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Excerpts from the Preface to the First Edition

“I understand mathematics but I just can’t do proofs.”

Our experience has led us to believe that the remark above, though contradictory,
expresses the frustration many students feel as they pass from beginning calculus
to a more rigorous level of mathematics. This book developed from a  series of
lecture notes for a course at Central Michigan University that was designed to
address this lament. The text is intended to bridge the gap between calculus and
advanced courses in at least three ways. First, it provides a firm foundation in the
major ideas needed for continued work. Second, it guides students to think and to
express themselves mathematically—to analyze a situation, extract pertinent
facts, and draw appropriate conclusions. Finally, we present introductions to
modern algebra and analysis in sufficient depth to capture some of their spirit and
characteristics.

Exercises marked with a solid star (�) have complete answers at the back of the
text. Open stars (�) indicate that a hint or a partial answer is provided. “Proofs to
Grade” are a special feature of most of the exercise sets. We present a list of claims
with alleged proofs, and the student is asked to assign a letter grade to each “proof”
and to justify the grade assigned. Spurious proofs are usually built around a single
type of error, which may involve a mistake in logic, a common misunderstanding
of the concepts being studied, or an incorrect symbolic argument. Correct proofs
may be straightforward, or they may present novel or alternate approaches. We
have found these exercises valuable because they reemphasize the theorems and
counterexamples in the text and also provide the student with an experience similar
to grading papers. Thus the student becomes aware of the variety of possible errors
and develops the ability to read proofs critically.

In summary, our main goals in this text are to improve the student’s ability to
think and write in a mature mathematical fashion and to provide a solid understand-
ing of the material most useful for advanced courses. Student readers, take comfort

P R E F A C E
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from the fact that we do not aim to turn you into theorem-proving wizards. Few of
you will become research mathematicians. Nevertheless, in almost any mathemati-
cally related work you may do, the kind of reasoning you need to be able to do is
the same reasoning you use in proving theorems. You must first understand exactly
what you want to prove (verify, show, or explain), and you must be familiar with the
logical steps that allow you to get from the hypothesis to the conclusion. Moreover,
a proof is the ultimate test of your understanding of the subject matter and of math-
ematical reasoning.

We are grateful to the many students who endured earlier versions of the man-
uscript and gleefully pointed out misprints. We acknowledge also the helpful com-
ments of Edwin H. Kaufman, Melvin Nyman, Mary R. Wardrop, and especially
Douglas W. Nance, who saw the need for a course of this kind at CMU and did a
superb job of reviewing the manuscript.

To the Seventh Edition

The seventh edition is based on the same goals and core material as previous edi-
tions, but with new organization in several places and many new and revised expo-
sitions, examples, and exercises. In the expanded Preface to the Student, we have
gathered together preliminary ideas that should already be familiar to students
(including properties of the number systems, definitions of even, odd and prime
numbers, naive notions of sets, and the basic terminology of functions). This
arrangement makes the prerequisite material easier to locate and keeps the focus of
the text on the use of mathematical reasoning.

The rewritten introduction to concepts of elementary number theory in Section
1.7 is deliberately placed early in the text, before any discussion of inductive proofs
and the Well-Ordering Principle, as an opportunity to practice basic proof methods
on a coherent set of results about divisibility, the greatest common divisor, and lin-
ear combinations. Placing this content here (and accepting the Division Algorithm
without proof until inductive proofs are introduced in Chapter 2) allows students to
experience significant results that are achieved with relatively simple proof forms.
Later, students can observe the power of inductive methods to prove the Division
Algorithm and related results.

In Chapter 4 properties of one-to-one and onto functions are now grouped
more efficiently and there is a separate section on one-to-one correspondences and
permutations of a set. In Section 5.3 on countable sets, the major results (that sub-
sets and unions of countably many countable sets are countable) are moved up to
make them more accessible. In Chapter 7, there is even more emphasis on the
meaning of the completeness property of the real number system.

Chapter 1 introduces the propositional and predicate logic required by
mathematical arguments, not as formal logic, but as tools of reasoning for more
complete understanding of concepts (including some ideas of arithmetic, ana-
lytic geometry, and calculus with which the student is already familiar). We
present methods of proof and carefully analyze examples of each method, giving
special attention to the use of definitions and denials. The techniques in this
chapter are used and referred to throughout the text. In Chapters 2, 3, and 4 on

Preface ix
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sets, relations, and functions, we emphasize writing and understanding proofs
that require the student to deal precisely with the concepts of set operations,
equivalence relations and partitions, and properties of injective and surjective
functions.

These first four chapters contain the core material of the text and, in addition,
offer the opportunity for further work in several optional sections: basics of number
theory (Section 1.7), combinatorial counting (Section 2.6), order relations and
graph theory (Sections 3.4 and 3.5), and image sets and sequences (Sections 4.5 and
4.6). See the diagram on the inside front cover for a diagram that highlights the core
and shows the prerequisite relationships among sections. For a one-semester
course, we recommend the core material along with any one of Chapters 5, 6, or 7,
or a selection of optional sections and excursions into one or two of the later chap-
ters—for example, Sections 4.6, 5.1, 5.2, 5.3, 7.1, and 7.2.

Chapters 5, 6, and 7 make use of the skills and concepts the student has acquired
in the first four chapters, and thus are a cut above the earlier chapters in terms of level
and rigor. Chapter 5 emphasizes a working knowledge of cardinality: finite and infi-
nite sets, denumerable sets and the uncountability of the real numbers, and properties
of countable sets. We include sections on the ordering of cardinals and applications of
the Cantor–Schröder–Bernstein Theorem and a brief discussion of the Axiom of
Choice. In Chapter 6 we consider properties of algebras with a binary operation,
groups, substructures, and homomorphisms, and relate these concepts to rings and
fields. Chapter 7 considers the completeness property of the real numbers by tracing
its consequences: the Heine–Borel Theorem, the Bolzano–Weierstrass  Theorem, and
the Bounded Monotone Sequence Theorem, and back to completeness.

We sincerely thank our reviewers for the seventh edition: David Bayer,
Columbia University; Fernando Burgos, University of South Florida; Yves
Nievergelt, Eastern Washington University; and Don Redmond, Southern Illinois
University.

We also thank our reviewers of earlier editions: Mangho Ahuja, Southeast
Missouri State University; William Ballard, University of Montana; David
Barnette, University of California at Davis; Gerald Beer, California State
University–Los Angeles; Harry Conce, Mankato State University; Sherralyn
Craven, Central Missouri State University; Robert Dean, Stephen F. Austin State
University; Ron Dotzel, University of Missouri; Harvey Elder, Murray State
University; Michael J. Evans, North Carolina State University; Gerald Farrell.
California Polytechnic State University; Benjamin Freed, Clarion University of
Pennsylvania; Robert Gamble, Winthrop College; Dennis Garity, Oregon State
University; Robert P. Hunter, Pennsylvania State University; Jack Johnson,
Brigham Young University–Hawaii; L. Christine Kinsey, Canisuis College; Daniel
Kocan, State University of New York, Potsdam; James McKinney, California
Polytechnic State University; Blair Madore, The State University of New York at
Potsdam; Andrew Martin, Morehead State University; Edward Mosley, Lyon
College; Van C. Nall, University of Richmond; Yves Nievergelt, Eastern
Washington University; Yewande Olubummo, Spelman College; Hoseph H.
Oppenheim, San Francisco State University; John S. Robertson, Georgia College &
State University; Victor Schneider, University of Southwestern Louisiana; Dale

x Preface
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Schoenefeld, University of Tulsa; Kenneth Slonnegar, State University of New
York at Fredonia; Douglas Smith, University of the Pacific; Joseph Teeters,
University of Wisconsin; Mary Treanor, Valparaiso University; and Lawrence
Williams, University of Texas, San Antonio.

We also wish to thank Roger Lipsett for his suggestions after proofreading of
the final manuscript and the staff at Cengage for their exceptional professional
assistance in the development of this edition and previous editions.

Finally, we note that instructors who adopt this text can sign up for online
access to complete solutions for all exercises via Cengage’s Solution Builder serv-
ice at www.cengage.com/solutionbuilder.

Douglas D. Smith
Richard St. Andre

Preface xi
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Welcome to the study of mathematical reasoning. The authors know that many stu-
dents approach this material with some apprehension and uncertainty. Some students
feel that “This isn’t like other mathematics courses,” or expect that the study of
proofs is something they won’t really have to do or won’t use later. These feelings
are natural as you move from calculation-oriented courses where the goals empha-
size performing computations or solving certain equations, to more advanced
courses where the goal may be to establish whether a mathematical structure has cer-
tain properties. This textbook is written to help ease the transition between these
courses. Let’s consider several questions students commonly have at the beginning
of a “transition” course.

Why write proofs?

Mathematicians often collect information and make observations about particular
cases or phenomena in an attempt to form a theory (a model) that describes patterns
or relationships among quantities and structures. This approach to the development
of a theory uses inductive reasoning. However, the characteristic thinking of the
mathematician is deductive reasoning, in which one uses logic to develop and
extend a theory by drawing conclusions based on statements accepted as true.
Proofs are essential in mathematical reasoning because they demonstrate that the
conclusions are true. Generally speaking, a mathematical explanation for a conclu-
sion has no value if the explanation cannot be backed up by an acceptable proof.

Why not just test and repeat enough examples to confirm 
a theory?

After all, as is typically done in natural and social sciences, the test for truth of a
theory is that the results of an experiment conform to predictions, and that when
the experiment is repeated under the same circumstances the result is always the
same. The difference is that in mathematics we need to know whether a given

P R E F A C E  T O  T H E  S T U D E N T
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statement is always true, so while the statement may be true for many (even infi-
nitely many) examples, we would never know whether another example might
show the statement to be false. By studying examples, we might conclude that the
statement

is true for all positive integers x. We could reach this conclusion testing the first 10
or 20 or even the first 42 integers In each of these cases and others,
such as 44, 45, 47, 48, 49, 50 and more, is a prime number. But thex2 − 3x + 43

1, 2, 3, Á , 42.

“x2 − 3x + 43 is a prime number”

Preface to the Student xiii

statement is not always true because which is 
Checking examples is helpful in gaining insight for understanding concepts and
relationships in mathematics, but is not a valid proof technique unless we can
somehow check all examples.

Why not just rely on proofs that someone else has done?

One answer follows from the statement above that deductive reasoning character-
izes the way mathematicians think. In the sciences, a new observation may force a
complete rethinking of what was thought to be true; in mathematics what we know
to be true (by proof) is true forever unless there was a flaw in the reasoning. By
learning the techniques of reasoning and proof, you are learning the tools of the
trade.

The first goal of this text is to examine standard proof techniques, especially
concentrating on how to get started on a proof, and how to construct correct proofs
using those techniques. You will discover how the logical form of a statement can
serve as a guide to the structure of a proof of the statement. As you study more
advanced courses, it will become apparent that the material in this book is indeed
fundamental and the knowledge gained will help you succeed in those courses.
Moreover, many of the techniques of reasoning and proof that may seem so diffi-
cult at first will become completely natural with practice. In fact, the reasoning that
you will study is the essence of advanced mathematics and the ability to reason
abstractly is a primary reason why applicants trained in mathematics are valuable
to employers.

What am I supposed to know before beginning Chapter 1?

The usual prerequisite for a transition course is at least one semester of calculus. We
will sometimes refer to topics that come from calculus and earlier courses (for
example, differentiable functions or the graph of a parabola), but we won’t be solv-
ing equations or finding derivatives.

You will need a good understanding of the basic concepts and notations from
earlier courses. The list of definitions and relationships below includes the main
things you will need to have ready for immediate use at any point in the text.

41 · 43.432 − 3(43) + 43 = 1763,
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Be aware that definitions in mathematics, however, are not like definitions in ordi-
nary English, which are based on how words are typically used. For example, the ordi-
nary English word “cool” came to mean something good or popular when many people
used it that way, not because it has to have that meaning. If people stop using the word
that way, this meaning of the word will change. Definitions in mathematics have pre-
cise, fixed meanings. When we say that an integer is odd, we do not mean that it’s
strange or unusual. Our definition below tells you exactly what odd means. You may
form a concept or a mental image that you may use to help understand (such as “ends
in 1, 3, 5, 7, or 9”), but the mental image you form is not what has been defined. For this
reason, definitions are usually stated with the “if and only if ” connective because they
describe exactly—no more, no less—the condition(s) to meet the definition.

Sets

A set is a collection of objects, called the elements, or members of the set. When
the object x is in the set A, we write otherwise The set

has four elements; we see that but We may use set-
builder notation to write the set K as

which we read as “the set of x such that x is . . .” Observe that the set whose only
element is 5 is not the same as the number 5; that is, The empty set is
a set with no elements.

We say that A is a subset of B, and write if and only if every element of
A is an element of B. If sets A and B have exactly the same elements, we say they
are equal and write 

We use these notations for the number systems:

is the set of natural numbers.
is the set of integers.

is the set of all rational numbers.
is the set of all real numbers.
is the set of all complex numbers.

A set is finite if it is empty or if it has n elements for some natural number n.
Otherwise it is infinite. Thus the set {6, 7, 8, 9} is finite. All the number systems
listed above are infinite.

The Natural Numbers

The properties below describe the basic arithmetical and ordering structure of the set �.

1. Successor properties
1 is a natural number.
Every natural number x has a unique successor 
1 is not the successor of any natural number.

x + 1.

�

�

�

� = {Á −3, −2, −1, 0, 1, 2, Á}
� = {1, 2, 3, Á}

A = B.

A ⊆ B,

�{5} =� 5.

{x: x is an integer greater than 5 and less than 10},

3 � K.7 � KK = {6, 7, 8, 9}
x � A.x � A;

xiv Preface to the Student
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2. Closure properties
The sum of two natural numbers is a natural number.
The product of two natural numbers is a natural number.

3. Associativity properties
For all 
For all 

4. Commutativity properties
For all 
For all 

5. Distributivity properties
For all 
For all 

6. Cancellation properties
For all if then 
For all if then 

For natural numbers a and b we say a divides b (or a is a divisor of b, or b is
a multiple of a) if and only if there is a natural number k such that For
example, 7 divides 56 because there is a natural number (namely 8) such that

A natural number p is prime if and only if p is greater than 1 and the only nat-
ural numbers that divide p are 1 and p. A composite is a natural number that is 
neither 1 nor prime.

The Fundamental Theorem of Arithmetic:

Every natural number larger than 1 is prime or can be expressed uniquely as a prod-
uct of primes. For example, 440 can be expressed as If we list the
prime factors in increasing order, then there is only one prime factorization: the
primes and their exponents are uniquely determined. 

The Integers

The integers share properties 2 through 6 listed above for (with the exception that
we can’t cancel from the product Other important properties are:

For all x in and 
For all in if and 
The product of two positive or two negative integers is positive; the product of 

a positive and a negative is negative.

The natural numbers and integers provide excellent settings for developing an
understanding of the structure of a correct proof, so we will use the following defi-
nitions extensively in early examples of proof writing. In those proofs we make use
of the properties of number systems and the fact that every integer is either even or
odd, but not both.

z > 0, xy < yz.x < y�,x, y, z
x + (−x) = 0.�, x + 0 = 0, x · 0 = 0

xz = yz).z = 0
�

440 = 23 · 5 · 11.

56 = 7 · 8.

b = ak.

x = y.xz = yz,x, y, z � �,
x = y.x + z = y + z,x, y, z � �,

x, y, z � �, (y + z)x = yx + zx.
x, y, z � �, x (y + z) = xy + xz.

x, y � �, xy = yx.
x, y � �, x + y = y + x.

x, y, z � �, x (yz) = (xy)z.
x, y, z � �, x + (y + z) = (x + y) + z.

Preface to the Student xv
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An integer x is even if and only if there is an integer k such that An inte-
ger x is odd if and only if there is an integer j such that For integers a
and b with we say a divides b if and only if there is an integer k such that

Real and Rational Numbers

We think of the real numbers as being all the numbers along the number line. Each
real number can be represented as an integer together with a finite or infinite deci-
mal part. We use the standard notations for intervals on the number line. For real
numbers a and b with 

is the open interval from a to b.
is the closed interval from a to b.

and are
open rays.

and are
closed rays.

