point on the trail is not at the base camp or summit. (The uni-
verse is the open interval (0, 6), representing the time betweent =0 (9 a.m.) and
t =6 (3 p.m.) along the trail. The statement has the form 3t € (0, 6) (the point on
thetrail at time t on Monday is the same as the point on the trail at timet on Tues-
day).) Suppose there is no such point along the trail. Then for every time t € (0, 6),
the point where the hiker is at time t on Monday is different from the point where
the hiker is at time t on Tuesday. Have two other people simultaneously walk the
trail, starting at 9 a.m. One goes up the trail at exactly the pace set by the hiker on

T The Fundamental Theorem of Algebra says that every polynomial in one variable with complex coef-
ficients and degree n > 0 has exactly n zeros, counting multiplicities.
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Monday and the other walks down the trail at exactly the pace set by the hiker on
Tuesday. Since these two people are at different points at every time between 9 a.m.
and noon, they will never meet. But they must meet at some point on the trail. This
is a contradiction. Therefore there is some point on the trail that the hiker passed at
the same time on the two days. |

Sometimes a statement to be proved has the form (3x) P (x) = Q. As a first step,
we assume (3x) P (x). However, the fact that some object x in the universe has the
property P (x) does not give us much to work with. A useful next step is to name some
particular object that has the property and use the property of the object to derive Q.

Example. The graph of x> 4+ y? = r?, with r > 0, is a circle with center (0, 0) and
radius r. Prove that if one of the x-intercepts of the circle has rational coordinates,
then all four intercepts have rational coordinates.

Proof. Suppose an x-intercept (a, 0) of the circle has rational coordinates. Then a
is a rational number and a®> 4 0> =r?, so & =r? and a= =+r. Then the other
x-intercept is (—a, 0). To find the y-intercepts, we solve 0% 4 y> =r? and find
y = +r = +a. Therefore, the four intercepts are (a, 0), (—a, 0), (0, a), and (0,—a),
all of which have rational coordinates. =

Many statements have more than one quantifier. We must deal with each in
succession, starting from the left.

Example. Between any two rational numbers x and y, where X < v, there is always
another rational number z

Proof. (The statement may be symbolized (Vxe Q)(Vye Q)[x<y=
(3ze Q)(X < z< y)]. We begin with the two universal quantifers.) Suppose X

and y are rational numbers. Assume that x <y. (Now we must prove the

existence of a rational number z with the given property.) We choose z = %

By a previous example, zis a rational number. Furthermore,

X+X X+y y+y
2 2 2
Thereforex <z <. |

Example. Prove that for every natural number n, there is a natural number M such
that for all natural numbers m> M,

1 1

< —.
m  3n

Proof. (The statement may be symbolized by

(Yne N)(IM € N)(Vvm e N) (m >M= %< 31n>

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



54 CHAPTER 1 Logic and Proofs

We begin with the universal quantifier ontheleft.) Let n be a natural number. (\We must
provethe existence of a natural number M with the given property.) Choose M to be 3n.
Let m be a natural number, and suppose m > M. Then m > 3n, and 3mn > 0, soO

1 1
dividing by 3mn we have m=< a (The choice of 3n for M is the result of some
1 1
scratchwork, working backward fromthe intended conclusi on._ < %.) u

Example. There is a real number with the property that for any two larger num-
bers there is another real number that is larger than the sum of the two numbers and
less than their product.

Proof. (TheuniverseisR. A symbolic form of the statement is
(FD(V)(VW[(X>zAY>2) = (IWX+Y < W< xy)].

We must choose z so that the statement
X>zAYy>2) = (@EWX+Yy<W<Xy)

will be true for all x and y.) We chose z= 2. (To understand this choice for z, first
noticethat x + yisnot alwayslessthan xy. For example, letx = 1.6 andy = 1.4.) Let
x and y be real numbers such that x > zand y > z Without loss of generality, we may
assume that y > x. (Otherwise, we could rename x and y.) Then

X+Yy <2y <Xxy.

Now choose w to be the midpoint between x + y and xy, so w = W We

haveX +y <w < xy. ]

A proof of a statement about unique existence always involves multiple
quantifiers. The standard technique for proving a proposition of the form
(3X)P(x) is based on proving the equivalent statement: (IX)P(X) A (VY)(V2)
[P(y) A P(2) = y = 2]. Since the main connective is a conjunction, the method
will have two parts:

PROOF OF (3!x) P(x)
Proof.
(i) Prove that (3x) P(X) is true. Use any method.
(ii) Prove that (Vy)(V2)[P(y) A P(2 = y=17].
Assume that y and z are objects in the universe such that P(y) and P(2)
are true.

Therefore,y =z
From (i) and (ii) conclude that (3!x) P(x) is true. |
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Example. Every nonzero real number has a unique multiplicative inverse.

Proof. (The statement has the form (Vxe R)(x# 0 = (3ly e R)(xy=1).) Let
X # 0. (We show there is a unique real number y such that xy = 1 in two steps: First
show that such a number y exists, and then show that x cannot have two different
inverses.)

1
(i) (This part is a constructive proof.) Let y=x Since x#0, y is a real

1 T
number. Then xy = X<x> = 1. Therefore, x has a multiplicative inverse.

(i) Now suppose that y and zare multiplicative inverses for x. (W do not assume
that thisy isthe same astheyin part (i).) Then xy =1 and xz= 1, so

Xy =Xz
Xy—xz =0
x(y—2 =0.
Sincex## 0,y — z=0. Thereforey =z |

Great care must be taken in proofs that contain expressions involving more than
one quantifier. Here are some manipulations of quantifiers that permit valid deductions.

(V) (YY)P(x y) & (YW (YR P (X Y).

(FEY)P X Y) < (IYEIP X Y).

[(Y)P(X) v (V) Q(X)] = (YX[P(X) v Q(X)].
(VI[P(X) = Q)] = [(YXYP () = (VX Q(X)].
(VI[P A QY] <= [(YXIP(X) A (YX)Q(X)].
() (YW)P(xy) = (YWEXPX ).

You should convince yourself that each of these is a logically valid conditional
or biconditional. For example, the last on the list is always true because if
(3X) (YY) P(x, y) is true, then there is (at least) one x that makes P(X, y) true no mat-
ter what y is. Therefore, for any y, (3x) P (X, y) is true because this particular x exists.

It is important to be aware of the most common incorrect deductions making
use of quantifiers. We list four here and show by example that each is not valid.
Notice that statements 2, 3, and 4 in the following list are the converses, respec-
tively, of valid deductions of statements 3, 4, and 6 above.

1. (3P = (VX)P(x)isnot valid.
The implication says that if some object has property P, then all objects have
property P. If the universe is all integers and P(X) is the sentence “x is odd,”
then P(5) is true and P(8) is false. Thus, (IX)P(X) is true and (VX)P(X) is
false, so the implication fails.

2. (YI[PX Vv QM) = [(VXP(X) Vv (YX)Q(X)] isnot valid.
This implication says that if every object has one of two properties, then either
every object has the first property or every object has the second property.

o 0k wbdPE
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Suppose the universe is the integers, P(X) is “x is odd” and Q(X) is “x is
even.” Then it is true that “All integers are either odd or even” but false that
“Either all integers are odd or all integers are even.”

3. [(VIYP(X) = (VX Q)] = (YX[P(X) = Q(X)] isnot valid.
The implication says that if every object has property P implies every object has
property Q, then every object that has property P must also have property Q.
Again, let the universe be the integers and let P(x) be “x is odd” and Q(X) be “x
is even.” Because (Vx)P(x) is false, (VX)P(X) = (VX) Q(X) is true. However,
(V[P (X) = Q(x)] is false.

4. (YWEXPXY) = (3X)(VY)P(x Yy) isnot valid.
This is probably the most troublesome of all the possibilities for dealing with
quantifiers. The implication says that if for every y there is some x that satisfies
P, then there is an x that works with every y to satisfy P. Let the universe be
the set of all married people and P(Xx, y) be the sentence “x is married to y.”
Then (VY)(3X)P(x,y) is true, since everyone is married to someone. But
(3X) (Vy) P(x, y) would be translated as “There is some married person who is
married to every married person,” which is clearly false.

There are times when we will want to prove a quantified statement is false. We
know that (Vx)P(X) is false precisely when ~ (Vx) P (X) is true and ~ (VX)P(X) is
equivalent to (3x) ~P(X). Therefore, one way to prove (Vx) P(x) is false is to prove
(3IX) ~P(x) is true.

A constructive proof of (3x)(~ P (X)) names an object a in the universe such
that P(a) is false. The object a is called a counterexample to (Vx)P(x). The
number 2 is a counterexample to the statement “All primes are odd.” The function
f (X) = | x| is a counterexample to “Every function that is continuous at 0 is dif-
ferentiable at 0.”

Example. Some beginning algebra students believe that (x + y)? = x%+y2 In
symbolic terms, they believe that (VX) (Vy)[(X + y)? = x% + y?] is true in the uni-
verse of real numbers. This mistake could be corrected by providing a counter-
example—for instance, x =3 and y = 4.

Our last example in this section is a proof of a statement of the form
~(3IX)P(x), which means it is also an example of a proof of an equivalent
statement of the form (Vx)~P(x). We proved in Section 1.4 that every odd
integer can be written in the form 4j — 1 or 4k 4+ 1. We now show that there
does not exist an integer that can be written in both of these forms. The proof
is by contradiction.

Example. There is no odd integer that can be expressed in the form 4j — 1 and in
the form 4k 4 1 for integers j and k.

Proof. Suppose n is an odd integer, and suppose n=4j —1 and n=4k+ 1
for integers j and k. Then 4j — 1 = 4k 4 1, so 4] — 4k = 2. Therefore, 2j — 2k = 1.
The left side of this equation is 2(j — K), which is even, but 1 is odd. This is a
contradiction. ]
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Exercises 1.6

1. Prove that
* (@) there exist integers mand nsuch that 2m+ 7n = 1.
(b) there exist integers mand n such that 15m+ 12n = 3.
* (c) there do not exist integers mand n such that 2m + 4n =7.
(d) there do not exist integers mand n such that 12m+ 15n = 1.
(e) for every integer t, if there exist integers mand n such that 15m+16n=t,
then there exist integers r and ssuch that 3r + 8s=.
(f) if there exist integers mand n such that 12m+ 15n =1, then mand n
are both positive.
(g) for every odd integer m, if m has the form 4k + 1 for some integer k,
then m + 2 has the form 4j — 1 for some integer j.
(h) for every odd integer m, n? = 8k + 1 for some integer k. (Hint: Use the
fact that k(k + 1) is an even integer for every integer k.)
(i) for all odd integers mand n, if mn = 4k — 1 for some integer k, then m
or nis of the form 4j — 1 for some integer j.

2. Prove that for all integers a, b, and c,
(a) ifcdividesaand cdivides b, then for all integers xand y, c divides ax + by.
» (b) ifadividesb — 1and adivides ¢ — 1, then adivides bc — 1.
(c) ifadivides b, then for all natural numbers n, a" divides b".
(d) ifaisodd, c> 0, cdivides aand cdivides a + 2, thenc= 1.
(e) if there exist integers mand n such that am + bn=1 and ¢ # +1, then
¢ does not divide a or c does not divide b.

3. Prove that if every even natural number greater than 2 is the sum of two primes,*
then every odd natural number greater than 5 is the sum of three primes.

4. Provide either a proof or a counterexample for each of these statements.

(@) For all positive integers x, x> + x + 41 is a prime.

(b)  (VX)(IY)(X+ y=0). (Universe of all reals)

© (V)(VY)(X>1AYy>0= y'>Xx). (Universe of all reals)

(d) Forintegers a, b, ¢, if adivides bc, then either adivides b or adivides c.

(e) Forintegers a, b, ¢, and d, if adivides b — cand a divides ¢ — d, then a
divides b — d.

(f)  For all positive real numbers x, x> — x > 0.

(g) For all positive real numbers x, 2* > x + 1.

(h) For every positive real number x, there is a positive real number y less
than x with the property that for all positive real numbers z, yz > z

(i)  For every positive real number x, there is a positive real number y with
the property that if y < x, then for all positive real numbers z, yz> z

5. (a) Prove that the natural number x is prime iff x > 1 and there is no posi-
tive integer greater than 1 and less than or equal to V/x that divides x.

* No one knows whether every even number greater than 2 is the sum of two prime numbers. This is the
famous Goldbach Conjecture, proposed by the Prussian mathematician Christian Goldbach in 1742. You
should search the Web to learn about the million dollar prize (never claimed) for proving Goldbach’s
Conjecture. Fortunately, you don’t have to prove Goldbach’s Conjecture to do this exercise.
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(b) Prove that if p is a prime number and p # 3, then 3 divides p? + 2.
(Hint: When pis divided by 3, the remainder is either 0, 1, or 2. That is,
for some integer k, p=3korp=3k+ 1orp=3k+2)

6. Prove that 1
(a) for every natural number n, as 1. (Hint: Use the fact that n> 1 and

divide by the positive number n.)

(b) there is a natural number M such that for all natural numbers n > M,

1
— < 0.13.
n

* (c) for every natural number n, there is a natural number M such that 2n < M.

(d) there is a natural number M such that for every natural number n, % <M.
(e) there is no largest natural number.
(f) there is no smallest positive real number.

* (g) forevery real number e > 0, there is a natural number M such that for all

1
natural numbers n > M, n<¢&
(h) for every real number ¢ > 0, there is a natural number M such that if

1 1
m>n> M, then- — — < ¢.
n m

. . 1 .
(i) there is a natural number K such that - < 0.01 whenever r is a real
r

number larger than K.

(j) there exist integers L and G such that L < G and for every real number
X if L < X < G, then 40 > 10 — 2x > 12.

(k) there exists an odd integer M such that for all real numbers r larger than

1
M,Z— < 0.01.

(I for e\r/ery natural number x there is an integer k such that 3.3x + k < 50.
(m) there exist integers X < 100 and y < 30 such that x + y < 128 and for all
real numbersr and s, if r > x and s>y, then (r — 50)(s — 20) > 390.
(n) for every pair of positive real numbers x and y where x <y, there exists
a natural number M such that if n is a natural number and n > M, then

%< (y —x).

Proofsto Grade 7. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

* (a) Claim. Every polynomial of degree 3 with real coefficients has a real zero.
“Proof.” The polynomial p(x) =x% — 8 has degree 3, real coeffi-
cients, and a real zero (X = 2). Thus the statement “Every polynomial of
degree 3 with real coefficients does not have a real zero” is false, and
hence its denial, “Every polynomial of degree 3 with real coefficients
has a real zero,” is true. [ |

* (b) Claim. There is a unique polynomial whose first derivative is 2x + 3
and which has a zero at x = 1.

“Proof.” The antiderivative of 2x+ 3 is x>+ 3x+ C. If we let
p(X) = x% 4+ 3x — 4, then p’(x) = 2x+ 3 and p(1) = 0. So p(x) is the
desired polynomial. [ |
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(c) Claim. Every prime number greater than 2 is odd.
“Proof.” The prime numbers greater than 2 are 3, 5, 7, 11, 13, 17,
19, ... . None of these are even, so all of them are odd. =

* (d) Claim. There exists an irrational number r such that rv2 is rational.
“Proof.” If +/3¥2 is rational, then r = /3 is the desired example.
Otherwise, +/3¥2 is irrational and (+/3%2)¥2 = (+/3)2 = 3, which is
rational. Therefore either +/3 or +/3¥2is an irrational number r such that

rV2is rational. =
(e) Claim. For every real number x, |x| > 0.
“Proof.”  We proceed by three cases: x > 0, x =0, and x < 0.

Casel. x> 0. Choose, for example, x=4. Then |4]| =4. Thus
IX| > 0.

Case2. x=0.Then |0] =0. Thus, |x| >0.

Case3. x < 0. Choose, for example, x= —5. Then |—-5| = 5. Thus
IX| > 0. u

(fy Claim. If xis prime, then x + 7 is composite.
“Proof.” Let x be a prime number. If x = 2, then x+ 7 = 9, which is
composite. If X # 2, then xis odd, so X + 7 is even and greater than 2. In
this case, too, X + 7 is composite. Therefore, if x is prime, then X + 7 is
composite. =
(g) Claim. For all irrational numberst, t — 8 is irrational.
“Proof.”  Suppose there exists an irrational number t such thatt — 8 is
rational. Thent — 8 = g, where p and q are integers and q # 0. Then

P+38q
q

t= g+ 8= , with p+ 8q and q integers and g = 0. This is a

contradiction because t is irrational. Therefore, for all irrational numbers

t,t — 8 isirrational. ]
(h) Claim. For real numbers xandy, if xy=0thenx=0o0ry=0.

“Proof.”

Casel. Ifx=0,thenxy=0y=0.

Case2. Ify=0,thenxy=x0=0.

In either case, xy = 0. =
(i) Claim. For every real number ¢ > 0, there is a natural number K such

1
that for all real numbers x > K, x < &.
1
“Proof.” Let ¢ > 0 be a real number. Let K be 2 Assume X is a real

1 1
number and x > K. Then x > 2" SO X > s Therefore, 4xe > 1, so
1 | |
4X < €.
(j) Claim. For every natural number n, n < ré.
“Proof.” Let n be a natural number. Since n is a natural number,
1 < n. Since nis positive, n- 1 < n- n. Therefore, n < n? for all natural
numbers n. [ |
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1.7 Additional Examples of Proofs

This section contains no new proof techniques but does offer pointers about how to
begin a proof and how the form of the statement to be proved usually suggests a
method for proving it. These discussions include references to exercises that have
complete solutions in the Answers to Selected Exercises section. And because the
subject provides an excellent setting for examples of proofs, we conclude this sec-
tion with additional concepts from number theory.

Here are some strategies to consider when you begin to write a proof.

1. Makeastart. For most people, the hardest part of writing a proof is knowing
where or how to start. The most important step isto make a start—almost any
start. Once you’ve begun you may get stuck and need to begin again with a dif-
ferent approach, but often the first attempt will give you some ideas that can be
useful in a new approach. Writing a proof is not done by staring at a statement
to be proved until a full-blown proof pops into your head. It is done step by
step, piecing together facts, definitions, and previous results, and building
toward the statement to be proved.

2. ldentify the assumption(s) and conclusion. Most theorems can be stated in the
form of a conditional sentence. The antecedent gives your hypotheses; the conse-
quent is your goal. Look for known facts and previous results that might connect
the antecedent with the consequent. For example, later in this section we shall see
that theorems about the greatest common divisor use the Division Algorithm.

3. Try working backwards and/or fill in the “middle’ of the proof. Once the
hypotheses and conclusion have been identified, write your assumptions, leave
some space, and write the conclusion as the last line. Try to deduce statements
from the hypothesis that are more useful. Rewrite the conclusion or find a suitable
statement from which the conclusion follows. The idea is to try to reason forward
from your assumption and backward from your conclusion until you join them. At
the middle you will have steps that follow from the hypotheses and from which
the conclusion follows. This makes a complete proof. See Exercise 1(a).

4. Understand the concepts. Make sure you know the definitions of any techni-
cal terms that appear in the statement to be proved. Often the terms are defined
by equations or formulas that can be manipulated for use in the next steps of
the proof, as we did in previous sections with the definitions of even and odd
integers, rational numbers, and other terms. See Exercise 1(b).

5. Determinethelogical form of the statement. It is important to be able to write
(or at least visualize) the complete symbolic translation, with quantifiers, of the
statement to be proved, because the logical form of the statement will usually
offer you insight into how to proceed. Don’t be overly concerned with naming
different types of proofs and devising “formulas” for writing proofs of a given
type. It’s not true that if a statement has a certain form you must always use a
certain proof technique. However, for each logical form there is always at least
one natural outline for its proof, as described in the following examples.
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“If P, then Q.” First consider a direct proof. Begin with the first step, “Assume P.”
P may be a conjunction of several statements, so we may assume all of these state-
ments are true. See Exercise 5(a). When a direct proof fails, consider a proof by
contrapositive, especially when Q has the form of a negation. See Exercise 3(a). If
direct proofs of P = Q and ~Q = ~P both fail, try the method of proof by contra-
diction. Assuming P and ~Q gives you more hypotheses to work with as you aim
for some contradiction. See Exercise 5(b).

“If Py Vv Py, then Q.” It is usually best to first try to prove this by cases because
(P1 v Py) = Qis equivalent to (P = Q) A (P, = Q). That is, try to show that (i)
P; = Q and (ii) P, = Q. See Exercise 7(b). Any proof of P = Q that is done by
considering cases has this form. See Exercise 1(h).

“If P, then Q1 v Q.. A good first step is to try to prove the equivalent form
(P A ~Q1) = Q.. This method has that advantage of assuming that both P and
~Qq are true, giving you more hypotheses to utilize. Or if you prefer, you could
assume both P and ~Q,, and deduce Q;. See Exercises 1(d) and (e).

“Piff Q.” What you should hope for is an “iff” proof in which you construct a list
of equivalent statements linking P and Q. But usually, and especially when P and Q
are complicated, you will need to prove P = Q and Q = P separately. Rather than
worrying about which proof form to use, a good strategy is to begin by proving
either of the two implications and then checking to see whether each step can be
reversed so that (by modifying the words that connect statements) the proof can be
converted to an “iff” proof. See Exercise 1(c).

Here are some strategies for writing proofs of quantified sentences.

*(V¥x) P(x).” Usually there will be one or more universal quantifiers, which may be
hidden. Your first sentence will almost always have the form “Let x be an object in
" or “Suppose X is in ,” where we specify the universe. See Exercises
1(f) and 2(c). Proofs by contradiction of universally quantified statements are not so
common. See the comments below on the form ~(3x) P (x), and Exercise 1(g).

“(3x)P(x).” You may be able to construct or guess an object that has the desired
property. See Exercise 6(b). If not, you may be able to still prove existence without
producing an actual object, perhaps by contradiction. See Exercise 4(b).

~ (IX) P (x).” You have two options, and the one you choose will depend on the
form of P(x). You might first try a direct proof of the equivalent statement
(VX) ~P(X). The alternative is to assume (3x) P(x) and find a contradiction. (This
amounts to proving (Vx) ~P(x) by contradiction.) See Exercise 1(g).

“(3X)P(x).” First prove (3x) P(x) as described above. To prove uniqueness, you
may choose any one of several approaches. You may (1) prove that any two objects
with the property must be equal, (2) derive a contradiction from the assumption that
two different objects have the property, or (3) prove that every object with the prop-
erty is identical to some specific object. See Exercises 3(c) and 4(d).
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The remainder of this section is devoted to examples of proofs from
elementary number theory—that branch of mathematics concerned with the
integers and questions about divisibility, primes, and factorizations. The term
“elementary” is used, not because the subject is low level, but because no meth-
ods from other fields of mathematics are used. Some of the most simply stated,
yet still unsolved problems in mathematics come from elementary number
theory.

Our proof examples are all concerned with the greatest common divisor (gcd)
of two integers; a concept that is probably already familiar to you. We can’t rely on
just a general idea of gcd to prove theorems: It’s not enough just to be able to find
the gcd of 12 and 15. As you gain experience you will find that writing good proofs
requires that we understand and use concepts precisely. By precisely, we mean as
specified by the definition.

The most fundamental theorem about the integers is the Division Algorithm, which
we state here without proof. In Chapter 2 the Division Algorithm will be presented as
Theorem 2.5.1 and proved using a technique that will be introduced in Section 2.5.

The Division Algorithm (See Theorem 2.5.1)

For all integers a and b, with a = 0, there exist unique integers g and r such that
b=ag+rand0 <r < |a.

The integer a is the divisor, q is the quotient, and r is the remainder. For
example, 23 divided by 4 gives a quotient of 5 and remainder 3, because
23 =4 -5+ 3. Note, however, it would be incorrect to say that —23 divided by 4
has quotient —5 and remainder —3, even though —23 = 4(-5) + (—3). Remain-
ders can’t be negative, so when we divide by 4 the only possible remainders are
0, 1, 2, and 3. Thus when —23 is divided by 4 the quotient is —6 and the remain-
deris 1.

It is the fact that the remainder must be nonnegative and as small as possible
that makes the quotient and remainder unique. Notice that dividing b by a produces
a remainder of 0 exactly when there is an integer g such that b = aq + 0, which
happens exactly when a divides b.

One of the most useful concepts regarding integers is that of the greatest com-
mon divisor.

DEFINITIONS Leta, b, ¢, and d be nonzero integers.

We say c is a common divisor of aand b iff c divides a and c divides b.
We say d is the greatest common divisor of a and b, and write
d = gcd(a, b), iff

(i) disacommon divisor of aand b, and

(ii) every common divisor c of aand b is less than or equal to d.
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For example, the common divisors of 18 and 24 are —6, —3, -2, —1, 1, 2, 3,
and 6, so gcd(18, 24) = 6. There is no requirement that a and b must be positive.
For example gcd(—5, 20) = 5, gcd(21,—35) = 7, and gcd(—9,—27) = 9. The inte-
gers 24 and 35 have no positive common divisors except 1, so gcd(24, 35) = 1.
Since gcd(a, b) is greater than or equal to any common divisor of nonzero integers
aand b, gcd(a, b) is always a positive integer.

An integer of the form ax + by, for integers x and y, is called a linear combi-
nation of aand b. For example, some linear combinations of 3 and 7 are:

1=3.(-2)+7-1 —2=3.4+7-(-2)
586=3.10+7-4 7=3.047-(-1).

You could experiment with different values of x and y to find that every integer mul-
tiple of 3 is a linear combination of 12 and 15. For example,

0=12-0+15-0 3=12-(-1)4+15-1
—-3=12-(-4)+15-3 6=12-8+15-(—6).

An exercise in the previous section established an interesting result
about linear combinations: For all integers x and y, if ¢ divides both aand b, then
c also divides ax + by. This fact (Exercise 2(a)) can be restated in our new ter-
minology as:

Theorem 1.7.1 Let aand b be integers. If ¢ is a common divisor of a and b, then ¢ divides every
linear combination of a and b. In particular, gcd(a, b) divides every linear
combination of aand b.

There is much more to be said about linear combinations. Whereas we look for
the greatest common divisor of a and b, we look for the smallest positive linear
combination of aand b. We see from the example above that 1 is a linear combina-
tion of 3 and 7, and so 1 must be the smallest positive linear combination. We also
see above that 3 is a linear combination of 12 and 15, so the smallest positive linear
combination of 12 and 15 must be 1, 2, or 3. But we can see that 1 is not a linear
combination of 12 and 15 (See Exercise 1(d) of Section 1.6), and we can show in
the same way that 2 is not a linear combination. Therefore, 3 is the smallest posi-
tive linear combination of 12 and 15.

It’s a natural question to ask whether there is, for every pair a, b of nonzero
integers, a smallest positive linear combination of aand b. There is, but once again
we simply state the result here and wait until we have the tools in Chapter 2 to give
the proof. See Theorem 2.5.2. Still, it’s not too soon to see how we can use this
result and basic proof techniques to understand the essential connection between
the gcd and linear combinations.
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Lemma 1.7.2 Let aand b be nonzero integers. Then the smallest positive linear combination of a
and b is a common divisor of aand b.

Proof. Letd = as+ bt be the smallest positive linear combination of aand b. (\We
need to show that d divides a and d divides b.) By the Division Algorithm there
exist integers g and r such that a=dq + r, where 0 < r < d. Then

r=a-—dq
=a— (as+ ht)q
=a—as— htq

=a(l — ) + b(—tq),

which is a linear combination of aand b. But 0 < r < dand d is the smallest positive
linear combination. We conclude that r = 0, so d divides a. In the same way, d divides
b. Thus d is a common divisor of aand b. ]

Theorem 1.7.3 Let a and b be nonzero integers. The gcd of a and b is the smallest positive linear
combination of aand b.

Proof. Letd = as+ bt be the smallest positive linear combination of a and b. By
Lemma1.7.2, dis acommon divisor of aand b. We must now show that every com-
mon divisor of aand b is less than or equal to d.

(To show that every common divisor islessthan or equal to d, we first prove
that if c isany common divisor of a and b, then ¢ divides d.) Suppose ¢ is a com-
mon divisor of aand b. Then for some integers nand m, a= cnand b = cm. Then

d=as+ bt
= (cn)s+ (cm)t
= c(ns + nt).

Therefore c divides d. We conclude that ¢ < d. (\We have used Exercise 7(g) of
Section 1.4.) Therefore d is the greatest common divisor of aand b. =

Now we know that gcd(a, b) is a linear combination of aand b, in fact the small-
est linear combination, and it divides every linear combination. These facts are use-
ful in many important applications, from coding theory to the solution of equations
with integer coefficients. One immediate application is in establishing divisibility
relationships among integers. For example, if we know that we can write 1 as a lin-
ear combination of two integers, then the only common divisors of those integers are
land —1.

DEFINITION We say nonzero integers a and b are relatively prime,
or coprime, iff gcd(a, b) = 1.
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The numbers 12 and 35 are relatively prime. The numbers 15 and 36 are not,
because gcd(15, 36) = 3. The integer 2 is coprime with every odd integer.

Theorem 1.7.4 Let a and b be nonzero integers that are relatively prime, and let ¢ be an integer.
Then the equation ax + by = c has an integer solution.

Proof. See Exercise 18. |

The next result, which is found in Euclid’s Elements, makes use of the concepts
of gcd and relatively prime.

Lemma 1.7.5 Euclid’sLemma. Let a, b, and p be integers. If pis a prime and p divides ab, then
p divides a or p divides b.

Proof. Suppose p is prime and p divides ab. Assume that p does not divide a.
(We must show that p divides b.) Since p does not divide a, p and a are relatively
prime, so there exist integers s and t such that as+ pt = 1. Then b = abs + bpt.
Since p divides abs and bpt, it divides their sum, so p divides b. We conclude that
p divides a or p divides b. u

Euclid’s Lemma is frequently used in one of its equivalent forms:

if p divides ab and p does not divide a, then p must divide b,

or
if p does not divide a and p does not divide b, then p does not divide ab.
Exercises 1.7
1
* (@) Prove that if nis an integer and 3n + 1 is odd, then 2n + 8 is divisible

by 4.

» (b) Assume a# 3. Prove that if a is a solution to x> — x — 6 = 0, then a is
asolutionto X3 + 2x% + x+ 3 =0.

» (c) Assume a 3. Prove that a is a solution to x> —x — 6 =0 iffais a
solution to x® 4 2x> + x + 3 =0.

» (d) Let x be a real number. Prove that if x> =2x+ 15, then x < 2 or
(x—4)
x=3) > 0.

* (e) Letxandy be real numbers. Prove that if x + y is irrational, then either
X ory is irrational.

* (f)  Prove that if two nonvertical lines are perpendicular, then the product of
their slopes is —1. (Recall that nonvertical lines are those lines in the
plane that have slope.)

* (g) No point inside the circle (x — 3)> +y?> =6 is on the line y = x + 1.

3| x—2|
— <4
X <

* (h) Prove that for all real numbers x > 1,
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2.

Prove that

(@) for all integers n, 5% 4 3n + 4 is even.

(b) for all odd integers n, 2n? + 3n + 4 is odd.

(c) the sum of 5 consecutive integers is always divisible by 5.

(d) if two nonvertical lines have slopes whose product is —1, then the lines
are perpendicular.

(e) forall integers n, n® — n s divisible by 6.

(f) forall integers n, (n* — n)(n + 2) is divisible by 12.

Let L be the line 2x + ky = 3k. Prove that

(a) if k# —6, then L does not have slope %

(b) for every real number k, L is not parallel to the x-axis.
(c) there is a unique real number k such that L passes through (1, 4).

(&) Prove that if x is rational and y is irrational, then x + y is irrational.

(b) Prove that there exist irrational numbers x and y such that x+y is
rational.

(c) Prove that for every rational number z, there exist irrational numbers x
andysuchthatx+y=1z

(d) Prove that for every rational number z and every irrational number X,
there exists a unique irrational number y such thatx +y =z

(@) Prove that except for two points on the circle, if (x, y) is on the circle
with center at the origin and radius r, then the line passing through (x, y)
and (r, 0) is perpendicular to the line passing through (x, y) and (—r, 0).
Which two points are the exceptions?

(b) Let (%, y) be a point inside the circle with center at the origin and radius
r. Prove that the line passing through (x, y) and (r, 0) is not perpendicu-
lar to the line passing through (x, y) and (—r, 0).

Prove that

(a) every point on the line y = 6 — x is outside the circle with radius 4 and
center (—3, 1).

(b) Prove that there exists a three-digit natural number less than 400 with
distinct digits, such that the sum of the digits is 17 and the product of the
digits is 108.

(c) Use the Extreme Value Theorem to prove that if f does not have a
maximum value on the interval [5, 7], then f is not differentiable on
[5, 7]

(d) Use Rolle’s Theorem to show that x* 4+ 6x — 1 = 0 does not have more
than one real solution.

Prove that for all real numbers X,
[2x — 1|
- <

(& ifx>0,then 2.

(x—=1)(x+2)

b) if -2 1 3,then-——— "~ 0.
(b) i <x<lorx> en(x_3)(x+4)>
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8. Prove or disprove:
* (@) Every point inside the circle (x — 3)2 + (y — 2)? = 4 is inside the circle
X2 +y* =41
(b) If (x, y) is inside the circle (x — 3)> + (y — 2)? = 4, then x — 6 < 3y.
(c) Every point inside the circle (x — 3)? + (y — 2)> = 4 is inside the circle
(x—5)2+ (y+ 1)*=25.
9. For each given pair a, b of integers, find the unique quotient and remainder
when b is divided by a.
(@ a=8,b=310
(b) a=5b=36
(0 a=-5b=36
* (d) a=5b=-36
(e a=7,b=44
(f) a=-8b=-52
10. (@) Letaand b be integers and a > b. Prove that if b > 0, then when b is
divided by a, the quotient is 0.
(b) Letaand b be integers and a > b. Prove that if the quotient is 0 when b
is divided by a, then b > 0.

11. For each pair of integers, list all positive and negative common divisors, and
find gcd (a, b).
(@ a=38,b=2310
(b) a=-5b=36
(0 a=18,b=-54
(d a=-8b=-52
12. (a) Write 2 in two different ways as a linear combination of 12 and 22.
(b) Write —4 in two different ways as a linear combination of 12 and 22.
() What is the set of all linear combinations of 12 and 22?

13. Find d = gcd(a, b) and integers x and y such that d = ax + by.
(@ a=13,b=15
(b) a=26,b=32
(c0 a=9,b=230.
14. Leta, b, and ¢ be natural numbers and gcd(a, b) = d. Prove that
(@) if cdivides aand c divides b, then c divides d.
(b) adividesbiffd=a.
(c) ifadivides bcand d= 1, then adivides c.
(d) if c divides a and c divides b, then gcd(%, %) = g. In particular,
a by __
ged(§. g) = 1.
(e) for every natural number n, gcd(an, bn) = dn.
15.  Which elements of the set {3, 6, 10, 63} are relatively prime to 7? to 21? to 30?

16. Prove that for every prime p and for all natural numbers a,
(@) gcd(p, @) =p iffpdivides a.
(b) gcd(p, @) =1 iff pdoes not divide a.

»*
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17. Let g be a natural number greater than 1 with the property that g divides a or
g divides b whenever q divides ab. Prove that q is prime.

18. Letaand bbe nonzero integers that are relatively prime, and let ¢ be an integer.
Prove that the equation ax + by = c has an integer solution. (Theorem 1.7.4.)
Hint: Use the fact that 1 is a linear combination of aand b.

19. Letaand bbe nonzero integers and d = gcd(a, b). Let m= g andn= g. Show

that if x = sand y = t is a solution to ax + by = c, then so is x = s+ kmand
y =1t — kn for every integer k. (This shows how linear combinations help to
describe solutions to equations.)

20. For nonzero integers a and b, the integer n is a common multiple of aand b
iff adivides nand b divides n. We say the positive integer mis the least com-
mon multiple of aand b, written as lcm(a, b), iff
(i) misacommon multiple of aand b, and
(if) if nis a positive common multiple of aand b, then m < n.

Find Icm(a, b) for

* (@) a=6,b=14
(b) a=10,b=35
(0 a=21,b=39
(d a=12,b=48

21. Let a, b, and c be natural numbers, gcd(a, b) = d and Icm(a, b) = m. Prove
that
(a) adividesbiff m=nh.

(b) m<abh.

(c) ifd=1,then m=ab.

(d) if cdivides aand cdivides b, then lem(3, 2) =T
(e) for every natural number n, lcm(an, bn) = mn.

(f) gcd(a, b) - lem(a, b) = ab.

22. Letaand b be integers, and let m = Icm(a, b). Use the Division Algorithm to
prove that if ¢ is a common multiple of a and b, then mdivides c.

Proofsto Grade 23. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(@ Claim. There isa unique 3-digit number whose digits have sum 8 and
product 10.
“Proof.” Let %, y, and z be the digits. Then x+y+2z=8 and
xyz = 10. The only factors of 10 are 1, 2, 5, and 10, but since 10 is not
a digit, the digits must be 1, 2, and 5. The sum of these digits is 8.
Therefore, 125 is the only 3-digit number whose digits have sum 8 and

product 10. [
* (b) Claim. Thereisaunique set of three consecutive odd numbers that are
all prime.

“Proof.”  The consecutive odd numbers 3, 5, and 7 are all prime. Sup-
pose X, y, and zare consecutive odd numbers, all prime, and x # 3. Then
y =X+ 2 and z= x + 4. Since x is prime, when X is divided by 3, the
remainder is 1 or 2. In case the remainder is 1, then x = 3k 4 1 for some
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integer k> 1. But then y=x+2=3k+ 3 =3(k+ 1), so y is not
prime. In case the remainder is 2, then x= 3k + 2 for some integer
k> 1. Butthenz=x+ 4 =3k+ 2+ 4 =3(k+ 2), so zis not prime. In
either case we reach the contradiction that y or zis not prime. Thus x = 3
andy =5, z= 7. Therefore, the only three consecutive odd primes are 3,

5,and 7. ]
(c) Claim. If xis any real number, then either 7 — x is irrational or 7 + X
is irrational.

“Proof.” Itis known that 7 is an irrational number; that is, 7= cannot be
written in the form 2 for integers a and b. Consider x = . Then
7 — X =0, which is rational, but = + x = 2x. If 27 were rational, then
21 = %for some integers aand b. Then = = 2%, so s is rational. This
is impossible, so 2 is irrational. Therefore either = — x or = + X is

irrational. ]
(d) Claim. |If xis any real number, then either = — x is irrational or 7 + X
is irrational.

“Proof.” It is known that = is an irrational number; that is, 7z cannot
be written in the form 2 for integers a and b. Let x be any real number.
Suppose both 7 — x and 7 + x are rational. Then since the sum of
two rational numbers is always rational, (7 — X) + (7 + X) = 27 is
rational. Then 2 = { for some integers aand b. Then 7 = 3, s0 7 is
rational. This is impossible. Therefore, at least one of = — x or = + x
is irrational. ]
(e) Claim. For all natural numbers n, gcd(n, n+ 1) = 1.
“Proof.” (i) 1 divides n and 1 divides n+ 1. (ii) Suppose c divides n
and cdivides n + 1. Then 1 divides c. Therefore, gcd(n,n+1)=1. =
(fy Claim. For all natural numbers n, gcd(2n — 1, 2n + 1) = 1.
“Proof.” Obviously 1 divides both 2n — 1 and 2n+ 1. Suppose ¢
divides 2n — 1 and 2n+ 1. Then c divides their sum, 4n, so c also
divides 4n?. Furthermore, ¢ divides their product, 4n> — 1. Since ¢
divides 4n? and 4n? — 1, ¢ divides 4n? — (4n> — 1) = 1. Therefore,
¢ < 1. Thus 1 is the greatest common divisor. |
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CHAPTER 2

Set Theory

Starting from the theory of sets, one can construct all the number systems, func-
tions, calculus, and other areas of mathematics. Thus, the study of sets is the foun-
dation for the entire structure of mathematics.

This chapter does not develop these constructions but does provide some
set-theoretic concepts used throughout the text and advanced mathematics.
Sections 2.1 and 2.2 provide precise definitions for familiar concepts such as
union and intersection. In Section 2.3 we extend the union and intersection oper-
ations to collections of sets and discuss how to use indices to organize a family
of sets. Proofs methods using forms of mathematical induction are discussed in
Sections 2.4 and 2.5. Basic methods for counting the elements in a finite set
appear in the optional Section 2.6.

2.1 Basic Concepts of Set Theory

We assume that you have had some experience with sets, set notations, and
common sets of numbers such as the integers and real numbers as described in
the Preface to the Student. In general, capital letters will be used to denote sets
and lowercase letters to denote the elements in sets. To designate a set, we use the
notation

{xP(},

where P(X) is a one-variable open sentence description of the property that defines
the set. For example, the set A= {1, 3,5, 7, 9, 11, 13} may be written as

{x:xe N, xisodd, and x < 14}.

The set of all integer multiples of 3 is the set 37 = {3z z € Z}, and this set contains
0,3, -3,6,—6,9, -9, etc.

71
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72 CHAPTER 2 Set Theory

A word of caution: Some sentences P(X) may not be used to define a set. In
1902, when the theory of sets was new, Bertrand Russell* and others pointed out
flaws in the then common assumption that for every open sentence P(X), there cor-
responds a set {x: P(X)}. See Exercise 3 for a version of the Russell paradox.

The resolution of Russell’s and other paradoxes involved making a distinction
between sets and arbitrary collections of objects. Sets may be defined within a system
of axioms for set theory, first developed by Ernst Zermelo™ and Abraham Fraenkel . **
Their axioms assert, for example, that a collection of two sets constitutes a set (Axiom
of Pairing) and that the collection of all subsets of a set is a set (Axiom of Powers).
Under their system, known paradoxes such as Russell’s are avoided.

It is not our purpose here to carry out a formal study of axiomatic set theory. '’
However, all of our discussions of sets are consistent with the Zermelo—Fraenkel
system of axiomatic set theory.

A second word of caution: Recall that the universe of discourse is a collection
of objects understood from the context or specified at the outset of a discussion and
that all objects under consideration must belong to the universe. Some ambiguity
may arise unless the universe is known. For example, membership in the set
A = {x: x? — 6x = 0} depends on an agreed upon universe. For the universe of real
numbers A'is {0, 6}, but Ais {6} for the universe of natural numbers.

DEFINITION  Let @ = {x: xs x}. Then Jis a set, called the empty
set or null set.

It is an axiom that (J is a set. Since for every object x in every universe, X is
equal (identical) to x, there are no elements in the collection (J. That is, the state-
ment x € J is false for every object x. We could define other empty collections,
such as B = {x: x € R and x? < 0}, but we will soon prove that all such collections
are equal, so there really is just one empty set.

In the Preface to the Student we said A is a subset of B and wrote A C B if and
only if every element of A is an element of B. If A is not a subset of B we write
AgZB.ForX={2,4}, Y={2,3,4,5},andZ={2,3,6}, XC Y and X Z Z

In symbols, we write the definition of A C B as

ACB< (VX)(xe A= xeB).

* Bertrand Russell (1872—1970) was a British philosopher and mathematician and strong proponent for
social reform. He coauthored Principia Mathematica (1910-1913), a monumental effort to derive all of
mathematics from a specific set of axioms and a well defined set of rules of inference.

Ernst Zermelo (1871-1953) was a German mathematician whose work on the axioms of set theory has
profoundly influenced the foundations of mathematics. In 1905 he discovered a paradox similar to the
Russell paradox. He developed a theory of sets based on seven axioms, but was unable to prove that no
new paradoxes could arise in his system.

** Abraham Fraenkel (1891-1965), born in Germany, spent much of his career in Israel. In the 1920s he
made attempts to improve the set theoretic axioms of Zermelo to eliminate paradoxes. Within his system
of ten axioms he proved the independence of the Axiom of Choice. (See Section 5.5.)

T A complete study of the foundations of set theory from the Zermelo—Fraenkel axioms may be found
in Notes on Set Theory by Y. N. Moschovakis (Springer-Verlag, Berlin, 1994). The study of set theory is
still active today, with many unsolved problems.
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Therefore, a proof of the statement A C B is often a direct proof, taking the form:

DIRECT PROOFOFACB
Proof.

Let x be any object.

Suppose x € A

Thus x € B.
Therefore A C B. u

Example. LetA= {2, —3}and B = {x e R: x3+3x? —4x — 12 = 0}. Prove that
ACB.

Proof. Suppose x € A. (Weshow A C B by individually checking each element of A.)
Thenx=20orx= —3.Forx=2,22+3(2%) —4(2) —12=8+4+12 —8 - 12=0.
For x=—3, (=3)% +3(—3)? — 4(-3) — 12 = —27 + 27 + 12 — 12 = 0. In both
cases, X € B. Thus, A C B. n

Example. Letaand bbe natural numbers, and let aZ and bZ be the sets of all inte-
ger multiples of a and b, respectively. Prove that if a divides b, then bZ C aZ.

Proof. Suppose that a divides b. Then there exists an integer ¢ such that b = ac.
(Toshow bZ C aZ, we start with an element frombZ.) Let x € bZ. Then xis a mul-
tiple of b, so there exists an integer d such that x =bd. But then x=bd =
(ac)d = a(cd). Therefore x is a multiple of a, so x € aZ. ]

Theorem 2.1.1 (@) ForeverysetA JCA
(b) ForeverysetA ACA
(c) ForallsetsA B,andC,if ACBandB C C,then AC C.

Proof.

(@) LetAbeany set. Let x be any object. Because the antecedent is false, the sen-
tence x € & = x € Alis true. Therefore, J C A.

(b) Let A be any set. (To prove A C A, we must show that for all objects x,
if xe A then xe A) Let x be any object. Then xe A= xe€ A is true.
(Herewe use the tautology P = P.) Therefore, (VX)(x € A= x € A) and so
ACA

(c)  See Exercise 8. |

Recall that sets A and B are equal iff they have exactly the same elements;
that is,

A=Biff (VX)(xe A= xe B).
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Thus, one method to prove A= B is to give a sequence of equivalent state-
ments starting with the statement x e A and ending with x € B. However,
since xe A< xe B is equivalent to (xe A= xeB)A (xeB=xecA), we
may also say
A=Biff ACBandBC A

For this reason, a proof that A = B will typically have the form:

TWO PART PROOFOFA =B
Proof.
(i) Prove that A € B (by any method).
(ii) Prove that B C A (by any method).
(iii) Therefore A = B. |

Example. Prove that X =Y where X={xe R:x? = 1=0} and Y={-1,1}.

Proof.

(i) Weshow Y C Xhy individually checking each element of Y. By substitution,
we see that both 1 and —1 are solutions to x> — 1 = 0. Thus Y C X.
(i)  Next, we must show X C VY. Let t € X. Then, by definition of X, t is a solu-
tion to x> — 1 = 0. Thus t> — 1 = 0. Factoring, we have (t — 1)(t + 1) = 0.
This product is 0 exactly whent —1=0ort+ 1= 0. Therefore, t =1 or
t= —1. Thus if t is a solution, thent =1 ort = —1; so t € Y. This proves
XCY.
(iii) By (i) and (ii), X=. [ |

The set B is a proper subset of the set A iff B C A and A # B. To denote that
B is a proper subset of A, some authors write B C A and others write B C A. The
only improper subset of A is the set A itself.

We are now in a position to prove that there is only one empty set, in the sense
that any two empty sets are equal.

Theorem 2.1.2 If Aand B are sets with no elements, then A = B.
Proof. Since A has no elements, the sentence (VX)(xe A= xe B) is true.

Therefore, A C B. Similarly, (VX)(x € B= x € A) is true, so B C A. Therefore, by
definition of set equality, A= B. |

Theorem 2.1.3 For any sets Aand B, if AC Band A # &, then B £ .

Proof. Suppose A C B and A # . Since A is nonempty, there is an object t such
thatt € A. Since t € A, t € B. Therefore, B £ . u
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We sometimes use Venn* diagrams to display simple relationships among sets.
For example, suppose we want to find nonempty sets A, B, and C such that A C B,
A#B,CC A and A ¢ C. We begin with three overlapping sets that represent the
sets A, B, and C in Figure 2.1.1(a). Since A C B, there are no elements in the two
regions of A that are outside B. Since C C A, there are no elements in the two
regions of C that are outside A. These four regions are shaded in Figure 2.1.1(b).
Since A is not a subset of C, there is some element x in the remaining region of A
that does not overlap C, and since A # B there is some element y in B that is not in
A. Finally, C is required to be nonempty, so there is an element z in C. There may
be other elements in these sets, but the solution we have found is A= {x, z},
B={x Y, z} and C = {z}. (See Figure 2.1.1(c).)

A B A B

@) (b) (©
Figure 2.1.1

One of the axioms of set theory asserts that for every set A, the collection of all
subsets of A is also a set.

DEFINITION Let Abe aset. The power set of A is the set whose ele-
ments are the subsets of A and is denoted % (A). Thus

P (A) = {B: B C A}.

Notice that the power set of a set A is a set whose elements are themselves sets,
specifically the subsets of A. For example, if A= {a, b, ¢, d}, then the power set of
Ais

P(A) ={J, {a}, {b}. {c}. {d} {a b}, {a c}, {a d}, {b, c}, {b, d}, {c, d},
{a b, c}, {a b, d}, {a c, d}, {b, c d}, A}.

When we work with sets whose elements are sets, it is important to recognize
the distinction between “is an element of ” and “is a subset of.” To use A € B cor-
rectly, we must consider whether the object A (which happens to be a set) is an ele-
ment of the set B, whereas A C B requires determining whether all objects in the set
AarealsoinB. If xe Aand B C A, the correct terminology is that A containsx and
Aincludes B.

* John Venn (1834-1923) was a British philosopher and logician best known for his diagrams to describe
relationships.
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Example. Let X={{1, 2, 3}, {4, 5}, 6}. Then X is a set with three elements,
namely, the set {1, 2, 3}, the set {4, 5}, and the number 6. % (X) = {J, {{1, 2, 3}},
{{4, 5}}, {6}, {{1, 2, 3}, {4, 5}}, {{1, 2, 3}, 6}, {{4, 5}, 6}, X}. The set {{4, 5}}

has one element; it is {4, 5}. For the set X:

6eX and {4,5}eX, but 4¢X

{4} ¢ {4,5} but {4} C {4,5}.

{4,5} ¢ X because 5 ¢ X

{6} =X but {6}e¢X

{6} e P(X) but {6} £ P(X).

{{4,5}} € X because {4,5}e X

{4,5}y ¢ P(X) but {{4,5}} e P(X).
JCX, so Je P(X), and {J} < P(X).

Notice that for the set A= {a, b, c, d}, which has four elements, % (A) has
16 = 2* elements and for the set X above with three elements, % (X) has 8 = 23 ele-
ments. These observations illustrate the next theorem.

Theorem 2.1.4 If Ais a set with n elements, then P (A) is a set with 2" elements.*

Proof. (The number of elementsin % (A) is the number of subsets of A. Thus to
prove this result, we must count all the subsets of A.) If n =0, that is, if A is the
empty set, then P (&) = {J}, which is a set with 2° = 1 elements. Thus the theo-
rem is true for n= 0.

Suppose A has n elements, for n > 1. We may write Aas A= {x, X, ..., Xn}-
To describe a subset B of A, we need to know for each x; € A whether the element is
in B. For each x, there are two possibilities (X € B or x ¢ B), so there are
2-2-2----- 2 (n factors) different ways of making a subset of A. Therefore % (A)
has 2" elements. (The counting rule used here is called the Product Rule. See
Theorem 2.6.5 and the discussion following that theorem. ) u

The next theorem is a good example of a biconditional statement for which a
two-part proof is easier than an iff proof.

Theorem 2.1.5 Let Aand B be sets. Then A C B iff (A) € ?(B).

Proof.

(i) We must show that AC B implies ?(A) € %(B). Assume that ACB
and suppose X e %P(A). We must show that X e P (B). But X e P(A)
implies X C A. Since X € A and A C B, then X C B by Theorem 2.1.1. But
X C B implies X € ?(B). Therefore, X % (A) implies X e % (B). Thus
P(A) € P(B).

(i)  We must show that % (A) € P (B) implies A C B. Assume that % (A) € P (B).
By Theorem 2.1.1 ACA; so Ae P (A). Since ?(A) € P(B), Ae P(B).
Therefore A C B. [

* This theorem is the reason that some mathematicians use 2” to denote the power set of A.
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The second half of the proof of Theorem 2.1.5 could have been done differ-
ently. We could have shown that A C B by giving a direct proof that x € A implies
X € B. A proof that consists of a series of steps beginning with “Assume x € A” and
leads to a conclusion that “Therefore x € B” is often called an element-chasing
proof, and is the natural way to prove the most basic facts about sets. As we build
our knowledge of set properties in the next section, we may use theorems already
proved, as we did above by using Theorem 2.1.1, to shorten our proof of Theorem
2.1.5. An element-chasing proof of part (ii) would be just as correct, but most peo-
ple prefer a shorter, more elegant proof. When you write proofs, you may choose
one method of proof over another because it is shorter, is easier to understand, or
for any other reason.

Exercises 2.1

1. Write the following sets by using the set notation {x: P(X)}.
* (@) The set of natural numbers strictly less than 6
(b) The set of integers whose square is less than 17

* (0 [2,€]
(d (=1,9]
(e [-5 -1

(f)  The set of rational numbers less than —1

2. Let X={x: P(X)}. Are the following statements true or false?
(@ Ifae X then P(a).
(b) If P(a),thenae X
(c) If~P(a),thenag X

3.x (@) (Russdl paradox) A logical difficulty arises from the idea, which at
first appears natural, of calling any collection of objects a set. Let’s say
that set Bis ordinary if B ¢ B. For example, if B is the set of all chairs,
then B ¢ B, because B is not a chair. It is only in the case of very unusual
collections that we are tempted to say that a set is a member of itself.
(The collection of all abstract ideas certainly is an abstract idea.) Let
X = {x: xis an ordinary set}. Is X € X? Is X ¢ X? What should we say
about the collection of all ordinary sets?

(b) Inthe town of Seville, the (male) barber shaves all the men, and only the
men, who do not shave themselves. Let A be the set of all men in the
town who do not shave themselves. Who shaves the barber? (That is, is
the barber an element of A? Is he not an element of A?)

4. True or false?

* (@ NcQ. (b) @cz.

« (© NCR. @ [55ca
=@ [p3leh) 0 Rca

* () [7,10)C{7,8,9, 10} (i) (6,9] <6, 10)
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D % % % % % U

*

10.

12.
13.

14.

15.
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True or false?

(@ Je{d {I}}. (b) ©c{JI {1}
(© {J}e{d {I}}. d) {2} {9 {1}
(€ {J}}e{d {J}} 6 {91} {9 {7}

(g) ForeverysetA e A (h) ForeverysetA {J} C A

(i) L {c{o{gy}}). () {1L.2ye{{1,23}{1,3}12}
(k) {1.2,3<c{1,2,3 {4} () {43}r<c{1.23 {4}

Give an example, if there is one, of sets A, B, and C such that the following
are true. If there is no example, write “Not possible.”

(@ AcBB¢CandAcCC.

(b) ACBBCC,andCCA

(0 AZBB¢ZCandAcCC.

(d AcBB¢CandA¢C.

Prove that if x ¢ B and A C B, then x ¢ A.

Prove part (c) of Theorem 2.1.1: For all sets A, B,and C,if AC Band BC C,
then A C C.

Provethatif ACB,BC C,andCC A thenA=Band B=_C.

Suppose that X = {x: x e R and x is a solution to x?> — 7x + 12 = 0} and
Y = {3, 4}. Prove that X =Y.

Let X={xeZ: |x|<3} and Y={-3,-2,-1,0,1, 2,3} Prove that
X=Y.

Prove that X =Y, where X = {x e N: x?> < 30} and Y = {1, 2, 3, 4, 5}.

For a natural number a, let aZ be the set of all integer multiples of a. Prove
that foralla,be N, a=Db iff aZ = bZ.

Write the power set, % (X), for each of the following sets.

(@ X={0,4,0} (b) X={S{S}}

(© X={I {a}.{b}.{ab}} (d) X={1{I} {2 {3}}}
Let A, B, and C be sets and x and y be any objects. True or false?
(@ IfxeA thenxe P(A).

(b) IfxeA then{x} € ?(A).

(©) IfxeA then{X} € ?(A).

(d) If{x,y}eP(A),thenxe Aandye A

(e IfBC A then{B} e P?(A).

(f) IFBCA thenBe P(A).

(99 IfBe®(A),thenBC A

(h) IfC<CBandBe P(A),thenCe P(A).

List all of the proper subsets for each of the following sets.

@ 9 (b) {9 {}}

o {12} (d) {0, A, O}

True or false?

(@ DeP{D,{I}. (b) {T} e ?({Q, {}}).

© {GHe?{{@{g}). () J<P{D {})).
(€ {J}c?{D {1} ) {1 c2{D.A{1D.
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* (g 3€Q. (h) {3} c2(Q).

(i) {3re2(Q). () {81} c2(W).
* (k) {3rcq. ) {{8}} e 2 (D).

18. Let Aand B be sets. Prove that A = B iff % (A) = % (B).

Proofsto Grade 19. Assign a grade A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.
(@ Claim. IfX={xeN:x?<14}andY={1,2 3}, thenX=Y.
“Proof.” Since1’=1<14,22=4 <14, andF =9 <14, X=Y. =
(b) Claim. If A B,and Caresets,and AC Band BC C,the ACC.
“Proof.” LetA=4{1,5,8} B={14,5,8,10}, and C={1,2,4,5,
6,8,10}. Then AC B, andBC C, and AC C. u
* (c) Claim. If A B,and Caresets,and AC Band B C C,then AC C.
“Proof.”  Suppose x is any object. If x € A, then x € B, since AC B.
If xe B, then x e C, since BC C. Thus, x e C. Therefore, ACC. =
(d) Claim. If A/ B,and Caresets,and ACBand B C C,then AC C.
“Proof.” If xe C, then, since BC C, xe B. Since AC Band xe B,
it follows that x € A. Thus x € C implies x € A. Therefore, ACC. =
* (e) Claim. If A B,and Caresets,and AC Band B C C,then AC C.
“Proof.” Suppose AC Band B < C. Then xe A and x € B, because
ACB. Then xe B and x € C, because B C C. Therefore, x € A and
xe C,soACC. L
(f) Claim. IfAisaset, AC P (A).
“Proof.” Assume A is a set. Suppose xe A. Then xC A. Thus
x e P(A). Therefore A< P (A). |
(g Claim. IfAisaset, ACP(A).
“Proof.” Assume A is a set. Suppose xe A. Then {x} € A Thus
{3 € P(A). Therefore, A P (A). =
* (h) Claim. If Aand Bare setsand % (A) € %(B), then A C B.
“Proof.” xeA={JCcA
=G eP(A
= {x} (B
={x}cB
= xeB.
Therefore, xe A= xe B. Thus AC B. u
*x (i) Claim. IfAcBandB¢ C,then A¢Z C.
“Proof.”  Suppose AC B and B ¢ C. Then there exists x € B such
that x ¢ C. Since x € B, x € A by definition of subset. Thus x € A and
x ¢ C. ThereforeA ¢ C. u

*

2.2 Set Operations

In this section we give precise definitions and prove some well-known properties of
familiar operations on sets. Set union, interesection, and difference are called
binary operations because each combines two sets to produce another set.
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DEFINITIONS Let Aand B be sets.

The union of A and B isthe set AUB = {x: xe Aor x e B}.
The intersection of Aand B isthe set AN B = {x: xe Aand x € B}.
The differenceof Aand B isthe set A— B={x: xe Aand x ¢ B}.

The set AU B is a set formed from A and B by choosing as elements the
objects contained in at least one of A or B; AN B consists of all objects that
appear in both A and B; and A — B contains exactly those elements of A that are
not in B. The shaded areas in the first three Venn diagrams of Figure 2.2.1 repre-
sent, respectively, the result of forming the union, intersection, and difference of
two sets. These visual representations are often useful for understanding relation-
ships among sets. However, when there are more than three sets involved, it is
difficult or impossible to use Venn diagrams.

PICDIICDI OO

AUB ANB A-B Disjoint sets Aand B

Figure 2.2.1

Examples. ForA={1,2,4,5 7}and B={1, 3,5, 9},

AUB={1,23,4,5,7,9},

ANB ={1,5},
A—B=1{24,T1}
B—A={3 9}

Examples. For intervals of real numbers, we have

[3.6]U[4,8) =[3, 8)
[3,6] N [4,8) =[4,6]
[3,6] —[4.8)=[3,4)
[4,8) —[3,6] = (6, 8)
[4,8) — (5, 6] =[4,5] U (6, 8).

Two sets are said to be disjoint if they have no elements in common.

DEFINITION Sets Aand Bare digoint iff AN B = (.
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As shown in the last Venn diagram of Figure 2.2.1, when sets A and B are
known to be disjoint we represent them as non-overlapping regions.