Note that the infinity symbol is simply a notational convenience and does
not represent any real number. Also, one should be careful not to confuse (1, 6) with
{2, 3, 4, 5}, since (1, 6) is the set of all real numbers between 1 and 6 and contains,
for example, and 

The real number x is rational if and only if there are integers p and q, with 
such that 

The rationals are exactly the numbers along the number line that have termi-
nating or repeating decimal expressions. All other real numbers are irrational. In
Chapter 1 we will see a proof that is irrational. The number systems and 
share many of the arithmetic and ordering properties of the naturals and integers,
along with a new property:

Every number x except 0 has a multiplicative inverse; that is, there is a number
y such that 

Complex Numbers

A complex number has the form where a and b are real numbers and
The conjugate of is and The

set of reals is a subset of the complex numbers because any real number x may be writ-
ten as Complex numbers do not share the ordering properties of the reals.

Functions

A function (or a mapping) is a rule of correspondence that associates to each ele-
ment in a set A a unique element in a second set B. No restriction is placed on the
sets A and B, which may be sets of numbers, or functions, or vegetables. To denote
that f is a function from A to B, we write

f : A → B

x + 0i.

(a + bi)(a − bi) = a2 + b2.a − bia + bii =
√

−1.
a + bi,

xy = 1.

��
√

2

x = p/q.q =� 0,

27
5

.2, π, 
√

13,

“∞”

(−∞, b] = {x: x � � and x ≤ b}[a, ∞) = {x: x � � and a ≤ x}

(−∞, b) = {x: x � � and x < b}(a, ∞) = {x: x � � and a < x}
[a, b] = {x: x � � and a ≤ x ≤ b}
(a, b) = {x: x � � and a < x < b}

a < b:

b = ak.
a =� 0

x = 2j + 1.
x = 2k.

xvi Preface to the Student
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and say “ f maps A to B.” If and the corresponding element of B is b, we write

The elements of A are sometimes called the arguments or inputs of the function.
If we say that b is the image of a, or b is the value of the function f at a.
We also say that a is a pre-image of b.

For example, given by represents the correspondence
that assigns to each real number x the number that is one more than the square of x.
The image of the real number 2 is 5 and is a pre-image of 10.

The features that make f a function from A to B are that every element of A
must have an image, that image must be in B, and most importantly, that no element
of A has more than one image. It is this single-valued property that make functions
so useful.

If the set A is the domain of f, denoted and B is the
codomain of f . The set

of all images under the function f is called the range of f . The range of the function
given by is 

It is sometimes convenient to describe a function by giving only a domain and
a rule. For functions whose domains and codomains are subsets of the domain is
sometimes left unspecified and assumed to be the largest possible subset of for
which image values may be obtained. With this assumption, the domain of

is because this is the largest set of real numbers for which
may be calculated.

When we say that it is required that However, it may
be that some elements of the codomain are not images under the function f ; that is,
the set may not be equal to B. In the special case when the range of f is
equal to B, we say f maps A onto B. It may also be that two different elements of
A have the same image in B. In the special case when any two different arguments
have different images, we say that f is one-to-one. Because the range of

is is not onto Since and have value 10, f
is not one-to-one.

What am I allowed to assume for a proof?

You may be given specific instructions for some proof writing exercises, but gener-
ally the idea is that you may use what someone studying the topic of your proof
would know. That is, when we prove something about intersecting lines we might
use facts about the slope of a line, but we probably would not use properties of
derivatives. This really is not much of a problem, except for our first proof exam-
ples, which deal with elementary concepts such as even and odd (because they pro-
vide meaningful examples and a familiar context in which to study logic and
reasoning). For these proofs we are allowed to use the properties of integers and

f  (−3)f  (3)�.[1, ∞),   f  f  (x) = x2 + 1

Rng (  f   )

Rng (  f   ) ⊆ B.f : A → B,

√
x + 1

[−1, ∞),g(x) =
√

x + 1

�

�,

[1, ∞). f  (x) = x2 + 1f : � → �

Rng (  f   ) = { f  (x): x � A}

Dom (  f   ),f : A → B,

−3

f  (x) = x2 + 1f : � → �

f  (a) = b

f  (a) = b.

a � A
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natural numbers that we already know except what we already know about even-
ness and oddness.

Remember, we don’t expect you to become an expert at proving theorems
overnight. With practice—studying lots of examples and exercises—the skills will
come. Our goal is to help you write and think as mathematicians do, and to pres-
ent a solid foundation in material that is useful in advanced courses. We hope you
enjoy it.

Douglas D. Smith
Richard St. Andre

xviii Preface to the Student
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1

We recommend that you read the Preface to the Student before beginning this first
chapter. Most of the terms and concepts in that Preface should be familiar to you,
but it is well worth making sure you know the terminology and notations we will
use throughout the book. It is especially important that you know precisely the def-
initions of such terms as: “divides,” “prime,” “rational,” and “even” and “odd.”

As described in the Preface, mathematics is concerned with the formation of a
theory (collection of true statements) that describes patterns or relationships
among quantities and structures. It is characterized by deductive reasoning, in
which one uses logic to develop and extend a theory by drawing conclusions based
on statements accepted as true. We give proofs to demonstrate that our conclusions
are true. This chapter will provide a working knowledge of the basics of logic and
how to construct a proof.

1.1 Propositions and Connectives

Our goal in this section is to understand truth values of propositions and how propo-
sitions can be combined using logical connectives.

Most sentences, such as and “Earth is the closest planet to the sun,”
have a truth value. That is, they are either true or false. We call these sentences
propositions. Other sentences, such as “What time is it?” and “Look out!” are inter-
rogatory or exclamatory; they express complete thoughts but have no truth value.

“π > 3”

C H A P T E R  1

Logic and Proofs

DEFINITION A proposition is a sentence that has exactly one truth
value: true, which we denote by T, or false, which we denote by F.

Some propositions, such as have easily determined truth values. It
will take years to determine the truth value of the proposition “The North Pacific
right whale will be an extinct species before the year 2525.” Other statements, such

“72 = 60,”
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2 CHAPTER 1 Logic and Proofs

as “Euclid was left-handed,” are propositions whose truth values may never be
known.

Sentences like “She lives in New York City” and are not proposi-
tions because each could be true or false depending upon the person to whom “she”
refers and what numerical value is assigned to x. We will deal with sentences like
these in Section 1.3.

The statement “This sentence is false” is not a proposition because it is neither
true nor false. It is an example of a paradox—a situation in which, from premises
that look reasonable, one uses apparently acceptable reasoning to derive a conclu-
sion that seems to be contradictory. If the statement “This sentence is false” is true,
then by its meaning it must be false. On the other hand, if the given statement is
false, then what it claims is false, so it must be true. The study of paradoxes such as
this has played a key role in the development of modern mathematical logic. A
famous example of a paradox formulated in 1901 by Bertand Russell* is discussed
in Section 2.1.

By applying logical connectives to propositions, we can form new propositions.

“x2 = 36”

DEFINITION The negation of a proposition P, denoted ∼P, is the
proposition “not P.” The proposition ∼P is true exactly when P is false.

The truth value of the negation of a proposition is the opposite of the truth
value of the proposition. For example, the negation of the false proposition “7 is
divisible by 2” is the true statement “It is not the case that 7 is divisible by 2,” or “7
is not divisible by 2.”

DEFINITIONS Given propositions P and Q, the conjunction of P and
Q, denoted is the proposition “P and Q.” is true exactly
when both P and Q are true.

The disjunction of P and Q, denoted is the proposition 
“P or Q.” is true exactly when at least one of P or Q is true.P ∨ Q

P ∨ Q,

P ∧ QP ∧ Q,

Examples. If C is the proposition “19 is composite” and M is “45 is a multiple of
3,” we know C is false and M is true. Thus “19 is composite and 45 is a multiple of
3,” written using logical connectives as is a false proposition, while “19 is
composite or 45 is a multiple of 3,” which has form is true. The false propo-
sition “Either 19 is composite or 45 is not a multiple of 3” has the form 

The English words but, while, and although are usually translated symbolically
with the conjunction connective, because they have the same meaning as and. For

C ∨ ∼M.
C ∨ M,

C ∧ M,

* Bertrand Russell (1872–1970) was a British philosopher, mathematician, and advocate for social
reform. He was a strong voice for precision and clarity of arguments in mathematics and logic. He coau-
thored Principia Mathematica (1910–1913), a monumental effort to derive all of mathematics from a
specific set of axioms and well-defined rules of inference.
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1.1 Propositions and Connectives 3

P Q

T T T
F T F
T F F
F F F

P ∧ Q P Q

T T T
F T T
T F T
F F F

P ∨ Q

Since the value of depends only on the two possible values for P, its truth
table is

∼P

P

T F
F T

∼P

Frequently you will encounter compound propositions formed from more than
two propositional variables. The propositional form has three vari-
ables P, Q, and R; it follows that there are possible combinations of truth
values. The two main components are and We make truth tables for
these and combine them by using the truth table for ¡ .

∼R.P ∧ Q
23 = 8

(P ∧ Q ) ∨ ∼R

example, we would write “19 is not composite, but 45 is a multiple of 3” in sym-
bolic form as: 

An important distinction must be made between a statement and the form of a
statement. In the previous example “19 is composite and 45 is a multiple of 3” is a
proposition with truth value F. We used the form to represent this proposi-
tion, but the form itself has no truth value unless C and M are assigned to be
specific propositions. If we let C be “Copenhagen is the capital of Denmark” and M
be “Madrid is the capital of Spain,” then would have the value T.

To repeat: a propositional form does not have a truth value. Instead, each form
has a list of truth values that depend on the values assigned to its components. This
list is displayed by presenting all possible combinations for the truth values of its
components in a truth table. Since the connectives ∧ and ∨ involve two components,
their truth tables must list the four possible combinations of the truth values of those
components:

C ∧ M

C ∧ M
C ∧ M

(∼C ) ∧ M.

P Q R

T T T T F T
F T T F F F
T F T F F F
F F T F F F
T T F T T T
F T F F T T
T F F F T T
F F F F T T

(P ∧ Q ) ∨ ∼R∼RP ∧ Q

The statement “Either 7 is prime and 9 is even or else 11 is not less than 3” may
be symbolized by where P is “7 is prime,” Q is “9 is even,” and R(P ∧ Q ) ∨ ∼R,
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4 CHAPTER 1 Logic and Proofs

DEFINITION Two propositional forms are equivalent if and only
if they have the same truth tables.

For example, the Law of Excluded Middle, is a tautology because
is true when P is true and true when P is false. We know that a statement

like “The absolute value function is continuous or it is not continuous” must be true
because it has the form of the Law of Excluded Middle.

Example. Show that is a tautology.

The truth table for this propositional form is

P Q

T T T F F F T
F T T T F F T
T F T F T F T
F F F T T T T

Since the last column is all true, is a tautology.

Both and are examples of contradictions. The negation
of a contradiction is, of course, a tautology.

Writing a proof requires the ability to connect statements so that the truth
of any given statement in the proof follows logically from previous statements
in the proof, from known results, or from basic assumptions. Particularly
important is the ability to recognize or write a statement equivalent to another.
Sometimes, it is the form of a compound statement that may be used to find a
useful equivalent.

Q ∧ ∼Q∼ (P ∨ ∼P )

(P ∨ Q ) ∨ (∼P ∧ ∼Q )

(P ∨ Q ) ∨ (∼P ∧ ∼Q )∼P ∧ ∼Q∼Q∼PP ∨ Q

(P ∨ Q ) ∨ (∼P ∧ ∼Q )

P ∨ ∼P
P ∨ ∼P,

DEFINITIONS A tautology is a propositional form that is true for
every assignment of truth values to its components.

A contradiction is a propositional form that is false for every assignment
of truth values to its components.

is “11 is less than 3.” We know P is true, Q is false and R is false. Therefore,
is false and is true. Thus is true, in agreement with line

7 of the table. Thus the proposition “Either 7 is prime and 9 is even or else 11 is not
less than 3” is a true statement.

Some compound forms always yield the value true just because of the way they
are formed; others are always false.

(P ∧ Q ) ∨ ∼R∼R(P ∧ Q )
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1.1 Propositions and Connectives 5

Example. The propositional forms P and are equivalent. The truth tables
for these forms may be combined in one table to show that they are the same:

∼(∼P )

P

T F T
F T F

∼ (∼P )∼P

The fact that P and have the same truth value for each line of the truth
table means that whatever proposition we choose for P, the truth value of P and

are identical.
Some of the most commonly used equivalent forms are presented in the fol-

lowing theorem.

Theorem 1.1.1 For propositions P, Q, and R, the following are equivalent:

(a) P and Double Negation Law
(b) and

Commutative Laws(c) and
(d) and

Associative Laws(e) and
(f) and

Distributive Laws(g) and
(h) and

DeMorgan’s* Laws(i) and

Proof.
(a) See the discussion above.
(h) By examining the fourth and seventh columns of their combined truth tables
as shown here,

∼P ∧ ∼Q∼(P ∨ Q)
∼P ∨ ∼Q∼(P ∧ Q)
(P ∨ Q) ∧ (P ∨ R)P ∨ (Q ∧ R)
(P ∧ Q) ∨ (P ∧ R)P ∧ (Q ∨ R)
(P ∧ Q) ∧ RP ∧ (Q ∧ R)
(P ∨ Q) ∨ RP ∨ (Q ∨ R)
Q ∧ PP ∧ Q
Q ∨ PP ∨ Q
∼ (∼P )

∼ (∼P )

∼ (∼P )

* Augustus DeMorgan (1806–1871) was an English logician and mathematician whose contributions
include his notational system for symbolic logic. He also introduced the term “mathematical induction”
(see Section 2.4) and developed a rigorous foundation for that proof technique.

f
f
f

f

P Q

T T T F F F F
F T F T T F T
T F F T F T T
F F F T T T T

∼P ∨ ∼Q∼Q∼P∼ (P ∧ Q )P ∧ Q

we see that the truth tables for and are identical. Thus
and are equivalent propositional forms.

Proofs of the remaining parts are left as exercises. �

In addition to making tables to verify the remaining parts of Theorem 1.1.1,
you should also think about why two propositional forms are equivalent by looking

∼P ∨ ∼Q∼ (P ∧ Q )
∼P ∨ ∼Q∼ (P ∧ Q )
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6 CHAPTER 1 Logic and Proofs

at their meanings. For part (h), negation is applied to a conjunction. The form
is true precisely when is false. This happens when one of P or Q

is false, or in other words, when one of or is true. Thus, is
equivalent to That is, to say “You don’t have both P and Q” is the same
as saying “You don’t have P or you don’t have Q.”

As an example of how this theorem might be useful in dealing with statements,
suppose we are told that the statement “The function f is increasing and concave
upward” is false. The statement has the form where P is the statement “f is
increasing” and Q is the statement “f is concave upward.” The negation 
is “It is not the case that f is increasing and f is concave upward.” By part (h) above,
this is equivalent to which is

“It is not the case that f is increasing or it is not the case that f is concave
upward.”

An easier way to say this is

“f is not increasing or f is not concave upward.”

A denial of a proposition P is any proposition equivalent to ∼P. A proposition
has only one negation, but always has many denials, including 

etc. DeMorgan’s Laws provide others ways to construct useful denials.

Example. A denial of “Either Miss Scarlet is not guilty or the crime did not take
place in the ballroom” is “The crime took place in the ballroom and Miss Scarlet is
guilty.” This can be verified by writing the two propositions symbolically as

and respectively, and checking that their truth tables have
exactly opposite values. We could also observe that is equivalent to so
a denial of is equivalent to which we know by DeMorgan’s Laws
is equivalent to 

Example. The statement “Line has slope 3/5 or line does not have slope 
may be symbolized using the form so its negation is We can
write a simpler denial by applying DeMorgan’s Laws and the Double
Negation Law. The simplified denial says “Line does not have slope and line

has slope 

Notice that someone might read the negation as “It is not the case
that L1 has slope or line does not have slope This sentence is ambigu-
ous because without some further explanation, it is not clear if the phrase “It is not
the case” refers to the entire remainder of the sentence or to just has slope 

Ambiguities like the one above are sometimes allowable in English but can
cause trouble in mathematics. To avoid ambiguities, you should use delimiters,
such as parentheses ( ), square brackets [ ], and braces { }.

To avoid writing large numbers of delimiters, we use the following rules,
which we refer to as the hierarchy of connectives.