Examples. The sets {1, 2, b} and {—1, t, v, 8} are disjoint. The set of even natural
numbers and the set of odd natural numbers are disjoint. The intervals (0, 1) and
[1, 2] are disjoint, but (0, 1] and [1, 2] are not disjoint because they both contain
the element 1.

The set operations of union, intersection, and difference obey certain rules
that allow us to simplify our work or replace an expression with an equivalent
one. Some of the 18 relationships in the next theorem seem to be obviously true,
especially if you compare sets using Venn diagrams. For example, the Venn dia-
grams for AN B and B N A are exactly the same (see part (h)). However, simply
drawing a Venn diagram does not constitute a proof. Each statement requires a
confirmation of the relationship between the sets by using the set operation
definitions. We prove parts (b), (f), (h), (m), and (p) and leave the others as
exercises.

Theorem 2.2.1 For all sets A, B, and C

(@ ACAUB.
() ANBCA
© AnNG=d.
d AUT=A
(e ANA=A
f) AUA=A.

Eg)) 2% g = 2 X 2 } Commutative Laws
i) A-O=A
i) T-A=0.

(k) Au(BuC)=(AuB)UC.

() ANn(BNnC)=(AnB)NC.

(m) An(BuC)=(ANnB)U(ANCQC).
(n) Au(BNC)=(AUuB)N (AUC).
(o) ACBIiff AuB=B.

(p) ACBIffANB=A

(@ IfACB,thenAUCCBUC.

(@) IfACB, thenANCCBNC.

} Associative Laws

} Distributive Laws

Proof.

(b)  (We must show that, if xe AN B, then x e A). Suppose x € AN B. Then
x € Aand x € B. Therefore x € A. (We used the tautology P A Q = Q.)

® (We must show that xe AU A iff xe A). By the definition of union,
xe AUAIff xe A or xe A This is equivalent to xe A. Therefore,
AUA=A
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(h)  (Thishiconditional proof uses the definition of intersection and the equiva-
lenceof PA Qand Q A P.)

xe ANBiff xe Aandxe B
iff xeBandxe A
iff xe BN A.

(m)  (Asyou read this proof, watch for the steps in which the definitions of union
and intersection are used (two for each). Watch also for the use of the equiv-
alence from Theorem 1.1.1 (f).)

xe AN (BUC)iff xe AandxeBUC
iff xe Aand (xe Borxe C)
iff (xe Aandxe B) or (xe Aand xe C)
iff xeAnBorxe ANC
iff xe (ANB)U (ANC).

Therefore AN (BUC)= (ANB)U (ANC).

(p)  (Wegive separate proofs for each implication, making use of earlier parts
of this theorem.) First, assume that A C B. We must show that AN B = A.
Suppose x € A. Then from the hypothesis A € B, we have x € B. Therefore
xe A and x € B, so xe AN B. This shows that A € An B, which, com-
bined with AN B € A from part (b) of this theorem, gives AN B = A.

Second, assume that A N B = A. We must show that A C B. By parts (b)
and (h) of this theorem, we have BN A € Band BN A= AN B. Therefore,
AN B C B. By hypothesis, ANB=A, so ACB. n

When you suspect that a relationship among sets is not always true, try to con-
struct a counterexample. To find a counterexample for (AUB) NC =AU (BN C)
we need sets such that the shaded regions of Figures 2.2.2 (a) and (b) have different
elements. That is, we find sets A, B, and C such that A contains at least one element
that is not in C. One counterexampleisB = {3, 5}, C={4, 5, 6},and A= {2, 3, 4}.
Then (AUB)NC={4,5}whileAU (BN C) ={2, 3, 4, 5}.

C C

(AUB)NnC AU (BN C)
@ (b)
Figure 2.2.2
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Recall that the universe of discourse is a collection of objects understood from
the context or specified at the outset of a discussion and that all objects under con-
sideration must belong to the universe.

DEFINITION  Let U be the universe and A € U. The complement of A
istheset A=U — A

The set AC® is the set of all elements of the universe that are not in A. (See
Figure 2.2.3.)

Figure 2.2.3

For the set A= {2, 4, 6, 8}, we have A® = {10, 12, 14, 16, .. .} if the universe
is all even natural numbers, while A°={1,3,5,7,9, 10, 11, 12, 13, ...} if the
universe is N. For the universe R, if B = (0, c0), then B¢ = (—o0, 0]. If D = {5}
then D¢ = (—o0, 5) U (5, 00).

Since the universe is fixed throughout a discussion, finding the complement
may be thought of as a unary operation—it applies to a single set. The next theorem
includes several results about the relationships between complementation and the
other set operations.

Theorem 2.2.2 Let U be the universe, and let A and B be subsets of U. Then

@ (A)=A

(b) AUA°=U.

() ANA=g.

(d A—B=ANB"

() ACBIff BEC A"

(f)  (AUB)*=A"NB" De Morgan’s Laws
(9 (ANnB)¢=A°UB®

(hy AnB=Jiff ACBC

Proof.

(@ By definition of the complement x € (A®)€ iff x ¢ A°iff x e A. Therefore
(A% =A
(e)  Todemonstrate different styles, we give two separate proofs.
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First proof. (Thisisa two-part proof. The first part is an element chasing proof.
The second part is proved using thefirst part.)

(1) (Show that if AC B then B¢ C A®) Assume that A C B. Suppose x € B®.
Then x ¢ B. Since AC B and x ¢ B, we have x ¢ A. Therefore, x € AC.
Thus, B¢ C AC.

(2)  (Showthat if B¢ C A° then A C B.) Assume that B¢ C AC. Then by part (1),
(A%)E C (B®)C. Therefore, using part (a), A C B.

By parts (1) and (2), we conclude that A C B iff B¢ C A"

Second proof. (Thisiff proof makes use of the fact that a conditional sentence is
equivalent to its contrapositive.)
ACBIff forall x, ifxe Athenxe B
iff forall x, if x ¢ Bthenx ¢ A
iff for all x, if x e B®then x € A®
iff B¢ C A

(fy) xe(AuB)Ciff xg AUB
iff it is not the case thatx e Aorxe B
iff x¢ Aandx ¢ B
iff xe A®and x € B®
iff xe A°N BC.

The proofs of the remaining parts are left as Exercise 8. u

The ordered pair formed from two entities aand b is the object (a, b). Ordered
pairs have the property that if either of the coordinates a or b is changed, the
ordered pair changes. That is, two ordered pairs (a, b) and (c, d) are equal iff
a=cand b=d. Thus, (3,7) # (7, 3) even though the sets {3, 7} and {7, 3} are
equal. A more rigorous definition of an ordered pair as a set is given in Exercise 17.

In previous study you have dealt with the ambiguity of using the same notation
(3, 7) for the ordered pair that represents a point in the plane and also for the open
interval of real numbers with endpoints 3 and 7. The context in which (3, 7) appears
should always make the meaning clear.

We also say the ordered n-tuples(ay, &, . .., a,) and (cy, Cy, . . ., Cp) are equal
iff g = ¢ fori=1,2,...,n. Thusthe ordered 5-tuples (4, 9, 5, 0, 1), (5,4, 9,0, 1)
and (0, 1, 4, 5, 9) are all different.

DEFINITION Let Aand B be sets. The product (or cross product) of
Aand B is

AxB=4{(a b):aeAandbe B}.

We read A x B as “Across B.”
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The set A x Bisthe set of all ordered pairs having first coordinate in Aand sec-
ond coordinate in B. The cross product is sometimes called the Cartesian product
of Aand B, in honor of René Descartes.*

Example. If A={1,2}and B={2, 3, 4}, then
AxB={(,2),(173),(1,4),(2,2),(2,3), (2, 4}

Thus (1,2) e Ax B, (2,1) ¢ A x B, and {(1, 3), (2, 2)} C A x B. In this exam-
ple, A x B # B x Asince

BxA={(21),(2,2),(31),(3,2),(41), 42}

The product of three or more sets is defined similarly. For example, for sets A,
B,andC,Ax B x C={(a,b,c):acA beB,andce C}.

Some useful relationships between the cross product of sets and the other set
operations are presented in the next theorem.

Theorem 2.2.3 If, A, B, C, and D are sets, then

@ Ax(BUC)=(AxB)U(AxC).

() Ax (BNC)=(AxB)Nn (AxC).

o AxT=0.

(d (AxB)Nn(CxD)=(ANC)x (BNnD).
(e (AxB)U(CxD)C (AUC)x (BUD).
f (AxB)Nn(BxA)=(ANB)x (ANB).

Proof.

(@ (SncebothA x (BUC)and (A x B) U (A x C) aresetsof ordered pairs,
their elements have the form (x, y). To show that each set is a subset of the
other weuse an “iff argument.”)

xy)eAx (BUC)iff xeAandyeBUC
iff xe Aand (ye Borye C)
iff (xe Aandye B)or (xe Aandy e C)
iff (xy)eAxBor(x,y)eAxC
iff (x,y)e (AxB)U (AxC).
Therefore, Ax (BUC)= (AxB)U (AxC).

e If xy)e(AxB)U(CxD), then (x,y)eAxB or (xy)eCxD. If
(x,y) e Ax B, then xe A and ye B. Thus xe AUC and ye BUD.
(Because ACAUCand BC BUD.) Thus, (x,y) e (AUC) x (BUD).

* René Descartes (1596-1650) was a French mathematician, philosopher, and scientist. His work Discours
delaméthode defined analytical geometry by combining the geometric notions of curves and areas with alge-
braic equations and computations. He was the first person to use superscripts to indicate exponential powers
of a quantity.
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If (x,y) € C x D, a similar argument shows (x,y) € (AUC) x (BUD).
This shows that (A x B) U (C x D) € (AUC) x (BUD). u

Parts (b), (c), (d), and (f) are proved in Exercise 15. Part (e) of Theorem 2.2.3
cannot be sharpened to equality. See Exercise 16(a).

Exercises 2.2

1. Let A={1,3,5 7 9} B={0,2 4,6, 8, C={L 2 4,5, 7 8} and
D={1 2 3,5, 6,7, 8,9, 10}. Find

* (@) AUB. (b) ANB.
* () A-B. (d A-(B-C)
* (e (A-B)-C (f) Au(CnD).
* (9) (ANC)ND. (hy An (BUC).
* (i) (AnB)U(ANC). (j) (AuB)—(CnD).
2. Let the universe be all real numbers. Let A=[3,8), B=[2,6], C=(1,4),
and D = (5, o0). Find
(@ AUB. *» (b) AUC.
(0 ANB. * (d) BNnC.
(e A-B. (f) B-D.
(9 D-A * (h) A
(i) B—(AUC). (i) (AucC)-(BnD).

3. Let the universe be the set Z.Let E, D, Z™, and Z~ be the sets of all even,
odd, positive, and negative integers, respectively. Find

* (@) E—-ZT. (b) Z*—-E. (0 D-E
* (d) (ZM)- (e z+-17-. (f)y E-
* (g9 E—-27Z". (hy (Enz)S i o~
* 4. LetA B, C, and D be as in Exercise 1. Which pairs of these four sets are disjoint?
5. Let A B, C, and D be as in Exercise 2. Which pairs of these four sets are
disjoint?
6. Give an example of nonempty sets A, B and C such that

* (@ CcAuBandANB¢C
() ACBandCC ANB.
(0 AuBcCandC¢ B.
(d AZBUCBZAUCandCCAUB.
(6 ACBUCBCAUC CCAUBANB=ANC,and A#B.
(f) ANnBCSC ANnCcBBNCcAandA=BUC.
7. Prove the remaining parts of Theorem 2.2.1.
8. Prove the remaining parts of Theorem 2.2.2.

9. Let A, B, and C be sets. Prove that
(@ ACBIiIffA-B=.
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(b) ifACBUCandANB=,thenACC.
* () CCANBIiff CCAand CCB.

(d) ifACB,thenA—-CCB-C.

e (A-B)-C=(A-C)— (B-0C).

(fy ifFACCandBC C,thenAUBCC.

(99 (AuB)NCCAU(BNCQC).

(h) A — Band B are disjoint.

10. Let A B, C, and D be sets. Prove that
(@ ifCCAandDcCB,thenCNDCANB.
(b) ifCCAandD CB,thenCUD C AUB.
* (¢) ifCC A DCB,and A and B are disjoint, then C and D are disjoint.
(d ifCcAandDC B, thenD—-ACB-C.
(6 ifFAUBCCUD,ANB=(,and CC A thenBCD.

11. Provide counterexamples for each of the following.
* (@ IfAUCCBUC,then ACB.
(b) FANCCBNC,thenACB.
* () f(A—-B)N(A-C)=g,thenBNC=0.
(dy P(A) —P(B)<P(A-B).
* (¢ A—(B-C)=(A-B)— (A-C).
f) A—-(B-C)=(A-B)-C
12. Let Aand B be sets.
*x (@) Provethat ?(ANB)=%(A) N %(B). Youmay use Exercise 9(c).
(b) Provethat % (A) U P (B) € ?(AUB).
(c) Show by example that set equality need not be the case in part (b). Under
what conditionson Aand Bis (AU B) = ?(A) U % (B)?
* (d) Show that there are no sets A and B such that %(A—B) =
P(A) — P(B).
13. List the ordered pairs in A x Band B x Ain each case:
@ A={1,35}B={aekn,r}.
* (b) A={1,2{12}} B={q {t}, 7}.
© A={J,{T} {2, {G}}}. B={(D, {}). {T}, {9}, D)}
d) A={(24). G D}B={41),(23)}
14. Let Aand B be nonempty sets. Prove that A x B=B x Aiff A=B.

15. Complete the proof of Theorem 2.2.3 by proving
* (@ Ax (BNnC)=(AxB)n (AxC).
by AxIT=0.
(©0 (AxB)n(CxD)=(ANC)x (BNnD).
(d (AxB)n(BxA)=(ANB)x (ANB).
16. Give an example of nonempty sets A, B, C, and D such that
(@ (AxB)U(CxD)# (AUC)x (BUD).
(b) (CxC)—(AxB)#(C—A)x (C-B).
(c) Ax (BxC)# (AxB)xC.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



88 CHAPTER 2  Set Theory

17. One way to define an ordered pair in terms of sets is to say (a, b) =
{{a}, {a, b}}. Using this definition, prove that (a, b) = (x, y) iff a=x and
b=y.

18. Let A and B be sets. Define the symmetric difference of A and B to be
AAB=(A—B)U (B—A). Prove that

(@ AAB=BAA (b) AAB=(AUB)— (ANB).
Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.
* (@) Clam. IfACB,thenA-CCB-C.
“Proof.” Assume A C B. Suppose x € A. Then x € B, since AC B.
Let C be any set. Then xe Aand x ¢ C. Then x € B and x ¢ C. Thus
xeA—Cand xe B— C. Therefore, A—CCB-C. =
(b) Claim. IfACB,thenA—-CCB-C.
“Proof.” Assume A C B. Suppose A— C. Then xe A and x ¢ C.
Then x € B, because AC B. Since xe B and x ¢ C, B— C. There-
fore, A—CCB-C. =
(c0 Clam. IfACB,thenA-CCB-C.
“Proof.” Assume ACB. Then xeA and xeB. Suppose
xeA—-C. Then xeA and xe¢ C. Since xeB and x¢ C,
xe B — C. Therefore, A—CCB-C. =
* (d) Clam. ACBIiff AnNB=A
“Proof.” Assume that A C B. Suppose xe ANB. Then xe A and
xeB, so xe A This shows that ANB=A. Now assume that
ANB=A. Suppose xe A Then xe ANB, since A=ANB; and,
therefore, x € B. This shows that x € Aimpliesx € B,and so A C B. u
* (e) Clam. ANJ=A
“Proof.”  We know that xe AN iff xe Aand x € . Since x € &
is false, xe A and xe J iff xe A Therefore, xe AN iff xe A;
that is, AN = A u
(f) Clam. IfANB#andBNC# U, then ANC# .
“Proof.” Assume ANB# and BNC#J. Since ANB# O,
there exists x such that x € AN B; thus x € A. Since BN C # J, there
exists xe BN C; thus xe C. Hence xe A and xe C. Therefore,
x € AN C, which show AN C # &. u
(g) Clam. ANA°=.
“Proof.” (We show each side is a subset of the other.) By Theorem
2.1.1, & < AN A% Now suppose xe AN AS Then xe A and x € A%
Thus x € Aand x ¢ A. Therefore, X # Xx. Hence, by the definition of J,
x € . Therefore, AN A° C . u
(h) Clam. ?(A-B)—{J} < P?(A) — P(B).
“Proof.” Suppose xe ?(A—B) —{J}. Then xe (A —B) and
X#£ . Since e P(A) and T e P(B), T & P(A) — P(B). Since
xe P(A—B), xe P(A) — P(B). Therefore, we can conclude that
PA-B)—{TJ} < P(A) —P(B). |
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* (i) Claim. IfACB,then AUB=B.
“Proof.” Let AC B. Then Aand B are related as in this figure.

(a) B

Since A U B is the set of elements in either of the sets Aor B, AUB is
the shaded area in this figure.

(a) B

Since thisis B, AUB = B. n

2.3 Extended Set Operations and Indexed Families of Sets

Aset of sets is often called a family or a collection of sets. In this section we extend
the definitions of union and intersection to families of sets and prove generaliza-
tions of parts of Theorem 2.2.1.

Throughout this section we will use script letters, &4, 98, 6, . . . to denote fam-
ilies of sets. For example,

A={{1, 2, 3}, {3, 4,5}, {3, 6}, {2, 3, 6, 7, 9, 10}}
is a family consisting of four sets. Notice that 5 € {3, 4, 5} and {3, 4, 5} € #, but

5¢ o. The set B = {(—x, X): x e R and x > 0} is a family of open intervals. The
sets (—1, 1), (— V2, ﬁ), and (-5, 5) are elements of %B. See Figure 2.3.1.

(_51 5)
(—\/é, \/é)

o (-1,1)

| | | | | | | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.3.1
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DEFINITION Let s be a family of sets. The union over o is

J A= {x xe Aforsome A e si}.
Aesd

Using this definition, for any object x we may write:

xe JAiff@Ae d)(xeA).
Aesd

This symbolic statement expresses the direct relationship between the union over
a family and the existential quantifier 3. To show that an object is in the union of
a family, we must show the existence of at least one set in the family that contains
the object. Figure 2.3.2(a) is a Venn diagram showing the union over the family

M={R ST}
S S
R R
T T
U A (A

Ae.ll Aelt

@ (b)
Figure 2.3.2

For the family s of four sets given above, | JA={1,2,3,4,5,6,7,9,10}.
Aesdd
The union of the family B = {(—x, X): xe R and x > 0} is the set of all real
numbers because every real number b is an element of the open interval
(=Ibl =1, Ib| +1).

DEFINITION Let 4 be a family of sets. The intersection over s is

(1A= {x xe Aforevery Ae s}.
Aedd

For the intersection over a family s, we write

xe [ Aiff (VAe sd)(x e A).
Aed
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Figure 2.3.2(b) shows the Venn diagram for the intersection over the family
M={R S T} Using the family s above again as an example, [ A= {3}

Aed
because 3 is the only object contained in all four sets in s. The intersection of the
family B = {(—x, X): x € R and x > 0} is the set {0} because 0 is the only number
in every set in 9.

Example. For the family o = {{r, k s t,a},{k d, s}}, UA={r kst a d}
Aed

and [ ) A= {k, s}. If there are only two sets in the family, the union and intersection
Aed

over the family are the same as the union and intersection defined in Section 2.2.

Theorem 2.3.1 For every set B in a family s of sets,
@ [1AcB
Aedd
(b) Bc JA
Aed
(c)  If the family &4 is nonempty, then ([JAC | A
Aedd Aesdd

Proof.

(@  Letsd beafamily of setsand B € «{. Suppose x € [ ] A. Thenx e A for every
Aedd

A e «. (Notice that the set A in the last sentence is a dummy symbol. It
stands for any set in the family. The set B is in the family.) In particular,

x € B. Therefore [ | AC B.
Aed

(b)  The proof that B is a subset of the union over s is left as Exercise 3.
(c)  Let s{ be a nonempty family. Choose any set C € 5. By parts (a) and (b)

(JAc Cc |JAand therefore, [JAC JA ]
Aed Aedd Aedd Aed

It was necessary in part (c) that the family s{ be nonempty. If « is the empty
family, then intersection is equal to the universe of discourse. (See Exercise 4.) This
observation is a reason to be cautious about dealing with the empty family of sets.

Example. Let 9B be the collection {Bn: ne N}, where B,={0,1,2, ..., n}.
Members of 9% include B, =4{0,1,2} and Bs={0,1,2, 3,4,5 6} Then

(UB=NuU{0}and [ B={0,1}.
Be® Be®

It is often helpful to associate an identifying tag, or index, with each set in a
family of sets. In the example above, each natural number n corresponds to a set
Bn. By specifying the index, as we did when we selected n = 2 or 6, we specified
the corresponding set. By specifying a set of indices, we can specify the family of
sets we want to consider.
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DEFINITIONS Let A be anonempty set such that for each « € A there
is a corresponding set A,. The family {A,: « € A} isanindexed family of
sets. The set A is called the indexing set and each « € A is an index.

Indexing is a common phenomenon in everyday life. Suppose an apartment
building has six rental units, labeled A through F. At any given time, for each apart-
ment, there is a set of people residing in that apartment. These sets may be indexed
by A = {A B, C, D, E, F}. Let Py be the set of people living in apartment k. Then
P = {Px ke A} is an indexed family of sets. An index is simply a label that pro-
vides a convenient way to refer to a certain set.

Example. For all neN, let Ay={nn+1,2n} Then A ={1,2},
A, ={2, 3,4}, As={3,4,6}, and so forth. The set with index 10 is Ay =
{10, 11, 20}. Except for the set Ay, every set in the family {A;: i € N} has 3 ele-
ments. To form the family of sets that contains only Ay, As, Ao, and Ass, we change
the index set as follows: {Ay, A, As, Ao} = {Ai: i €{2, 3, 10, 15}}.

There is no real difference between a family of sets and an indexed family.
Every family of sets could be indexed by finding a large enough set of indices to
label each set in the family.

Example. For the sets Ay = {1, 2, 4, 5}, A, ={2, 3,5, 6}, and A3 = {3, 4, 5, 6},
the index set has been chosen to be A = {1, 2, 3}. The family s indexed by A is
A ={A, Ao, As} = {Ai:i € A}. The family o could be indexed by another set.
For instance, if I' = {10, 21, n}, and Ao ={1, 2, 4,5}, A1 ={2, 3,5, 6}, and
A, ={3,4,56}then{A:ie A} ={A:iel}

Example. Let A ={0,1,2,3,4} and let A,={2x+ 4, 8,12 — 2x} for each
Xe A. Then Ay={4,8,12}, A ={6,8, 10}, A, ={8}, A;={6,8, 10}, and
Ay ={4, 8, 12}. The indexing set has five elements but the indexed family «{ =
{A¢ X € A} has only three members, since Ay = Ag and Ay = Ay

As the above examples demonstrate, an indexing family may be finite or infi-
nite, the number of elements in the member sets do not have to be the same, and dif-
ferent indices need not correspond to different sets in the family.

The operations of union and intersection over families of sets apply to indexed
families, although the notation is slightly different. For a family o = {A,: « € A},
the notations for unions and intersection are:

UA.= UA and xe JA,iff Qae A)(xe A.

aEA Aedd aEA
NA.= 1A and xe [)ALIff (Yae A)(xe Ay).
aEA Aedd aEA
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In the previous example with A = {0, 1,2, 3,4}, |J A.={4,6,8,10,12}
aeA
and [ A, = {8}.

aeA

Example. For ne N, let A,={n,n+1,2n}. Then |JA,=N. To show, for

neN
example, that 27 € | A, we need only point out some index n such that 27 € A,
neN
Either index 26 or 27 will do. Since there is no number x such that x € C, for all
neN, (A =d.
neN

Example. For each real number x, define B, = [x? x>+ 1]. Then B_i2 =

[%, %] By = [0, 1], and Bjp = [100, 101]. This is another example in which we
have different indices representing the same set. For example, B_, = B, = [4, 5].
Here the index setis R, [ |Bx= &, and | B, = [0, 00).

xeR xeR

There is a convenient variation on the notation for union and intersection when
the index set is the natural numbers. For an indexed family s = {An: n e N},
o0

o0
we can write | J A instead of (J A, The intersection over s is written [ A.
i=1

i= neN i=1

4 15
AIso,AZUA3UA4=UAiandA110A120A130A14ﬁA15: mA|
i=2 i=11

Example. Foreachne N, let A,={n,n+ 1, n%}. For of = {A;:ne N}

o) 6

NA =0 A = {4,5,6,7,16, 25, 36}
i=1 i=4

00 4

UA=N NA={®

3 10

UA= {12349} NA=0C

i=1 i=8

The next theorem restates Theorem 2.3.1 for indexed families and gives a ver-
sion of De Morgan’s Laws for indexed families.

Theorem 2.3.2 Let & = {A.: « € A} be an indexed collection of sets. Then

@ [)A.CSAgforeach B e A.

aceA

(b) Agc |JA,foreach g e A.

aeA
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De Morgan’s Laws

Proof. The proofs of parts (a) and (b) are similar to those for Theorem 2.3.1 and
are left for Exercise 5(a).

@ x<(0a)

iff xe () A,

aeA
iff it is not the case that for every « € A, x € A,
iff forsome B e A, x & Ag
iff for some B € A, x € A

iff xe | AC.
aceA c
Therefore, ( N Aa) = JAS
aeA aeA

(d)  (One proof of part (d) is very similar to that given for part (c) and is left as
Exercise 5(b). However, since part (c) has been proved, it is permissible to
useit. We also use (twice) the fact that (A€ = A.)

(Ua) =(Ueor)

()

—Nee

aeA |

DEFINITION The indexed family ¢ = {A,: @ € A} of sets is pair-
wise digjoint iff for all @ and 8 in A, either A, = Agor A, N Ag = (.

The family {Aq, As, As} in Figure 2.3.3(a) is pairwise disjoint. However, the
family {By, By, Bs} in Figure 2.3.3(b) is not pairwise disjoint. Although
B; N B, = J, the sets B, and Bs are neither identical nor disjoint.
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AO
A B, B,
- -

A

@ (b)
Figure 2.3.3

Two questions are commonly asked about the concept of pairwise disjoint fami-
lies. The first is about why we bother with such a definition when we could simply say
a family is disjoint if and only if ) A, = &. Having an empty intersection is not the

acA

same as being pairwise disjoint and not nearly as useful (see Section 3.3). The family
{C4, C,, C3} with C; = {a, b}, C, = {b, c}, and C; = {a, c} is not pairwise disjoint,

3
even though [ |G =&
i=1

The second common question asks why the definition says “either A, = Ag or
A, N Ag =" instead of “A, N Ag = & whenever « # B.” That is, why not say “if
a # B then A, and Ag are disjoint?” The family {[n, n + 1): n € N} is pairwise dis-
joint because whenever n £ mwe have [n, n+ 1) N [m, m+ 1) = J. However, in
some families of sets it happens that different indices correspond to the same set, so
the definition allows for this possibility.

Example. Suppose B = {By, By, Bs, B4, Bs, Bg}, where

Bl = {a, C, e} BZ = {d, g}
Bs={d g} Bs={b,f, h}
Bs ={a, c, €} Bs ={a, ¢, e}

The family @& is pairwise disjoint. Note that B; = Bs = Bs and B, = Bg, so
B = {Bu, By, Bs}.

Example. Suppose Ax= {—x, x} for every x in R and 9 = {A« x € R}. Then
As={-3,3}=Azand A ;={7, -7} = A;. The family & is pairwise disjoint
because A, = Ay whenever |x| = |y| and AN A, = J whenever [X| # |y].
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Exercises 2.3

1. Find the union and intersection of each of the following families or indexed
collections.
* (@) Let 4=9{{1,2,34,5}{23,4,5,6} {3,4,5 6,7} {4,5,6,7,8}}.
(b) Letsd ={{1,3, 5} {2 4,6} {7,911, 13}, {8, 10, 12}}.
* (c) For each natural number n, let A, ={5n,5n+1,5n+2..., 6n}, and
let f = {As:ne N}.
(d) For each natural number n, let B,=N —{1,2,3,...,n} and let
B ={Bn: ne N}
* (e) Let o be the set of all sets of integers that contain 10.
() LetA={1} A,={2,3}, As={3,4,5}, ..., Ao ={10,11,...,19} and
letsA ={A:ne{l,23,...,10}}.
* (g) For each natural number, let A, = (0, %) and let 4 = {Ay ne N}.
(h) Forr e (0, 00), let Ar =[—m,r),and let A = {A;: r € (0, 00)}.
* (i) For each real number r, let A =T[|r|,2|r] +1], and let o4 =
{A:reR}.
(j) Foreachne N, letMy={..., —3n, —2n, —n, 0, n, 2n, 3n,...}, and let
M ={Mp: ne N}
(k) For each natural number n>3, let A = [% 2+ %] and oA =
{Ax:n> 3}
(N Foreachne Z, letC,=[n,n+1)andlet€¢ ={Cy:ne Z}.
(m) Foreachne Z, let Ay=(n,n+ 1) and A = {A:ne Z}.
(n) Foreachne Z, letD,= (—n, %) and 9 = {Dn: n e N}.
(o) For each prime number p, let pN = {np: n e N} and «{ be the family
{pN: ne N and p is prime}.
* (p) ForeachneZ, letTh={(X,yY)eRxR:0<x<1,0=<y=<x"}and

T ={TaneN}
(q) Foreachne Z,letV,={(x, y)ERxR:0<x<1,x"<y< ffx}and
V ={VnneN}.

2. Which families in Exercise 1 are pairwise disjoint?
3. Prove part (b) of Theorem 2.3.1.

4. Let the universe of discourse be the set R of real numbers, and let 4 be the
empty family of subsets of R.

(@) Showthat (JA=R.
Aed

(b) Show that | J A= .

Aed

(c) Conclude that [ A< | Ais false in this example.
Aesdd Aedd
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5. (a) Prove parts (a) and (b) of Theorem 2.3.2.
(b) Give adirect proof of part (d) of Theorem 2.3.2 that does not use

part (c).
6. Letsd ={A, a € A} be afamily of sets and let B be a set. Prove that

* @ BN UA=U (BNAY.

aeA aeA

(b) BU A=) (BUA,).

acA acA

7. Letsl ={A,;;a e A}and let B = {Bg: B € I'}. Use Exercise 6 to write
* (a) ( U Aa) N ( U B,;) as a union of intersections.

aEA pBel’

(b) ( N Aa) U < N BB) as an intersection of unions.

aEA pBel’

8. Letd ={A. @ € A} be a family of sets, A # J, and B be a set. For each
part either prove the statement is true or give a counterexample.

(@ B—(ﬂAa)= M (B—A).

o 5-(Ur)- Y
o (Qr)-2-na-9
@ (Ur)-e=Yn-e)

9. Ifd ={As ae A}isafamily of setsand I C A, prove that

* @ UAc UA.

ael aEA
b NASA
aEA ael

10. Let o4 be a nonempty family of sets.

* (@) Suppose B C Aforevery A e s. Prove that B C Aﬂ&gA.
eA

» (b) What is the largest set X such that X C Afor all A € s4? That is, find the

set X such that (i) X € Aforall Ae «; and (ii) if VC Aforall Ae oA,
then V C X.

(c) Suppose A C D for every A € si. Prove that | J A C D.

Aesdd

(d) What is the smallest set Y such that A C Y for all A€ «? That is, find
the set Y such that (i) AC Y for all Ae ; and (ii) if A< W for all
Ac g, thenYC W.
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1n.

12.

13.

14.

15.

16.

17.

CHAPTER 2 Set Theory

Let X={1, 2, 3, 4,..., 20}. Give an example of each of the following:
(a) afamily o of subsets of Xsuch that () A={1}and |J A=X

Aesd Aedd
(b) a family & of four pairwise disjoint subsets of X such that | J B = X.
Be®
(c) afamily € of twenty pairwise disjoint subsets of X such that | J C = X.
Ce%

Give an example of an indexed collection of sets {An: n € N} such that each
A,C (0,1),andforallmne N, AnNA,#but () Ay=.

neN

Let o be a family of pairwise disjoint sets. Prove that if % C <« ,then B is a
family of pairwise disjoint sets.
Let o¢ and 9B be two pairwise disjoint families of sets. Let 6 = o4 N A and
D = URB.
(@) Prove that € is a family of pairwise disjoint sets.
(b) Give an example to show that % need not be pairwise disjoint.
(c) Prove that if |J Aand | B are disjoint, then 9% is pairwise disjoint.

Aed Be%
Let o = {A:i e N} be a family of sets and k, m be natural numbers with
k < m. Prove that

k+1 k
(@) iLiJlAi = iLiJlAi U Axs1.
k-T—l T(
&) (A= ANAG
@igAgHm
@igkgik
k m
(e iL:Jlﬁq C iEJlA-.
m k
M (acA

Suppose d = {A: i € N} is a family of sets such that for all i, j e N, if i <j,
then Ay € A (Such a family is called a decreasing nested family of sets.)

k
(@) Prove that forevery ke N, () A = A
i=1

(b) Provethat [ J A = A,
i=1

Give an example of a decreasing nested family {A;: i € N} (see Exercise 16)
for each condition.

@) iDlAa =[0, 1].

(b) iDlAe =(0,1).
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(© Dl A ={0, 1}.

(d) QA=@
=
Proofsto Grade 18. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-

tify assignments of grades other than A.

* (a) Claim. Forevery indexed family {A;: a € A}, [1A. S U A

aeA aeA

“Proof.” Choose any Ag e {A,: @ € A}. Then by Theorem 2.3.2,
(NA.CAs and Agc UA.

iyl';irefore, by transitivity o(:‘Eszt inclusion, ﬂAAa c UAAQ. |
ae ae
* (b) Claim. IfA,CBforallae A, then UAAa CB.
“Proof.” Suppose X e UAAQ. Then, since A, C B for all o€ A,
x € B. Therefore, | J A ga; n
(c) Claim. For eve:;iAndexed family {A.: a € A}, ﬂAAa C UAAQ.

“Proof.” Let A={r,st}, A={abcd} As={b,c,d e}, A=
{c,d, e f}. Then [VA.={c.d}c{abecdef}={JA. (]

aeA aeA

(d) Claim. For every indexed family {A,; a € A}, [V A S U A

aEA aEA
“Proof.”  Assume (A, JA. Then for some xe (A,
aeA aeA aeA
xe& |J A, Since x & |J A,, it is not the case that x € A, for some
aceA aceA
a € A. Therefore, x ¢ A, for every o« € A. But since xe ﬂ A,
aeA
xe A, for every e e A. This is a contradiction, so we conclude
NA.<c UA. n
aeA aeA
* (e) Claim. Ul[n,n+1):[R.
n=

“Proof.” Let xeR. Choose a natural number y such that
y<Xx<y+1 Thus xe[y,y+ 1). Therefore, x is an element of

Un n+1). Since [,n+1) <R forall neN, [ J[nn+1) CR.
n=1 n=1

Therefore, ([ J[n, n+ 1) = R. n

n=1
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2.4 Mathematical Induction

In 1889 Giuseppe Peano* set forth five axioms that provided a complete and rigor-
ous definition of the natural numbers based on the notion of successors. The axioms
assert that

(i) 1isanatural number,
(if)  every natural number has a unique successor, which is a natural number,
(iif)  no two natural numbers have the same successor,
(iv) 1isnota successor for any natural number,
(v) ifaproperty is possessed by 1 and possessed by the successor of every natural
number that possesses it, then the property is possessed by all natural numbers.

These axioms are sufficient to derive all the familiar arithmetic and order prop-
erties of N that are listed in the Preface to the Student. The development of all these
properties as consequences of Peano’s axioms is certainly a worthy activity, but it
would take more time than we can devote to the topic here. Instead, we focus our
attention on the inductive property of N given in the fifth axiom. Peano’s fifth
axiom can be restated as a property of sets of natural numbers.

Principle of Mathematical Induction (PMI)

Let Sbe a subset of N with these two properties:

(i) 1eS
(i) forallneN,ifneSthenn+1€S
Then S=N.

A set Sof natural numbers is called an inductive set iff it has the property that
whenever ne S thenn+ 1€ S The set {5, 6, 7, 8, ...} is inductive, as is the set
{100, 101, 102, 103, ...}. We leave it as an exercise to show that N and J are
inductive sets. The set {1, 3,5, 7, 9, ...} is not inductive because, for example, 7 is
a member but 8 is not. Many sets of natural numbers have the inductive property,
but only one set is inductive and contains 1. By the Principle of Mathematical
Induction, that set is N.

An important use of the PMI is to make inductive definitions. These definitions
follow the form of the PMI: We define a first object, and then the (n + 1)st object is
defined in terms of the nth object. The PMI ensures that the set of all n for which
the corresponding object is defined is N.

Example. The noninductive definition of the factorial of a natural number n is
n=n-(n-1)-----3-2-1.

* Giuseppe Peano (1858-1932) was an Italian mathematician who made many contributions to mathe-
matical logic and set theory, especially its language and symbolism. He was the first to use the modern
symbols for union and intersection. His “Formulario Mathematico” manuscript (1908) contains 4,200
precisely stated mathematical formulae and theorems. Other contributions include his “space filling
curve” counterexample, a forerunner of fractal images.
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For example, 5! =5-4.3.2.1=120. The inductive definition of n! is

iy 1U=1
(i) ForneN,(n+1)!=(n+ 1)nl.

To show that the inductive definition defines n! for all natural numbers n, we let
Shbe the set of n for which n! is defined. First, 1 € Sbecause of part (i). Second, Sis
inductive because if n € S then n! is defined and hence, by part (ii), (n + 1)! is also
defined. Thus n 4+ 1 € S By the PMI, S= N. In other words, the set of numbers for
which the factorial is defined is N, so n! has been defined for all natural numbers.

The inductive definition makes clear the relationship between the factorial of a
number and the factorial of the next number; if you happen to know that
11! = 39,916,800, then you compute 12! = 12 - 11! = 479,001,600.

Example. Sets may be defined inductively. Suppose we let T be the set of integers
defined by

(i) 5eT,
(i) ifxeT thenx+4€eT.

Theset T= {5, 9, 13, 17,...}, which may also be defined using the non-inductive
definition T = {4k 4+ 1: k e N}.

The real power of the Principle of Mathematical Induction is as a method for
proving statements that are true for all natural numbers. For example, we note that
the sum of the first three odd numbers is 1 4+ 3 + 5 = 9, which happens to be 32, the
sum of the first four odd numbers is 1 + 3 4+ 5 + 7 = 16, which is 42, the sum of
the first five odd numbers is 25 = 52, and the sum of the first 6 odd numbers is 62.
This pattern leads to the conjecture that

forallneN,1+3+5+ -4 (2n—1)=n?

We could never verify this statement by checking all possible values for n, but we
can prove it using the PMI.

Example. Prove that for every natural number n,

14345+ +02n—-1)=nr’
Proof. LetS={neN:1+3+5+ -+ (2n— 1) = n’}. (We have defined Sto
be the set of natural numbers for which the statement istrue. We show the statement

istruefor all natural numbers by showing that S= N.)

() 1=1%s01leS
(if) Let nbe a natural number such that n € S Then

14345+ +02n—-1)=nr’
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(We have assumed that some n is in S From this assumption we will show
thatn+ 1 € S Showing n + 1 € Sisaccomplished by verifying that

14+34+5++[2n+1) —-1]=(n+ 1>

At this point in the proof it is essential to compare the statements for n and for
n + 1. Notice that the left-hand sides of the two equations are almost identical, but
the statement about n + 1 has one more term.) By adding 2(n + 1) — 1 to both
sidesof 1 + 3 +5+---+ (2n — 1) = n?, we have

143454 +@n—1)+[2N+1) -1 =r+[2(n+1) - 1]
=m+2n+1
=(n+1)2

This shows thatif ne S thenn+1e€ S
(iii) BythePMI, S=N. Thatis, 1 +3 + 5+ -+ (2n — 1) = n? for every nat-
ural number n. [

The first key step in the proof above was to define the set Sas the set of all nat-
ural numbers for which 1 +3 + 5 +--- + (2n — 1) = n? is true. In general, for an
open sentence P(n), the statement (Vn e N)P(n) is true iff the set of numbers for
which P(n) is true equals N.

The second key step in the proof above was to assume that some natural num-
ber nis in S This assumption is called the hypothesis of induction. Notice that we
must not assume that n € Sfor all n € N, because that would be assuming what we
want to prove. For a direct proof of the inductive step, we start from the assumption
that n € S(for some natural number n) and deduce thatn+ 1€ S

The third key step in the proof above was to compare the statement about n
with the statement about n + 1. Every good proof by induction will use the hypoth-
esis of induction to show that n+ 1 € S Finding the connection between these
statements is the heart of a proof by induction.

Thus, a proof of (Vn e N)P(n) using the PMI may take the form:

PROOF OF (Vn € N)P(n) USING THE PMI
Proof.
Let S={ne N: P(n) is true}.
(i) (Basis step) Show that1 € S
(i)  (Inductive step) Show that forallne N, ifne Sthenn+ 1€ S
(iii)  Therefore, by the PMI, S= N. Thus (Vn € N)P(n) is true. |

In actual practice, very few induction proofs start by defining the set S. Since
“1 e S” is equivalent to “P(1) is true,” the basis step is a determination that P(1)
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is true. Since “n € Simplies n+ 1 € S” is equivalent to “P(n) implies P(n + 1),”
the inductive step often takes the form of a direct proof that “for all n e N, P(n)
implies P(n + 1).” This gives us the preferred form for the outline of a proof using
the PMI:

PROOF OF (Vn € N)P(n) USING THE PMI
Proof.
(i)  (Basis step) Show that P(1) is true.
(i) (Inductive step) Suppose P(n) for some n € N.

Therefore P(n + 1).
(iii)  Therefore, by the PMI, (Vn € N)P(n) is true. |

Proofs by induction may be used to establish inequalities and divisibility prop-
erties. Notice in the following examples that it is not enough just to figure out what
the correct statement is for n 4+ 1. To construct a valid inductive step, look for a
connection between what we know about some number n and what we want to
know about the next number n + 1.

Example. Forallne N, n+ 3 <5n?

Proof.

(i) 143 <5-1? so the statement is true for 1.
(i)  Assume that for some ne N, n+ 3 < 5n?, Then

n+1)+3=n+3+1
<5’ +1
<5n?+10n+5
=5(n+1)%
Thus the statement is true for n + 1.

(iii) By the Principle of Mathematical Induction, n + 3 < 5 foreveryne N. =

Example. The polynomial x —y divides the polynomials x*> — y? and x® — y3
because x? — y? = (X — y)(x + y) and x3 — y3 = (x — y)(x* + xy + y?). This sug-
gests the possibility that for every natural number n, x — y divides x" — y". We
prove this by induction.

Proof.

(i) x—ydivides x! — y! = x — ybecause x — y = 1(x — y). Thus the statement
holds for n= 1.
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(i)  Assume that x — y divides x" — y" for some n (this is the hypothesis of
induction). We must show that x — y divides x"*1 — y"*+1, We write

Xn+l _ yn+l = xx" — yyn
=XXn_an+an_yyn
= (X = y)X"+ y(x" —y").

Now x —y divides the first term because that term contains the factor
(x —y). Also x —y divides the second term because it divides x" — y"
(by the hypothesis of induction). Therefore, x — y divides the sum. That is,
X — y divides x"+1 — yn+1,

(iii) By the PMI, x — y divides x" — y" for every natural number n. u

Recall that sigma notation is a compact way to write sums. We may write the
suml+3454---4+(2n—1)as Z(Zl — 1). Our first result proved by induction

was that Z (2i — 1) = n. The notation for products uses the capital Greek letter I1.
i=1

For example

H(u +1)=2.5.10-17=1700.
i=1

Note that products with n 4 1 factors may be rewritten, as in

n+1l

1'[(2|) =(@2n+2)- 1'[(2|)

Our next example involves both factorial and product notation.

Example. Prove thatforallne N, ]_[(4| —2)= (2n)
Proof.
. ) Lo (-1
(i) The statement is true for n=1 because [](4i —2) =2 and T 2.
i=1
(i)  Assume that ]_[(4| —-2)= & ) -——— for some n € N. (We now use the hypothesis
- . ““ : 2(n+1))!
of induction to prove that 4i—2)=-———-"".)Then
P il:[1( ) (n+1)! )
n+1 n
[T@i-2) = {]_[(4i — 2)}(4(n+ 1) —2)
i=1 i

(2”)
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We also compute

@n+1))!  @n+2)!
(n+1!  (n+1)!
(2n 4+ 2)(2n 4 1)(2n)!

- (n+ )n!
2(2n + 1)(2n)!

n!
(4n + 2)(2n)!

n! '

Since these expressions are equal, the statement is true for n + 1.

n 2n)!
(iii) By the Principle of Mathematical Induction, [](4i — 2) =( n)
i=1

for all
n!
ne N.

The following examples show some other situations where induction is used.

Example. Consider any “map” formed by drawing straight lines in a plane to rep-
resent boundaries. Figure 2.4.1 shows ten countries, labeled A through J, formed by
drawing four lines in the plane. The problem is to color the countries so that adjoin-
ing countries (those with a line segment as a common border) have different colors.
This has been done in Figure 2.4.2 using only two colors—blue and white. We will
use induction to prove that every map formed by drawing n straight lines can be col-
ored using exactly two colors.

Proof.
(i) If a map is made by drawing one straight line, then there are only two

countries. Thus every map formed with one line can be colored with two
colors.

Figure 2.4.1
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Figure 2.4.2

(i)  Assume that for some n, every map formed by drawing n lines can be col-
ored with exactly two colors. Now consider a map with n + 1 lines. Before
coloring this map, choose any one of the lines and label it L. Now color the
map as though the line L were not there, using exactly two colors. This can
be done, initially, by the hypothesis of induction. (Such a coloring is shown
in Figure 2.4.3, with the line L shown as a dashed line. Of course, only part
of the plane can be shown.) To color the map with line L, proceed as follows.
Call one half-plane determined by L side 1, and the other half-plane side 2.
Leave all colors on side 1 exactly as they were but change every color on
side 2 to the other color. This gives a coloring to every country in the map
with line L. (See Figure 2.4.4.) It remains to verify that adjacent countries in
this map with n + 1 lines have different colors.

Suppose we have two adjacent countries. There are two cases to consider:

Casel. Suppose L is the border between the two countries, which means
that one country is on side 1 and the other on side 2. Initially, the
two countries had the same color because they were parts of the
same country in the map with n lines. When L was added to the
map, the color of the country on side 2 switched to a different color
from the country on side 1.

Figure 2.4.3
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Figure 2.4.4

Case2. Suppose L is not the border between the two countries. Then both
countries are either on side 1 or side 2. If both countries are on side
1, they were initially colored differently and remain so when L is
added. If both countries are on side 2, their colors were initially
different, but are now switched, and still different.

In both cases, the two adjoining countries have different colors.

(iii) By the PMI, every map can be colored using only two colors. ]
The next example involves computations using trigonometry and complex
numbers.
Theorem 2.4.1 De Moivre’s Theorem

Let 6 be a real number. For all n € N, (cos 6 + i sin §)" = cos nf + i sin né.

Proof. (In this proof we use addition and multiplication of complex numbers and
the following “ sum of angles’ formulas from trigonometry:

cos (a + B) = (cosa)(cos B) — (sina)(sin B)
sin(a + B) = (sina)(cos B) + (cosa)(sin B).)

(i) For n=1, the equation is (cos@ + i sin@)! = cosé + i sin@, which is cer-
tainly true.

(i)  Assume that (cos6 + i sin@)* = cos kd + i sinkd, for some natural number
k. Then, using the sum of angles formulas,

(cos@ + i sing)k+!
= (cosf + i sinB)*(cosh + i sin6)
= (coskb + i sinkf)(cosh + i sin@) (by the hypothesis of induction)
= coskd cos@ + i sinkd cosh + i coskd sind + i sinkd sinf
= (coskd cosf — sinkd sind) + i(sinkd cosb + coska sinh)
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= cos(kd + 6) + i sin(ko + 6)
= cos(k+ 1)0 + i sin(k + 1)6.

(iii) By steps (i) and (ii) and the PMI, (cosé + i sin®)" = cosnf + i sinnd is
true forall ne N. ]

As one more example of the use of the Principle of Mathematical Induction,
we prove a seemingly simple but useful result, known as the Archimedean Princi-
ple, about the comparative sizes of natural numbers. Archimedes* said that given a
fulcrum and a long enough lever, he could move the world. See Figure 2.4.5. This
statement illustrates the principle of physics that relates the forces at the ends of a
lever to their distances from the fulcrum point. Even though it would take a very
large force to move the Earth, and a person could exert only a small force, the force
is multiplied when applied to a long lever.

Earth Fulcrum Archimedes

Figure 2.4.5

To understand the next theorem, think of aand b as any two natural numbers, with
a being much larger than b. The Archimedean Principle says that a can eventually be
surpassed by taking natural number multiples of b. We give a proof by induction.

Theorem 2.4.2 Archimedean Principle for N
For all natural numbers a and b, there exists a natural number s such that sb > a.

Proof. Let b be a fixed natural number. The proof proceeds by induction on a.

(i) Ifa=1,choosestobe2 Thensb=2b> a.

(if)  Suppose the statement is true when a = n, for some natural number n. Then
there is a natural number t such that tb > n. Choose sto be t + 1. Then we
have sb= (t+ 1)b=tb+b>n+1, so the statement is true when

a=n+1
(iif) By parts (i) and (ii) and the PMI, the statement is true for all natural numbers
aand b. =

* Archimedes (c. 287 B.c.E.—C. 212 B.C.E.) is considered the greatest scientist of his era, having made
fundamental discoveries in mathematics, astronomy, physics, and engineering. Many of his drawings of
proposed machines proved to be very effective devices. His “method of exhaustion” to calculate areas
under curves is similar to the methods of integral calculus used today.
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Some statements are not true for all natural numbers, but are true for numbers
in some inductive subset of N. To prove such statements in such cases, we need a
slightly generalized form of the PMI, where the basis step starts at some number
other than 1.

Generalized Principle of Mathematical Induction

Let k be a natural number. Let Sbe a subset of N with these two properties:
(i) kes
(i) forallne Nwithn>k ifne Sthenn+1eS

Then Scontains all natural numbers greater than or equal to k.
Example. Prove by induction that 2 —n — 20 > 0 for all n > 5.

Proof. (Wewill use the Generalized PMI starting at n = 6.)

(i) Forn=6,6%—6— 20 =10, which is greater than zero.
(i)  Assume for some natural number k > 5 that k> — k — 20 > 0. Then

(K+1)? —(k+1) —20=K +2k+1—k—1—20
= k2 — k— 20+ 2k

Since k? — k — 20 > 0 (by the induction hypothesis) and 2k > 0 (sincek is
anatural number), k?> — k — 20 4+ 2k > 0. (The sumof two positive integers
ispositive.) Thus (k + 1)> — (k+ 1) — 20 > 0.

(iii) By the Generalized PMI, n? — n — 20 > O is true for all n > 5. ]

We note that an algebraic proof of the last example is possible: Since
"-n—-20=(n+4n-5 and n+4>0 for all natural numbers n,
n’> —n— 20 > 0 for n > 5. Neither proof is “more correct” than the other. We
chose the first proof to demonstrate the Generalized PMI.

Exercises 2.4

1. Which of these sets have the inductive property?

(@ {20,21,22,23,...} * (b) {2,4,6,810,...}
© {1,2,4,56,7,...} * (d) {17}
(e {xeN:x2< 1000} * (f) {1,2,3,4,5,6,7 8
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2. Suppose Sis inductive. Which of the following must be true?
(@ Ifn+leSthennes * (b) IfneSthenn+2€S
(¢ Ifn+1eg¢SthennegsS (d If6eSthenllesS

* (60 6eSandl1leS

3. (a) Prove that N is inductive.
(b) Prove that & is inductive.

4. Evaluate or simplify each.

@ & b)) 7! © %
8! (n+2)! (n+3)!
@ 3 RIS B O P

(@ (M+3n+2)n!

5. Give an inductive definition for each:
(@ {n:n=>5kforsomeke N}
(b) {n:neNandn> 10}.
* (c) {n:n=2%for some k € N}.
(d) {a,a+d,a+2d a+ 3d,...}, where aand dare real numbers. (The ele-
ments of the set form an arithmetic progression.)
(e {a ar,ar? ar® ...}, where aand r are real numbers. (The elements of
the set form a geometric progression.)
n

(f) (UA, for some indexed family {A;: i € N}.

i=1

n
() Theproduct [[xi =X % - X3 - - X, of nreal numbers.
i=1

6. Use the PMI to prove the following for all natural numbers n.
* (a) i(Si —-2)=35(@3n-1).

(b) I3:Jlr11+19+-~-+(8n—5)=4n2— n.

© Proamig

(d) '1=-11!+2-2!+3-3! 4+ 4n-n=(Mn+1)!—1.

(€) 13+23+...+n3:{n(n2+1)r

(f) _i(zi — 13 =n22n? — 1),

=
@ 112+213+3?4 +"'+n(nl+1):n21'
(h)%+; +(n+nl)!=1_(n+11)!'
® Zni @i - 1)(2| 1) 2nr]r 1

0 (- p)= i
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L _(2n)!
(k) i]:[1(2|—1)_ NP

)] (éum of a finite geometric series)

n-1 (n )
Zr' = “forreR,r#1,andn> 1.

7. Use the PMI to prove the following for all natural numbers:
(@ n®+5n4 6 is divisible by 3.
* (b) 4" — lisdivisible by 3.
(©) n3—nisdivisible by 6.
(d) (n —n)(n+ 2) is divisible by 12.
(e 8divides 5% — 1.
(f) 10"14 3.4 4 5isdivisible by 9.
(g) 8divides 9" — 1.
(hy 3">142"
* (i) 33> (n+3)%
(i) 44> (n+4)~

no1
1
k —<2-=
( ) |=Zl i2 - n
(I)  For every positive real number x, (1 + X)" > 1 + nx.
" n 7n.
(m) —+ —+ —— isaninteger.

3 5 15
(n) Using the differentiation formulas %(x) =1land %( fg) = f% +4g %,
prove that forallne N, % (x") = nx"1,
(0) IfasetAhas nelements, then % (A) has 2" elements.
8. Use the Generalized PMI to prove the following.
*x (@ n®<nl!foralln=> 6.
(b) 2">n?foralln> 4.
(© (n+1)!>2"*3forn>5.
(d) n!'>3nforn=>4.

ni2—1 n+4+1

(e i];[2 T = an forall n> 2.
n

) H%_Z‘”fornz4.
i=1

(g) Forall n> 2, the sum of the angle measures of the interior angles of a
convex polygon of nsides is (n — 2) 180°.

(h) \fn<[+\lf+\1[+ +%forn>2

9. Use the PMI to prove DeMorgan’s Laws for an indexed family {A;:i € N}.
You may use [%e Morgan’s Laws for two sets.
n n

(a) (Dl A,-) = lUAjC forall ne N.

=1

(b) (LHJA.> = ﬁAFforallneN.
i=1

i=1
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10. LetPy, Py, ..., Pybenpointsin a plane with no three points collinear. Show that

N —n

the number of line segments joining all pairs of points is
forn=>5.

. See the figure
Py

Ps

P, P,

11.  Apuzzle called the Towers of Hanoi consists of a board with 3 pegs and several
disks of differing diameters that fit over the pegs. In the starting position all the
disks are placed on one peg, with the largest at the bottom, and the others with
smaller and smaller diameters up to the top disk (see the figure). Amove is made
by lifting the top disk off a peg and placing it on another peg so that there is no
smaller disk beneath it. The object of the puzzle is to transfer all the disks from
one peg to another.

|
| |

With a little practice, perhaps using coins of various sizes, you should con-
vince yourself that if there are 3 disks, the puzzle can be solved in 7 moves. With
4 disks, 15 moves are required. Use the PMI to prove that with n disks, the puz-
zle can be solved in 2" — 1 moves. (Hint: In the inductive step you must describe
the moves with n + 1 disks, and use the hypothesis of induction to count them.)

12. In a certain kind of tournament, every player plays every other player exactly
once and either wins or loses. There are no ties. Define a top player to be a player
who, for every other player X, either beats x or beats a player y who beats x.
(8 Show that there can be more than one top player.
(b) Use the PMI to show that every n-player tournament has a top player.
Proofsto Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
* (@) Claim. All horses have the same color.
“Proof.”  We must show that for all n € N, in every set of n horses, all
horses in the set have the same color. Clearly in every set containing
exactly 1 horse, all horses have the same color.
Now suppose all horses in every set of n horses have the same color.
Consider a set of n 4+ 1 horses. If we remove one horse, the horses in the
remaining set of n horses all have the same color. Now consider a set of
n horses obtained by removing some other horse. All horses in this set
have the same color. Therefore all horses in the set of n + 1 horses have
the same color. By the PMI, the statement is true for every n € N. |
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» (b) Claim. Forall ne N, n®+ 44nis divisible by 3.

“Proof.”
(i) 13+ 44(1) = 45, which is divisible by 3, so the statement is true
forn=1.

(i) Assume the statement is true for some ne N. Then n® 4 44n is
divisible by 3. Therefore (n+ 1)% + 44(n + 1) is divisible by 3.
(iif) By the PMI, the statement is true for all n e N. =
(c) Claim. For every natural number n, n> + nis odd.
“Proof.” The number n = 1 is odd. Suppose n € N and n? 4 n is odd.
Then

n+1D24+Mm+)=r+2n+14+n+1
=(MP+n+@2n+2)

is the sum of an odd and an even number. Therefore, (n + 1)% + (n + 1)

is odd. By the PMI, the property that n? + n is odd is true for all natural

numbers n. =
(d) Claim. For every natural number n, the matrix

R
s=nen:2 =[5 1)
NG

so 1 € S Assume that

{1 1}““ {1 n+ 1}
01 |0 1 ]
Thenn+1eS soneSimpliesn+1eS By the PMI, S=N. =
* (e) Claim. Every natural number greater than 1 has a prime factor.
“Proof.”
(i) Letn=2.Then nis prime.
(ii) Suppose k has a prime factor x. Then k= xy for some y. Thus
k4+1=xy+ 1= (x+ 1)(y+ 1), which is a prime factorization.
(iii) By the PMI, the theorem is proved. =
(f) Claim. For all natural numbers n> 4, 2" < n!
“Proof.” 2*=16 and 4! =24, so the statement is true for n=4.
Assume that 2" < n! for some ne N. Then 2"t =2(2") < 2(n!) <
(n+ (") = (n+ 1), s0 2" < (n + 1)!. By the PMI, the statement is
true for all n > 4. |

Clearly,

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



114 CHAPTER 2  Set Theory

25 Equivalent Forms of Induction

In the previous section, we used the Principle of Mathematical Induction to prove a
variety of statements about natural numbers. The goal of this section is to learn how
to use two other versions of induction. The value of these new forms of induction is
that they may be used in situations where it would be difficult to apply the PMI.
Both new forms are equivalent to the PMI, which means that either of them could
replace the PMI in the list of axioms for N.

To prove that a statement is true for all natural numbers using the PMI, the key step
is to assume that a statement is true for an arbitrary natural number nand then show that
the statement is true for n 4+ 1. When there might be no apparent connection between
the statement for nand the statement for n 4 1, there may be a connection between the
statement for the n 4+ 1 case and the statement for some value or values less than n.
There is a variation of the PMI to handle this situation. A much stronger assumption is
made in this alternate form of induction, called complete (or strong) induction.*

Principle of Complete Induction (PCI)
Suppose Sis a subset of N with this property:

For all natural numbers n, if {1, 2,3,...,n—1} Cc Sthenne S
Then S=N.

This form of induction begins with the assumption that a statement is true for
every natural number less than n and shows that the statement is also true for n.
Thus, we are allowed to assume the statement is true for each of k =1, 2, 3, all the
way through n — 1, rather than just for n — 1.

Notice that the statement of the PCI does not require a basis step in which we
show that 1 € S Nevertheless, for n = 1, the PCI property has the form

JCS=1eS§

which is equivalent to 1 € S Practically speaking then, it is almost always best to
begin a PCI proof by verifying that 1 is in S Sometimes special consideration is
also needed for n = 2 or larger integers. We saw in Section 2.4 that this caution may
be necessary for the PMI as well (see Exercise 13(a) of Section 2.4).

Our first example of a proof using the PCI revisits the first example from
Section 2.4.

Example. Prove for all natural numbers n that 1+3+45 +---+ (2n—1) =n

Proof. Let S={neN:1+3+5+ -+ (2n—1)=r’}. (We must show that
{1,2,3,...,m— 1} € S= me Sand then conclude S= N by the PCI.)