First, always is applied to the smallest proposition following it.
Then, always connects the smallest propositions surrounding it.
Finally, connects the smallest propositions surrounding it.¡¿

∼

3/5.”“L1

−4.”L23/5
∼ (P ∨ ∼Q )

−4.”L2

3/5L1

(∼P ) ∧ Q
∼ (P ∨ ∼Q ).P ∨ ∼Q,

−4”L2L1

(∼S ) ∨ (∼B ).
∼ ( S ∧ B ),B ∧ S

S ∧ BB ∧ S
B ∧ S,(∼S ) ∨ (∼B )

∼∼∼∼∼P,
∼∼∼P,∼P,∼P,

∼P ∨ ∼Q,

∼ ( P ∧ Q )
P ∧ Q,

∼P ∨ ∼Q.
∼ ( P ∧ Q )∼Q∼P

P ∧ Q∼ ( P ∧ Q )

62025_01_ch01_p001-070.qxd  4/22/10  1:42 AM  Page 6

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



1.1 Propositions and Connectives 7

Thus, is an abbreviation for but is the only way to
write the negation of Here are some other examples:

abbreviates 
abbreviates 

abbreviates 
abbreviates 

When the same connective is used several times in succession, parentheses
may be omitted. We reinsert parentheses from the left, so that is really

For example, abbreviates 
whereas which does not use the same connective consecutively,
abbreviates Leaving out parentheses is not required; 
some propositional forms are much easier to read with a few well-chosen “unnec-
essary” parentheses.

Exercises 1.1

1. Use your knowledge of number systems to determine whether each is true or
false.
(a) 11 is a rational number.

� (b) is a rational number.
(c) There are exactly 3 prime numbers between 40 and 50.
(d) There are exactly 5 prime numbers less than 10.
(e) 29 is a composite number.
(f) 0 is a natural number.

� (g) is a real number.
(h) 18 is a multiple of 12.

2. Which of the following are propositions? Give the truth value of each proposition.
(a) What time is dinner?
(b) It is not the case that is not a rational number.

� (c) is a rational number.
(d) is a real number.
(e) Either is rational or is rational.

� (f) Either 2 is rational and is irrational, or is rational.
(g) Either is rational and 4.9 is rational, or is rational.
(h) is rational, and either or 
(i) It is not the case that 39 is prime, or that 64 is a power of 2.
(j) There are more than three false statements in this book and this state-

ment is one of them.

3. Make truth tables for each of the following propositional forms.
� (a) (b)
� (c) (d)
� (e) (f)

(g) (h) ∼P ∧ ∼Q.(P ∨ ∼Q ) ∧ R.
∼ (P ∧ Q ).(P ∧ Q ) ∨ ∼Q.
P ∧ (Q ∨ ∼Q ).P ∧ ∼Q.
P ∨ ∼P.P ∧ ∼P.

3π > 15.3π < 10−1
2

3π5π

2ππ

3 − π3 + π

2x + 3y
x/2

5 + π

(5 + 2i )(5 − 2i )

5π

(R ∨ [P ∧ (∼P)]) ∨ Q.
R ∨ P ∧ ∼P ∨ Q,

[ (R ∧ P ) ∧ (∼P )] ∧ Q,R ∧ P ∧ ∼P ∧ Q(P ∨ Q ) ∨ R.
P ∨ Q ∨ R

[(∼P) ∧ (∼R )] ∨ [(∼P) ∧ R].∼P ∧ ∼R ∨ ∼P ∧ R
(∼P ) ∨ (∼Q ).∼P ∨ ∼Q

[P ∧ (∼Q )] ∨ (∼R ).P ∧ ∼Q ∨ ∼R
P ∨ (Q ∧ R ).P ∨ Q ∧ R

P ∨ Q.
∼ (P ∨ Q )(∼P ) ∨ Q,∼P ∨ Q
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8 CHAPTER 1 Logic and Proofs

� (i) (j)
(k) (l)

4. If P, Q, and R are true while S and T are false, which of the following are true?
� (a) (b)
� (c) (d)

(e) � (f)
� (g)

5. Use truth tables to prove the remaining parts of Theorem 1.1.1.

6. Which of the following pairs of propositional forms are equivalent?
� (a) (b)
� (c) (d)
� (e) (f)
� (g) (h)

7. Determine the propositional form and truth value for each of the following:
(a) It is not the case that 2 is odd.
(b) is increasing and concave up.
(c) Both 7 and 5 are factors of 70.
(d) Perth or Panama City or Pisa is located in Europe.

8. P, Q, and R are propositional forms, and P is equivalent to Q, and Q is equiv-
alent to R. Prove that

� (a) Q is equivalent to P.
(b) P is equivalent to R.
(c) is equivalent to 

9. Use a truth table to determine whether each of the following is a tautology, a
contradiction, or neither.
(a)
(b)

� (c)
(d)
(e)
(f)

10. Suppose A is a tautology and B is a contradiction. Are the following tautolo-
gies, contradictions, or neither?

� (a) (b)
� (c) (d)

11. Give a useful denial of each statement.
� (a) x is a positive integer. (Assume that x is some fixed integer.)

(b) Cleveland will win the first game or the second game.
� (c)

(d) 641,371 is a composite integer.
� (e) Roses are red and violets are blue.

(f) T is not bounded or T is compact. (Assume that T is a fixed object.)
(g) M is odd and one-to-one. (Assume that M is some fixed function.)

5 ≥ 3.

∼ (∼A ∧ B ).A ∨ B.
A ∧ ∼B.A ∧ B.

P ∨ [(∼Q ∧ P ) ∧ (R ∨ Q )].
(Q ∧ ∼P ) ∧ ∼ (P ∧ R ).
(A ∧ B ) ∨ (A ∧ ∼B ) ∨ (∼A ∧ B ) ∨ (∼A ∧ ∼B ).
(P ∧ Q ) ∨ (∼P ∨ ∼Q ).
∼ (P ∧ ∼P ).
(P ∧ Q ) ∨ (∼P ∧ ∼Q ).

∼P.∼Q

f (x) = ex

(P ∧ Q ) ∨ R, P ∨ (Q ∧ R ).(P ∧ Q ) ∨ R, P ∧ (Q ∨ R ).
∼ (P ∧ Q ), ∼P ∧ ∼Q.∼P ∧ ∼Q, ∼ (P ∧ ∼Q ).
(∼P ) ∨ (∼Q ), ∼ (P ∨ ∼Q ).P ∧ Q, Q ∧ P.
P ∨ P, P.P ∧ P, P.

(P ∨ S ) ∧ (P ∨ T ).
(∼Q ∨ S ) ∧ (Q ∨ S ).∼P ∨ ∼Q.
(∼P ∨ ∼Q ) ∨ (∼R ∨ ∼S ).(P ∨ Q ) ∧ (R ∨ S ).
Q ∨ (R ∧ S ).Q ∧ (R ∧ S ).

(P ∧ Q ) ∨ (R ∧ ∼S ).P ∧ P.
(P ∧ Q ) ∨ (P ∧ R ).P ∧ (Q ∨ R ).
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1.2 Conditionals and Biconditionals 9

(h) The function f has positive first and second derivatives at (Assume
that f is a fixed function and is a fixed real number.)

(i) The function g has a relative maximum at or and a relative
minimum at (Assume that g is a fixed function.)

(j) Neither nor is true. (Assume that z, s, and t are fixed real
numbers.)

(k) R is transitive but not reflexive. (Assume that R is a fixed object.)

12. Restore parentheses to these abbreviated propositional forms.
(a)
(b)
(c)
(d)

13. Other logical connectives between two propositions P and Q are possible.
(a) The word or is used in two different ways in English. We have presented

the truth table for the inclusive or, whose meaning is “one or the other
or both.” The exclusive or, meaning “one or the other but not both” and
denoted , has its uses in English, as in “She will marry Heckle or she
will marry Jeckle.” The “inclusive or” is much more useful in mathemat-
ics and is the accepted meaning unless there is a statement to the contrary.

� (i) Make a truth table for the “exclusive or” connective .
(ii) Show that is equivalent to 

(b) “NAND” and “NOR” circuits are commonly used as a basis for flash
memory chips. A NAND B is defined to be the negation of “A and B.” A
NOR B is defined to be the negation of “A or B.”

(i) Write truth tables for NAND and NOR connectives.
(ii) Show that (A NAND B) (A NOR B) is equivalent to (A NAND B).

(iii) Show that (A NAND B) (A NOR B) is equivalent to (A NOR B).

1.2 Conditionals and Biconditionals

Sentences of the form “If P, then Q” are the most important kind of propositions in
mathematics. You have seen many examples of such statements in mathematics
courses: from precalculus, “If two lines in a plane have the same slope, then the
lines are parallel”; from trigonometry, “If sec then from calcu-
lus, “If f is differentiable at and is a relative minimum for f, then
f ′(x0) = 0.”

f (x0)x0

sin u = 4
5
.”;u = 5

3
,

∧
∨

(A ∨ B ) ∧ ∼ (A ∧ B ).A ©∨ B
©∨

©∨

¡ ,

∼P ∨ Q ∧ ∼∼P ∧ Q ∨ R.
P ∧ ∼Q ∨ ∼P ∧ ∼R ∨ ∼P ∧ S.
Q ∧ ∼S ∨ ∼ (∼P ∧ Q ).
∼∼P ∨ ∼Q ∧ ∼S.

z ≤ tz < s
x = 3.

x = 4x = 2
x0

x0.

DEFINITIONS For propositions P and Q, the conditional sentence
is the proposition “If P, then Q.” Proposition P is called the

antecedent and Q is the consequent. The conditional sentence is
true if and only if P is false or Q is true.

P ⇒ Q
P ⇒ Q
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10 CHAPTER 1 Logic and Proofs

The truth table for isP ⇒ Q

P Q

T T T
F T T
T F F
F F T

P ⇒ Q

According to this table, there is only one way that can be false: when P is
true and Q is false. Thus, this truth table agrees with the way we understand prom-
ises: the only situation where a promise is broken is when the antecedent is true but
the person making the promise fails to make the consequent true.

Example. Suppose someone says to a friend “If the concert is sold out, I’ll take you
sailing.” This promise is broken (the conditional sentence is false) only when the
concert was sold out (the antecedent is true) and the person who made the promise
did not take the other person sailing (the consequent is false). This is line 3 of the
truth table. In all other situations, the promise is true. If there were tickets left (lines
2 and 4 of the table), we don’t say the promise was broken, regardless of whether the
friends decided to go sailing. The promise is also kept in the situation where the con-
cert is sold out and the friends went sailing, which is line 1 of the table.

One curious consequence of the truth table for is that a conditional sen-
tence may be true even when there is no connection between the antecedent and the
consequent. The reason for this is that the truth value of depends only on the
truth value of components P and Q, not on their interpretation. For this reason all of
the following are true:

“If sin then 6 is prime.” (line 4 of the truth table)
(line 1 of the truth table)

Paris is the capital of France.” (line 2 of the truth table)

and both of these are false by line 3 of the truth table:

“If Saturn has rings, then 
“If then 1 is a prime number.”

Other consequences of the truth table for are worth noting. When P is
false, it doesn’t matter what truth value Q has: will be true by lines 2 and 4.
When Q is true, it doesn’t matter what truth value P has: will be true by lines
1 and 2. Finally, when P and are both true (on line 1), Q must also be true.

Example. Both propositions

“If Isaac Newton was born in 1642, then 
“If Isaac Newton was born in 1643, then 

are true because the consequent is true.“3 · 5 = 15”

3 · 5 = 15”
3 · 5 = 15”

P ⇒ Q
P ⇒ Q

P ⇒ Q
P ⇒ Q

4π > 10,
(2 + 3)2 = 22 + 32.”

“π = 3 ⇒
“13 > 7 ⇒ 2 + 3 = 5.”

π = 1,

P ⇒ Q

P ⇒ Q

P ⇒ Q
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1.2 Conditionals and Biconditionals 11

Our truth table definition for captures the same meaning for “If 
then ” that you have always used in mathematics. For example, if we think of x
as some fixed real number, we all know that

“If then 

is a true statement, no matter what number x we have in mind. Let’s examine why
we say this sentence is true for some specific values of x, where the antecedent P is

and the consequent Q is 
In the case both P and Q are true, as in line 1 of the truth table. The case

corresponds to the second line of the table, and for we have the situation in
line 4. There is no case corresponding to line 3 because is true. Note that when
we say “If P, then Q” is true, we don’t claim that either P or Q is true. What we do say
is that no matter what number we think of, if it’s larger than 8, it’s also larger than 5.

Two propositions closely related to are its converse and contrapositive.P ⇒ Q

P ⇒ Q
x = 3x = 7

x = 11,
“x > 5.”“x > 8”

x > 5”x > 8,

Á

Á ,P ⇒ Q

DEFINITION Let P and Q be propositions.

The converse of is 
The contrapositive of is (∼Q ) ⇒ (∼P ).P ⇒ Q

Q ⇒ P.P ⇒ Q

For the conditional sentence “If is an integer, then 14 is even,” the converse
of the sentence is “If 14 is even, then is an integer” and the contrapositive is “If
14 is not even, then is not an integer.” The converse is false, but the sentence and
its contrapositive are true.

For the sentence “If then the converse and contraposi-
tive are, respectively, “If then ” and “If is not greater
than 3, then is not equal to 2.” In this example, all three sentences are true.

The previous two examples suggest that the truth values of a conditional sen-
tence and its contrapositive are related, but there seems to be little connection
between the truth values of and its converse. We describe the relationships
in the following theorem.

Theorem 1.2.1 For propositions P and Q,

(a) is equivalent to its contrapositive 
(b) is not equivalent to its converse 

Proof. The proofs are carried out by examination of the truth tables.

Q ⇒ P.P ⇒ Q
(∼Q ) ⇒ (∼P ).P ⇒ Q

P ⇒ Q

1 + 1

√
101 + 1 = 2

√
10 > 3,

√
10 > 3,”1 + 1 = 2,

π

π

π

P Q

T T T F F T T
F T T T F T F
T F F F T F T
F F T T T T T

Q ⇒ P(∼Q ) ⇒ (∼P )∼Q∼PP ⇒ Q
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12 CHAPTER 1 Logic and Proofs

(a) is equivalent to because the third column in the truth
table is identical to the sixth column in the table.

(b) is not equivalent to because column 3 in the truth table dif-
fers from column 7 in rows 2 and 3. �

We have seen cases where a conditional sentence and its converse have the
same truth value. Theorem 1.2.1(b) simply says that this need not always be the
case—the truth values of cannot be inferred from its converse 

The next connective we need is the biconditional connective The double
arrow reminds one of both and and this is no accident, because 
is equivalent to (P ⇒ Q) ∧ (Q ⇒ P).

P ⇐⇒ Q⇒,⇐⇐⇒
⇐⇒.

Q ⇒ P.P ⇒ Q

Q ⇒ PP ⇒ Q

(∼Q ) ⇒ (∼P )P ⇒ Q

DEFINITION For propositions P and Q, the biconditional sentence
is the proposition “P if and only if Q.” is true exactly

when P and Q have the same truth values. We also write P Q to abbre-
viate P if and only if Q.

  iff  

P ⇐⇒ QP ⇐⇒ Q

The truth table for isP ⇐⇒ Q

P Q

T T T
F T F
T F F
F F T

P ⇐⇒ Q

Examples. The proposition 49 is a perfect square” is true because both
components are true. The proposition is a rational number” is true
because both components are false. The proposition Lake Michigan
is in Kansas” is false because the truth values of the components differ.

Definitions, fully stated with the “if and only if” connective, are important
examples of biconditional sentences because they describe exactly the condition(s)
to meet the definition. Although sometimes a definition does not explicitly use the

wording, biconditionality does provide a good test of whether a statement could
serve as a definition or just a description.

Example. The statement “Vertical lines have undefined slope” could be used as a
definition because a line is vertical its slope is undefined. However, “A zebra is
a striped animal” is not a definition, because the sentence “An animal is a zebra
the animal is striped” is false.

Because the biconditional sentence is true exactly when the truth
values of P and Q agree, we can use the biconditional connective to restate the
meaning of equivalent propositional forms:

P ⇐⇒ Q

  iff  

  iff  

iff  

  iff  “6 + 1 = 7

√
2  iff  “π = 22/7

  iff  “23 = 8
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1.2 Conditionals and Biconditionals 13

The propositional forms P and Q are equivalent precisely when is a
tautology.

Thus each statement in Theorem 1.1.1 may be restated using the connec-
tive. For example, DeMorgan’s Laws are:

All of the statements in Theorem 1.1.1 are used regularly in proofs. The next theo-
rem contains several additional important pairs of equivalent propositional forms
that involve implication. They, too, will be used often.