* Because this form of induction employs such a strong assumption, the Principle of Mathematical
Induction is sometimes referred to as “weak induction.”
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Suppose mis a natural number and also that {1, 2,3,...,m— 1} C S In the
special case that m= 1, we note that 1 = 12 and so me S Otherwise, m— 1€ S
(sincem—-1€{1,2,3,....m-1}<9s01+3+5+-+@2m-1)—-1=
(m — 1)2. Adding 2m — 1 to both sides of this equality yields

143454+ @m—-1)—1)+ @m—1)
=(m-1)2+ (2m-1)
=m—-2m+1+2m-1
=n?.

Thus me Sand we conclude S= N by the PCI. |

Like the PMI, the PCI has variations where the induction starts at some number
greater than one. To prove, for example, that some property holds for all numbers
greater than 6 we would verify that for all natural numbers n> 6, if
{7,8,...,n—1} C S then ne S Our next example is a proof that every natural
number greater than 1 has a prime factor. This fact was used without proof in
Chapter 1 because we did not yet have induction available as a method of proof. It is
a good example of a proof where the PCI is much more natural to use than the PMI.

Example. Prove that every natural number greater than 1 has a prime factor.

Proof. LetSbe {ne N: n> 1and n has a prime factor}. Notice that 1 is notin S
but 2 is in S Let m be a natural number greater than 1. Assume that for all
ke {2,...,m— 1}, ke S We must show that m € S If mhas no factors other than
1 and m, then mis prime, and so m has a prime factor—itself. If m has a factor x
other than 1 and m, then 1 < x < mso x € S Therefore x has a prime factor (by the
induction hypothesis), which must also be a prime factor of m. In either case,
m e S Therefore, S= {n € N: n > 1}, and every natural number greater than 1 has a
prime factor. |

Like the PMI, the PCI can be used to create inductive definitions, one of which
is the definition of the sequence 1,1, 2,3,5,8, 13,... examined by Leonardo
Fibonacci” in the 13th century (see Exercise 4). These numbers have played impor-
tant roles in applications as diverse as population growth, flower petal patterns, and
highly efficient file sorting algorithms in computer science. For each natural num-
ber n, the nth Fibonacci number f, is defined inductively by

fi=1fh=1and f, o= 1 +f, forn>1
We see that f; =2,f, =3, fs =5, fg = 8, and so on.

* Leonardo of Pisa, also called Leonardo Fibonacci (c. 1170—c. 1250) was a prominent mathematician in
the Middle Ages. His text, Liber Abaci (Book of Calculation) was influential in the European adoption of
Hindu-Arabic numerals. He did not invent the sequence named for him, but used it as an example.
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Inductive proofs of properties of the Fibonacci numbers usually involve the
PCI because we need to “reach back” to both f,_; and f,_, to prove the property
for f,.. Here is a typical example.

Example. Let « be the positive solution to the equation x> = x + 1. (The value of
(14 +/5)
ais——=

5 approximately 1.618.) Prove that f, < o"~'forall n> 1.

Proof. In the special cases of m= 1 and m = 2, the inequality f,, < a™ 1 is true
sincefp=1<a’=1andf,=1 < o = (1 + +/5)/2. Let mbe a natural number,
m > 3, and assume that fy < a**forallke {1,2,3,...,m— 1}. Form> 3, we
have

fm = 1:m—l + fm—2
< a™ 2 4+ o™3 (by the induction hypothesisfor m — 1 and m — 2)
=a" 3(a + 1)

=aM 3 (sinceaisasolutiontox’=x+1,a+1=a?
= o™ 1,
Therefore, f, < a™ 1.

By the PCI, we conclude that f, < o"~* forall n > 1. ]

Theorem 2.5.4, at the end of this section, shows that the PMI and PCI are
equivalent. Thus both properties are true for N.

A third property that characterizes the set N is the Well-Ordering Principle.
Although it is quite simple to state, the WOP turns out to be a powerful tool for con-
structing proofs. The WOP, like the PCI, may be derived from the Peano Axioms
and is equivalent to the PMI. (See Theorem 2.5.5.)

Well-Ordering Principle (WOP)*

Every nonempty subset of N has a smallest element.

Proofs using the WOP frequently take the form of assuming that some desired
property does not hold for all natural numbers. This produces a nonempty set of
natural numbers that do not have the property. By working with the smallest such
number, one can often find a contradiction.

In the next example, we prove again that every natural number greater than
1 has a prime factor. Compare the structure of this proof using the WOP with that
of the PCI proof given earlier.

Example. Every natural number n > 1 has a prime factor.

* Some mathematicians refer to the Well-Ordering Principle as the Well-Ordering Property. They
reserve the use of the term Well-Ordering Principle for the statement that for every set there is an order
that makes the set a well-ordered set. Orderings are discussed in Section 3.4.
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Proof. If nis prime, then nis a prime factor of n. If nis composite, then n has fac-
tors other than 1 and n. Therefore the set

T={me N: mdividesn, m=n,and m= 1}

is a nonempty subset of N. By the WOP, T has a smallest element, which we call p.
(We will show by contradiction that p isprime.)

Suppose p is composite. Then p has a divisor d, with d = p, and d £ 1. Since
d divides p and p divides n, d divides n. Therefore, d € T. But this is a contradiction
since d < p and p is the smallest element of T. Therefore p is a prime factor of n. =

As another example, we will prove that for every ne N, n+1 =1+ n. The
purpose of this example is not to establish the fact that n+ 1 =1 + n, but to see
how a proof using the WOP is done. So imagine for a moment that we did not know
that addition is commutative, and we will show how the statement can be proved
(from the associative property) by using the WOP.

Example. For every natural numbern,n+1=1+n.

Proof. Suppose there exists a natural number nsuch that n + 1 £ 1 4+ n. Let b be
the smallest such number. Obviously, 1 + 1 =1+ 1, so b # 1. Thus b must be of
the form b= c + 1 for some c e N. (See the successor properties for N.) Then
(c+1)+1+#1+(c+1). Therefore, by the associative property for N,
(c+1)+1#(1+c)+ 1. Subtracting 1 (from the right side) from each expres-
sion, we have ¢ + 1 = 1 + c. But this is a contradiction because ¢ < b and b is the
smallest natural number with the property. We conclude that n 4+ 1 = 1 + n for all
natural numbers n. =

The next three theorems were stated without proof earlier in the text. Each may
be proved using the WOP. The Division Algorithm was the primary result that we
used in Section 1.7 to develop interesting results about the greatest common divi-
sor (gcd) of two integers and linear combinations of the integers.

Theorem 2.5.1 The Division Algorithm
For all integers a and b, with a £ 0, there exist unique integers g and r such that
b=ag+rand0<r < |al.

Proof. Letaand b be integers and a = 0. Assume that a > 0. (The proof in the case
a < Oissmilar, andisleft asan exercise.) We must first show the existence of gand r.

Let S={b — ak: kis aninteger and b — ak > 0}. If 0 is in S then a divides b,
and we may take qto be the integer gand r = 0. Now assume that 0 ¢ S

It follows from the assumption 0 ¢ Sthat b # 0. (Otherwiseb —a0 =0€ S)
Now if b>0thenb—a0e S and if b <0 then b — a(2b) =b(1 —2a) e S In
either case, the set Sis nonempty.

By the Well-Ordering Principle, Shas a smallest element, which we will call r.
Then r = b — aq for some integer g, so b=aq + r, and r > 0. We must also show
thatr < |a] =a Suppose r >a Thenb—a(+1)=b—ag—a=r—a=>0,

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



118 CHAPTER 2  Set Theory

sob—a(q+ 1) e SButb—a(g+ 1) <b— agand b — aqis the smallest mem-
ber of S We conclude thatr < |a].

To complete the proof, we must show that g and r are unique. Suppose there
exist integers g, ', r, and r " such that

b=ag+r with0O <r < |a| and
b=ag +r'with0 <r’ < |al.

Without loss of generality, we may assume that r’ > r. (Otherwise, we could re-
label randr’.) Thenag+r =aq’ + r’, which impliesa(q— q’) =r’ —r. Then a
dividesr’—r,and0 <r’—r <r’ < |a|. Thenr’ —rmustbe0,sor’ =r. Since
aQ-9)=0a0a=gq -

Section 1.7 also contained the following result about linear combinations of
integers. The short proof using the WOP is Exercise 8.

Theorem 2.5.2 Let a and b be nonzero integers. Then there is a smallest positive linear
combination of aand b.

The Fundamental Theorem of Arithmetic, stated in the Preface to the Sudent,
may also be proved using the WOP. See Exercise 9.

Theorem 2.5.3 The Fundamental Theorem of Arithmetic
Every natural number greater than 1 is prime or can be expressed uniquely as a
product of primes.

The final two theorems of this section show that the PMI, the PCI, and the
WOP are all equivalent.

Theorem 2.5.4 The Principle of Mathematical Induction and the Principle of Complete Induction
are equivalent.

Proof. (The proof proceedsin two parts: Thefirst part showsthat PMI impliesthe
PCI, and the second part shows the converse.)

Part 1. Assume that the PMI holds for N. Suppose Sis a subset of N with this
property:

* for all natural numbers m, if {1,2,3,..., m— 1} C Sthenme S

As a step toward proving S= N, we first use the PMI to show that for every natu-
ral numbern, {1,2,3,...,n} C S

(i) For n=1, the set {1,2,3,...,n—1} is the empty set. Thus,
{1,2,3,...,n—1} C S Therefore, by the property * for S 1 € S Thus,
{1} € S Hence, forn=1,we have {1,2,3,...,n} C S

(i) Assumethat{1,2,3,...,n} €S (Memustshow{1,2,3,...,n+ 1} CS)
Since {1, 2, 3,..., n} C S by the property *, we have n+ 1 € S Therefore,
{1,2,3,...,n,n+1}CS
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(iii) By steps (i) and (ii), and the PMI, {1, 2, 3, ..., n} C Sfor every natural
number n. Now let n be a natural number. Then {1,2,3,...,n} C S so
ne N. This shows N C S Since Sis a subset of N, we conclude that
S=N.

Part 2. Now assume that the PCI holds for N. (To show that the PMI istrue, we
assume its hypothesis and use the PCI to show that the conclusion of the PMI
(S= N) must also betrue.) Suppose Sis a subset of N with two properties:

i) 1es
(ii)  For all natural numbers n,ifne Sthenn+ 1€ S

We will prove S= N. (To prove that S= N, we show that S satisfies the hypothesis
for the PCl; namely, that for all meN, if {1,2,3,..., m— 1} C S then
me S) Let mbe a natural number such that {1, 2, 3,..., m— 1} C S There are
two cases:

Casel If m=1, then 1€ S by the first property of S Thus the statement
{1,2,3,...,m— 1} C Simplies me Sis true when m= 1.

Case2 If m> 1, thenfrom{l,23,..., m—1}C S we have m— 1 S But
then by the second property for S we have me S In this case, too, we
have {1,2,3,...,m— 1} C Simpliesme S

We conclude that the statement {1, 2, 3,..., m— 1} C S implies m € Sis true for

all natural numbers m. Therefore, by the PCI, S= N. ]
Theorem 2.5.5 The Well-Ordering Principle is equivalent to the Principle of Mathematical
Induction.

Proof. (Thisproof, like Theorem2.5.4, proceedsin two parts: Thefirst part shows
that the PMI implies the WOP, and the second part shows the converse.)

Part 1.  Assume that the PMI holds for N. (To show that the WOP is true, we show
that every nonempty subset of N has a smallest element.) Suppose T is a honempty
subset of N. Let S= N — T. Since T # J, S# N. (The proof now proceeds by con-
tradiction. We suppose T has no smallest element and use the PMI to show that
S=N.) Suppose that T has no smallest element.

(i) Since 1 is the smallest element of N and T has no smallest element, 1 ¢ T.

Therefore, 1 € S

(if)  Suppose that n € S No number less than n belongs to T, because, if any of
the numbers 1, 2, 3,..., n— 1 were in T, then one of those numbers would
be the smallest element of T. We know n ¢ T because n € S Therefore,
n+ 1 cannot be in T, or else it would be the smallest element of T. Thus,
n+1eS

(iii) By parts (i) and (ii) and the PMI, S= N, which is a contradiction to S# N.

Therefore, T has a smallest element.

Part 2. The proof that the WOP implies the PMI is Exercise 12(b). |
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Exercises 2.5

1. Use the PCI to prove that

(a) every natural number greater than 22 can be written in the form 3s + 4t,
where sand t are integers, s> 3and t > 2.

(b) every natural number greater than 33 can be written in the form 4s + 5t,
where sand t are integers, s> 3and t > 2.

2. Letay=2,a =4, and ay,» =5a,,1 — 6a, for all n> 1. Prove that a, = 2"
for all natural numbers n.
3. In this exercise you are to prove some well-known facts about numbers as a
way of demonstrating use of the WOP. Use the WOP to prove the following:
(@ Ifa=> 0, then for every natural number n, a" > 0.
(b) For all positive integers a and b, b # a + b. (Hint: Suppose for some a
there is b such that b = a + b. By the WOP, there is a smallest a; such
that, for some b, b = ay + b. Apply the WOP again.)

(c) V2 is irrational.

4. 1In 1202, Leonardo Fibonacci posed the following problem: Suppose a partic-
ular breed of rabbit breeds one new pair of rabbits each month, except that a
1-month-old pair is too young to breed. Suppose further that no rabbit breeds
with any other except its paired mate and that rabbits live forever. At 1 month
we have our original pair of rabbits. At 2 months we still have the single pair.
At 3 months, we have two pairs (the original and their one pair of offspring).
At 4 months we have three pairs (the original pair, one older pair of off-
spring, and one new pair of offspring).

(a) Show that at n months, there are f, pairs of rabbits.
(b) Calculate the first ten Fibonacci numbers fy, fp, f3, ..., fio.
(c) Findaformula for f,, 3 — fhi1.

5. Use the PMI to show that each of the following statements about Fibonacci
numbers is true:

(@) fsn is even and both f3,,1 and f3,» are odd for all natural numbers n.
(b) gecd(fp, fre1) = 1 for all natural numbers n.
() gcd(fn, fre2) = 1 for all natural numbers n.

* (d) fy+ fo+ f3+---+ f,= f,, o — 1 for all natural numbers n.

6. Use the PCI to prove the following properties of Fibonacci numbers:
(a) f,isanatural number for all natural numbers n.
(b) foi6 =4 fhy3 + fy for all natural numbers n.
(c) For any natural number a, faf,+ fay1fanr1 = farnss for all natural

numbers n.
(d) (Binet’s formula) Let « be the positive solution and B the negative
. . 1 5
solution to the equation x? = x + 1. (The values are a = + V5 and

1-4/5 2

5 .) Show for all natural numbers n that

'8:

n_ p@n
o P
a—f
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7. Complete the proof of the Division Algorithm (Theorem 2.5.1) for the case
a < 0. That is, show that for all integers a and b, with a < 0, there exist
unique integers gqand r suchthatb=agq+rand0 <r < |a] = —a

8. Letaand b be nonzero integers. Prove that there is a smallest positive linear
combination of aand b. (Theorem 2.5.2)

9. Prove the Fundamental Theorem of Arithmetic: Every natural number greater
than 1 is prime or can be expressed uniquely as a product of primes.

10. In the tournament described in Exercise 12 of Section 2.4, a top player is
defined to be one who either beats every other player or beats someone who
beats the other player. Use the WOP to show that in every such tournament
with n players (n € N), there is at least one top player.

11. Let the “Fibonacci-2” numbers gy be defined as follows:
O=2,0=2,and gn 2 = gny1gn foralln>1.

(a) Calculate the first five “Fibonacci-2” numbers.
(b) Show that g, = 2™
12. Complete the proof of the equivalences of the PMI, PCI, and WOP by
(@) using the PCI to prove the WOP.
* (b) using the WOP to prove the PMI.
(c) using the WOP to prove the PCI.

Proofsto Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

(@ Claim. For all natural numbers n, 5 divides 8" — 3".
“Proof.”  Suppose there is n € N such that 5 does not divide 8" — 3".
Then by the WOP there is a smallest such natural number t. Now t # 1
since 5 does divide 8! — 3. Therefore t — 1 is a natural number smaller
than t, so 5 divides 8! — 3'=1. But then 5 divides 8(8'~* — 3'~%) and
5 divides 5(3'~1), so 5 divides their sum, which is 8 — 3. This is a con-
tradiction. Therefore, 5 divides 8" — 3" forall ne N. =

» (b) Claim. For every natural number n, 3 divides n® + 2n + 1.

“Proof.”  Suppose there is a natural number n such that 3 does not
divide n® 4+ 2n + 1. By the WOP, there is a smallest such number. Call
this number m. Then m — 1 is a natural number and 3 does divide

M-1°+2m-1)+1=m-3m+3m—-1+2m—-2+1
=m — 3m? +5m— 2.

But 3 also divides 3m? — 3m+ 3, so 3 divides the sum of these two

expressions, which is m* 4+ 2m + 1. This contradicts what we know about

m. Therefore, the set {n e N: 3 does not divide n® + 2n + 1} must be

empty. Therefore, 3 divides n® + 2n + 1, for every natural numbern. =
(c) Claim. The PCI implies the WOP.

“Proof.”  Assume the PCI. Let T be a nonempty subset of N. Then

T has some element x. Then {1,2,...,x— 1} € N — T. By the PCI,
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xe N — T. This is a contradiction, because xe T and xe N — T.

Therefore T has a smallest element. =
(d) Claim. The WOP implies the PCI.

“Proof.”  Assume the WOP. To prove the PCI, let She a subset of N such

that for all natural numbers m, {1, 2,3,...,m— 1} C S Letke N. Then

k+1 is an integer, so {1,2,...,(k+1)—1}< S However,

(k+ 1) — 1=k sok e S Thus every natural numberisinSso S=N. =

2.6 Principles of Counting

Recall from the Preface to the Student that a set Ais finite iff A= Jor Ahas nele-
ments for some n € N. For a finite set A the number of elements in A is denoted A.
For example, if A= {p, g} and B= {3, 2, 1, 5, 9} then A= 2 and B = 5. This sec-
tion describes some of the fundamental techniques for counting the number of ele-
ments in finite sets.

A more precise development of the concepts of the cardinality (number of ele-
ments) and finiteness of a set appears in Chapter 5. For this reason, proofs of the
basic counting rules in this section appear in Section 5.1.

Theorem 2.6.1 The Sum Rule

Let Aand B be finite sets with mand n elements, respectively. If Aand B are disjoint
then AUB=m+ n.

We use the Sum Rule so often, we don’t have to think about it: If a basket has
5 oranges and 6 apples, then there are 11 pieces of fruit in the basket. The rule can
be extended to any finite number of sets. We prove the Generalized Sum Rule by
using the Principle of Mathematical Induction.

Theorem 2.6.2 The Generalized Sum Rule
For all ne N and for every family o = {Ai:i=1,2,3,...,n} of n distinct
pairwise disjoint sets, if A, = g for 1 < i < n, then

Cs

Azga

i=1

Proof. The proof is by induction on the number n of sets in the family «.

1 - 1
(i) n=1then JA=A=ar= ) a.
i=1 i=1

I
— n n
(i) Suppose for some ne N that A =a fori=1,2,...,nand [JA =D a
i=1 i=1
for every family ol = {Ai:1 =1, 2,3,..., n} of n distinct pairwise disjoint

sets. Let o = {Al,iAg, As, ..., Anp1} be a family of n + 1 distinct pairwise
disjoint sets with A, =a; fori =1,2,...,n+ 1. Then
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n+1

)UAn+l

A + Ar+1 (bythe SumRulesince U A and A, ; aredigoint)
i=1

n=(Un
y=

a + any1 (by the hypothesis of induction since
{A, Ap A, ... Ay} isacollection of
n distinct pairwise digjoint sets)

n+1
i=

(iii) By the PMI, the Generalized Sum Rule is true for every family of n distinct
pairwise disjoint sets, for all n € N. ]

The Generalized Sum Rule is useful in situations where it would be practically
impossible for any individual to make an acceptably accurate count. For example,
a good estimate of the total population of a country on a fixed date (a census) may
be accomplished by summing the results of the combined work of thousands of
individuals, each of whom does a count for a designated small geographic area.

If sets Aand B are not disjoint (see Figure 2.6.1), then determining the number
of elements in AU B by simply adding A and B overcounts AU B by counting
twice each element of AN B. Theorem 2.6.3 corrects this error by subtracting
ANBfromA+ B.

Figure 2.6.1

Theorem 2.6.3 For finite sets Aand B,AUB=A+B - ANB.

Proof. By the Sum Rule, A=A—B+AnBand B=B— A+ AN B. Applying
the Generalized Sum Rule to the distinct and pairwise disjoint sets A— B, AN B,
andB— A wehave AUB=A-B+ANB+B-A=A+B-ANB. n

If we know the number of elements in A, B, and A U B, we can use Theorem 2.6.3
to determine AN B:

>
D)
vs)
Il
bl
+
os]]
|
>
C
o8}

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



124 CHAPTER 2  Set Theory

Example. During one week a total of 46 patients were treated by Dr. Medical for
either a broken leg or a sore throat. Of these, 32 had a broken leg and 20 had a sore
throat. How many did she treat for both ailments?

Letting B be the set of patients with broken legs and Sthe set of patients with
sore throats, the solution is

—B+S—BUS=232+20—46=6.

vs]

N

wn

Applying the Sum Rule to the disjoint sets B — Sand B N S we could also find
that B — S=B — BN S= 32 — 6, so there were 26 patients with a broken leg but
no sore throat. Similarly, we could determine that 14 patients had just a sore throat.

See Figure 2.6.2.

Figure 2.6.2

Example. French and German are two of the four national languages of Switzer-
land. Suppose 80% of Swiss residents speak German fluently, 66% speak French
fluently, and 52% are fluent in both languages. What percentage of Swiss residents
are not fluent in either French or German?

To solve this problem, we first find the percentage of residents fluent in at
least one of the two languages (80 + 66 — 52 =94) and subtract this result
from 100%. Based on the given estimates, 6% of residents are not fluent in either
language.

Theorem 2.6.3 can be extended to three or more sets by the Principle of I nclu-
sion and Exclusion. The idea is that, in counting the number of elements in the
union of several sets by counting the number of elements in each set, we have
included too many elements more than once; so some need to be excluded, or sub-
tracted, from the total. When more than two sets are involved, this first attempt at
exclusion will subtract too many elements, so that some need to be added back or
included again, and so forth. For three sets A, B, C, the Principle of Inclusion and
Exclusion states that

AUBUC=[A+B+C]|-[ANB+ANC+BNC]+ANBNC.

The inclusion and exclusion formulas for more than 3 sets are lengthier. (See
Exercise 5.) The Principle is often applied to determine the number of elements not
in any of several sets, as in Exercise 6.

The next basic counting rule is as simple to state as the Sum Rule.
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Theorem 2.6.4 The Product Rule
If A and B be finite sets with mand n elements, respectively, then A x B = mn.

The Product Rule may be applied to counting the total number of ways to
perform two independent tasks (jobs or activities). By independent we mean that
the occurrence of one task has no influence on the occurrences of other tasks. For
example, if we want to select one prime number (task #1) and one composite number
(task #2) from the set {10, 11, 12, ... 20}, there are 4 - 7 = 28 possible ways to per-
form the two tasks.

Like the Sum Rule, the Product Rule can be extended to more than 2 sets.

Theorem 2.6.5 The Generalized Product Rule B
For all n e N and for every family s{ = {A:i=1,2,3, ..., n}of nsets, if A = &
for 1 <i <n,then

n
Al X Ao XX Aq= ]_[a.
i=1
Proof. See Exercise 12. |

Example. To find the number of three-digit positive integers, we must perform
three tasks: Choose each of the three digits. There are 10 possibilities for the units
digit and 10 for the tens digit, but only 9 possibilities for the hundreds digit, because
it can’t be zero. By the product rule there are 10 - 10 - 9 = 900 ways to form a
three-digit positive integer. We can check this result easily: Of the 999 numbers
from 1 to 999, the first 99 have only one or two digits, so 900 have three digits.

Example. To find the number of three-digit positive integers with no repeated digits,
we might begin by observing that there are 10 possibilities for the units digit and nine
remaining possibilities for the tens digit. At this point we see that the task of choosing
the hundreds digit is not independent of the other tasks: The number of possibilities
depends on whether 0 is chosen for either the units or the tens digit. To use the Product
Rule we must think of a different sequence of tasks, or perhaps of carrying out these
tasks in a different order. Beginning with the hundreds digit there are 9 possibilities
(everything but 0), then 9 possibilities for the tens digit, and 8 for the units digit. Thus
there are 9 - 9 - 8 = 648 three-digit positive integers with no repeated digits.

Example. To find the number of odd three-digit positive integers with no repeated
digits, one method is to choose the units digit (there are 5 possibilities), then the
hundreds digit (8 possibilities, to avoid 0 and the chosen units digit), and finally the
tens digit (again, 8 possibilities). Thus, there are 320 odd three-digit positive inte-
gers with no repeated digits.

It is instructive to use another method for this problem. A situation similar to that
of the previous example arises if we begin with the units digit, then the tens digit, and
finally the hundreds digit. To resolve this problem, we consider two disjoint sets of
three-digit integers: those with 0 as the tens digit and those with a nonzero tens digit.
For the first set, there are 5 possible units digits, only one possible tens digit, and 8
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possible hundreds digits. There are 40 such integers. For the second set, there are 5
possible units digits, 8 possible tens digits, and 7 possible hundreds digits, making
280 integers in this set. By the Sum Rule, there are a total of 320 odd three-digit pos-
itive integers with no repeated digits.

If the set A has n elements, then forming a subset of A amounts to carrying out
n independent tasks, where each task is to decide whether to place the element in
the subset. Since each task has two outcomes, there are 2" ways this process can be
carried out, so % (A) has 2" elements. This argument is a restatement of the proof of
Theorem 2.1.4.

DEFINITION  Apermutation of a set with n elements is an arrangement
of the elements of the set in a specific order.

Example. To find all permutations of the set A= {a, b, ¢, d}, we might begin by
writing down all the arrangements of elements of A that begin with the element a.
These are:

abcd abdc acbd acdb adbc adch

The other permutations of A are:

bacd badc  bcad bcda bdac bdca
cabd cadb chad <cbda cdab cdba
dabc dacb dbac dbca dcab dcbha

There are 24 permutations of the 4-element set A.
Recall that n! (n-factorial) is defined inductively by
=1
n=nn-1)! forn>1
orexplicitlyasn'=nn—-1)(n—2) ----- 3-2-1. We also define 0! = 1.
Theorem 2.6.6 The number of permutations of a set of n elements is n!.
Proof. See Exercise 13. u

Example. A shuffle of the playlist on a portable music device is simply a permu-
tation of the set of song titles. For a playlist of 10 songs there are 10! = 3,628,800
possible different playlists.

Example. Find the number of possible user passwords with 7 characters that con-
sist of digits or letters of the alphabet, without repetition.

Ignoring the case of the letters, we can think of the problem as having to select
7 different symbols without repetition from a set of 36, and then arranging them in
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some order. For the first symbol there are 36 choices; for the second

symbol there are 35 choices, and so on. The number of arrangements is
36! .

36-35-34.33-32-31-30= 291" according to the next theorem.

Theorem 2.6.7 The Permutation Rule
If nis a natural number and r is an integer such that 0 < r < n, then the number of
permutations of any r distinct objects from a set of n objects is
n!
(n—=r)!

Proof. See Exercise 14. |

Example. An entertainment agent has five celebrity clients and wants to list three
of them on an Internet pop-up ad. Celebrities want to be listed first, not last, so the
5! 51

— = 60 permutations from which to

order is important. The agent has G- =5

choose.

If the ad were animated with the three pictures rotating around a circle, the
order of selection would not be important—we simply select a group of three
clients from the five. This is a combination of 5 people taken 3 at a time.

DEFINITIONS  For a natural number nand an integer r with0 <r <n, a
combination of n elementstaken r at atimeis a subset with r elements from
a set with n elements.

The number of combinations of n elements taken r at a time is called the

. . . n . .
binomial coefficient (r) read “n choose r” or “n binomial r.”

Example. Choosing three people from a set of five people is the same as forming
5
a 3-element subset. There are (3)different possible combinations. If we identify

the five people as R, C, W, H, and P, the 3-element subsets are {R, C, W}, {R, C,
H}’ {Rl C! P}’ {R’ W’ H}l {R’ W’ P}! {R, H! P}, {C! Wl H}i {Cl W; P}! {Cy Hl P}y

5
and {W, H, P}. Thus, 3)= 10.

For any set with n elements, there is only one way to select a subset of n ele-

ments. Therefore,
(:) =1forallne N.

Also, there is only one way to construct a subset with zero elements. Therefore,

(3) =1forallne N.
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In particular, there is only one 0-element subset of J—the empty set itself. Thus

(0

Example. The set A= {a, b, c, d} has four subsets with one element and four sub-
sets with three elements. A has six subsets with two elements. They are {a, b}, {a, ¢},

{a, d}, {b, c}, {b, d}, and {c, d}. Thus, (i) =4, (g) =6, and (: =4,

The next theorem develops a simple calculation for binomial coefficients. The
proof is a good example of a technique called two-way counting, in which expres-
sions for a given quantity are determined using two different counting approaches,
thereby creating an equality.

Theorem 2.6.8 The Combination Rule
Let n be a positive integer and r be an integer such that 0 < r < n. Then

()7

Proof. (The quantity we count in two different ways is the number of ways to
arrange the n objects in an n-element set.) Let A be a set with n elements. By
Theorem 2.6.6, the number of permutations of all n objects in Ais n!

The nelements of the set A may also be arranged as follows: Select r objects,
order them, and then order the remaining n — r objects. Selecting r objects can be

n
done in (r) ways; ordering the r objects can be done in r! ways; and ordering

the remaining n — r objects can be done in (n — r)! ways. Thus, the number of
. . ... (n
permutations of all n objects in Ais (r - (n—r)h
Comparing the two methods for counting the number of permutations of the

I
elements of A, we have (n) crl-(n—=r)l=nl. Therefore(n) = L.
r r ri(n —r)!

Example. Inacompany with 15 employees, suppose 5 are selected for bonus pay.
The number of ways the 5 employees could be selected is

= 3003.

(15)_ 15!  15.14.13.12-11
5) 51100 5.4.3.2-1

For this calculation, we assumed that all 5 employees will receive the same bonus
amount, so that there is no need to think of the 5 employees as being selected in any
order. They may be selected simultaneously as a subset of the 15.

If the 5 selected employees are to get different bonus amounts, we need to
arrange these employees in order. There are 5! ways to order 5 employees. Thus the
number of ways to give 5 different bonuses is the number of combinations times the
number of permutations within each combination, or 3003(5!) = 360,360.
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If we know from the start that there will be five different bonus amounts, we
use the Permutation Rule to conclude that the five employees can be selected, in
order,in15-14-13 .12 - 11 = 360,360 ways.