Theorem 1.2.2 For propositions P, Q, and R,

(a) is equivalent to 
(b) is equivalent to 
(c) is equivalent to 
(d) is equivalent to 
(e) is equivalent to 
(f) is equivalent to 
(g) is equivalent to 

Exercise 8 asks you to prove each part of Theorem 1.2.2. The natural way to
proceed is by constructing and then comparing truth tables, but you should also
think about the meaning of both sides of each statement of equivalence. With part
(a), for example, we reason as follows: is false exactly when P is true and 
Q is false, which happens exactly when both and Q are false. Since this happens
exactly when is false, the truth tables for and are identical.

Note that many of the statements in Theorems 1.1.1 and 1.2.2 are related. For
example, once we have established Theorem 1.1.1 and 1.2.2(a), we reason that part
(c) is correct as follows:

is equivalent, by part (a), to
which is equivalent, by Theorem 1.1.1(i), to

which is equivalent, by Theorem 1.1.1(a), to 

Recognizing the structure of a sentence and translating the sentence into sym-
bolic form using logical connectives are aids in determining its truth or falsity. The
translation of sentences into propositional symbols is sometimes very complicated
because some natural languages such as English are rich and powerful with many
nuances. The ambiguities that we tolerate in English would destroy structure and
usefulness if we allowed them in mathematics.

Even the translations of simple sentences can present special problems. Sup-
pose a teacher says to a student

“If you score 74% or higher on the next test, you will pass this course.”

P ∧ ∼Q.
∼ (∼P ) ∧ ∼Q,
∼ (∼P ∨ Q),
∼ (P ⇒ Q )

∼P ∨ QP ⇒ Q∼P ∨ Q
∼P

P ⇒ Q

(P ⇒ R ) ∧ (Q ⇒ R ).(P ∨ Q ) ⇒ R
(P ⇒ Q ) ∧ (P ⇒ R ).P ⇒ (Q ∧ R )
(P ∧ Q) ⇒ R.P ⇒ (Q ⇒ R )

P ⇒ ∼Q and to Q ⇒ ∼P.∼ (P ∧ Q )
P ∧ ∼Q.∼ (P ⇒ Q )

(P ⇒ Q ) ∧ (Q ⇒ P ).P ⇐⇒ Q
∼P ∨ Q.P ⇒ Q

∼ (P ∨ Q)  ⇐⇒  (∼P ∧ ∼Q).
∼ (P ∧ Q)  ⇐⇒  (∼P ∨ ∼Q) and

⇐⇒

P ⇐⇒ Q
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14 CHAPTER 1 Logic and Proofs

This sentence clearly has the form of a conditional sentence, although almost every-
one will interpret the meaning as a biconditional.

Contrast this with the situation in mathematics where “If then x is a
solution to must have only the meaning of the connective because

does not imply 
Shown below are some phrases in English that are ordinarily translated by

using the connectives or In the accompanying examples, think of a and t as
fixed real numbers.

Use to translate: Examples:

If P, then Q. If then 
P implies Q. implies 
P is sufficient for Q. is sufficient for 
P only if Q. only if 
Q, if P. if 
Q whenever P. whenever 
Q is necessary for P. is necessary for 
Q, when P. when 

Use to translate: Examples:

P if and only if Q. if and only if 
P if, but only if, Q. if, but only if, 
P is equivalent to Q. is equivalent to 
P is necessary and sufficient for Q. is necessary and sufficient 

for 

The word unless is one of those connective words in English that poses special
problems because it has so many different interpretations. See Exercise 11.

Examples. In these sentence translations, we assume that S, G, and e have been
specified. It is not necessary to know the meanings of all the words because the
form of the sentence is sufficient to determine the correct translation.

“S is compact is sufficient for S to be bounded” is translated

S is compact S is bounded.

“A necessary condition for a group G to be cyclic is that G is abelian” is 
translated

G is cyclic G is abelian.

“A set S is infinite if S has an uncountable subset” is translated

S has an uncountable subset S is infinite.

“A necessary and sufficient condition for the graph G to be a tree is that 
G is connected and every edge of G is a bridge” is translated

G is a tree (G is connected every edge of G is a bridge).

Example. If we let P denote the proposition “Roses are red” and Q denote the
proposition “Violets are blue,” we can translate the sentence “It is not the case that

¿⇐⇒

⇒

⇒

⇒

t2 = 4.
| t | = 2

t2 = 4.| t | = 2
t2 = 4.| t | = 2

t2 = 4.| t | = 2

P ⇐⇒ Q

a > 5.a > 3,
a > 5.a > 3

a > 5.a > 3
a > 5.a > 3,

a > 3.a > 5
a > 3.a > 5

a > 3.a > 5
a > 3.a > 5,

P ⇒ Q

⇐⇒.⇒

x = 2.x2 = 2x
⇒,x2 = 2x”

x = 2,
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1.2 Conditionals and Biconditionals 15

roses are red, nor that violets are blue” in at least two ways: or
Fortunately, these are equivalent by Theorem 1.1.1(h). Note that the

proposition “Violets are purple” requires a new symbol, say R, since it expresses a
new idea that cannot be formed from the components P and Q.

The sentence “17 and 35 have no common divisors” shows that the meaning,
and not just the form of the sentence, must be considered in translating; it cannot be
broken up into the two propositions: “17 has no common divisors” and “35 has no
common divisors.” Compare this with the proposition “17 and 35 have digits total-
ing 8,” which can be written as a conjunction.

Example. Suppose b is a fixed real number. The form of the sentence “If b is an
integer, then b is either even or odd” is where P is “b is an integer,”
Q is “b is even,” and R is “b is odd.”

Example. Suppose a, b, and p are fixed integers. “If p is a prime number that
divides ab, then p divides a or b” has the form where P is “p
is a prime,” Q is “p divides ab,” R is “p divides a,” and S is “p divides b.”

The hierarchy of connectives in Section 1.1 that governs the use of parentheses
for propositional forms can be extended to the connectives and 

The connectives ∼, ∧, ∨, and are always applied in the order listed.

Thus, applies to the smallest possible proposition, then is applied with the next
smallest scope, and so forth. For example,

is an abbreviation for 
is an abbreviation for 

and

Exercises 1.2

1. Identify the antecedent and the consequent for each of the following condi-
tional sentences. Assume that a, b, and f represent some fixed sequence,
integer, or function, respectively.

� (a) If squares have three sides, then triangles have four sides.
(b) If the moon is made of cheese, then 8 is an irrational number.
(c) b divides 3 only if b divides 9.

� (d) The differentiability of f is sufficient for f to be continuous.
(e) A sequence a is bounded whenever a is convergent.

� (f) A function f is bounded if f is integrable.
(g) is necessary for 1 + 1 = 2.1 + 2 = 3

P ⇒ Q ⇒ R is an abbreviation for (P ⇒ Q ) ⇒ R.

[P ∨ (∼Q )] ⇐⇒ (R ⇒ S ),P ∨ ∼Q ⇐⇒ R ⇒ S 

(P ⇒ [(∼Q ) ∨ R]) ⇐⇒ S,P ⇒ ∼Q ∨ R ⇐⇒ S 

¿∼
⇐⇒⇒,

⇐⇒:⇒

(P ∧ Q ) ⇒ (R ∨ S ),

P ⇒ (Q ∨ R ),

(∼P ) ∧ (∼Q ).
∼ (P ∨ Q )
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16 CHAPTER 1 Logic and Proofs

(h) The fish bite only when the moon is full.
� (i) A time of 3 minutes, 48 seconds or less is necessary to qualify for the

Olympic team.

� 2. Write the converse and contrapositive of each conditional sentence in Exercise 1.

3. What can be said about the truth value of Q when
(a) P is false and  is true? (b) P is true and is true?
(c) P is true and  is false? (d) P is false and is true?
(e) P is true and is false?

4. Identify the antecedent and consequent for each conditional sentence in the
following statements from this book.
(a) Theorem 1.3.1(a) (b) Exercise 3 of Section 1.6
(c) Theorem 2.1.4 (d) The PMI, Section 2.4
(e) Theorem 2.6.4 (f) Theorem 3.4.2
(g) Theorem 4.2.2 (h) Theorem 5.1.7(a)

5. Which of the following conditional sentences are true?
� (a) If triangles have three sides, then squares have four sides.

(b) If a hexagon has six sides, then the moon is made of cheese.
� (c) If then 

(d) If then 
� (e) If one interior angle of a right triangle is then the other interior

angle is 
(f) If Euclid’s birthday was April 2, then rectangles have four sides.
(g) 5 is prime if is not irrational.
(h) is sufficient for 

6. Which of the following are true?
� (a) Triangles have three sides squares have four sides.

(b)
� (c) b is even is odd. (Assume that b is some fixed integer.)

(d) m is odd is odd. (Assume that m is some fixed integer.)
(e)
(f) A parallelogram has three sides 27 is prime.
(g) The Eiffel Tower is in Paris if and only if the chemical symbol for

helium is H.
(h)
(i) (Assume that x is a fixed real number.)
(j) (Assume that x and y are fixed real

numbers.)
(k) (Assume that x and y are fixed real

numbers.)

7. Make truth tables for these propositional forms.
(a) � (b)

� (c) (d)
(e)
(f) [(Q ⇒ S ) ∧ (Q ⇒ R )] ⇒ [(P ∨ Q ) ⇒ (S ∨ R )].

(P ∧ Q ) ∨ (Q ∧ R ) ⇒ P ∨ R.
(P ∨ Q ) ⇒ (P ∧ Q ).∼Q ⇒ (Q ⇐⇒ P ).
(∼P ⇒ Q ) ∨ (Q ⇐⇒ P ).P ⇒ (Q ∧ P ).

(x + y)2 = 50. iff x2 + y2 = 50

(x − y)(x + y) = 0. iff x2 − y2 = 0
x ≥ 0. iff x2 ≥ 0

√
13 −

√
12 <

√
11 −

√
10. iff 

√
10 +

√
13 <

√
11 +

√
12

 iff 
7 + 1 = 10. iff 5 + 6 = 6 + 5

m2 iff 
b + 1 iff 

1 + 1 = 2. iff 7 + 5 = 12
 iff 

3 > 6.1 + 1 = 2

√
2

88°.
92°,

10 < 7.5 < 2,
5 + 5 = 10.7 + 6 = 14,

P ⇐⇒ Q
P ⇐⇒ QP ⇒ Q

P ⇒ QP ⇒ Q
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1.2 Conditionals and Biconditionals 17

8. Prove Theorem 1.2.2 by constructing truth tables for each equivalence.

9. Determine whether each statement qualifies as a definition.
(a) is a linear function when its graph is a straight line.
(b) is a quadratic function when it contains an term.
(c) m is a perfect square when for some integer n.
(d) A triangle is a right triangle when the sum of two of its interior angles

is 
(e) Two lines are parallel when their slopes are the same number.
(f) A sundial is an instrument for measuring time.

10. Rewrite each of the following sentences using logical connectives. Assume
that each symbol f, n, x, S, B represents some fixed object.

� (a) If f has a relative minimum at and if f is differentiable at then
.

(b) If n is prime, then or n is odd.
(c) A number x is real and not rational whenever x is irrational.

� (d) If or then 
� (e) f has a critical point at or does not exist.

(f) S is compact S is closed and bounded.
(g) B is invertible is a necessary and sufficient condition for det 
(h) only if or 
(i) x is Cauchy implies x is convergent.
(j) f is continuous at whenever 

(k) If f is differentiable at and f is strictly increasing at then 

11. Dictionaries indicate that the conditional meaning of unless is preferred, but
there are other interpretations as a converse or a biconditional. Discuss the
translation of each sentence.
(a) I will go to the store unless it is raining.

� (b) The Dolphins will not make the playoffs unless the Bears win all the rest
of their games.

(c) You cannot go to the game unless you do your homework first.
(d) You won’t win the lottery unless you buy a ticket.

12. Show that the following pairs of statements are equivalent.
(a) and 

� (b) and .
(c) and 
(d) and 
(e) and 
(f) and 

13. Give, if possible, an example of a true conditional sentence for which
� (a) the converse is true. (b) the converse is false.
� (c) the contrapositive is false. (d) the contrapositive is true.

14. Give, if possible, an example of a false conditional sentence for which
(a) the converse is true. (b) the converse is false.
(c) the contrapositive is false. (d) the contrapositive is true.

(∼P ∨ Q ) ∧ (∼Q ∨ P ).P ⇐⇒ Q
(P ∧ ∼Q ) ∨ R.(P ⇒ Q ) ⇒ R

(P ∧ ∼R ) ⇒ Q.P ⇒ (Q ∨ R )
(∼Q ∨ ∼R ) ⇒ ∼P.P ⇒ (Q ∧ R )
(P ∧ ∼R ) ⇒ ∼Q(P ∧ Q ) ⇒ R
∼R ⇒ (∼P ∧ ∼Q ).(P ∨ Q ) ⇒ R

f ′(x0) > 0.x0,x0

lim
x→x0

 f (x) = f (x0).x0

n > 10.n > 46 ≥ n − 3
B =
 0.

  iff  

f ′(x0)f ′(x0) = 0  iff  x0

|x | = 1.x = −1,x = 1

n = 2
f ′(x0) = 0

x0,x0

x0,

90°.

m = n2
x2y = f (x)

y = f (x)
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18 CHAPTER 1 Logic and Proofs

15. Give the converse and contrapositive of each sentence of Exercises 10(a), (b),
(c), and (d). Tell whether each converse and contrapositive is true or false.

16. Determine whether each of the following is a tautology, a contradiction, or neither.
� (a)

(b)
(c)

� (d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

17. The inverse, or opposite, of the conditional sentence 
(a) Show that and its inverse are not equivalent forms.
(b) For what values of the propositions P and Q are and its inverse

both true?
(c) Which is equivalent to the converse of a conditional sentence, the con-

trapositive of its inverse, or the inverse of its contrapositive?

1.3 Quantifiers

Unless there has been a prior agreement about the value of x, the statement is
neither true nor false. A sentence that contains variables is called an open sentence or
predicate, and becomes a proposition only when its variables are assigned specific val-
ues. For example, is true when x is given the value 7 and false when .

When P is an open sentence with a variable x, the sentence is symbolized by
Likewise, if P has variables the sentence may be denoted by

For example, for the sentence we write 
and we see that is true because while is false.

The collection of objects that may be substituted to make an open sentence a
true proposition is called the truth set of the sentence. Before a truth set can be
determined, we must be given or must decide what objects are available for consid-
eration; that is, we must have specified a universe of discourse. In many cases the
universe will be understood from the context. For a sentence such as “x likes choco-
late,” the universe is presumably the set of all people. We will often use the number
systems as our universes. (See the Preface to the Student.)

Example. The truth set of the open sentence depends upon the collection
of objects we choose for the universe of discourse. With the universe specified as the
set the truth set is {1, 2}. For the universe the truth set is {−2, −1, 0, 1, 2}.
When the universe is the truth set is the open interval (−

√
5,

√
5).�,

�,�,

“x2 < 5”

�, �, �, �, and �

P (1, 2, 4)4 + 5 = 3(3),P (4, 5, 3)
P (x, y, z),“x + y = 3z”P (x1, x2, x3, Á , xn).

x1, x2, x3, Á , xn,P (x).

x = 2“x ≥ 3”

“x ≥ 3”

P ⇒ Q
P ⇒ Q

P ⇒ Q is ∼P ⇒ ∼Q.

[P ⇒ (Q ∧ R )] ⇒ R ⇒ (P ⇒ Q ).
[P ⇒ (Q ∧ R )] ⇒ [R ⇒ (P ⇒ Q )].
(P ∨ Q ) ⇒ Q ⇒ P.
P ∧ (P ⇐⇒ Q) ∧ ∼Q.
[P ⇒ (Q ∨ R )] ⇒ [(Q ⇒ R ) ∨ (R ⇒ P )].
(P ⇐⇒ Q) ⇐⇒ ∼(∼P ∨ Q ) ∨ (∼P ∧ Q ).
[Q ∧ (P ⇒ Q )] ⇒ P.
P ∧ (Q ∨ ∼Q ) ⇐⇒ P.
P ⇒ [P ⇒ (P ⇒ Q )].
P ⇒ Q ⇐⇒ P ∧ ∼Q.
P ⇐⇒ P ∧ (P ∨ Q ).
[ (P ⇒ Q ) ⇒ P] ⇒ P.
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1.3 Quantifiers 19

DEFINITION With a universe specified, two open sentences and
are equivalent they have the same truth set.  iff  Q (x)

P (x)

Examples. The sentences and are equivalent open sen-
tences in any of the number systems we have named. On the other hand, 
and are not equivalent when the universe is . They are equivalent when
the universe is 

The notions of truth set, universe, and equivalent open sentences should not be
new concepts for you. Solving an equation such as is a matter
of determining what objects x make the open sentence true.
For the universe the only solution is and thus the truth set is {3}. But if we
choose the universe to be the equation may be replaced by the equivalent open
sentence which has truth set (solutions) 

A sentence such as

“There is a prime number between 5060 and 5090”

is treated differently from the propositions we considered earlier. To determine
whether this sentence is true in the universe we might try to individually exam-
ine every natural number, checking whether it is a prime and between 5060 and
5090, until we eventually find any one of the primes 5077, 5081, or 5087 and con-
clude that the sentence is true. (A quicker way is to search through a complete list
of the first thousand primes.) The key idea here is that although the open sentence
“x is a prime number between 5060 and 5090” is not a proposition, the sentence

“There is a number x such that x is a prime number between 5060 and 5090”

does have a truth value. This sentence is formed from the original open 
sentence by applying a quantifier.