Example. Let A=4{2, 3,6, 18, 38, 81, 442, 469, 574, 608}. In how many ways
can four elements of A be selected so that their sum is (a) less than 400? (b) odd?
(c) even and less than 400?
(@  For the sum to be less than 400, we can choose any four of the six elements
. . (6

of Athat are less than 100. This can be done in (4) = 15 ways.

(b)  There are three odd numbers in A, so for the sum to be odd we must select
. . 3
either all three of them or exactly one. There is only 3)= 1 way to

7
choose all three of them, and then <1> =7 ways to choose the fourth

summand from the seven even numbers. By the Product Rule there are
1.7 =7 combinations using all three odd numbers. To form an odd sum

3
with only one odd summand, there are 1)= 3 ways to choose the odd

7
number and <3> = 35 ways to choose three even numbers from A. By the

Product Rule there are 3 - 35 = 105 combinations involving one odd num-
ber. Thus there are 7 + 105 =112 combinations of four elements of A
whose sum is odd.

(c)  Acontains two odd numbers less than 400; for an even sum we must use both

. 2\/( 4
of them or neither. There are <2>( 2> = 1.6 = 6 ways to choose two odd

2\/4
and two even numbers and oNa)= 1.1 =1 way to choose four even

numbers less than 400. Thus, there are seven combinations whose sum is
even and less than 400. As an alternative, we could compute that an odd sum
less than 400 requires one of two odd elements of A and three of the four
4

3
leaves 7 of the 15 sums that are even.

2
even elements. There are (1> . ( ) = 2 - 4 = 8 such combinations, which

The next theorem describes some relationships among binomial coefficients.
First, part (a) explains why (r) is called a binomial coefficient: The coefficient

n
of a"b" " in the expansion of (a+b)" is <r> For example, (a+ b)® =
a® + 5a*b + 10a°b? + 10a%b® + 5ab* + b®. Thus, the coefficient of a%b? is
5 5
<3) =10, and the coefficient of alb* is (l) =5.

Part (b) tells us that there are as many ways to choose r objects out of a set with
n elements as there are ways to choose n — r objects from the set. This must be true
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because choosing r elements to take out is the same as choosing n — r objects to
leave behind. We will consider an interpretation of part (c) at the end of this section.

Relationships among binomial coefficients can often be proved either alge-
braically or combinatorially. An algebraic proof is one that applies formulas such as
those in Theorem 2.6.8. Combinatorial proofs are based on the meaning of the bino-
mial coefficients. In Theorem 2.6.9, we give a combinatorial proof for part (a) and
an algebraic proof for part (b).

Theorem 2.6.9 Let n be a positive integer and r be an integer such that 0 < r < n.

(@ ForabeR, (a+b"= i (?)a’b“'.

o O-(,")
@ ()=(" ) (I =

Proof.
(@ Since(@a+b)"=(a+ b)(a+ b)...(a+ b), each term of the expansion
n factors

of (a+ b)" contains one term from each of the n factors (a + b). Thus,
each term of (a + b)" contains a total of n a’s and b’s and, therefore, each
term includes a factor of the form a'b"~' for some 0 < r < n. For a given
r, the coefficient of a"b"~" is the number of times a"b" " is obtained in the
expansion of (a+ b)". Since the term with a"b"~" is obtained by choosing

a from exactly r of the factors (a + b), the coefficient for a’b"~" is (r:)

n n! n! n
(b) (r)z nMn—n! — (n—n{n—(n—n) :(n—r>'
(c)  See Exercise 21. [

Part (a) of Theorem 2.6.8 provides another way to count the number of subsets of
. . n
a finite set. If a set A has n elements, we start with o) the number of 0-element

n
subsets of A, plus < 1), the number of 1-element subsets of A, and so on, up through

n n/n
(n)’ the number of n-element subsets of A. The sum, Y (r) is the number of
r=0

0. /n 0. /n
subsets of A. By part (), 2"= (1 + 1)"= Y _ (r)lrlr‘r =) (r ) Therefore, A
r=0 r=0
has 2" subsets.
To explain the relationship among coefficients in part (c) of Theorem 2.6.9, we
refer to Pascal’s” triangle, shown in Figure 2.6.3. The triangle provides a simple

* Blaise Pascal (1623-1662) was a French mathematician, physicist, and philosopher. He made pro-
found contributions to projective geometry. He used the triangle, which was known centuries earlier by
Chinese, Indian, and Arabian mathematicians, to advance the study of probability.
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means for computing binomial coefficients. For example, we read on row n=4

(rows are labeled on the left) the coefficients for a"b"", for r increasing from 0 to
4. Thus

(a+ b)* = 1a* + 4a%b + 6a?b? + 4ab® + 1b*.

Q
Va
n=0 1 ) s>
n= 1 1 \ //%
1 2 1 ) /(b
n= 7
s ™
n= 1 3 3 1 7
“
n=4 1 4 6 4 1 J
©
n= 1 5 10 10 5 1 e
n=6 1 6 15 20 15 6 1
Figure 2.6.3

Pascal’s triangle illustrates part (c) of Theorem 2.6.9. The triangle is con-
structed by beginning with the first two rows

1
1 1

and constructing the next row by putting 1 on the far left and far right. All other
entries in a row are found by adding the two entries immediately to the left and right
in the preceding row. Thus, the first 10 in the fifth row is the sum of 4 and 6 from
the fourth row. Part (c) of Theorem 2.6.9 tells precisely how each entry in one row
of the triangle is formed from the two entries in the row above.

Exercises 2.6

1. Find the number of elements in each set.

(@ {neZ: nr* <41} (b) {2,6,2,6,2}
(© {xeR:x?=-1}. (d) {neN:n+1=4n-10}.
2. Suppose A=24, B=21, AUB=37, AnNC=11, B—C=10, and
C — B=12. Find
(@ ANB. * (b)) A—B
(© B-A (d BUC
(e C. (f) AUC.

3. How many natural numbers less than or equal to 1 million are either squares
or cubes of natural numbers?
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4. Of the four teams in a softball league, one team has four pitchers and the other
teams have three each. Give the counting rules that apply to determine each of
the following.

(@ The number of possible selections of pitchers for an all-star team, if
exactly four pitchers are to be chosen.

(b) The number of possible selections if one pitcher is to be chosen from
each team.

() The number of possible selections of four pitchers, if exactly two of the
five left-handed pitchers in the league must be selected.

(d) The number of possible orders in which the four pitchers, once they are
selected, can appear (one at a time) in the all-star game.

5. State the Principle of Inclusion and Exclusion for four sets, A, B, C,
and D.

6. Among the 40 campers at Camp Forlorn one week, 14 fell into the lake during
the week, 13 suffered from poison ivy, and 16 got lost trying to find the dining
hall. Three of these campers had poison ivy rash and fell into the lake, 5 fell
into the lake and got lost, 8 had poison ivy and got lost, and 2 experienced all
three misfortunes. How many campers got through the week without any of
these mishaps?

7. (&) Ifyou have 10 left shoes and 9 right shoes and do not care whether they
match, how many “pairs” of shoes can you select?

(b) Acafeteria has 3 entrée selections, 2 side dishes, and 4 dessert selections
for a given meal. If a meal consists of one entrée, one side dish, and one
dessert, how many different meals could be constructed?

(c) There are 3 roads from Abbottville to Bakerstown, 4 roads from Baker-
stown to Cadez, and 5 roads from Cadez to Detour Village. How many
different routes are there from Abbottville through Bakerstown and then
Cadez to Detour Village?

8. Calculate the number of even three-digit positive integers with no repeated
digits by finding the number of such integers that have (a) units digit 0 and (b)
nonzero units digit. Verify your answer by comparing the number of odd
three-digit positive integers with no repeated digits with the total number of
three-digit positive integers with no repeated digits.

9. (a) Find the number of four-digit positive integers with no repeated digits.

(b) Find the number of odd four-digit positive integers with no repeated digits.

(c) Without using your results from (a) and (b), find the number of even
four-digit positive integers with no repeated digits.

* 10. A square is bisected vertically and horizontally into 4 smaller squares, and

each of the 4 smaller squares is to be painted so that adjacent squares have dif-
ferent colors. If there are 20 paints available, in how many ways can the 4
smaller squares be painted?

11. Prove that if A and B are disjoint and C is any other set, then
AUBUC=A+B+C—-ANnC-BNC.

12. Prove Theorem 2.6.5 by induction on the number of sets.

13. Prove Theorem 2.6.6 by induction on the number of elements.
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14. Prove Theorem 2.6.7.
(@) by using the Product Rule.
(b) by induction on n. Use part (c) of Theorem 2.6.9.

15. Find the number of passwords that use each of the digits 3, 4, 5, 6, 7, 8, 9
exactly once.

16. In how many of the passwords of Exercise 15
(a) are the first three digits even?
(b) are the three even digits consecutive?
(c) are the four odd digits consecutive?
(d) are no two odd digits consecutive?

17. The number of four-digit numbers that can be formed using exactly the digits
1, 3, 3, 7 is less than 4!, because the two 3’s are indistinguishable. Prove that
the number of permutations of n objects, m of which are alike, is n!/m!. Gen-
eralize to the case when my are alike and my, others are alike.

18. Among ten lottery finalists, four will be selected to win individual amounts of
$1000, $2000, $5000, and $10,000. In how many ways can the money be
distributed?

19. A vacationer is selecting 3 out of 19 recommended books to take along for
reading at the beach. Eleven are fiction books.
(@) How many selections are possible?
(b) How many of these selections have exactly 2 of the 11 fiction books?
(c) How many of these selections have exactly one fiction book?

20. Among 14 astronauts training for a Mars landing, 5 have advanced train-
ing in exobiology. If 4 astronauts are to be selected for a mission, how
many selections can be made in which 2 astronauts have expertise in
exobiology?

21. Prove these parts of Theorem 2.6.9 as follows:
(@) Prove part (a) by induction on n.
(b) Prove part (c) algebraically.

* (c) Prove part (c) using a combinatorial argument.

22. Find
(@ (a+b)t
(b) (a+2b)4
(c) the coefficient of a®b'® in the expansion of (a + b)*2.
(d) the coefficient of a?b'® in the expansion of (a + 2b)*2.

23. (a) Giveacombinatorial proof that if nis an odd integer, then the number of
ways to select an even number of objects from a set of n objects is equal
to the number of ways to select an odd number of objects.

(b) Give a combinatorial proof of Vandermonde’s identity: For positive
integers mand n, and r an integer suchthat 0 <r < n+m,

(-G () (0
e ()
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(c) Prove that
<2n>+< 2n >:1<2n+2>
n n+1 2\n+1
Proofsto Grade 24. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

"4 n n’—n
(@ Claim. ForallnzO,T—i_:n-i- 5

“Proof.” Consider a set of n 4+ 1 elements, and let one of these elements

n+1>_n2+n

be x. There are(n )= ways to choose n — 1 of these elements.

n
Of these, there are( 1) =n ways to choose the n — 1 elements

. . n "’ —n
without choosing x, and (n 2) == ways to choose n — 1 ele-

24+n N —n

n
ments including x. Therefore, T+ =n+ 5 |

(b) Claim. Forn>1,

(3) - (2) * (2) —"'+(—1)k(’|:) R (—D”(E) 0.

“Proof.”

0= (-1+17= 3 (1) (-

()0 ()l

(c) Claim. For n> 1, the number of ways to select an even number of
objects from n is equal to the number of ways to select an odd number.
“Proof.” From part (b) of this exercise (The claim made there is
correct.), we have that

()@ -0+

The left side of this equality gives the number of ways to select an even
number of objects from n and the right side is the number of ways to
select an odd number. [ |
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CHAPTER 3

Relations and Partitions

Given a set of objects, we may want to say that certain pairs of objects are related
in some way. For example, we may say that two people are related if they have the
same citizenship or the same blood type, or if they like the same kinds of food. If a
and b are integers, we might say that aisrelated to b when a dividesb. In this chap-
ter we will study the idea of “isrelated to” by making precise the notion of arela-
tion and then concentrating on certain relations called equivalence relations. The
last two sections of the chapter introduce order relations and the theory of graphs.

3.1 Cartesian Products and Relations

When we speak of arelation on a set, weidentify the notion of “aisrelated to b” with
the ordered pair (a, b). For the set of all people, if Phoebe and Monica were born on
the same day of the year, then the pair (Phoebe, Monica) is in the relation “has the
same birthday as” Thus a relation may be defined ssimply as a set of ordered pairs.

DEFINITIONS LetAandBbesets Risareationfrom AtoB iff Ris
asubset of A x B. A relation from Ato Aiscalled arelation on A.

If (&, b) € R, wewriteaRband say aisR-related (or smply related)
tob. If (a, b) ¢ R, wewritea R b.

Examples. 1fA={—-1,2 3,4} andB={1,2, 4,5, 6}, let

R= {(_11 5)’ (21 4)! (21 1)1 (41 2)}1
S={(52),(4,3),(1,3)}, and
T={(-123), (2 3), (4, 4)}.

Then Risarelation from Ato B, Sisarelation from Bto Aandtheset Tisarela
tion on A.

135
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We could describe the relation R by writing —1 R5, 2R 4, 2R 1, and 4R 2.
Since (3, 5) ¢ R, wewrite 3 R 5. We can also describe R by listing the pairsof Rina
two-column table, by displaying the relation with an arrow diagram, or by drawing the
graph of Rasin Figure 3.1.1.

A
6 1-
e 5.
-11|5 N 4 °
214 \ % 31
N7
211 " 21 °
4|2 14- °
—————+—>
-1 2 3 4
(a) Tablefor R (b) Arrow diagram for R (c) Graph of R

Figure 3.1.1

An equation, inequality, expression, or graph is often used to describe arelation,
especialy when listing al pairsisimpractical or impossible. For example, the rela-
tion LT={(x,y) € R x R: x <y} is the familiar “less than” relation on R, since
X LTyiff x <y. Thegraph of LT is shown (shaded) in Figure 3.1.2.

AY

x<y

Figure 3.1.2

You have worked with the graphs of relations in previous courses, because, as
we will seein Chapter 4, functions are relations that satisfy an additional condition.

Example. The phone faceplate pictured on the next page may be used to define a
relation from the set of digits A ={0,1,2,...,9} to the set of 26 letters
I'={A,B, C, ...}. Therelation R defined by “appear on the same phone button” is
asubset of A x I" containing 24 pairs. The pair (4, G) € Rsince4 and G appear on
the same button. Likewise, ORY and 6 RM aretrue. (3, T) ¢ Rsince3 and T do
not appear together. Also 1 RE and 4 R P are true.
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ABC DEF
1 2 3
GHI JKL MNO
4 5 6
PRS TUV WXY
7 8 9
* 0 #

N 7

Consider the relation S on the set N x N given by (m,n) S(k, j) iff
M+ n=Kk+j. Then (3, 17) S(12, 8), but (5, 4) is not Srelated to (6, 15). Notice
that Sis arelation from N x N to N x N and consists of ordered pairs whose
entries are themselves ordered pairs. For thisreason, the description aboveis some-
what simpler than defining Swith set notation:

S={((mn), (k) e(N xN)x(NxN):m+n=k+j}.

The empty set J and the set A x B are relations from A to B. In general,
there are many different relations from a set A to a set B because every subset of
A x Bisarelation from A to B. In Exercise 12 you are asked to prove that if A
has m elements and B has n elements, then there are 2™ different relations from
AtoB.

DEFINITIONS Thedomain of therelation R from Ato B isthe set
Dom (R) = {x € A: thereexistsy € B such that x Ry}.
Therange of therelation Ris the set
Rng (R) ={y € B: there exists x € A such that x Ry} .

Thus the domain of R is the set of all first coordinates of ordered pairsin R, and
the range of Risthe set of all second coordinates. By definition, Dom (R) € A and
Rng (R) € B.

For the relation R={(-1,5), (2, 4),(2, 1), (4,2}, Dom(R) ={-1, 2,4}
and Rng (R) ={1, 2, 4, 5}. For therelation LT on R, where x LT y iff X <y, both
the domain and range are R. For the relation defined by “ appears on same phone but-
ton,” thedomainis{2, 3,4, 5, 6, 7, 8, 9} and therange isthe set of all capital letters
except Q and Z.

Every set of ordered pairsisa relation. If M is any set of ordered pairs, then M
isarelation from A to B, where A and B are any sets for which Dom (M) € A and
Rng (M) C B.
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2 2
Example. LetS= {(x, yeR x R: &"’é < 1}. The graph of Sisthe shaded

areain Figure 3.1.3. Thedomain is[—18, 18] and therangeis[—8, 8].

y
8

48&_/18 B
|

-8
\

| Dom(S) = [-18,18] |

Figure 3.1.3

We can use a directed graph or digraph to represent arelation R on a small
finite set A. We think of the objectsin A as points (called vertices) and the relation
R as telling us which vertices are connected by arcs. Arcs are drawn as arrows:
Thereisan arc from vertex ato vertex b iff (a, b) € R Anarcfrom avertex to itself
iscalled aloop. For example, let A = {2, 5, 6, 12} and R= {(6, 12), (2, 6), (2, 12),
(6, 6), (12, 2)}. Thedigraph for Risgivenin Figure 3.1.4.

The digraph of therelation “divides” on the set {3, 6, 9, 12} hasaloop at each
vertex, as shown in Figure 3.1.5.

DEFINITION  For any set A, the relation I = {(X, X): x € A} is caled
the identity relation on A.

For A={1,2a b}, 1a={(1 1), (2 2),(a a), (b, b)}. Clearly, for any set A,
Dom (1) = A and Rng (1) = A. The graph of the identity relation on [—2, co) is
shown in Figure 3.1.6.

y
3
3 ,
6 2 2, )
2 1=
o5
L1 L1 1,y
-2 -1 1 2 3
9 12 1
. 2 () Sl
Figure 3.1.4 Figure 3.1.5 Figure 3.1.6
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The remainder of this section is devoted to methods of constructing new rela-
tions from given relations. These ideas are important in the study of relations, and
will be used again when we study functions.

Sincerelations from set A to set B are subsets of A x B, the union and intersec-
tion of two relations from A to B are again relations from A to B.

Example. Let X=[2,4] and Y= (1, 3) U {4}. Let Sbetherelation on R defined
by xSy iff xe X, and let T be the relation on R defined by x Ty iff ye Y. The
graphsof Sand T aregiven in Figures 3.1.7(a) and (b). Figure 3.1.7(c) showsthe graph
of SNT. Notethat S=Xx R, T=R x Y, and SNT= X x Y. Figure 3.1.7(d)
showsthegraphof SUT.

| \ L,y T R B R L X TR T X
_1k1 3|5 12345 _1k1 345 N 3|5
-2 -2+ -2 -2

@S (b) T ©SnT (dSuT
Figure 3.1.7

DEFINITION If Risarelation from Ato B, then theinver se of Risthe
relation

R ={(y.x: (xy) eR}.

Since inversion is a matter of switching the order of each pair in arelation, if
Risarelation from Ato B, then R-* isarelation from B to A.

Examples. The inverse of the relation R={(1, b), (1, ¢), (2, ¢)} is the relation
R1={(b, 1), (c, 1), (c, 2)}. For any set A, theinverse of |, is |, itself. For the real
numbers, theinverse of the “lessthan” relation LT = { (X, y) € R x R: x < y} isthe
“greater than” relation on R because

(x,y) € LTLiff (y,x) elLT
iff y<x
iff x>vy.

In case Risarelation on A, the digraph of R~ is obtained from the digraph of
R by copying all the loops and arcs, but reversing the direction of the arrows for
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arcs. Figure 3.1.8 shows the digraphs of R and R~1, where R is the relation € on
the set {<J, {1}, {3}, {1, 2}}.

aaf) waf )
O

{1 {3 {1 {3

: O
(@c (b)yct
Figure 3.1.8

Example. Let EXPbetherelationon R givenby x EXPy iff y = e*. Theinverse of
EXP is given by x EXPlyiff x=¢&’. We know that x = €' iff y = Inxiff xIny,
where In is the naturd logarithm. Thus, the inverse of EXP is the relation In. The
familiar graphs of EXP and In are givenin Figure 3.1.9.

y

N W A~ OO N

()

. 1 2 3 4 5 6 7 8
\ L1 1y 1 1
2 -1 1 2 3 (g'_l)

(a) x EXPy: y=¢eX (b) In=EXPLy=Inx
Figure 3.1.9

In the previous example, Dom (EXP) = R and Rng (EXP) = (0, c0), while
Dom (In) = (0, oo) and Rng(In) = R. The next theorem says that this switch of the
domain and range of a relation to the range and domain of inverse relation aways
happens.

Theorem 3.1.2 Let Rbearelation from A to B.

(@ Dom(R1)=Rng(R).
() Rng (R 1) =Dom(R).
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Proof.

(@) beDom(R™1)iff there exists a € A such that (b, @) € R1 iff there exists
ae Asuchthat (a, b) € Riff b e Rng (R).
(b)  The proof is similar to the proof for part (a). ]

Given arelation from A to B and another from B to C, composition is a method
of constructing arelation from Ato C.

DEFINITION Let Rbearelation from A to B, and let She arelation
from B to C. The composite of Rand Sis

SoR={(a, ¢): thereexistsb € Bsuchthat (a,b) e Rand (b, c) € §.

Therelation So RisarelationfromAtoCsinceSo RC A x C. Itisalwaystrue
that Dom (So R) € Dom (R) but it is not aways true that Dom (SoR) =
Dom (R). (See Exercise9.)

We have adopted the right-to-left notation for So R that is commonly used in
analysis courses. To determine So R, you need to remember that R is the relation
from thefirst set to the second and Sis the relation from the second set to the third.
Thus, to determine So R, we apply the relation Rfirst and then S,

Example. LetA={1,23,4,5,andB={p,q,r,s t},andC={x,y, z, w}. Let
R be the relation from A to B:

R={(1p).(10q).(20.@Gr) (49}

and Stherelation from B to C:

S={(p. %), (@ %). (a.y). (s 2, (t. )}

Figure 3.1.10

These relations are illustrated in Figure 3.1.10 by arrows from one set to another.
An element a from A is related to an element ¢ from C under So R if there is
at least one “intermediate” element b of B such that (a,b) e R and (b,c) € S
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For example, since (1,p) e R and (p, X) € S then (1, x) € So R By following
al possible paths along the arrows from A to B and B to C in Figure 3.1.10, we
have

SoR= {(11 X)! (11 y)v (2! X)! (2! y)! (41 Z)} .

If Risarelation from A to B, and Sis arelation from B to A, then Ro Sand
So R are both defined, but you should not expect that Ro S= So R. Even when
R and Sare relations on the same set, it may happenthat Ro S# So R,

Example. LetR={(x,y)e RxR:y=x+1} andS={(x,y) eR x R:y =x%.
Then

RoS={(x,y): (X, 2 € Sand (z,y) € Rfor somez e R}
={(x,y): z=x%?andy = z+ 1 for someze R}
={(xy):y=x2+1}.

SoR={(Xy): (X,2 € Rand (z, y) € Sfor somez e R}
={(xy):z=x+landy = 7’ for somez e R}
={(xy):y=(x+1)?%}.

Clearly, Soc R# Ro S since x? + 1 is seldom equal to (x + 1)2.

The last theorem of this section presents several results about inversion, com-
position, and the identity relation. We prove part (b) and the first part of (c), leaving
the rest as Exercise 10.

Theorem 3.1.3 Suppose A, B, C, and D are sets. Let Rbearelation from Ato B, Sbearelation from
Bto C, and T be arelation from C to D.

@ RYHY =R

(b) To(SoR)=(To 9 oR,socomposition is associative.
(C) lgcR=RandRolp=R

(d (SeR1t=R1lost

Proof.

(b) Thepair (x,w) € To (So R) for somexe Aandw € D
iff (3ze C)[(x,2) € So Rand (z, w) € T]
iff (3ze C)[(AyeB)((x,y) e Rand (y,2 € § and (z, w) € T]
iff (3ze C)(Iy e B)[(x,y) e Rand (y, 2) € Sand (z, w) € T]
iff (y e B)(3ze C)[(x,y) e Rand (y, 2) € Sand (z, w) € T]
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iff (3yeB)[(x,y) e Rand(3ze C)((y,2) € Sand (z, w) € T)]

iff (3yeB)[(x,y) e Rand (y,w) e To §]

iff x,wWe(To9oR
Therefore, To (SocR) = (To§oR

(©0  (Wefirst show that Igo RC R.) Suppose (X, y) € Ig © R. Then there exists

ze B such that (x,2 eR and (z,y) € lg. Since (z,y) €lg,z=Yy. Thus
(X, y) € R(since(x,y) = (X, 2 € R).
Conversely, suppose (p, q) € R. Then (g, g) € Ig and thus (p,g) € Ig° R
ThuslgoR=R. u

The storage and manipulation of datain tables (n-tuple relations) is an important
field of computer science called relational databases. Operations such as union and
composition for ordered pairs may be extended to operations on n-tuples. One gen-
eralization of composition in relational databasesisthe “join” of two tables.

Example. Suppose the student information at a small university includes both
directory information and billing information. We let A be the set of first names, B
be last names, C be 4-digit student ID numbers, D be names of campus residence
halls, E be residence hall room numbers, F be tuition amounts due, and G be room
charges due.

The student records in the directory may be described in atable R:

R (directory)
First Name Last Name Student ID Residence Hall Room Number
Krista Maire 1234 Orlando 7
Harold Dorman 2490 Mountain 455
Ferlin Husky 5555 Dove 213A
Martha Reeves 3215 Vandella 238
Kim Anen 6920 Bowie 1979

The directory relation R is a subset of A x B x C x D x E consisting of five
5-tuples. The 5-tuple (Krista, Maire, 1234, Orlando, 77) is one student record in the
directory R.

The financial information relation Sisasubset of C x F x G:

S(financial)
Student ID Tuition Room Charges
1234 $80 $40
2490 $150 $20
5555 $75 $25
3215 $0 $0
6920 $0 $60
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The join of these two tables, denoted R® S is a table with 7 columns. The
rows of the table are obtained by merging 5-tuples from R and 3-tuples from Sthat
share acommon ID number:

R®S
First Last Student Residence Room Room
Name Name ID Hall Number Tuition Charges
Krista Maire 1234 Orlando 77 $80 $40
Harold Dorman 2490 Mountain 455 $150 $20
Ferlin Husky 5555 Dove 213A $75 $25
Martha Reeves 3215 Vandella 238 $0 $0
Kim Anen 6920 Bowie 1979 $0 $60

The join operation is one of several database operations that allow a manager
to create tables in response to requests for information (queries). There are many
advantages to storing datain simpletableslike Rand S, but requests such as“What
is the room charge for Harold Dorman?’ cannot be answered using either of the
tables by itself.

Exercises 3.1

1. Let T be the relation {(3, 1), (2, 3), (3,5), (2, 2), (1, 6), (2, 6), (L, 2)}. Find

(@ Dom(T). (b) Rng(T).

© T @d (TH
2. Find the domain and range for the relation Won R given by x Wy iff
* (@) y=2x+1. (b) y=x?>+3.

1

* (0 y=+vx-1 @ y=2
*x () y<xx (f) x| <2andy=3.

(@ Ix] <2o0ry=3. (h) y#x

3. Sketch the graph of each relation in Exercise 2.

4, Theinverse of R={(X,y) e R x R: y=2x+ 1} may be expressed in the
fomR1= {(x, y)eR x R: y=>(;1},thesetofall pairs (X, y) subject to
some condition. Use this form to give the inverses of the following relations.
In (i), (j), and (k), P isthe set of al people.

* (@ Ri={(xy)eRxRy=x
b)) R={XYy)eR xR y=-5x+2}

* () Re={(x,y)eR x R:y=7x— 10}

(d) Re={(xyY)eRxRy=x?>+2}
* (6 Re={(xy)eR xR y=—4x?+ 5}

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



3.1 Cartesian Products and Relations 145

f Re={(x,y)eR xR:y<x+ 1}
* (@) Ri={(xy)eRxR:y>3x—4}
(h) Rgz{(x,y)e[R{x[R:yzx?(z}
* () Rg={(xy) € P x P:yisthefather of x}
(j) Rwo={(xy) € P x P:yisasibling of x}
(k) Ru={(xy) eP x P:ylovesx}
5 Let R={(1,5),(2,2),(3,4),(5,2},S={(24),(3,4),(3,12),(55)}, ad
T={(1,4),(3,5), (4, 1)}. Find

(@ RoS. * (b) RoT.
(c) ToS * (d) RoR
(e SoR (f) ToT.
(9) Ro(SoT). (hy (RoS)oT.
6. Find these composites for the relations defined in Exercise 4.
* (@ RioRy (b) Ri°R,
(0 RoR * (d) RoRs
(6 ReoRy () RioR
* (9) RuoRs (h) ReoRe
(i) ReoRa * (j) Re°Re
(k) RroRy () RsoRs
(m) RsoRg * (n) RsoRg
(0) RsoRs (P) Ro°Rg
7. Givethedigraphsfor theserelationson the set {1, 2, 3}.
@ = (b) S={(1,3),(2 1)}
(o < (d)y S whereS={(1,3), (2, 1)}
8. Let A={a,b,c,d}. Give an example of relations R, S, and T on A such that
(8@ RoS#SoR (b) (SocR)1#AS1oR™L

(0 SoR=ToRbutS#T.
(d) RandSarenonempty, and Ro Sand So Rare empty.

9. LetRbearelation from Ato B and She arelation from B to C.
(@) Provethat Dom (So R) € Dom (R).
(b) Show by example that Dom (So R) = Dom (R) may be false.
() Which of these two statements must be true:

Rng(S) C Rng(SoR) or Rng(SoR) C Rng(S)?

Give an example to show that the other statement may be false.
10. Complete the proof of Theorem 3.1.3.
11. Show by examplethat (A x B) x C= A x (B x C) may befalse.

12. Prove that if A has m elements and B has n elements, then there are 2™
different relations from A to B.
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13. (@) LetRbearelationfrom AtoB. For a € A, definethe vertical section of
RatatobeR,={yc B:(a y) € R}. Provetha | JR,= Rng (R).

A
(b) LetRbearelationfrom AtoB. Fora e A, defi ne?he horizontal section
of Rat btobepR={x € A: (x, b) € R}. Provethat | J,R= Dom (R).

beB
14. We may define ordered triples in terms of ordered pairs by saying that
(a, b, ¢) = ((a, b), ). Use this definition to prove that (a, b, ¢) = (X, Y, 2) iff
a=xandb=yandc=2z

Proofsto Grade 15. Assignagradeof A (correct), C (partialy correct), or F (failure) to each. Justify
assignments of grades other than A.
* (@) Clam. (AxB)UC=(AxC)U(BxC).
“Proof” xe(AxB)UC
iff xe AxBorxeC
iff xe Aandxe Borxe C
iff xe AxCorxeBxC
iff xe (Ax C)U(Bx C). u
* (b) Clam. IfACBandCcCD,thenAx CC B x D.
“Proof” Suppose A x C ¢ B x D. Then there exists (a,c) e Ax C
with (a,¢) ¢ B x D. But (a,¢) € A x C impliesthat a A and c e C,
whereas (a, c) ¢ B x D impliesthat a ¢ B and ¢ ¢ D. However, AC B
and CC D, so ae B and ce D. This is a contradiction. Therefore,
Ax CCBxD. [
(c) Claim. IfAxB=AxCandA+#J,thenB=_C.
“Proof.” Suppose A x B=A x C. Then

A x B_Ax C
A A
Therefore B = C. ]

* (d) Claim. IfAxB=AxCandA+#J,thenB=_C.
“Proof” To show B=C, suppose beB. Choose any aeA.
Then (a,b) e Ax B. But since Ax B=Ax C, (a,b) e Ax C. Thus
be C. This proves BC C. A proof of CC B is similar. Therefore,
B=_C. =
(e) Claim. Let Rand Sberelationsfrom Ato B and from B to C, respec-
tively. ThenSo R= (Ro S)~%
“Proof” Thepair (x,y) € So Riff (y,X) eRo Siff (x,y)e (RoS)™*
Therefore, So R= (Ro S)~L. n
(f) Claim. LetRbearelationfromAtoB. TheniaC RtoR.
“Proof.”  Suppose (x, X) € Ia. Choose any y € B such that (x,y) € R
Then, (y,X) € R°L Thus (x, X) € R"1o R Therefore, I,.C R 1oR =
(g) Claim. SupposeRisarelationfromAtoB. ThenRtoRC I
“Proof” Let (x,y) € R"*o R Then for some ze B, (x,2 €R and
(zy) e RL.Thus(y, 2 € R Since(x, 2 € Rand(y, 2 € R, x=Yy. Thus
X y) =X and xe A, s0(X,Y) € la. =
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3.2 Equivalence Relations

The goal of this section is to describe a way to equate objects in a set according
to some value, property, or meaning. We might say that among all students who
completed a certain math class, students are equivalent if they had the same
numeric score on the final exam. With this meaning of equivalence, a student
with ascore of 87 on the final exam isrelated to every other student with a score
of 87 and not related to any other student. We could aso have said that two stu-
dents are equivalent if they have the same favorite movie, or if they have the
same blood type.

The three properties we define next, when taken together, comprise what we
mean by objects being equivalent.

DEFINITIONS Let Abeaset and Rbearelation on A.

Risreflexiveon A iff for all xe A, xRx.
Rissymmetriciff for al xandy € A, if xRy, theny Rx.
Ristransitiveiff foral x,y,andze A, if xRyandy Rz thenx Rz

The relation R, defined as * had the same final exam score,” on the set C of all
studentsin agiven class has all three of these properties. Ris symmetric because if
student x had the same score as student y, then student y must have had the same
score as student x. Ristrangitive because if student x had the same score as student
y and student y had the same score as student z, then x had the same score as z
Finaly, for every student x in C, x must have had the same score as x. Thus R is
reflexive on C.

To prove that arelation R is symmetric or transitive, we usually give a direct
proof, because these properties are defined by conditional sentences. A proof that
R is reflexive on A is different. What we must do is show that for all x € A, x is
R-related to x.

For a relation R on a nonempty set A, only the reflexive property actually
asserts that some ordered pairs belong to R. The empty relation (J is not reflexive
on aset A except in the special case when A isthe empty set. The empty relation &
is, however, symmetric and transitive for any set A. See Exercise 4. For each of the
three propertiesthereis an alternate condition (involving the identity relation or the
operations of inversion or composition) that may be used to provethat arelation has
or does not have that property. See Exercise 13.

To prove that arelation R on a set A is not reflexive on A, we must show that
there exists some x € A such that x R x. Since the denial of “If x Ry theny RX" is
“XxRyandnotyRxX,” arelation Risnot symmetric iff thereareelementsxandyin
Asuch that x Ry and y R x. Likewise, Ris not transitive iff there exist elements x,
y,andzin Asuchthat x Ryandy Rzbut x Rz
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Examples. For B={2,56,7}, let S={(2,5),(5,6),(2,6),(7,7)} and T=
{(2,6), (5 6)}.Since6 g6 and 2 I 2, neither Snor T isreflexive on B. Therelation
Sis not symmetric because 2 S5, but 5 2. Likewise, T is not symmetric because
5T6but6F5.

Both Sand T are transitive relations. To verify that Sis transitive we check all
pairs (x, y) in Swith al pairs of theform (y, 2). We have (2, 5) and (5, 6) in S sowe
must have (2, 6); we have (7, 7) and (7, 7) in Sso we must have (7, 7). Therelation
Tistransitive for adifferent reason: there do not exist X, y, zin B such that x T y and
y T z. Because its antecedent is false, the conditional sentence “If x Tyandy T z,
thenx T Z" istrue.

Example. Let Rbetherelation “isasubset of” on %(Z), the power set of Z. Ris
reflexive on %(Z) since every set is a subset of itself. Ris transitive by Theorem
2.1.1(c). Noticethat {1, 2} <{1,2,3} but {1,2,3} ¢ {1, 2}. Therefore, Ris not
symmetric.

Example. Let STNR designatetherelation{(x,y) € Z x Z: xy > 0} on Z. Inthis
example, X STNR x for al xin Z except the integer 0; hence the relation STNR is
not reflexive on Z. STNR is symmetric since, if x and y are integers and xy > 0,
then yx > 0. STNR is aso transitive. To verify this, we assume that x STNR y and
y STNR z Then xy > 0 and yz > 0. If y is positive, then both x and z are positive;
so xz > 0. If y is negative, then both x and z are negative; so xz > 0. Thusin either
case, X STNR z Thisrelation getsits name from the fact that it is symmetric, tran-
sitive, and not reflexive on Z.

For arelation R on a set A, the properties of reflexivity on A, symmetry, and
transitivity can also be characterized by propertiesin the digraph of R:

Risreflexive on A iff every vertex of the digraph has aloop.
Rissymmetric iff between any two vertices there are either no edges or
an edge in both directions.

Ristransitive iff whenever there is an edge from vertex xto y and an
edge from vertex y to z, there is an edge (a direct route) from x to z.

Examples. Figure 3.2.1 shows the digraphs of three relations on A= {2, 3, 6}.
Figure 3.2.1(a) is the digraph of the relation “divides’ and Figure 3.2.1(b) is the
digraph of “>." Figure 3.2.1(c) is the digraph of the relation S where x Sy iff
X+y>T7.

Thereisaloop at every vertex in Figure 3.2.1(a) because therelation “ divides”
isreflexive: Every integer dividesitself. Therelations“ >" and Sare not reflexive;
thereisnoloop at 2 in Figure 3.2.1(b) or (c).

Sisasymmetric relation, but the others are not. In Figure 3.2.1(a) thereis an
arc from 2 to 6, but not in the reverse direction; in Figure 3.2.1(b) there is an arc
from 6 to 2, but not from 2 to 6.

Therelation Sisnot transitive—thereisan arc from 2 to 6 and one from 6 to 3,
but no arc from 2 to 3. The other two relations are transitive. Note that for the
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digraph in Figure 3.2.1(a), every pair of arcs to be checked for transitivity involves
aloop. For example, thereis an arc from 3 to 3 and an arc from 3 to 6; the shortcut
isto go directly from 3 to 6.

NS

(a) divides (b) > (©)S

Figure 3.2.1

For every set A, the identity relation |, is reflexive on A, symmetric, and
transitive. The identity relation is, in fact, the relation “equals,” because x | oy iff
x =Y. Equality is a way of comparing objects according to whether they are
the same. Equivalence relations, defined next, are a means for relating objects
according to whether they are, if not identical, at least alike in the sense that they
share a common trait. For example, if T is the set of all triangles, we might say
two triangles are “the same” (equivalent) when they are congruent. This generates
therelation R={(x,y) € T x T: xiscongruent toy} on T, whichisreflexiveon T,
symmetric, and transitive. The notion of equivalence, then, is embodied in these
three properties.

DEFINITION A relation Ron aset Aisan equivalencerelation on A
iff Risreflexive on A, symmetric, and transitive.

Suppose we say two integers are related iff they have the same parity. For this
relation, R={(x,y) € Z x Z: x+ yiseven}, we see that al the odd integers are
related to one another (since the sum of two odd numbersiseven) and al the evens
are related to each other. Therelation Risreflexive on Z, symmetric, and transitive
and is, therefore, an equivalence relation.

For the set P of all people, let L betherelation on P given by x L y iff xand y
have the same family name. We have Lucy Brown L Charlie Brown, James
Madison L Dolly Madison, and so on. If we make the assumption that everyone has
exactly one family name, then L is an equivalence relation on P.

The subset of P consisting of all people who are L-related to Charlie Brown
isthe set of all people whose family name is Brown. This set contains Charlie by
reflexivity. It also contains Sally Brown, James Brown, Buster Brown, Leroy
Brown, and all other people who are like Charlie Brown in the sense that they
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have Brown as afamily name. The sameistrue for the Madisons: The set of peo-
ple L-related to Dolly Madison is the set of all people with the family name
Madison.

DEFINITIONS Let Rbean equivalence relation on aset A. For x € A,
the equivalence class of x determined by Risthe set

X/R={y e A xRy}.

When R is fixed throughout a discussion or clear from the context, the
notations [x] and X are commonly used instead of x/R.

We read x/R as “the class of x modulo R,” or simply “x mod R”

The set A/R={x/R xe A} of al equivalence classes is called
A modulo R.

The equivalence class of Charlie Brown modulo L isthe set of all people whose
family name is Brown. Furthermore, Buster Brown/L is the same set as Charlie
Brown/L.

Example. Therelation H={(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} isan equivalence
relation ontheset A= {1, 2,3}. Here 1/H = 2/H ={1, 2} and 3/H = {3}. Thus
A/H={{12},{3}}.

Example. Let S={(x,y) € R x R: x> =y?}. Sis an equivalence relation on R.
Wehave2 = {2, -2}, 7 = { —m, i}, etc. Also, 0 = {0} . In thisexample, for every
x € R the equivalence class of x and the equivalence class of —x are the same. R
modulo SisR/S= {{x, —x}: x € R}.

Example. For the equivalencerelationR={(x,y) € Z x Z: x+ yiseven} onZ,
there are only two equivalence classes. D, the set of all odd integers and E, the set
of evenintegers. Thus Z/R={D, E}.

Note that in the examples above—A/H, R/S and Z/R—any two equivaence
classes are either equal or digoint. The next theorem tellsusfor al equivalencerela-
tions, distinct equivalence classes never “overlap.”

Theorem 3.2.1 Let R be an equivalence relation on anonempty set A. For al x, yin A,
(@ x/RC A and xe x/R. Thus every equivalence class is a nonempty subset
of A.

(b) xRyiff X’ R=y/R. Thus elements of A are related iff their equivalence
classes areidentical.

() xRyiff x’RNy/R= . Thus elements of A are unrelated iff their equiva-
lence classes are digjoint.
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Proof.

(8 By the definition of x/R, x/R C A. Since R is reflexive on A, X Rx. Thus

xex/R.

(b) (i) Suppose xRy. To show x/R=Yy/R, we first show x/RCy/R. Let
ze x/R. Then x Rz From x Ry, by symmetry, y Rx. Then, by transi-
tivity, yRz Thus z € y/R. The proof that y/R C x/Ris similar.

(i) Supposex/R=y/R.Sinceyey/R y e x/R ThusxRY.

(© (i) Hx/RNy/R=, then sinceyey/R Yy ¢ x/R ThusxRy.

(i) Finally, we show x Ry impliesx/RNy/R = . (\We prove the contra-
positive.) Supposex/RNy/R+# . Letk e x/RNy/R Thenx Rkand
y Rk. Therefore, x Rk and k Ry. Thusx RYy. =

For the rest of this section, we explore the properties of an equivalencerelation
that has a multitude of important applications. This relation, called congruence,
provides a valuable way to deal with questions associated with divisibility in the
integers. The notion of congruence, first introduced by Carl Friedrich Gauss,* leads
to modular arithmetic, which isan abstraction of our usual arithmetic, and thisleads
in turn to methods for converting computational problems with large integers into
more manageabl e problems.

DEFINITIONS Let mbe afixed positive integer. For X,y € Z, we say
X is congruent to y modulo m iff m divides (x — y). We write X =, Y,
or simply x =y (mod m). The number m is called the modulus of the
congruence.

Examples. Using 3 asthe modulus, 4 = 1 (mod 3) because 3 divides 4 — 1. Like-
wise, 10 = 16 (mod 3) because 3 divides 10 — 16 = —6. Since 3 does not divide
5—(—9) =14, we have 5# —9 (mod 3). It is easy to see that 0 is congruent to
0, 3, —3, 6, and —6 and, in fact, O is congruent modulo 3 to every multiple of 3.

Theorem 3.2.2 For every fixed positive integer m, =, is an equivalence relation on Z.

Proof. We note that =, is a set of ordered pairs of integers and, hence, isarela
tion on Z. (Now we show that =, is reflexive on Z, symmetric, and transitive.)

(i) To show reflexivity on Z, let x be an integer. We show that x = x (mod m).
Sincem-0=0=Xx— X, mdividesx — x. Thus =, isreflexive on Z.

(ii)  For symmetry, suppose X =y (mod m). Then mdivides x — y. Thusthereis
an integer k so that x — y = km. But this means that —(x — y) = —(km), or
that y — x = (—K)m. Therefore, mdividesy — x, so that y = x (mod m).

* The German Carl Friedrich Gauss (1777-1855), one of the greatest mathematicians of all time, also
made major contributions to astronomy and physics. Congruence and modular arithmetic (and much
more) appeared in his masterwork Disquisitiones Arithmeticae, which he completed at the age of 21. He
proved the Fundamental Theorem of Algebra and the Prime Number Theorem, among many other
results in number theory, statistics, analysis, and differential geometry.
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(iii)  Suppose x =y (mod m) and y = z (mod m). Thus m divides both x — y and
y — z. Therefore, there exist integers h and k such that x —y = hm and
y — z= km. But then h 4 kisan integer, and

X—zZ=(X—Y)+ (Yy— 2 =hm+ km= (h + km.

Thusmdividesx — z, so x = z(mod m). Therefore, =, istransitive. =

DEFINITION The set of equivalence classes for the relation =, is
denoted Z,y,.

We can now determine the set Z3 of all equivalence classes modulo 3. For
X € Z, the equivaence class of x is{y € Z: x =3y}, which we now denote by X.
Since the integers congruent to 0 (mod 3) are exactly the multiples of 3, we have

0={...,—6,—3,0,3,6,...}.

To form the equivalence class of 1, denoted 1, we begin with 1 (because 1 =3 1) and
repeatedly add or subtract 3. This producesthe positive integers4, 7, 10, 13, ... and
the negative integers —2, —5,—8, ... that are congruent to 1 modulo 3, so

1={...,—8,-5-21,4,7,10,13,.. }.

In the same way we form

2={...,—4,-1,2,5,8,..}.

If we compute 3={..., —6,—-3,0,3,6,...} we find that 3=0 and in fact
4=1,5=26=0, etc., so there are redly only three different equivalence
classes. We have found that Z3 = {0, 1, 2}.

Notice that the class of 0 modulo 3 above is not the same as the congruence
class of 0 modulo 4. The class of 0 modulo 4 contains 0, +4, £8, +12, and all the
other multiples of 4. See Exercise 9.

Using the notation X for the equivalence class of x modulo m works well as
long as the modulus remains unchanged, but suppose we want to compare compu-
tations with two different moduli. To work with elements of, say, Zg aswell asele-
ments of Zs, we will write elements of Zg as [0], [1], [2], [3], [4], and [5], tO
distinguish them from the elements 0, 1, and 2, of Za.

The 12 hours on the clock correspond to the 12 classesin Z,,. Rather than talk-
ing about hours beyond 12 o’ clock, we start over again with 1 o’ clock instead of
13 o'clock because 13 = 1 (mod 12), and 2 o' clock instead of 14 o' clock because
14 = 2 (mod 12), etc. The hours on a clock face show only the hours since the pre-
vious midnight or noon. We are so accustomed to working with equivalence classes
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modulo 12 that we routinely do arithmetic with them: 9 hours after 8 o’clock is
50’ clock, because 8 + 9 = 17 and 17 = 5 (modulo 12) and 4 hours before 3 o’ clock
is11 o' clock, because 3 — 4 = —1 = 11 (modulo 12).

Our next theorem will show that there are aways m different equivalence
classes for the relation =, and the set Z,,isaways {0, 1, 2, ..., m— 1}. Itishelp-
ful to observe that 0, 1, 2,..., and m— 1 are exactly al the possible remainders
when integers are divided by m. For this reason the elements of Z,, are sometimes
called the residue (or remainder) classes modulo m.

Theorem 3.2.3 Let mbe afixed positive integer. Then

(@) Forintegersx andy, x =y (mod m) iff the remainder when x is divided by
m equals the remainder when y is divided by m. o
(b)  Zmconsistsof mdistinct equivalence classes: Z,,={0, 1, 2,..., m— 1}.

Proof.

(8 Let xandy be integers. By the Division Algorithm, there exist integers q,
r, t, and s such that x=mg+r, with 0 <r <m and y=mt+ s, with
0 < s< m. (We must show that x =y (mod m) iff r = s.) Then

x =y (mod m) iff mdividesx —y
iff mdivides (mg +r) — (mt + )
iff mdividesm(g—1t) + (r —9)
iff mdividesr — s
iff r =s. (Thisisbecause0 <r <mand0 < s< m.)

(b) (We first show that Z,={0,1,2,...,m—1}.) For each k, where
0 <k<m-—1,theset kisanequivalenceclass, s0{0,1,2,...,m— 1} is
a subset of Z,. Now suppose X € Z, for some integer x. By the Division
Algorithm, there exist integers q and r such that x=mqg+r, with
O0<r<m Thenx—r =mq, so mdivides x — r. Thus x=r (mod m). By
Theorem 3.2.1(b) X =T. Therefore Z,, < {0, 1,2, ..., m— 1}.

Finally we will know that Z,,, has exactly m elements when we show that
the equivalence classes 0,1, 2, ..., m— 1 are al distinct. Suppose k=T
where0 <r <k <m-— 1. Then k=r (mod m), and thus m divides k — r.
ButO<k—r<m-—1,s0k—r=0. Then k=r. Therefore the m equiva

lence classes are distinct. |

Exercises 3.2

1. Indicate which of the following relations on the given sets are reflexive on a
given set, which are symmetric, and which are transitive.

* (@ {(1,2}on{1,2} (b) <onN
(¢ =onN (d <onN

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



154 CHAPTER 3 Relations and Partitions

* (6 =onN () #onN
(g) “divides’ on N (h) {(xy)yeZx Z.x+y=10}
0 {@5,(5/1),(11)}ontheset A={1,2,3,4,5}
() L={d, m:land marelinesand! is perpendicular to m} on the set of
al linesin aplane
(k) R where(x,y) R(z,w) iff x+z<y+w,onthesat R x R
* (I) S wherex Sy iff xisasibling of y, on the set P of all people
(m) T,where(x,y) T (z,w) iff x+y<z+w,ontheset R x R

2. LetA={1,2, 3}.Listtheordered pairs and draw the digraph of arelation on
A with the given properties.
* (@) not reflexive, not symmetric, and not transitive
(b) reflexive, not symmetric, and not transitive
(c) not reflexive, symmetric, and not transitive
* (d) reflexive, symmetric, and not transitive
(e) not reflexive, not symmetric, and transitive
(f) reflexive, not symmetric, and transitive
(g) not reflexive, symmetric, and transitive
(h) reflexive, symmetric, and transitive

3. For each part of Exercise 2, give an example of a relation on R with the
desired properties.

4. Let Rbearelation onaset A. Prove that
(@) if Aisnonempty, the empty relation & is not reflexive on A.
(b) theempty relation & is symmetric and transitive for every set A.

5. For each of the following, prove that the relation is an equivalence relation.

Then give information about the equivalence classes as specified.

(@ Therdation Ron R given by x Ry iff x — y € Q. Give the equivaence
classof 0; of 1, of /2.

(b) Therelation Ron N given by mRn iff mand n have the same digit in
the tens places. Find an element of 106/R that is less than 50; between
150 and 300; greater than 1,000. Find three such elements in the equiv-
alence class 635/R.

(c) The relation V on R given by xVyiff x=y or xy=1. Give the
equivalence class of 3; of —%; of 0.

(d) OnN, therelation Rgiven by a Rb iff the prime factorizations of a and
b have the same number of 2’s. For example, 16 R 80 because 16 = 2*
and 80 = 2%. 5. Name three elements in each of these classes: 1/R,
4/R, 72/R.

(e Therelation Ton R x R given by (x,y) T (a, b) iff x2+ y2= a2+ b2
Sketch the equivalence class of (1, 2); of (4, 0).

(f) Fortheset X={m,n,p, q,r,s}, let R bethereation on ?(X) given by
ARB iff Aand B havethe same number of elements. List al the elements
in{m}/R; in{m,n, p, g, r, s} /R. How many elements are in X/R? How
many elementsarein % (X)/R?
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(g) The relation P on R x R defined by (X,y) P(z, w)iff [x—y| =
|z— w|. Name at least one ordered pair in each quadrant that is related
to (3, 0). Describe al ordered pairsin the equivalence class of (0, 0); in
the class of (1, 0).

(h) Let Rbethe relation on the set of al differentiable functions defined by
f Rgiff fand g havethe samefirst derivative, thatis, f” = g’. Namethree
elements in each of these classes: x?/R, (4x® + 10x)/R. Describe x3/R
and 7/R.

(i) Therelation Ton R givenby x Ty iff sinx = siny. Describe the equiv-
alence class of 0; of 7/2; of /4.

6. Let R be the relation on @ defined by P R iff pt =gs. Show that R is an

equivalence relation. Describe all ordered pal rs in the equivalence class of 2

7. Which of these digraphs represent relationsthat are (i) reflexive? (ii) symmetri c’?
(iii) trangitive?
* (@) 1 4 (b)

QA
7%

8. Determine the equivalence classes for the relation of
* (@) congruence modulo 5. (b) congruence modulo 8.
(c) congruence modulo 1. (d) congruence modulo 7.

9. Name apositive integer and a negative integer that are
(@) congruent to O (mod 5) and not congruent to O (mod 6).
(b) congruent to O (mod 5) and congruent to 0 (mod 6).
(c) congruent to 2 (mod 4) and congruent to 8 (mod 6).
(d) congruent to 3 (mod 4) and congruent to 3 (mod 5).
(e) congruent to 1 (mod 3) and congruent to 1 (mod 7).
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10. Using the fact that =, is an equivalence relation on Z and without reference
to Theorems 3.2.1 and 3.2.3, prove that for all xandy in Z:
(@ xex (b) X#.
(c) ifx=py, thenx=y. (d) if x=y,thenx=ny.
(e IfXNy#£Y, thenXx=Yy. f) IfXNny=C, thenX#YV.

11. Consider therelation Son N defined by x Sy iff 3 dividesx + y. Prove that
Sisnot an equivalence relation.

12. Supposethat R and Sare equivalence relations on a set A. Prove that RN Sis
an equivalence relation on A.

13. The properties of reflexivity, symmetry, and transitivity are related to the
identity relation and the operations of inversion and composition. Prove that
(@) Risareflexiverelationon Aiff 1a C R
* (b) Rissymmetriciff R=R1
(c) Ristransitiveiff RoRC R
14. Provethat if Risasymmetric, transitive relation on A and the domain of Ris
A, then Risreflexive on A.

15. Let Rbearelation onthe set A.
* (@) Provethat RUR™!is symmetric. (RU Rt is the symmetric closure
of R)
(b) Prove that if Sis asymmetric relationon Aand RC S thenR1C S

16. Let R be a relation on the set A. Define TR={(x, y) € A x A: for some
ne N there exists ag =X, a;, @, ..., a, =Yy € A such that (ag, a), (a1, a),
(@2 @), ..., (@1, 8) € R}.
(@) Provethat Tristrangitive. (Tristhetransitive closure of R.)
(b) Provethat if SisatransitiverelationonAand RC S then TR C S

17. Thecomplement of adigraph hasthe same vertex set asthe original digraph,
and an arc from x to y exactly when the original digraph does not have an arc
from x to y. The two digraphs shown below are complementary. Call a
digraph symmetric (transitive) iff itsrelation is symmetric (transitive).

(@ Show that the complement of a symmetric digraph is symmetric.
(b) Show by example that the complement of a transitive digraph need not
be transitive.

18. LetL bearelation on aset Athat isreflexive on A and transitive but not nec-
essarily symmetric. Let R be the relation defined on A by x Ry iff xL y and
y L x. Prove that Ris an equivalence relation.

Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
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(@) Claim. Iftherelation Rissymmetric and transitive, itisalso reflexive.
“Proof.” Since R is symmetric, if (X,y) € R, then (y,X) € R. Thus
(x,¥) € Rand (y, X) € R, and since Ristransitive, (X, X) € R. Therefore,
Risreflexive. =

(b) Claim. Thereation Ton R x R given by (x,y) T(r,s) iff x+y=
r + sissymmetric.

“Proof” Suppose(x,y) € R x R. Then(x,y) T (y, X) becausex +y =
y + X. Therefore, T is symmetric. u

(c) Claim. Therelation Won R x R given by (x,y) W(r, s) iff x—r =
y — sissymmetric.

“Proof” Suppose (x,y) and (r,s) are in R x R and (x, y) W(r, s).
Then x—r =y —s. Therefore, r —x=s—1y, s0 (r,5) W(X,y). Thus
Wis symmetric. ]

(d) Claim. IftherelationsRand Sare symmetric, then RN Sissymmetric.
“Proof.” Let R be the relation of congruence modulo 10 and S the
relation of congruence modulo 6 on the integers. Both R and Sare sym-
metric. If (x,y) € RN S then 6 and 10 divide x — y. Therefore, 2, 3, and
5all divide x — y, so 30 divides x — y. Also if 30 divides x — vy, then 6
and 10 divide x — y, so RN Sistherelation of congruence modulo 30.
Therefore, RN Sis symmetric. ]

(e) Claim. Iftherelations Rand Sare symmetric, then RN Sissymmetric.
“Proof” Suppose(x,y) € RN S Then(x,y) € Rand(x,y) € S SinceR
and Sare symmetric, (y, X) € Rand (y, X) € S Therefore, (y,X) eRN S =

* (f) Claim. If therelations R and Sare transitive, then RN Sis trangitive.
“Proof” Suppose (x,y¥) e RNSand (y,2 e RNS Then (x,y) R
and(y, 2 € S Therefore, (x,2 e RN'S ]

33 Partitions

Partitioning is frequently used to organize the world around us. The United States,
for example, is partitioned in several ways—by postal zip codes, state boundaries,
time zones, etc. In each case nonempty subsets of the United States are defined that
do not overlap and that together comprise the entire country. This section intro-
duces this concept of partitioning of a set and describes the close relationship
between partitions and equivalence relations.

DEFINITION Let A beanonempty set. % isapartition of A iff P is
aset of subsets of A such that

(i) IfXe®P, then X .
(i) fXePadYeP, thenX=YorXNY=.
iy UX=A

XeP
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The set W of all employeesin alarge work area can be partitioned into work
groups by putting up physical partitions (walls) to form cubicles. If we are care-
ful so that (i) every cubicle contains at least one worker, (ii) no worker is
assigned to two different cubicles, and (iii) every worker must be in some cubi-
cle, then we have formed a partition of W. Notice that the workers are not ele-
ments of the partition; each element of the partition is a set of workers within a
common cubicle. In Figure 3.3.1, Wis a set of 6 workers and the partition of W
consists of four sets—two sets each with two workers and two sets each with a
single worker.

Figure 3.3.1

Examples. The 2-dlement family % = { E, D}, where E is the even integers and D
is the odd integers, is a partition of Z. The 3-element collection ¥ ={N, {C}, Z~},
where 7~ is the set of negative integersis also a partition of Z. For each k € Z, let
Ac={3k 3k+1,3k+ 2}. Thefamily T = {Ac: k € Z} isaninfinite family that is
a partition of Z. Some elements of J are Ag={0,1,2}, A, ={3,4,5}, and
A,={-3 -2 -1}.

Two other partitionsof Z are{..., {3}, {—2},{—1}, {0}, {1}, {2}, {3}, ...}
and {Z}. In fact, for any nonempty set A, the families {{x}: x € A} and {A} are
partitions of A.

Example. Foreachne Z, let G,=[n, n+ 1). Thecollection {G,: h € Z} of half
openintervalsis apartition of R.

By definition, a partition of A isa pairwise disjoint collection of nonempty
subsets of A whose union is A. Recall from Section 2.3 that the definition of
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“pairwise disjoint” allows for the possibility that sets in a pairwise disjoint fam-
ily may be equal.

Example. Fortheset A={a, b,c,d, e, thefamily C ={C,, C,, C3}, where
Ci={b&,C={acd},andCs={b, €},

is a partition of A even though the sets C; and Cz are not digjoint. The family
{C4, Cy, Cg}, isthe same as the family {C,, C3}.

Let Whe aset of six peopleand C = {blue, green, red, white}. For eachc € C,
let

B. = {x € W: x iswearing clothing with color c}.

and let B = {Buiue, Bgreens Bred, Buhite} . The family % may not be a partition of W
because any of the three parts of the definition might be violated. If no one is
wearing red, then B isempty, so condition (i) fails. If someoneiswearing green
only, while a second person is wearing green and blue, then the different sets Byue
and Byeen Overlap, in violation of condition (ii). If someone is wearing only
yellow clothing, then that person does not belong to any set in 93, in violation of
condition (iii).

Thefirst half of the connection between partitions and equivalence relationsis:
Every equivalence relation on a set determines a partition of that set.

Theorem 3.3.1 If Risan equivalence relation on anonempty set A, then A/R, the set of equivalence
classesfor R, isa partition of A.

Proof. By Theorem 3.2.1 every equivalence class x/R is a subset of A and is
nonempty because it contains x, and any two equival ence classes are either equal
or disjoint. All that remains is to show that the union over A/Ris equal to A.