�,

{3, i, −i}.(x + i )(x − i )(x − 3) = 0,
�,

x = 3�,
“(x2 + 1)(x − 3) = 0”

(x2 + 1)(x − 3) = 0

�.
�“x = 2”

“x2 = 4”
“x = 6”“3x + 2 = 20”

DEFINITION For an open sentence the sentence is
read “There exists x such that or “For some x, The sentence

is true the truth set of is nonempty. The symbol E is
called the existential quantifier.

P (x)  iff  (E x) P (x)
P (x).”P (x)”

(E x) P (x)P (x),

An open sentence does not have a truth value, but the quantified sentence
does. One way to show that is true for a particular universe is

to identify an object a in the universe such that the proposition is true. To show
is false, we must show that the truth set of is empty.

Examples. Let’s examine the truth values of these statements for the universe 

(a)
(b)
(c) (Ex)(x2 = −1)

(Ex)(x2 = 0)
(Ex)(x ≥ 3)

�:

P (x)(E x) P (x)
P (a)

(E x) P (x)(E x) P (x)
P (x)
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20 CHAPTER 1 Logic and Proofs

Statement (a) is true because the truth set of contains 3, 7.02, and many other
real numbers. Thus the truth set contains at least one real number. Statement (b) is
true because the truth set of is precisely {0} and thus is nonempty. Since the
open sentence is never true for real numbers, the truth set of is
empty. Statement (c) is false.

In the universe only statement (a) is true. The three statements are all true
in the universe {0, 5, i} and all three statements are false in the universe {1, 2}.

Sometimes we can say is true even when we do not know a specific
object in the universe in the truth set of only that there (at least) is one.

Example. Show that is true in the universe of real
numbers.

For the polynomial and 
From calculus, we know that f is continuous on [0, 1]. The Intermediate Value Theo-
rem tells us there is a zero for f between 0 and 1. Even if we don’t know the exact value
of the zero, we know it exists. Therefore, the truth set of 
is nonempty. Hence is true.

The sentence “The square of every number is greater than 3” uses a different
quantifier for the open sentence To decide the truth value of the given
sentence in the universe it is not enough to observe that and so
on. In fact, the sentence is false in because 1 is in the universe but not in the truth
set. The sentence is true, however, in the universe [1.74, ) because with this uni-
verse the truth set for is the same as the universe.x2 > 3

∞
�

32 > 3, 42 > 3,�

“x2 > 3.”

(Ex)(x7 − 12x3 + 16x − 3 = 0)
x7 − 12x3 + 16x − 3 = 0

f (1) = 2.f (0) = −3f (x) = x7 − 12x3 + 16x − 3,

(Ex)(x7 − 12x3 + 16x − 3 = 0)

P(x),
(E x) P (x)

�,

x2 = −1x2 = −1
x2 = 0

x ≥ 3

DEFINITION For an open sentence the sentence is read
“For all x, and is true the truth set of is the entire universe.
The symbol is called the universal quantifier.∀

P (x)  iff  P (x)”
(∀x) P (x)P (x),

Examples. For the universe of all real numbers,

is true.
is true. That is, every real number is positive, 

zero or negative.
is false because there are (many) real numbers x for 

which is false.
is false, because 0 is not in the truth set.

There are many ways to express a quantified sentence in English. Look for key
words such as “for all,” “for every,” “for each,” or similar words that require uni-
versal quantifiers. Look for phrases such as “some,” “at least one,” “there exist(s),”
“there is (are),” and others that indicate existential quantifiers.

You should also be alert for hidden quantifiers because natural languages allow for
imprecise quantified statements where the words “for all” and “there exists” are not

(∀x)( |x | > 0)
x ≥ 3

(∀x)(x ≥ 3)

(∀x)(x > 0 ∨ x = 0 ∨ x < 0)
(∀x)(x + 2 > x)
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1.3 Quantifiers 21

present. Someone who says “Polynomial functions are continuous” means that “All
polynomial functions are continuous,” but someone who says “Rational functions have
vertical asymptotes” must mean “Some rational functions have vertical asymptotes.”

We agree that “All apples have spots” is quantified with but what form does
it have? If we limit the universe to just apples, a correct symbolization would be

(x has spots). But if the universe is all fruits, we need to be more careful. Let
be “x is an apple” and be “x has spots.” Should we write the sentence as

or 
The first quantified form, says “For all objects x in the uni-

verse, x is an apple and x has spots.” Since we don’t really intend to say that all fruits are
spotted apples, this is not the meaning we want. Our other choice, 
is the correct one because it says “For all objects x in the universe, if x is an apple then
x has spots.” In other words, “If a fruit is an apple, then it has spots.”

Now consider “Some apples have spots.” Should this be or
The first form says “There is an object x such that it is an apple

and it has spots,” which is correct. On the other hand, reads
“There is an object x such that, if it is an apple, then it has spots,” which does not
ensure the existence of apples with spots. The sentence is true
in every universe for which there is an object x such that either x is not an apple or
x has spots, which is not the meaning we want.

In general, a sentence of the form “All are should be symbolized
And, in general, a sentence of the form “Some are 

should be symbolized 

Examples. The sentence “For every odd prime x less than 10, is prime”
means that if x is prime, and odd, and less than 10, then is prime. It is writ-
ten symbolically as

The sentence “Some functions defined at 0 are not continuous at 0” can be written
symbolically as is defined at is not continuous at 0).

Example. The sentence “Some real numbers have a multiplicative inverse” could
be symbolized

However, “x has an inverse” means there is some number that is an inverse for x
(hidden quantifier), so a more complete symbolic translation is

Example. One correct translation of “Some integers are even and some integers
are odd” is

(Ex)(x is even) ∧ (Ex)(x is odd)

(Ex)[x is a real number ∧ (Ey)( y is a real number ∧ xy = 1)].

(Ex)(x is a real number ∧ x has a real multiplicative inverse).

0 ∧ f(E  f )( f

(∀x)(x is prime ∧  x is odd ∧ x < 10 ⇒ x2 + 4  is prime).

x2 + 4
x2 + 4

(Ex)[P(x) ∧ Q (x)].
Q (x)”P (x)(∀x)[P(x) ⇒ Q (x)].

Q (x)”P (x)

(Ex)[A(x) ⇒ S (x)]

(Ex)[A(x) ⇒ S (x)]
(Ex)[A(x) ⇒ S (x)]?

(Ex)[A(x) ∧ S (x)]

(∀x)[A(x) ⇒ S (x)],

(∀x)[A(x) ∧ S (x)],
(∀x)[A(x) ⇒ S (x)]?(∀x)[A(x) ∧ S (x)]

S (x)A(x)
(∀x)

∀,
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22 CHAPTER 1 Logic and Proofs

because the first quantifier extends only as far as the word “even.” After that,
any variable (even x again) may be used to express “some are odd.” It would be
equally correct and sometimes preferable to write

but it would be wrong to write

,

because there is no integer that is both even and odd.

Several of our essential definitions given in the Preface to the Student are in
fact quantified statements. For example, the definition of a rational number may be
symbolized:

r is a rational number

Statements of the form “Every element of the set A has the property P” and
“Some element of the set A has property P” occur so frequently that abbreviated
symbolic forms are desirable. “Every element of the set A has the property P” could
be restated as “If then . . .” and symbolized by

“Some element of the set A has property P” is abbreviated by

Examples. The definition of a rational number given above may be written as

The statement “For every rational number there is a larger integer” may be symbol-
ized by

or

(∀x � �)(Ez � �)(z > x).

(∀x)[x � � ⇒ (Ez)(z � � and z > x)]

 ∧ r = p
qB.r is a rational number  iff (Ep � �)(Eq � �)(q =
 0

(Ex � A) P (x).

(∀x � A) P (x).

x � A,

∧ r = p
qB∧ q =
 0( p � � ∧ q � �(Ep)(Eq)  iff  

(Ex)(x is even ∧ x is odd)

(Ex)(x is even) ∧ (Ey)(y is odd),

(Ex)

DEFINITION Two quantified sentences are equivalent in a given 
universe they have the same truth value in that universe. Two quanti-
fied sentences are equivalent they are equivalent in every universe.  iff  

  iff  

Example. and are equivalent in the universe of integers
(because both are false), the universe of natural numbers greater than 10 (because
both are true), and in many other universes. However, if we chose a number
between 3 and 4, say 3.7, and let U be the universe of real numbers larger than 3.7,

(∀x)(x ≥ 4)(∀x)(x > 3)
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1.3 Quantifiers 23

then is true and is false in U. The sentences are not equiv-
alent in this universe, so they are not equivalent sentences.

As was noted with propositional forms, it is necessary to make a distinction
between a quantified sentence and its logical form. With the universe all inte-
gers, the sentence “All integers are odd” is an instance of the logical form

where is “x is odd.” The form itself, is neither true nor
false, but becomes false when “x is odd” is substituted for and the universe
is all integers.

The pair of quantified forms and are
equivalent because for any choices of P and Q, and are equivalent
propositional forms. Another pair of equivalent sentences is 
and 

The next two equivalences are essential for reasoning about quantifiers.

Theorem 1.3.1 If is an open sentence with variable x, then

(a) is equivalent to 
(b) is equivalent to 

Proof.
(a) Let U be any universe.

The sentence is true in U
is false in U

the truth set of is not the universe
the truth set of is nonempty

is true in U.

(b) The proof of this part is Exercise 7. �

Theorem 1.3.1 is helpful for finding useful denials (that is, simplified forms of
negations) of quantified sentences. For example, in the universe of natural numbers,
the sentence “All primes are odd” is symbolized (x is prime is odd). The
negation is (x is prime is odd). By applying Theorem 1.3.1(a), this
becomes By Theorem 1.2.2(c) this is equivalent to

We read this last statement as “There exists a num-
ber that is prime and is not odd” or “Some prime number is even.”

Example. A simplified denial of 
begins with its negation 

After 5 applications of Theorem 1.3.1, beginning with the outermost quantifier
we arrive at the simplified form 

Example. For the universe of all real numbers, find a denial of “Every positive
real number has a multiplicative inverse.”

(x + y + z ≤ 2u + v).(Ex)(∀y)(∀z)(Eu)(∀v)

(∀x),

(x + y + z > 2u + v).' (∀x)(Ey)(Ez)(∀u)(Ev)

(x + y + z > 2u + v)(∀x)(Ey)(Ez)(∀u)(Ev)

(Ex)[x is prime ∧ ∼(x is odd)].
(Ex)[∼(x is prime ⇒ x is odd)].

⇒ x∼ (∀x)
⇒ x(∀x)

(Ex) ∼A(x)iff  

∼ A(x)iff  

A(x)iff  

(∀x) A (x)iff  

∼ (∀x) A (x)

(∀x) ∼A(x).∼(Ex) A (x)
(Ex) ∼A(x).∼(∀x) A (x)

A(x)

(∀x)[∼Q(x) ⇒ ∼P (x)].
(∀x)[P(x) ⇒ Q (x)]

Q ∧ PP ∧ Q
(Ex)([Q(x) ∧ P (x)](Ex)([P (x) ∧ Q (x)]

P (x)
(∀x) P (x),P (x)(∀x) P (x),

(∀x)(x ≥ 4)(∀x)(x > 3)
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24 CHAPTER 1 Logic and Proofs

The sentence is symbolized The negation and
successively rewritten equivalents are:

This last sentence may be translated as “There is a positive real number that has no
multiplicative inverse.”

Example. For the universe of living things, find a denial of “Some children do not
like clowns.”

The sentence is [x is a child is a clown does not like . Its
negation and several equivalents are:

The denial we seek is “Every child has some clown that he/she likes.”

We sometimes hear statements like the complaint one fan had after a great Little
League baseball game. “The game was fine,” he said, “but everybody didn’t get to
play.” We easily understand that the fan did not mean this literally, because otherwise
there would have been no game. The meaning we understand is “Not everyone got to
play” or “Some team members did not play.” Such misuse of quantifiers, while toler-
ated in casual conversations, is always to be avoided in mathematics.

The quantifier, defined next, is a special case of the existential quantifier.E !

(∀x) [x is a child ⇒ (Ey)(y is a clown ∧ x likes y)]

(∀x) [x is a child ⇒ (Ey)(y is a clown ∧ ∼ x does not like y)]

(∀x) [x is a child ⇒ (Ey) ∼( y is a clown ⇒ x does not like y)]

(∀x) [x is a child ⇒ ∼ (∀y)(y is a clown ⇒ x does not like y)]

(∀x) ∼  [x is a child ∧ (∀y)(y is a clown ⇒ x does not like y)]

∼ (Ex)  [x is a child ∧ (∀y)(y is a clown ⇒ x does not like y)]

y )]⇒ x(y∧ (∀y)(Ex)

(Ex)[x > 0 ∧ (∀y)(xy =
 1)]

(Ex)[x > 0 ∧ (∀y) ∼(xy = 1)]

(Ex)[x > 0 ∧ ∼ (Ey)(xy = 1)]

(Ex) ∼  [x > 0 ⇒ (Ey)(xy = 1)]

∼ (∀x)[x > 0 ⇒ (Ey)(xy = 1)]

(∀x)[x > 0 ⇒ (Ey)(xy = 1)].

DEFINITION For an open sentence the proposition is
read “there exists a unique x such that ” and is true the truth set
of has exactly one element. The symbol is called the unique exis-
tential quantifier.

E !P (x)
  iff  P (x)

(E !x) P (x)P (x),
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1.3 Quantifiers 25

Recall that for to be true it is unimportant how many elements are in
the truth set of as long as there is at least one. For to be true, the
number of elements in the truth set of is crucial—there must be exactly one.

In the universe of natural numbers, (x is even and x is prime) is true
because the truth set of “x is even and x is prime” contains only the number 2. The
sentence is true in the universe of natural numbers, but false in the
universe of all integers.

Theorem 1.3.2 If is an open sentence with variable x, then

(a)
(b) is equivalent to 

Part (a) of Theorem 1.3.2 says that is indeed a special case of the quantifier
. Part (b) says that “There exists a unique x such that is equivalent to “There

is an x such that and if both and then The proofs are left to
Exercise 11.

Exercises 1.3

1. Translate the following English sentences into symbolic sentences with quan-
tifiers. The universe for each is given in parentheses.

� (a) Not all precious stones are beautiful. (All stones)
� (b) All precious stones are not beautiful. (All stones)

(c) Some isosceles triangle is a right triangle. (All triangles)
(d) No right triangle is isosceles. (All triangles)
(e) All people are honest or no one is honest. (All people)
(f) Some people are honest and some people are not honest. (All people)
(g) Every nonzero real number is positive or negative. (Real numbers)

� (h) Every integer is greater than −4 or less than 6. (Real numbers)
(i) Every integer is greater than some integer. (Integers)

� (j) No integer is greater than every other integer. (Integers)
(k) Between any integer and any larger integer, there is a real number. (Real

numbers)
� (l) There is a smallest positive integer. (Real numbers)
� (m) No one loves everybody. (All people)

(n) Everybody loves someone. (All people)
(o) For every positive real number x, there is a unique real number y such

that (Real numbers)

� 2. For each of the propositions in Exercise 1, write a useful denial, and give a
translation into ordinary English.

3. Translate these definitions from the Preface to the Student into quantified
sentences.
(a) The integer x is even.
(b) The integer x is odd.

2y = x.

y = z.”A(z),A(  y)A(x)
A(x)”E

E !

(Ex) A(x) ∧ (∀y)(∀z)(A(  y) ∧ A(z) ⇒ y = z).(E !x) A(x)
(E !x) A(x) ⇒ (Ex) A(x).

A(x)

(E !x)(x2 = 4)

(E !x)
P (x)

(E !x) P (x)P (x),
(Ex) P (x)
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26 CHAPTER 1 Logic and Proofs

(c) The integer a divides the integer b.
(d) The natural number n is prime.
(e) The natural number n is composite.

4. Translate these definitions in this text into quantified sentences. You need not
know the specifics of the terms and symbols to complete this exercise.
(a) The relation R is symmetric. (See page 147.)
(b) The relation R is transitive. (See page 147.)
(c) The function f is one-to-one. (See page 208.)
(d) The operation is commutative. (See page 277.)

� 5. The sentence “People dislike taxes” might be interpreted to mean “All people
dislike all taxes,” “All people dislike some taxes,” “Some people dislike all
taxes,” or “Some people dislike some taxes.” Give a symbolic translation for
each of these interpretations.

6. Let . In which of these
four different universes is the statement true?

� a)
b)
c)
d)

7. (a) Complete this proof of Theorem 1.3.1(b):
Proof: Let U be any universe.
The sentence is true in U

. . .
is true in U.

� (b) Give a proof of part (b) of Theorem 1.3.1 that uses part (a).

8. Which of the following are true? The universe for each statement is given in
parentheses.
(a)

� (b)
(c)
(d)

� (e)
(f)
(g)

� (h)
(i)
(j)
(k)
(l)

9. Give an English translation for each. The universe is given in parentheses.
(a)

� (b)
(c)

� (d) (E !x)( loge x = 1). (�)
(∀x)(x is prime ∧ x =
 2 ⇒ x is odd). (�)
(E !x)(x ≥ 0 ∧ x ≤ 0). (�)
(∀x)(x ≥ 1). (�)

(∀x)(∀y)[x < y ⇒ (Ew)(x < w < y)]. (�)
(∀x)(x3 + 17x2 + 6x + 100 ≥ 0). (�)
(∀x)(x2 − x + 41 is prime). (�)
(Ex)(x2 − x + 41 is prime). (�)
(∀x)(x2 + 4x + 5 ≥ 0). (�)
(∀x)(x2 + 6x + 5 ≥ 0). (�)
(Ex)(3(2 − x) = 5 + 8(1 − x)). (�)
(Ex)(3x = x). (�)
(Ex)(3x = x2). (�)
(Ex)(2x + 3 = 6x + 7). (�)
(∀x)(x + x ≥ x). (�)
(∀x)(x + x ≥ x). (�)

(∀x) ∼  A(x)iff  

iff  

∼ (Ex) A(x)

(∀x) (x is odd ∧ x > 8).
(∀x) (x is odd ⇒ x > 8).
(Ex) (x is odd ∧ x > 8).
(Ex) (x is odd ⇒ x > 8).

W = {2, 3, 7, 26}T = {17}, U = {6}, V = {24}, and

*
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1.4 Basic Proof Methods I 27

(e)
(f)
(g)

10. Which of the following are true in the universe of all real numbers?
� (a)

(b)
(c)

� (d)
(e)

� (f)
(g)
(h)

� (i)
(j)
(k)

11. Let be an open sentence with variable x.
� (a) Prove Theorem 1.3.2 (a).
� (b) Show that the converse of Theorem 1.3.2 (a) is false.

(c) Prove Theorem 1.3.2 (b).
(d) Prove that is equivalent to 

� (e) Find a useful denial for 

12. (a) Write the symbolic form for the definition of “f is continuous at a.”
(b) Write the symbolic form of the statement of the Mean Value Theorem.
(c) Write the symbolic form for the definition of “ ”

(d) Write a useful denial of each sentence in parts (a), (b), and (c).

13. Which of the following are denials of 
(a)
(b)
(c)

� (d)

� 14. Riddle: What is the English translation of the symbolic statement 

1.4 Basic Proof Methods I

In mathematics, a theorem is a statement that describes a pattern or relationship
among quantities or structures and a proof is a justification of the truth of a theo-
rem. Before beginning to examine valid proof techniques it is recommended that
you review the comments about proofs and the definitions in the Preface to the
Student.

We cannot define all terms nor prove all statements from previous ones. We
begin with an initial set of statements, called axioms (or postulates), that are
assumed to be true. We then derive theorems that are true in any situation where the

∀E E∀?

∼ ( ∀x)(∀y)[(P(x) ∧ P (y)) ⇒ x = y].
(∀x)[P(x) ⇒ (Ey)(P(y) ∧ x =
 y)].
(∀x) ∼P(x) ∨ (Ey)(Ez)(y =
 z ∧ P (y) ∧ P (z)).
(∀x)P(x) ∨ (∀x) ∼ P (x).

(E !x) P (x)?

lim
x→a

 f (x) = L.

(E !x) A (x).
(Ex)[A(x) ∧ (∀y)(A(y) ⇒ x = y)].(E !x) A (x)

A (x)

(E !x)(E !y)(∀w)(w2 > x − y).
(∀y)(E !x)(x = y2).
(E !x)(∀y)(x = y2).
(E !y)(y < 0 ∧ y + 3 > 0).
(∀y)(Ex)(x ≤ y).
(Ex)(∀y)(x ≤ y).
(∀y)(Ex)(∀z)(xy = xz).
(∀x)[x > 0 ⇒ (Ey)(y < 0 ∧ xy > 0)].
(Ex)(Ey)(x2 + y2 = −1).
(Ex)(∀y)(x + y = 0).
(∀x)(Ey)(x + y = 0).

(∀x)(x is odd ⇒ x2 is odd). (�)
(E !x)(x2 = 0). (�)
∼ (Ex)(x2 < 0). (�)
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28 CHAPTER 1 Logic and Proofs

axioms are true. The Pythagorean* Theorem, for example, is a theorem whose
proof is ultimately based on the five axioms of Euclidean† geometry. In a situation
where the Euclidean axioms are not all true (which can happen), the Pythagorean
Theorem may not be true.

There must also be an initial set of undefined terms—concepts fundamental to the
context of study. In geometry, the concept of a point is an undefined term. In this text
the real numbers are not formally defined. Instead, they are described in the Preface to
the Student as the decimal numbers along the number line. While a precise definition of
a real number could be given‡, doing so would take us far from our intended goals.

From the axioms and undefined terms, new concepts (new definitions) can be
introduced. And finally, new theorems can be proved. The structure of a proof for a par-
ticular theorem depends greatly on the logical form of the theorem. Proofs may require
some ingenuity or insightfulness to put together the right statements to build the justifi-
cation. Nevertheless, much can be gained in the beginning by studying the fundamental
components found in proofs and examples that exhibit them. The four rules that follow
provide guidance about what statements are allowed in a proof, and when.

Some steps in a proof may be statements of axioms of the basic theory upon
which the discussion rests. Other steps may be previously proved results. Still other
steps may be assumptions you wish to introduce. In any proof you may

At any time state an assumption, an axiom, or a previously proved result.

The statement of an assumption generally takes the form “Assume P” to alert
the reader that the statement is not derived from a previous step or steps. We must
be careful about making assumptions, because we can only be certain that what we
proved will be true when all the assumptions are true. The most common assump-
tions are hypotheses given as components in the statement of the theorem to be
proved. We will discuss assumptions in more detail later in this section.

The statement of an axiom is usually easily identified as such by the reader
because it is a statement about a very fundamental fact assumed about the theory.
Sometimes the axiom is so well known that its statement is omitted from proofs, but
there are cases (such as the Axiom of Choice in Chapter 5) for which it is prudent
to mention the axiom in every proof employing it.

Proof steps that use previously proven results help build a rich theory from the
basic assumptions. In calculus, for example, before one proves that the derivative 

of sin x is cos x, there is a proof of the separate result that It is 

easier to prove this result first, then cite the result in the proof of the fact that the
derivative of sin x is cos x.

lim
Δx→0

 
sin Δx

Δx
= 1.

* Pythagoras, latter half of the 6th century, B.C.E., was a Greek mathematician and philosopher who
founded a secretive religious society based on mathematical and metaphysical thought. Although
Pythagoras is regularly given credit for the theorem named for him, the result was known to Babylonian
and Indian mathematicians centuries earlier.
† Euclid of Alexandria, circa 300 B.C.E., made his immortal contribution to mathematics with his famous
text on geometry and number theory. His Elements sets forth a small number of axioms from which 
additional definitions and many familiar geometric results were developed in a rigorous way. Other
geometries, based on different sets of axioms, did not begin to appear until the 1800s.
‡ See the references cited in Section 7.5.
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1.4 Basic Proof Methods I 29

An important skill for proof writing is the ability to rewrite a complex state-
ment in an equivalent form that is more useful or helps to clarify its meaning.
You may:

At any time state a sentence equivalent to any statement earlier in the proof.

This replacement rule is often used in combination with the equivalences of
Theorems 1.1.1 and 1.2.2 to rewrite a statement involving logical connectives. For
example, suppose we have been able to establish the step

“It is not the case that x is even and prime.”

Because the form of this statement is where P is “x is even” and Q is “x
is prime,” we may deduce that

“x is not even or x is not prime,”

which has form We have applied the replacement rule, using one of De
Morgan’s Laws. A working knowledge of the equivalences of Theorems 1.1.1 and
1.2.2 is essential.

The replacement rule allows you to use definitions in two ways. First, if you are
told or have shown that x is odd, then you can correctly state that for some natural
number You now have an equation to use. Second, if you need to
prove that x is odd, then the definition gives you something equivalent to work
toward: It suffices to show that x can be expressed as for some natural
number k. You’ll find it useful in writing proofs to keep in mind these two ways we
use definitions.

Example. If a proof contains the line “The product of real numbers a and b is
zero,” we could assert that “Either or In this example, the equivalence
of the two statements comes from our knowledge of the real numbers that

Tautologies are important both because a statement that has the form of a tau-
tology may be used as a step in a proof, and because tautologies are used to cre-
ate rules for making deductions in a proof. The tautology rule says that you may:

At any time state a sentence whose symbolic translation is a tautology.

For example, if a proof involves a real number x, you may at any time assert “Either
since this is an instance of the tautology 

The rules above allow us to reword a statement or say something that’s always
true or is assumed to be true. The next rule is the one that allows us to make a con-
nection so that we can get from statement P to a different statement Q.

The most fundamental rule of reasoning is modus ponens, which is based on
the tautology As we have seen in Section 1.2, what this
means is that when P and are both true, we may deduce that Q must also be
true. The modus ponens rule says you may:

At any time after P and appear in a proof, state that Q is true.P ⇒ Q

P ⇒ Q
[P ∧ (P ⇒ Q)] ⇒ Q.

P ∨ ∼P.x > 0 or x ≤ 0,”

(ab = 0) ⇐⇒ (a = 0 or b = 0).

b = 0.”a = 0

x = 2k + 1,

k, x = 2k + 1.

∼P ∨ ∼Q.

∼ (P ∧ Q),
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30 CHAPTER 1 Logic and Proofs

Example. From calculus we know that if a function f is differentiable on an inter-
val (a, b), then f is continuous on the interval (a, b). A proof writer who had already
written:

f is differentiable on the interval (a, b)

could use modus ponens to write as a subsequent step:

Therefore f is continuous on the interval (a, b).

This deduction uses the statements D, and C, where D is the statement “f is
differentiable on interval (a, b)” and C is “f is continuous on the interval (a, b).”

Notice that in this example it would make the proof shorter and easier to read
if we didn’t write out the sentence in the proof. This is because the connec-
tion between differentiability and continuity is a well-known theorem, which the
proof writer may assume that the reader knows.

When we use modus ponens to deduce statement Q from P and the
statement P could be an instance of a tautology, a simple or compound proposition
whose components are either hypotheses, axioms, earlier statements deduced in the
proof, or statements of previously proved theorems. Likewise, may have
been deduced earlier in the proof or may be a previous theorem, axiom, or tautology.

Example. You are at a crime scene and have established the following facts:

(1) If the crime did not take place in the billiard room, then Colonel Mustard is guilty.

(2) The lead pipe is not the weapon.

(3) Either Colonel Mustard is not guilty or the weapon used was a lead pipe.

From these facts and modus ponens, you may construct a proof that shows the
crime took place in the billiard room:

Proof.
Statement (1)
Statement (2)
Statement (3)
Statements (1) and (2) and (3)
Statements (1), (2), and (3) 

imply the crime took place is a tautology (see Exercise 2).
in the billiard room.

Therefore, the crime took place B
in the billiard room. �

The last three statements above are an application of the modus ponens rule: 
We deduced Q from the statements P and where Q is B and P is
(∼B ⇒ M) ∧   ∼L ∧ (∼M ∨ L).

P ⇒ Q,

[(∼B ⇒ M ) ∧ ∼L ∧ (∼M ∨ L )] ⇒ B
(∼B ⇒ M ) ∧ ∼L ∧ (∼M ∨ L )
∼M ∨ L
∼L
∼B ⇒ M

P ⇒ Q

P ⇒ Q,

D ⇒ C

D ⇒ C,
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1.4 Basic Proof Methods I 31

The previous example shows the power of pure reasoning: It is the forms of the
propositions and not their meanings that allowed us to make the deductions.

Because our proofs are always about mathematical phenomena, we also need
to understand the subject matter of the proof—the concepts involved and how they
are related. Therefore, when you develop a strategy to construct a proof, keep in
mind both the logical form of the theorem’s statement and the mathematical con-
cepts involved.

You won’t find truth tables displayed or referred to in proofs that you encounter
in mathematics: It is expected that readers are familiar with the rules of logic and
correct forms of proof. As a general rule, when you write a step in a proof, ask your-
self if deducing that step is valid in the sense that it uses one of the four rules above.
If the step follows as a result of the use of a tautology, it is not necessary to cite the
tautology in your proof. In fact, with practice you should eventually come to write
proofs without purposefully thinking about tautologies. What is necessary is that
every step be justifiable.

The first—and most important—proof method is the direct proof of statement
of the form which proceeds in a step by step fashion from the antecedent P
to the consequent Q. Since is false only when P is true and Q is false, it suf-
fices to show that this situation cannot happen. The direct way to proceed is to
assume that P is true and show (deduce) that Q is also true. A direct proof of 
will have the following form:

P ⇒ Q

P ⇒ Q
P ⇒ Q,

DIRECT PROOF OF
Proof.
Assume P.

Therefore, Q.
Thus, �P ⇒ Q.

o

P ⇒ Q

Some of the examples that follow actually involve quantified sentences. Since
we won’t consider proofs with quantifiers until Section 1.6, you should imagine for
now that a variable represents some fixed object. Out first example proves the famil-
iar fact that “If x is odd, then is even.” You should think of x as being some
particular integer.

Example. Let x be an integer. Prove that if x is odd, then is even.

Proof. The theorem has the form where P is “x is odd” and Q is “x + 1P ⇒ Q,〈

x + 1

x + 1

is even.” Let x be an integer. We may assume this hypothesis since it is given 
in the statement of the theorem. Suppose x is odd. We assume that the antecedent
P is true. The goal is to derive the consequent Q as our last step. From the defi-
nition of odd, for some integer k. This deduction is the replacement 〈x = 2k + 1

〉
〈〉

〈〉
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32 CHAPTER 1 Logic and Proofs

of P by an equivalent statement—the definition of “odd.” We now have an equa-
tion to use. Then for some integer k. This is another
replacement using an algebraic property of Since

is the product of 2 and an integer. 
Another equivalent using algebra. Thus is even. We have deduced Q.

Therefore, if x is an odd integer, then is even. We conclude that
�

In this example, we did not worry about what would happen if x were not odd.
Remember that it is appropriate to assume P is true when giving a direct proof of

(If P is false, it does not matter what the truth of Q is; the statement we are
trying to prove, will be true.) The process of assuming that the antecedent
is true and proceeding step by step to show the consequent is true is what makes this
type of proof direct.

This example also includes parenthetical comments offset by and in ital-
ics to explain how and why a proof is proceeding as it is. Such comments are not a
requisite part of the proof, but are inserted to help clarify the workings of the proof.
The proof above would stand alone as correct with all the comments deleted, or it
could be written in shorter form, as follows.

Proof. Let x be an integer. Suppose x is odd. Then for some integer k.
Then Since is an integer and

is even.
Therefore, if x is an odd integer, then   is even. �

Great latitude is allowed for differences in taste and style among proof
writers. Generally, in advanced mathematics, only the minimum amount of
explanation is included in a proof. The reader is expected to know the defini-
tions and previous results and be able to fill in computations and deductions as
necessary. In this text, we shall include parenthetical comments for more com-
plete explanations.