First | Jx/R C A because each x/R C A. To prove A C | Jx/R, supposet € A.

xeA XeA

Sincete t/R te [Jx/R ThusA= [Jx/R ]

XeA XeA
Example. Let A={4,5,6, 7} and T be the equivalence relation
{(4,4),(5,5,(6,6),(7,7),(5,7),(7,5), (7,6), (6,7), (5, 6), (6, 5)}.

By Theorem 3.3.1, we can form a partition of A by finding the equivalence classes
of T. These are 4/T ={4} and 5/T=6/T=7/T={5, 6, 7}. The partition pro-
duced by TisA/R={{4},{5,6, 7}}.
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The Five Boroughs of New York City
B1: Manhattan
B,: Brooklyn
B3: Queens
B4: The Bronx
Bs: Staten Island

Figure 3.3.2

New York City is divided into 5 boroughs (counties). The boroughs are labeled
B, through Bs in Figure 3.3.2. If Aisthe set of all residents of New York City, then
Aispartitioned into 5 subsets: the set of residentsliving in By, the residentsliving in
B,, and so on. How can we use this fact to define an equivalence relation on A? We
say that two residents of New York City are equivalent iff they arein the same par-
tition element; that is, they reside in the same borough.

The method we will use to produce an equivalence relation from a partition
is based on this idea that two objects will be said to be related iff they belong
to the same member of the partition. The next theorem proves that this method for
defining arelation always produces an equivalence relation and, furthermore, the
set of equivalence classes of the relation is the same as the original partition.

Theorem 3.3.2 Let % be a partition of the nonempty set A. For x and y € A, define x Q y iff there
existsC e P suchthat xe Candy € C. Then

(@ Qisanequivaencerelationon A.
(b) A/Q=2.

Proof.

(@ Weprove Qistransitive and leave the proofs of symmetry and reflexivity on
A for Exercise 10. Let x,y, ze A. Assume x Qy and y Q z. Then there are
setsCand D in?® such that X,y € Candy, ze€ D. Since % is a partition of
A, the sets C and D are either identical or digoint; but sincey is an element
of both sets, they cannot be digoint. Hence, thereisaset C (= D) that con-
tains both x and z, so that x Q z. Therefore, Q istransitive.

(b)  We first show A/Q C P. Let x/Q e A/Q. Then choose B e % such that
x e B.Weclamx/Q =B. Ify e x/Q, thenx Qy. Then thereissome C € %
suchthat xe Candy e C. Sincexe CN B, C= B, soy € B. On the other
hand, if y € B, thenx Qy, and soy € x/Q. Therefore, x/Q = B.
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To show % C A/Q, let Be %. As an element of a partition, B # .
Choose any t € B; thenwe clam B=1/Q. If se B, thent Q s, so se t/Q.
On the other hand, if se t/Q, thent Q s; so sand t are elements of the same
member of %, which must be B. ]

Example. Let A={1,2, 3,4} and®? ={{1},{2, 3}, {4}} beapartition of Awith
three sets. The equivalence relation Q associated with % is {(1, 1), (2, 2), (3, 3),
(4, 4), (2. 3), (3, 2)}. The three equivalence classes for Q are 1/Q = {1}, 2/Q =
3/Q={2,3},and 4/Q = {4}. The set of all equivalence classesis precisely P.

Example. Theset o = {Ag, A1, Ao, Ag} isapartition of Z, where

Ag={4k:ke Z}.
Ay ={4k+1:keZ}.
Ap={4k+2:ke Z}.
As={4k+3:ke Z}.

Thenintegersx and y areinthe same set A iff x=4n+iandy = 4m+ i for some
integers n and mor, in other words, iff x — y isamultiple of 4. Thus, the equiva
lence relation associated with the partition « is the relation of congruence modulo
4 and each A isthe residue class of i modulo 4, fori =0, 1, 2, 3.

We have seen that every equivalence relation on a set determines a partition for
the set and every partition of a set determines a corresponding equival ence relation
on that set. Furthermore, if we start with an equivalence relation, the partition we
make isthe set of equivalence classes, and if we use that partition to form an equiv-
alence relation, the relation formed is the relation we started with. Thus, each con-
cept may be used to describe the other. This is to our advantage, for we may use
partitions and equivalence relations interchangeably, choosing the one that lends
itself more readily to the situation at hand.

Exercises 3.3

1. Describe four different partitions of the set of all students enrolled at a
university.
2. For the given set A, determine whether % is a partition of A.
(@ A={1,234,2={{12},{23},{3 4}}
(b) A={1,2,34,56,7,?={{12,{3},{45}}
(© A={1,234,56,7,P={{13}, {56} {24, {7}
*  (d) A=N,®?={1,2345 U{neN:n> 5}
fH A=R,?={S:yeRady> 0}, whereS, ={xeR:x <y}
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3. Describe the partition for each of the following equivalence relations.
(@ Forx,yeR,xRyiff x—yeZ.

*» (b) Forn,me Z,nRmiff nand mhave the same tens digit.
(c) Forx,yeR,xRyiff shx=sny.
(d) Forx,yeR,xRyiff x2=y2
(e) For(x,y)and(u,v) eR x R, (X, y) S(u, V) iff xy =uv=0 or xyuv > 0.
® xYy)R(U,V)iff X+v=y-+u.

4, Let C={i, -1, —i, 1}, where i?= —1. The relation R on C given by xRy
iff Xy = 41 isan equivalencerelation on C. Give the partition of C associated
with R,

5. Let C be as in Exercise 4. The rdation Son C x C given by (x,y) S(u, V)

iff xy = uv is an equivalence relaion. Give the partition of C x C associated
with S

6. Describe the equivalence relation on each of the following sets with the given
partition.
@ N,{{1,2,...9,6{10,11,...99}, {100, 101,...999},...}
* (b) Z,{,{—2},{—1},{0},{1},{2},{3,4,5,}}
(C) R! {(—OO, O)! {0}! (Ov OO)}
x (d) R,{,(—?), _2)1{_2}1(_21 _1)1{_1}1(_11 0)7{0}1(01 1)1{1}1
(1,2),{2},(2,3),..}
(e Z,{AB},whereA={xeZ:x<3tandB=7Z—-A

7. ForeachaceR,leA,={(xy)eR x Riy=a—x3.
(a) Sketchagraph of theset A;fora = —2, —1,0,1, and 2.
(b) Provethat {As: a€ R} isapartitionof R x R.
(c) Describe the equivalence relation associated with this partition.

8. List the ordered pairsin the equivalence relationon A= {1, 2, 3, 4, 5} asso-
ciated with these partitions:

* (@) {{12},{345}} (b) {{1}.{2Z.{3, 4. {5}}
(© {{2.3,4,5,{1}}

9. Partition the set D=1{1,2,3,4,5,6,7} into two subsets: those symbols
made from straight line segments only (like 4), and those that are drawn with
at least one curved segment (like 2). Describe or draw the digraph of the cor-
responding equivalence relation on D.

10. Complete the proof of Theorem 3.3.2 by proving that if % isa partition of A,
and x Qy iff thereexists C € % suchthat xe Candy € C, then
(@) Qissymmetric.
(b) Qisreflexiveon A.

* 11. Let R be a relation on a set A that is reflexive and symmetric but not
transitive. Let R(x) = {y: x Ry}. [Note that R(X) is the same as x/R except
that R is not an equivalence relation in this exercise.] Does the set o =
{R(X): xe A} dways form a partition of A? Prove that your answer is
correct.
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12. Repeat Exercise 11, assuming Ris reflexive and transitive but not symmetric.
13. Repeat Exercise 11, assuming Ris symmetric and transitive but not reflexive.

14. Let Abeaset with at least three elements.
* (@) If P ={By, By} isapartition of Awith By # B, is { B}, B5} apartition
of A? Explain. What if B; = B,?

(b) If P ={By, By, Bg} isapartition of A, is { B, B, BS} apartition of A?
Explain. Consider the possibility that two or more of the elements of
may be equal.

(c) IfP ={By, By} isapartitionof A, ¢, isapartition of By, and 6, isapar-
tition of By, and By # By, prove that €, U 6, isapartition of A.

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

(@) Claim. Let R bean equivalence relation on the set A, and let x, y, and
zbeelementsof A. If xe y/Rand z ¢ x/R, thenz ¢ y/R.

“Proof” Assumethat x e y/Rand ze x/R. Theny Rx and X Rz By
transitivity, y Rz, so ze y/R. Therefore, if xe y/R and z ¢ x/R, then
ze¢ y/R u

(b) Claim. Let R bean equivalence relation on the set A, and let x, y, and
zbeelementsof A. If xe y/Rand z ¢ x/R, thenz ¢ y/R.

“Proof” Assume that x € y/R and assume that ze y/R. Then y Rx
and yRz By symmetry, xRy, and by transitivity, x Rz Therefore,
z e x/R. Weconcludethat if x e y/Rand z ¢ x/R,thenz ¢ y/R. =

(c) Claim. If o isapartitionof aset Aand % isapartition of aset B, then

A U R isapartition of AU B.

“Proof”

(i) fXedUB, thenXe o, or XeRB. Ineither case X # .

(i) FTXeduBandYedURB, thenXedandYe A, or Xe A
andYe B,orXeBand¥Y e o, or Xe B andY e ARB. Since both
A and P are partitions, in each case either X =Y or XNY = (.

(i) Since UX=Aad [JX=B, |J X=AUB. n

Xed XeR XeAURB
* (d) Claim. If Bisapartitionof A, andif x Qy iff thereexistsC € % such

that x e Cand y € C, then therelation Q is symmetric.

“Proof” Firgt, xQyiff thereexists Ce % suchthat xe Candy € C.

Also, y Q x iff there exists C € % suchthat y € C and x € C. Therefore,

xQyiff yQx. |

34 Ordering Relations

Familiar ordering relations for N, Z, and R such as “less than,” “greater than,” and
“less than or equa to” are basic to our understanding of number systems but they are
not equivalence relations. For instance, < is not reflexive on R because 3 < 3 is
false, and is not symmetric because 2 < wistruebut & < 2 isfase. Thereation < is
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trangitive, because the conjunction x <y and y < z implies x < z. This section
describes those properties of relations that characterize orderings like < and <. We
begin with some examples.

Example. In addition to transitivity and reflexivity on R, the relation < on R has
two properties we have not previously considered. The first of these properties is
compar ability: every two elements of R are comparable. This means that for all
X, Y € R, either x < yor y < x. The other property isthat foradl x, ye R, if x <y
andy < x, thenx=y.

Example. We saw earlier that the relation “divides’ is reflexive on N. While we
did not use the term “transitive” in Section 1.4, in effect we proved in that section
that “divides’ is transitive. Two other properties of this relation are notable. If a
divides b and b divides a, then a = b. Also, there are elements of N that are not
comparable. That is, there are natural numbers x and y (for example, 10 and 21)
such that both “x dividesy” and “y divides x” are false.

Example. Let X be a set. The set inclusion relation C on the power set of X is
reflexive on % (X) and transitive. Also, if A and B are subsets of X with A € B and
B C Athen A= B. In thisrelation some pairs of elements are not comparable. For
example, if X={1, 2, 3,4}, then {1, 3} and {1, 4} are elements of % (X) but both
{1,3} €{1,4} and{1, 4} {1, 3} arefdse.

Example. Let Y be the relation “is the same age in years or younger than” on
a fixed set P of people. Then Y is reflexive on P and transitive. This relation
also has the property that any two elements of P are comparable. However, the
relation Y has a property that is undesirable for an ordering. If a and b are
two different peoplein P, and both aand b are 20 yearsold, thenaYband b Y a,
but a+ b.

Although we find it acceptable in an ordering for two elements to not be
comparable, we wish to avoid the situation in the previous example where two
different objects are both related to each other. The property we want is called
antisymmetry.

DEFINITION A relation R on a set A is antisymmetric iff for al
x,yeA if xRyandyRx, thenx=y.

Examples. We have already noted that the relations “divides’ on N, < on R, and
C on P (A) are antisymmetric. The relation < differs from the relation < on R
because < isnot reflexive on R. Like <, therelation < is antisymmetric but for a
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different reason: the statement “For all X, yin R, if x<yandy < xthenx=y" is
true because the antecedent isfalse.

Therelation “divides’ is an antisymmetric relation on N. However, “divides’
isnot an antisymmetric relation on Z. For example, 6 divides —6 and —6 divides 6,
but 6 # —6.

Antisymmetry is an important concept for maintaining the chain of command
in the military where the relation “can give ordersto” must be explicit. It would be
chaotic if two different officers could give orders to each other.

A relation may be antisymmetric and not symmetric, symmetric and not anti-
symmetric, both, or neither. See Exercise 2. In Exercise 3, you are asked to show
that if Risan antisymmetric relation, then x Ry and x # yimpliesy R x. That is, the
only possible symmetry that an antisymmetric relation may exhibit isthat an object
may be related to itself.

DEFINITION A relation Ron aset A is a partial order (or partial
ordering) for Aif Risreflexive on A, antisymmetric, and transitive. A set
A with partial order Ris called apartially ordered set, or poset.

Three relations discussed above: “divides’ on N, < on R, and € on % (X) for
any set X, are examples of partial orderings.

Example. Let Wbetherelation on N given by x Wy iff x4+ yisevenand x <.
Then Wisapartial order. For example, 2W4,4W6,6 W8,...,and1W3,3W5,
5W7,..., but we never have mWn where m and n have opposite parity. We verify
that Wisa partial order:

Proof.

(i) (Show W isreflexiveon N.) Let x € N. Then x + X = 2x iseven and x < X,
so X Wx.

(i)  (Show W is antisymmetric.) Suppose x Wy and y Wx. Then x + y is even,
X <y,andy < x. By antisymmetry of < on N, x=.

(i)  (Show Wistransitive.) Supposex Wyandy Wz Thenx <y, X + yiseven,
y <z andy+ zis even. By transitivity of <on N, x < z Also, X+ zis
even because X+ z= (X +Y) + (Y + 2) + (—2y) is the sum of three even
numbers. Therefore, x W z ]

Suppose Risapartial order onthe set A and a, b, ¢ are three distinct elements of
A. Further suppose that aRb, bRc, and cRa. A portion of the digraph of R is
shown in Figure 3.4.1. The chain of relationships aRb, bRc, cRa is called a
closed path (of length 3) in the digraph. (See the next section for more about pathsin
graphs.) The path is closed because as we move from vertex to vertex along the path,
we can start and end at the same vertex. From aRb and b Rc¢, by transitivity
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we must have a R c. (The arc from a to c is not shown in the portion of the digraph
in Figure 3.4.1.) But c Ra is aso true, and this contradicts the antisymmetry prop-
erty of R. Using this reasoning, we conclude that the digraph of a partial order can
never contain a closed path except for loops at individual vertices.

L)

/N

i

Figure 3.4.1

Theorem 3.4.1 If Ris a partial order for a set A and X Rxq, X1 RXp, X2 RX3, ..., Xy RX, then
X=X1=Xp=X3="-=Xp.

Proof. (We prove this by induction on n.) For n = 1, suppose we have x R x; and
X1 Rx. By antisymmetry, we conclude that X = x;.

Now suppose that for some natural number k, whenever X Rxy, X1 R g,
XoRXs, ..., XcRX, then x=x3 =Xy =X3=--- =X and suppose that x Rx,
X1 RXo, X2 RX3, ..., Xk RX¢ 11, X1 RX. By transitivity (applied to xx Rxx1 and
Xr1 RX) we have xx Rx. From x Rxg, X RXy, ..., ¢ Rx and the hypothesis of
induction, we have X =x; =X = --- = X« Since xx = X we have x Rxc,1 and
Xer1 RX, SOX = X 1. Therefore, X =xg =X = -+ = Xk 1 [

DEFINITION Let R be a partial orderingon aset Aand let a,be A
with a # b. Then aiis an immediate predecessor of b iff a Rb and there
doesnot exist c e Asuchthata=£ c,b=#c,aRcandcRb.

In other words, a is an immediate predecessor of b when aRb and no other element
lies “between” a and b.

Example. For A={1,2,3,4,5}, P(A)is partialy ordered by the set inclusion
relation €. For the set {2, 3, 5}, there are three immediate predecessorsin % (A):
{2,3},{2,5},and {3, 5}. The empty set has no immediate predecessor. Also, & is
the only immediate predecessor for {3}. We have {4} C {2, 4, 5}, but {4} is not
an immediate predecessor of {2, 4, 5} because {4} # {4, 5},{4,5} #{2, 4,5},
{4} € {4,5},and{4,5} {2, 4,5}.

Let M ={1, 2, 3,5, 6, 10, 15, 30} bethe set of all positive divisors of 30. The

relation “divides’ isapartial order for M whose digraph is given in Figure 3.4.2(a).
We can simplify the digraph significantly. First, since we know that every vertex

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



3.4 Ordering Relations 167

must have aloop, we need not include them in the digraph. Also, since there are no
closed paths, we can orient the digraph so that all edges point upward; thus we may
eliminate the arrowheads, assuming that each edge has the arrowhead on the upper
end. We can also remove edges that can be recovered by transitivity. For example,
since there is an edge from 2 to 10 and ancther from 10 to 30, we do not need to
include the edge from 2 to 30. In other words, we need only include those edges that
relate immediate predecessors. The resulting simplified digraph, Figure 3.4.2(b), is
called aHasse diagram of the partial order “divides.”

(a) Digraph of “divides” (b) Hasse diagram for “divides”
Figure 3.4.2

Example. LetA={1, 2, 3}. TheHassediagramfor 2(A) partially ordered by <

isgivenin Figure 3.4.3. It bears a striking resemblance to Figure 3.4.2(b) for good
reason. Except for the naming of the elements in the sets, the orderings are the
same. In fact, it can be shown that every partial order is“the same” asthe set inclu-
sion relation on subsets of some set. Although we need the concepts of Chapter 4 to

o

Hasse diagram for C.

Figure 3.4.3
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make precise what we mean by “same,” Exercise 19 outlines how one might start to
show this.

DEFINITIONS Let Rbeapartial order for aset A. Let B be any subset
of Aanda e A. Then

aisan upper bound for B iff b Rafor every b € B.
aisalower bound for B iff aR b for every b € B.
aisaleast upper bound for B (or supremum for B) iff

(i) aisan upper bound for B, and
(if) aRxfor every upper bound x for B.

aisagreatest lower bound for B (or infimum for B) iff

(i) aisalower bound for B, and
(i) x Rafor every lower bound x for B.

We write sup (B) to denote a supremum of B and inf (B) for an infimum
of B.

We shall soon see (Theorem 3.4.2) that thereis at most one supremum and one
infimum for a set.

Examples. ForA={1,2,3,4,56,7,8,9 10}, letB={{1,4,5,7},{1,4,7, 8},
{2,4,7}}. Bisasubset of ?(A). Using the partial order < for %(A), we see that
{1,2,3,4,5,6,7, 8} isan upper bound for B because

{1,4,57 €{1,2,3,4,5,6,7, 8,
{1,4,7,8 €{1,2,3,4,5,6,7,8}, ad
{2,4, 7 {1,

21
2,3,4,5,6,7,8}.
7,

Another upper bound for Bis{2, 4, 5,
sup(B) ={1,2,4,5,7, 8}.

Elements of P(X) that are lower boundsfor Bare, {4}, {7},and {4, 7}. The
greatest lower bound for Bisinf(B) = {4, 7}.

8,9, 10}. The least upper bound for B is

You should natice in the example above that sup(B) is the union of the setsin
B and inf(B) is the intersection of the setsin B. Thisistruein general: for any non-
empty set A with %(A) partially ordered by C, if Bisaset of subsets of A, then

sup(B) = |J Xandinf(B) = () X. See Exercise 14.
XeB XeB

Example. Hereareleast upper boundsand greatest lower bounds for some subsets
of R with the usual ordering <:

for A=[0, 4), sup(A) = 4 and inf(A) = 0.
forB=1{1,6,3,9, 12,4, 10}, sup(B) = 12 and inf(B) = —4.
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for C = {2% k e N}, sup(C) does not exist and inf(C) = 2.
for D ={2* ke N}, sup(D) = 3 and inf(D) = 0.

Example. Let A be the set of all positive divisors of 1000 with the ordering
relation “divides” on A. Let B = {10, 20, 25, 100}. Both 500 and 1000 are upper
bounds for B; the least upper bound is 100. The greatest lower bound for B is 5.
Note that for “divides,” the least upper bound is the lcm (least common multiple)
and the greatest lower bound is the ged (greatest common divisor).

Theorem 3.4.2 Let R be apartial order for aset A and B € A. Then if sup(B) exists, it is unique.
Also, if inf(B) exists, it isunique.

Proof. Suppose that x and y are both least upper bounds for B. (\We prove that
X =1Y.) Since x and y are least upper bounds, then x and y are upper bounds. Since
X is an upper bound and y is a least upper bound, we must have y R x. Likewise,
sincey is an upper bound and x is aleast upper bound, we must have x Ry. From
x Ry and y R x, we conclude that x =y by antisymmetry. Thus, if it exists, sup(B)
isunique.

The proof for inf(B) isleft as an exercise. u

We have seen examples of sets B where, when they exist, the least upper and
greatest lower bounds for B are in B and other examples where they are not in B.

DEFINITION Let R be a partial order for aset A. Let BC A. If the
greatest lower bound for B exists and is an element of B, it is called the
smallest element (or least element) of B. If the least upper bound for Bis
in B, it iscalled the largest element (or greatest element) of B.

The usual ordering of the number systems has the comparability property: for any
xandy, either x <y ory < x. A partiad ordering with this property is called linear.

DEFINITION A partial ordering RonAiscaled alinear order (or total
order) on Aif for any two elementsx and y of A, either xRy ory Rx.

Examples. Eachof N, Z and R with the ordering < islinearly ordered. % (A) with
setinclusion, where A = {1, 2, 3}, isnot alinearly ordered set because thetwo ele-
ments{1, 2} and {1, 3} cannot be compared. Likewise, therelation “divides’ isnot
alinear order for N because 3 and 5 are not related (neither divides the other).

If Risalinear order on A, then by antisymmetry, if x and y are distinct elements

of A, xRy or y Rx (but not both). The Hasse diagram for a linear ordered set is a
set of pointson avertical line.
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For agiven linear order on aset it is not aways true that every subset has a small-
est or largest element. The set of integers with < is linearly ordered but the set
B={1,3,57,...} has neither upper bounds nor a least upper bound. Likewise,
{-2, -4, -8, —16, —32,...} has no greatest lower bound (and hence no smallest
element).

DEFINITION LetL bealinear orderingonaset A. L isawell ordering
on A if every nonempty subset B of A contains a smallest element.

In Chapter 2 we proved the Well-Ordering Principle from the Principle of
Mathematical Induction. Using the terminology of this section, the Well-Ordering
Principle says that the natural numbers are well ordered by <. The integers, Z, on
the other hand, are not well ordered by < because we have seen that { —2, —4, —8,
—16, —32,...} isanonempty subset that has no smallest element.

Finally, we state without proof aremarkable result.

Theorem 3.4.3 Well-Ordering Theorem
Every set can be well ordered.

The Well-Ordering Theorem should not be confused with the Well-Ordering
Principle of Section 2.5, whichisaproperty of the natural numbers. The theorem says
for any nonempty set A there is always away to define alinear ordering on the set so
that every nonempty subset of A has a least element. Even the set of real numbers,
which we know is not well ordered by the usual linear order <, has some other linear
ordering so that R is well ordered by that ordering. The proof of the Well-Ordering
Theorem requires a new property of sets, the Axiom of Choice. (See Section 5.5.)

Exercises 3.4

1. Which of these relations on the given set are antisymmetric?
* (@ A={1,2,345,R={(173),(11),(24),(3,2),(5,49), 4 2)}.
(b) A={1,23,4,5 ,R={(1,4),(1,2),(273),(3,4),(5,2),4,2),(1,3).
* (¢) Z,xRyiff x2=y2
(d) R,xRyiff x <2,
& RxR,xSyiffy=x—1
* (f) A={1,2 3,4}, Rasgiveninthedigraph:

1 2

NN

Ca——=D
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(9 A={1,2, 3, 4}, Rasgiveninthedigraph:

1 2
4 3

2. LetA={a, Db, c}. Givean exampleof arelation on Athat is
(@) antisymmetric and symmetric.
(b) antisymmetric, reflexive on A, and not symmetric.
(c) antisymmetric, not reflexive on A, and not symmetric.
(d) symmetric and not antisymmetric.
(e) not symmetric and not antisymmetric.

3. Let Rbean antisymmetric relation ontheset Aand x, y € A.

(@) Provethatif xRyand x #vy, theny Rx.

(b) Provethat if Rissymmetric and Dom(R) = A, then R = | a.

4. (a) Giveanexampleof arelation Ronaset Athat isantisymmetric and such
that x R x for some, but not all, x in A.

(b) Give an example of arelation Son the set A={a, b, ¢, d} such that Sis
transitive, antisymmetric, and irreflexive (that is, x Rx isfalse for al x
inA).

5. Show that the relation R on N given by a Rb iff b = 2a for some integer
k> Oisapartia ordering.
6. DefinetherelationRon R x R by (a, b) R(x,y) iff a < xand b <y. Prove

that Risapartial ordering for R x R.

7. Déefinetherelation Ron C by (a+ bi) R(c + di) iff a> 4+ b? < ¢+ d% IsR
apartial order for C? Justify your answer.

8. Let A be a partially ordered set, called “the alphabet.” Let W be the set of
al “words’ of length two—that is, all permutations of two letters of the alpha-

bet. Define the relation < on W as follows: for xix; € W and yiy, € W,

X1Xo < YaYo iff (i) Xg < yp or (ii) X = y1 and x, < y». Prove that < isapartial

ordering for W (called the lexicographic ordering, asin adictionary).

9. Draw the Hasse diagram for the poset % (A) with the set inclusion relation,

where A={a, b, c, d}.

10. For each Hasse diagram, list all pairs of elements in the relation on the indi-
cated set.
* (@) A={ab,c} (b) A={a,b,c,d} (0 A={ab,cd}
d

NV
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11. Useyour own judgment about which tasks should precede othersto draw aHasse
diagram for the partia order among the tasks for each of the following projects.
* (@) Tomake hisspecia stew, Fubini must perform 9 tasks:

t1: wash the vegetables
to: cut up the vegetables
t3: put vegetables in cooking pot
t4: cut up the meat
ts: brown the meat in a skillet
ts: add seasoning to the skillet
t7: add flour to the skillet
tg: put the skillet ingredientsin the pot
tg: cook the stew for 30 minutes
(b) To back acar out of the garage, Kim must perform 11 tasks:
t1: put the key in the ignition
t,: step on the gas
t3: check to seeif the driveway is clear
14 start the car
ts: adjust the mirror
ts: open the garage door
t7: fasten the seat belt
tg: adjust the position of the driver's seat
to: getinthe car
t10: put the car in reverse gear
t11: step on the brake

12. Let A be anonempty set and let 2 (A) be partially ordered by set inclusion.
Show that

* (a) ifBe ®(A)andx e B, then B —{x} isanimmediate predecessor of B.

(b) if Be ®(A)andx ¢ B, then B is an immediate predecessor of B U {x}.

13. Let Rbethe rectangle shown here, including the edges. Let
H be the set of all rectangles whose sides have positive
length, are parallel to the sides of R, and lie within R. H is
partially ordered by set inclusion.

(a) Doesevery subset of H have an upper bound? aleast upper bound?
* (b) Doesevery subset of H have alargest element?
* (c) Doesevery subset of H have alower bound?

(d) Doesevery subset of H have a smallest element?

14. Let Abeaset and C betheordering for 2 (A).
(@) LetCand D be subsets of A. Prove that the least upper bound of {C, D}
is C U D and the greatest lower bound of {C, D} isC N D.
(b) Let % beafamily of subsets of A. Prove that the least upper bound of %

is | B and the greatest lower bound of % is (] B.
Be® Be®

15. Which arelinear orders on N? Prove your answers.
(@ T,wheemTniff m<2n
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(b) V,wheremVn iff
misodd and niseven, or
mandnareevenand m < n, or
mandnareoddandm < n
© S={mn:mneN,m<nandmsz#5} U{(m5): me N}
(d) T={(mn):mneN,m<nandnz5} U{(5 m): meNj}
16. Provethat therelation V in Exercise 15(b) isawell ordering.

17. Indetermining whether a given relation is awell ordering, it is not necessary
to verify al the conditions for a linear order as well as the additional condi-
tion for awell ordering:

(@) Prove that a partial order R on a set A is a well ordering iff every
nonempty subset of A has a smallest element.
(b) Provethat arelation Ron aset Aisawell ordering iff every nonempty
subset B of A contains a unique element that is R-related to every ele-
ment of B.
18. Provethat every subset of awell-ordered set iswell ordered.

19. This exercise provides the steps necessary to prove that every partial order-
ing isin a sense the same as the set inclusion relation on a collection of sub-
sets of a set. Let A be a set with a partial order R For each ae€ A, let
S ={xe A xRa}. Let F ={S; ac A}. Then F is a subset of ?(A) and
thus may be partially ordered by C.

(@ ShowthatifaRb,thenS, C S..
(b) Showthatif S, C S, thenaRb.
(c) Showthat for every b € A, animmediate predecessor of bin A corresponds
to an immediate predecessor of S, in 7.
(d) Show that if B € A and x is the least upper bound for B, then S; is the
least upper bound for {S,: b € B}.
Proofs to Grade 20. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
(@) Claim. LetAbeasetwithapartial order R. If CC B C Aand sup(C)
and sup(B) exist, then sup(C) < sup(B).
“Proof”  sup(B) isan upper bound for B. Therefore, sup(B) isan upper
bound for C. Thus sup(C) < sup(B). ]
* (b) Claim. Let Abe asetwith apartial order R. If BC A, uis an upper
bound for B, and u € B, then sup(B) exists and u = sup(B).
“Proof” Since ue B, u < sup(B). Since u is an upper bound,
sup(B) < u. Thusu = sup(B). ]
(c) Claim. For A, BC R with the usua < ordering, sup(AUB) =
sup(A) + sup(B).
“Proof” If xe AUB, then x e A or x € B. Therefore x < sup(A) or
X < sup(B). Thus x < sup(A) + sup(B), for al x in AU B. Therefore
sup(AU B) < sup(A) + sup(B). AlscAC AUBadB C AU B, so by
part (8), sup(A) < sup(AUB) and sup(B) < sup(AU B). Therefore
sup(A) + sup(B) < sup(AU B). Thus sup(A) + sup(B) = sup(AUB). =
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35 Graphs

In Section 3.1 we used a digraph—a collection of vertices and directed edges—to
represent arelation on aset. In this section we present asimilar, but different, method
to represent some re