Example. Suppose a, b, and c are integers. Prove that if a divides b and b divides
c, then a divides c.

Proof. Let a, b, and c be integers. We start by assuming that the hypothesis is
true. Suppose a divides b and b divides c. The antecedent is the compound sen-
tence “a divides b and b divides c.” Then for some integer k and for
some integer m. We replaced the assumptions by equivalents using the definition of
“divides.” Notice that we did not assume that k and m are the same integer. To
show that a divides c, we must write c as a multiple of a. Therefore,

Then c is a multiple of a. We use the fact that if k and m
are integers, then km is an integer.

Therefore, if a divides b and b divides c, then a divides c. �
〉

〈c = bm = (ak)m = a(km).
〉

〈〉
〈

c = bmb = ak〉
〈〉

〈

x + 1
x + 1x + 1 = 2(k + 1),

k + 1x + 1 = (2k + 1) + 1 = 2k + 2 = 2(k + 1).
x = 2k + 1

〈 Á 〉

P ⇒ Q,
P ⇒ Q.

P ⇒ Q.〉〈x + 1
〉〈x + 1〉〈

x + 1(2k + 1) + 1 = 2k + 2 = 2(k + 1),
�.〉

〈x + 1 = (2k + 1) + 1〉
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1.4 Basic Proof Methods I 33

Both of the above examples and many more to follow use the following strat-
egy for developing a direct proof of a conditional sentence:

1. Determine precisely the hypotheses (if any) and the antecedent and consequent.

2. Replace (if necessary) the antecedent with a more usable equivalent.

3. Replace (if necessary) the consequent by something equivalent and more read-
ily shown.

4. Beginning with the assumption of the antecedent, develop a chain of state-
ments that leads to the consequent. Each statement in the chain must be
deducible from its predecessors or other known results.

As you write a proof, be sure it is not just a string of symbols. Every step of
your proof should express a complete sentence. Be sure to include important con-
nective words.

Example. Suppose a, b, and c are integers. Prove that if a divides b and a divides
c, then a divides 

Proof. Suppose a, b, and c are integers and a divides b and a divides c. Now use
the definition of divides. Then for some integer n and for some 
integer m. Thus, Since is an integer using
the fact that the difference of two integers is an integer a divides �

Our next example of a direct proof, which comes from an exercise in precalcu-
lus mathematics, involves a point (x, y) in the Cartesian plane (Figure 1.4.1). It uses
algebraic properties available to students in such a class.

Example. Prove that if and then the distance from to 
is at least 6.

Proof. Assume that and Then so Also
so Therefore,

so the distance from to is at least 6. �(1, −2)(x, y)

√
(x − 1)2 + (y + 2)2 >

√
25 + 16 >

√
36,

(y + 2)2 > 16.y + 2 > 4,
(x − 1)2 > 25.x − 1 < −5,y > 2.x < −4

(1, −2)(x, y)y > 2,x < −4

b − c.〉,
〈n − mb − c = an − am = a(n − m).

c = amb = an〉
〈

b − c.

Figure 1.4.1

x

y

(1, –2)

y � 2

x = –4

(x, y)
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34 CHAPTER 1 Logic and Proofs

To get a sense of how a proof of should proceed, it is sometimes useful
to “work backward” from what is to be proved: To show that a consequent is true,
decide what statement could be used to prove it, another statement that could be
used to prove that one, and so forth. Continue until you reach a hypothesis, the
antecedent, or a fact known to be true. After doing such preliminary work, construct
a proof “forward” so that your conclusion is the consequent.

Example. Let a and b be positive real numbers. Prove that if then

Proof. Working backward, rewrite as This
inequality will be true when both and The first inequality

will be true because we will assume the antecedent The second
inequality is true because of our hypothesis that a and b are positive. We
now proceed with the direct proof. Assume a and b are positive real numbers and
that Since both a and b are positive, Since 
Because the product of two positive real numbers is positive, 
Therefore �

It is often helpful to work both ways—backward from what is to be proved and
forward from the hypothesis—until you reach a common statement from each
direction.

Example. Prove that if then 
Working backward from we note that this can be deduced from

This can be deduced from which could be
concluded if we knew that and were both positive or both negative.

Working forward from we have so Therefore,
and from which we can conclude that and 

which is exactly what we need.

Proof. Assume that Then Therefore Thus and
and so we have and Therefore, 

Thus Hence �

We now consider direct proofs of statements of the form when either P
or Q is itself a compound proposition. We have in fact already constructed proofs
of statements of the form When we give a direct proof of a statement
of this form, we have the advantage of assuming both P and Q at the beginning of
the proof, as we did in the proof (above) that if a divides b and a divides c, then a
divides 

A proof of a statement symbolized by would probably have two
parts. In one part we prove and in the other part we prove We
would use this method to prove the statement “If two parallel lines are cut by a
transversal, then corresponding angles are equal and corresponding lines are
equal.”

P ⇒ R.P ⇒ Q
P ⇒ (Q ∧ R)

b − c.

(P ∧ Q) ⇒ R.

P ⇒ Q

x2 − 7x > −10.x2 − 7x + 10 > 0.
(x − 5)(x − 2) > 0.x − 2 < 0.x − 5 < 0x < 2,

x < 5x ≤ 1.−1 ≤ x ≤ 1.x2 ≤ 1.

x − 2 < 0,x − 5 < 0x < 2,x < 5
x ≤ 1.−1 ≤ x ≤ 1,x2 ≤ 1,

x − 2x − 5
(x − 5)(x − 2) > 0,x2 − 7x + 10 > 0.

x2 − 7x > −10,
x2 − 7x > − 10.x2 ≤ 1,

b2 − a2 > 0.
(b − a)(b + a) > 0.

b − a > 0.a < b,b + a > 0.a < b.
〉

b + a > 0
a < b.b − a > 0

b + a > 0.b − a > 0
(b + a) > 0.(b − a)b2 − a2 > 0〈

b2 − a2 > 0.
a < b,

P ⇒ Q
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1.4 Basic Proof Methods I 35

To prove a conditional sentence whose consequent is a disjunction, that is, a
sentence of the form one often proves either the equivalent

or the equivalent For instance, to prove “If the
polynomial f has degree 4, then f has a real zero or f can be written as the product
of two irreducible quadratics,” we would prove “If f has degree 4 and no real zeros,
then f can be written as the product of two irreducible quadratics.”

A statement of the form has the meaning: “If either P is true or Q
is true, then R is true,” or “In case either P or Q is true, R must be true.” A natural
way to prove such a statement is by cases, so the proof outline would have the form:

Case 1. Assume P. . . . Therefore R.
Case 2. Assume Q. . . . Therefore R.

This method is valid because of the tautology

The statement “If a quadrilateral has opposite sides equal or opposite angles equal,
then it is a parallelogram” is proved by showing both “A quadrilateral with opposite
sides equal is a parallelogram” and “A quadrilateral with opposite angles equal is a
parallelogram.”

The two similar statement forms and have
remarkably dissimilar direct proof outlines. For we assume 
and deduce R. We cannot assume P; we must assume On the other hand, in
a direct proof of we do assume P and show Furthermore,
after the assumption of P, a direct proof of begins by assuming Q is true as
well. This is not surprising since is equivalent to 

The main lesson to be learned from this discussion is that the method of proof
you choose will depend on the form of the statement to be proved. The outlines we
have given are the most natural, but not the only ways, to construct correct proofs.
Of course constructing a proof also requires knowledge of the subject matter.

Example. Suppose n is an odd integer. Then for some integer j, or
for some integer i.

Proof. Suppose n is odd. Then for some integer m. A little experi-
mentation shows that when m is even, for example when n is

etc., n has the form otherwise n has the form
We now show that where P is “m is even,” Q is “m

is odd,” R1 is for some integer j,” and R2 is for some
integer i.” The method we choose is to show that and

Case 1. If m is even, then for some integer j, and so 

Case 2. If m is odd, then for some integer k. In this case, 
Choosing i to be the integer

we have  �n = 4i − 1.k + 1,
2(2k + 1) + 1 = 4k + 3 = 4(k + 1) − 1.

n =m = 2k + 1
4j + 1.

n = 2(2j) + 1 =m = 2j

Q ⇒ R2.〉P ⇒ R1

“n = 4i − 1“n = 4j + 1
(P ∨ Q ) ⇒ (R1 ∨ R2),4i − 1.

4j + 1;2(0) + 1, 2(2) + 1, 2(4) + 1,
2(−2) + 1,

〈n = 2m + 1

n = 4i − 1
n = 4j + 1

(P ∧ Q) ⇒ R.P ⇒ (Q ⇒ R)
Q ⇒ R

Q ⇒ R.P ⇒ (Q ⇒ R),
P ⇒ Q.

P ⇒ Q(P ⇒ Q) ⇒ R,
P Q (Q Q R)(P ⇒ Q) ⇒ R

[(P ∨ Q) ⇒ R] ⇐⇒ [(P ⇒ R) ∧ (Q ⇒ R)].

(P ∨ Q) ⇒ R

P ∧ ∼R ⇒ Q.P ∧ ∼Q ⇒ R
P ⇒ (Q ∨ R ),
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36 CHAPTER 1 Logic and Proofs

The form of proof known as proof by exhaustion consists of an examination
of every possible case. The statement to be proved may have any form P. For exam-
ple, to prove that every number x in the closed interval [0, 5] has a certain property,
we might consider the cases and The exhaustive method
was our method in the example above, and in the proof of Theorem 1.1.1, where we
examined all four combinations of truth values for two propositions. Naturally, the
idea of proof by exhaustion is appealing only when the number of cases is small, or
when large numbers of cases can be systematically handled. Care must be taken to
ensure that all possible cases have been considered.

Example. Let x be a real number. Prove that 

Proof. Since the absolute value of x is defined by cases if
this proof will proceed by cases.

Case 1. Suppose Then Since we have Hence, 
which is in this case.

Case 2. Suppose Then Since Hence, we have 
or which is 

Thus, in all cases we have �

There have been instances of truly exhausting proofs involving great numbers of
cases. In 1976, Kenneth Appel and Wolfgang Haken of the University of Illinois
announced a proof of the Four-Color Theorem. The original version of their proof of
the famous Four-Color Conjecture contains 1,879 cases and took years to develop.*

Finally, there are proofs by exhaustion with cases so similar in reasoning that
we may simply present a single case and alert the reader with the phrase “without
loss of generality” that this case represents the essence of arguments for the other
cases. Here is an example.

Example. Prove that for the integers m and n, one of which is even and the other
odd, has the form for some integer k.

Proof. Let m and n be integers. Without loss of generality, we may assume that m
is even and n is odd. The case where m is odd and n is even is similar. Then there 
exist integers s and t such that and Therefore, 

Since is an
integer, has the form for some integer k. �4k + 1m2 + n2

s2 + t2 + t(2s)2 + (2t + 1)2 = 4s2 + 4t2 + 4t + 1 = 4(s2 + t2 + t) + 1.
m2 + n2 =n = 2t + 1.m = 2s

〉〈

4k + 1m2 + n2

3 
1
2

−|x |≤ x ≤|x | .
−|x |≤ x ≤|x | .−(−x) ≤ x ≤ −x,x ≤ x ≤ −x,

x ≤ −x.x < 0,|x |  =   −x.x < 0.
−|x |≤ x ≤|x |−x ≤ x ≤ x,

−x ≤ x.x ≥ 0,|x |  = x.x ≥ 0.

〉|x | = −x if x < 0)
x ≥ 0;( |x | = x〈

−|x | ≤ x ≤ |x | .

x = 5.0 < x < 5,x = 0,

* The Four-Color Theorem involves coloring regions or countries on a map in such a way that no two
adjacent countries have the same color. It states that four colors are sufficient, no matter how intertwined
the countries may be. The fact that the proof depended so heavily on the computer for checking cases
raised questions about the nature of proof. Verifying the 1,879 cases required more than 10 billion cal-
culations. Many people wondered whether there might have been at least one error in a process so
lengthy that it could not be carried out by one human being in a lifetime. Haken and Appel’s proof has
since been improved, and the Four-Color Theorem is accepted; but the debate about the role of comput-
ers in proof continues.
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1.4 Basic Proof Methods I 37

Exercises 1.4

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof. Since the statements may contain terms with which
you are not familiar, you should not (and perhaps could not) provide any
details of the proof.

� (a) Outline a direct proof that if is a cyclic group, then is
abelian.

(b) Outline a direct proof that if B is a nonsingular matrix, then the determi-
nant of B is not zero.

(c) Suppose A, B, and C are sets. Outline a direct proof that if A is a subset
of B and B is a subset of C, then A is a subset of C.

(d) Outline a direct proof that if the maximum value of the differentiable
function on the closed interval [a, b] occurs at then either 

or or
(e) Outline a direct proof that if A is a diagonal matrix, then A is invertible

whenever all its diagonal entries are nonzero.

2. A theorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1, outline
(a) a direct proof of the theorem.
(b) a direct proof of the converse of the theorem.

3. Verify that is a tautology. See the
example on page 30.

4. These facts have been established at a crime scene.
(i) If Professor Plum is not guilty, then the crime took place in the kitchen.
(ii) If the crime took place at midnight, Professor Plum is guilty.
(iii) Miss Scarlet is innocent if and only if the weapon was not the candlestick.
(iv) Either the weapon was the candlestick or the crime took place in the

library.
(v) Either Miss Scarlet or Professor Plum is guilty.

Use the above and the additional fact(s) below to solve the case. Explain your
answer.

� (a) The crime lab determines that the crime took place in the library.
(b) The crime lab determines that the crime did not take place in the library.
(c) The crime lab determines that the crime was committed at noon with the

revolver.
(d) The crime took place at midnight in the conservatory. (Give a complete

answer.)

5. Let x and y be integers. Prove that
(a) if x and y are even, then is even.
(b) if x is even, then xy is even.
(c) if x and y are even, then xy is divisible by 4.
(d) if x and y are even, then is even.
(e) if x and y are odd, then is even.x + y

3x − 5y

x + y

[(∼B ⇒ M ) ∧ ∼L ∧ (∼M ∨ L )] ⇒ B

 f ′(x0) = 0.x0 = bx0 = a
x0,f 

(G, *)(G, *)
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38 CHAPTER 1 Logic and Proofs

(f) if x and y are odd, then is even.
(g) if x and y are odd, then xy is odd.

� (h) if x is even and y is odd, then is odd.
(i) if x is even and y is odd, then is even.

6. Let a and b be real numbers. Prove that
(a)
(b)

(c) for 

� (d)
(e) if then 

(f) if then

7. Suppose a, b, c, and d are integers. Prove that
(a) is odd.

� (b) if a is even, then is odd.
(c) if a is odd, then is odd.

� (d) is even.
(e) 1 divides a.
(f) a divides a.

� (g) if a and b are positive and a divides b, then 
(h) if a divides b, then a divides bc.

� (i) if a and b are positive and then 
(j) if a and b are positive, a divides b and b divides a, then 
(k) if a divides b and c divides d, then ac divides bd.
(l) if ab divides c, then a divides c.
(m) if ac divides bc, then a divides b.

8. Give two proofs that if n is a natural number, then is odd.
(a) Use two cases.
(b) Use Exercises 7(d) and 5(h).

9. Let a, b, and c be integers and x, y, and z be real numbers. Use the technique
of working backward from the desired conclusion to prove that

(a) if x and y are nonnegative, then 

Where in the proof do we use the fact that x and y are nonnegative?
(b) if a divides b and a divides b + c, then a divides 3c.
(c) if and then has two real solutions.
(d) if then 
(e) if an isosceles triangle has sides of length x, y, and z, where and

then it is a right triangle.

10. Recall that except for degenerate cases, the graph of 
is

an ellipse
a parabola
a hyperbola B2 − 4AC > 0. iff 

B2 − 4AC = 0, iff 
B2 − 4AC < 0, iff 

Dx + Ey + F = 0
Ax2 + Bxy + Cy2 +

z =
√

2xy,
x = y

2x + 5 < 11.x3 + 2x2 < 0,
ax2 + bx + c = 0bc < 0,ab > 0

x + y

2
≥

√
xy.

n2 + n + 3

a = b.
a = b = 1.ab = 1,

a ≤ b.

a (a + 1)
a + 2
a + 1

2a − 1

|a | ≤ b.−b ≤ a ≤ b,

−b ≤ a ≤ b.|a | ≤ b,
|a + b | ≤ |a | + |b | .

b =
 0.| a

b | = |a |
|b | ,

|a − b | = |b − a | .
|ab | = |a ||b | .

x y
x + y

3x − 5y
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1.4 Basic Proof Methods I 39

� (a) Prove that the graph of the equation is an ellipse whenever 

(b) Prove that the graph of the equation is a hyperbola if or

(c) Prove that if the graph is a parabola, then or 

Proofs to Grade 11. Exercises throughout the text with this title ask you to examine “Proofs to
Grade.” These are allegedly true claims and supposed “proofs” of the claims.
You should decide the merit of the claim and the validity of the proof and then
assign a grade of

A (correct), if the claim and proof are correct, even if the proof is not the
simplest or the proof you would have given.

C (partially correct), if the claim is correct and the proof is largely cor-
rect. The proof may contain one or two incorrect statements or justi-
fications, but the errors are easily correctable.

F (failure), if the claim is incorrect, or the main idea of the proof is incor-
rect, or there are too many errors.

You must justify assignments of grades other than A and if the proof is incor-
rect, explain what is incorrect and why.

� (a) Suppose a is an integer.
Claim. If a is odd then is even.
“Proof.” Let a. Then, by squaring an odd we get an odd. An odd plus
odd is even. So is even. �

(b) Suppose a, b, and c are integers.
Claim. If a divides b and a divides c, then a divides 
“Proof.” Suppose a divides b and a divides c. Then for some integer 
q, and for some integer q, Then 

so a divides  �
� (c) Suppose x is a positive real number.

Claim. The sum of x and its reciprocal is greater than or equal to 2.
That is,

“Proof.” Multiplying by x, we get By algebra,
Thus, Any real number squared is 

greater than or equal to zero, so is true. �
� (d) Suppose m is an integer.

Claim. If is odd, then m is odd.
“Proof.” Assume m is odd. Then for some integer k.
Therefore, which is
odd. Therefore, if  is odd, then m is odd. �

(e) Suppose a is an integer.
Claim. is even.
“Proof.” which is always an odd number times
an even number. Therefore,  is even. �a3 + a2

a3 + a2 = a2(a + 1),
a3 + a2

m2
m2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

m = 2k + 1
m2

x + 1
x

≥ 2

(x − 1)2 ≥ 0.x2 − 2x + 1 ≥ 0.
x2 + 1 ≥ 2x.

x +  
1
x

 ≥ 2.

b + c.2aq = a(2q),
b + c = aq + aq =c = aq.b = aq,

b + c.

a2 + 1

a2 + 1

A = B2/(4C).BC = 0
B < C < 4A < 0.

AC < 0
B > 0.

A > C >
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40 CHAPTER 1 Logic and Proofs

1.5 Basic Proof Methods II

In the last section, we saw that the method of direct proof for proceeds as a
chain of statements from the antecedent to the consequent. This is the most basic
form of proof and is the foundation for several other proof techniques. The tech-
niques in this section are based on tautologies that replace the statement to be
proved by an equivalent statement or statements. We call these indirect proofs.

A proof by contraposition or contrapositive proof for a conditional sentence
makes use of the tautology Since and

are equivalent statements, we first give a proof of and then
conclude by replacement that P ⇒ Q.

∼Q ⇒ ∼P∼Q ⇒ ∼P
P ⇒ Q(P ⇒ Q) ⇐⇒ (∼Q ⇒ ∼P).P ⇒ Q

P ⇒ Q

PROOF BY CONTRAPOSITION OF
Proof.
Assume 

Therefore, 
Thus, 
Therefore, �P ⇒ Q.

∼Q ⇒ ∼P
∼P.

o

∼Q.

P  ⇒  Q

This method can work well when the connection between denials of P and Q are
easier to understand than the connection between P and Q themselves, or when the
statement of either P and Q is itself a negation.

In the following examples of proof by contraposition we use familiar proper-
ties of inequalities and the property that every integer is either even or odd, but not
both. As in the last section, we assume that variables represent fixed quantities.

Example. Let m be an integer. Prove that if is even, then m is even.

Proof. The antecedent is P, is even” and the consequent is Q, “m is even.”
Suppose that the integer m is not even. Suppose Then m is odd so

for some integer k. Then

Since is twice an integer, plus 1, is odd. Since k is an integer, is an
integer. Therefore, is not even. We have concluded

Thus, if m is not even, then is not even. By contraposition, if is even,
then m is even. �

Example. Let x and y be real numbers such that Prove that if
then 3x ≤ y.7xy ≤ 3x2 + 2y2,

x < 2y.

m2m2
∼P.〉〈m2〉

2k2 + 2k〈m2m2

m2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

m = 2k + 1
∼Q.〉〈

〉“m2〈

m2
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1.5 Basic Proof Methods II 41

Proof. Suppose x and y are real numbers and Let P be
and Q be Suppose We assume Then 
and Therefore, Hence,

We have shown that if then Therefore, by contra-
position, if  then  �

Another indirect proof technique is proof by contradiction. The logic behind
such a proof is that if a statement cannot be false, then it must be true. Thus, to
prove by contradiction that a statement P is true, we temporarily assume that P is
false and then see what would happen. If what happens is an impossibility—that is,
a contradiction—then we know that P must be true. Here is an example of a proof
by contradiction.

Example. Prove that the graphs of and do not intersect.

Proof. Suppose the graphs of and do intersect at some
point (a, b). Suppose Since (a, b) is a point on both graphs, 
and Therefore, so Thus, But a is
a real number, so This is impossible. The statement is a
contradiction. Therefore, the graphs do not intersect. �

A proof by contradiction is based on the tautology 
That is, to prove a proposition P, we prove for some proposition Q.
In the example above, Q is the statement A proof by contradiction has the fol-
lowing form:

a2 < 0.
(∼P) ⇒ (Q ∧ ∼Q)

P ⇐⇒ [(∼P) ⇒ (Q ∧ ∼Q)].

〉
a2 < 0 ∧ a2 ≥ 0〈a2 ≥ 0.

a2 < 0.a2 = −4.a − 2 = a2 + a + 2,b = a − 2.
b = a2 + a + 2∼P.〉〈

y = x − 2y = x2 + x + 2

y = x − 2y = x2 + x + 2

3x ≤ y.7xy ≤ 3x2 + 2y2,
7xy > 3x2 + 2y2.3x > y,

7xy > 3x2 + 2y2.
(2y − x)(3x − y) = 7xy − 3x2 − 2y2 > 0.3x − y > 0.

2y − x > 0∼Q.〉〈3x > y.3x ≤ y.〉
7xy ≤ 3x2 + 2y2〈x < 2y.

PROOF OF P BY CONTRADICTION
Proof.
Suppose 

Therefore, Q.

Therefore, 
Hence, a contradiction.
Thus, P. �

Q ∧ ∼Q
∼Q.

o

o

∼P.

Two aspects about proofs by contradiction are especially noteworthy. First, this
method of proof can be applied to any proposition P, whereas direct proofs and
proofs by contraposition can be used only for conditional sentences. Second, the
proposition Q does not appear on the left side of the tautology. The strategy of prov-
ing P by proving then, has an advantage and a disadvantage. We
don’t know what proposition to use for Q, but any proposition that will do the job
is a good one. This means a proof by contradiction may require a spark of insight to
determine a useful Q.

∼P ⇒ (Q ∧ ∼Q),
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The next proof by contradiction is a classical result whose proof can be traced
back to Hippasus, a disciple of Pythagoras, circa 500 B.C.E. One of several legends
has it that Hippasus proved that is not a rational number while traveling by ship
with his Pythagorean colleagues. The Pythagoreans, steadfast believers that all
numbers are rational*, supposedly threw him into the sea to drown.

The proof relies on the definition of a rational number: r is rational
for some integers a and b, with We may assume that that a and b have no
common factors, because otherwise we would simply reduce by cancelling any
common factors.

Example. is an irrational number.

Proof. Assume that is a rational number. We assume ∼P. Then for

some integers a and b, where and a and b have no common factors. The state-〈b =
 0

√
2 = a

b
〉〈

√
2

√
2

a
b

b =
 0.
r = a

b
  iff  

√
2

42 CHAPTER 1 Logic and Proofs

* You may wonder why is important or why it should be the first number to be proved irrational. The
ancient Greeks geometers constructed numbers (lengths of line segments) using only a compass and a
straightedge. It’s easy to construct a square with sides of length 1, for which the length of a diagonal is

The fundamental Pythagorean belief that all numbers that arise in nature are either integers or ratios
of integers is disproved by the irrationality of 

√
2.

√
2.

√
2

ment Q is “a and b have no common factors.” From we have 

which implies that Therefore is even and so a is even. (Recall the exam-
ple we proved on page 40.) It follows that there exists an integer k such that 
and therefore

Thus which shows is even. Therefore b is even. Since both a and b are
even, a and b do have a common factor of 2. We have deduced the statement 
This is a contradiction. We conclude that is irrational. �

Recall that a natural number greater than 1 is prime its only positive divisors
are 1 and itself. The next proof by contradiction, attributed to Euclid, shows that there
are infinitely many primes. By this we mean that it is impossible to list all of the prime
numbers from the first to the kth (last) one, where k is a natural number. It uses the
fundamental result that every natural number greater than 1 has a prime divisor.

Example. The set of primes is infinite.

Proof. Suppose the set of primes is finite. Suppose This means that the set of
primes has k elements for some natural number k. Then the set of all primes can be
listed, from the first one to the kth (last) one. Let be all those primes.
Let n be one more than the product of all of them: We made
up a number n which will not have any of the as prime factors. Then n is a natural
number, so n has a prime divisor q. Since q is prime, The Q statement is〈q > 1.

〉pi

〈n = (p1 p2 p3 Á pk) + 1.
p1, p2, p3, Á , pk〉

∼P.〈

  iff  

√
2

∼Q.〉〈
b2b2 = 2k2,

 = 4k2.

 = (2k)2

2b2 = a2

a = 2k
a22b2 = a2.

2 = a2

b2
,

√
2 = a

b
〉
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1.5 Basic Proof Methods II 43

Since q is a prime and are all the primes, q is one of the 
in the list. Thus, q divides the product Since q divides n, q divides 

the difference But this difference is 1, so This is
From the contradiction, and we conclude that the assumption that the 
set of primes is finite is false. Therefore, the set of primes is infinite. �

Example. Prove the square shown in Figure 1.5.1(a) cannot be completed to form
a “magic square” whose rows, columns, and diagonals all sum to the same number.

q = 1,q > 1
∼Q.〉〈q = 1.n − (p1 p2 p3 Á pk).

p1 p2 p3 Á pk.pi

p1, p2, p3, Á , pk“q > 1.”〉

Figure 1.5.1

1

7

2

4

9

(a)

3

5

8

6

10

1

b

7

e

2

4

c

9

3

5

8

f

a

6

d

10

(b)

Proof. Suppose the square can be completed with entries a, b, c, d, e, f, as shown
in Figure 1.5.1(b). Since the sums of the second row and second column are the
same, Thus, Comparing the sums of the first column and
the lower-left to upper-right diagonal, Thus,

and the first row sums to 9. Thus, the “magic sum” is 9. This is our Q state-
ment. But the main diagonal sum is not 9. This is our
statement. This is a contradiction. We conclude that the square cannot be
completed. �

Proofs of biconditional sentences often make use of the tautology
Proofs of generally have the following

two-part form:
P ⇐⇒ Q(P ⇐⇒ Q) ⇐⇒ (P ⇒ Q) ∧ (Q ⇒ P).

P ⇐⇒ Q

〉
∼Q〈(1 + 4 + 8 + 10 = 23)〉

〈a = 3
1 + b + 7 + e = e + c + 5 + a.

b = c.b + 15 = c + 15.

TWO-PART PROOF OF
Proof.
(i) Show 
(ii) Show 
Therefore, �P ⇐⇒ Q.

Q ⇒ P.
P ⇒ Q.

P ⇐⇒ Q

The separate proofs of parts (i) and (ii) may use different methods. Often the
proof of one part is easier than the other. This is true, for example, of the proof that

“The natural number p is prime there is no positive integer greater than 1 
and less than or equal to that divides x.”

√
x

  iff  
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44 CHAPTER 1 Logic and Proofs

It immediately follows from the definition of prime that “x is prime” implies “there

is no positive integer greater than 1 and less than or equal to that divides x.” The
converse requires more thought and is an exercise in the next section.

The parity of an integer is the attribute of being either odd or even. The integer 31
has odd parity while 42 has even parity. The integers 12 and 15 have opposite parity.
The next example is a proof of a biconditional statement about parity with a two part
proof. Both parts of the proof have two cases. The proof we give is not the shortest pos-
sible, but it does illustrate the two part approach to proving a biconditional statement.

Example. Let m and n be integers. Then m and n have the same parity
is even.

Proof.
(i) Suppose m and n have the same parity. We have two cases.

(a) If both m and n are even then and for some integers k
and j. Then which is even.

(b) If both m and n are odd then and for 
some integers k and j. Then 

which is even.
In both cases is even.

(ii) Suppose is even. To show that n has the same parity as m, we use
some previous examples and exercises about even and odd integers. Again
we have two cases.
(a) If m is even, then is even. Therefore, since is even and 

is even, is even. From is even, we conclude
that n is even.

(b) If m is odd, then is odd. Therefore, since is even and 
is odd, is odd. From is odd, we conclude that
n is odd.

Hence, if m is even, then n is even, and if m is odd, then n is odd. Therefore,
m and n have the same parity. �

In some cases it is possible to prove a biconditional sentence that uses
the connective throughout. This amounts to starting with P and then replacing it
with a sequence of equivalent statements, the last one being Q. With n intermediate
statements a biconditional proof of has the form:P ⇐⇒ QR1, R2, Á , Rn,

  “iff”  

P ⇐⇒ Q

n2n2 = (m2 + n2) − m2
m2m2 + n2m2

n2n2 = (m2 + n2) − m2
m2m2 + n2m2

〉
〈m2 + n2

m2 + n2
2(2k2 + 2k + 2j2 + 2j + 1),

m2 + n2 = (2k + 1)2 + (2j + 1)2 =
n = 2j + 1m = 2k + 1

m2 + n2 = (2k)2 + (2j)2 = 2(2k2 + 2j2),
n = 2jm = 2k

m2 + n2
  iff  

√
x

BICONDITIONAL PROOF OF
Proof.
P

Q. �iff  

Rniff  

Á

R2iff  

R1  iff  

P ⇐⇒ Q
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1.5 Basic Proof Methods II 45

Example. The triangle in Figure 1.5.2 has sides of length a, b, and c. Use the Law
of Cosines to prove that the triangle is a right triangle with hypotenuse c if and only
if a2 + b2 = c2.

Figure 1.5.2 

Proof. By the Law of Cosines, where is the angle
between the sides of length a and b. Therefore,

Thus, the triangle is a right triangle with hypotenuse c. �

As the following example shows, many theorems are amenable to more than
one proof technique. Two of the proofs below will use the fact that if a prime (2 in
our case) divides the product of two integers, then it must divide at least one of the
integers. This property, known as Euclid’s Lemma, will be proved in Section 1.7.

Example. For given integers x and y, give a direct proof, a proof by contraposition,
and a proof by contradiction of the following statement: If x and y are odd integers,
then xy is odd.

Direct Proof. Assume x is odd and y is odd. Then integers m and n exist so that
and Thus,

Thus xy is an odd integer. �

Proof by Contraposition. The contrapositive of x is odd y is odd is odd is the
statement xy is even (x is odd y is odd), or equivalently,

xy is even (x is even y is even).

Assume xy is even. Thus, 2 is a factor of xy. But since 2 is a prime number and
2 divides the product xy, then either 2 divides x or 2 divides y by Euclid’s Lemma.
We have shown that if xy is even, then either x or y is even. Thus, if x and y are odd,
then xy is odd. �

〉¡⇒
¿⇒ ∼

⇒ xy¿〈

 = 2(2mn + m + n) + 1.

 = 4mn + 2m + 2n + 1

xy = (2m + 1)(2n + 1)

y = 2n + 1.x = 2m + 1

  iff  a2 + b2 = c2

 iff u = 90°.

 iff cos u = 0

a2 + b2 = c2  iff 2ab cos u = 0

ua2 + b2 = c2 − 2ab cos u,
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46 CHAPTER 1 Logic and Proofs

Proof by Contradiction. Suppose that the statement “If x and y are odd integers, then
xy is odd” is false. Then x is odd and y is odd, and xy is not odd. Since xy is not odd, xy
is even. Therefore 2 divides xy. Then by Euclid’s Lemma, 2 divides x or 2 divides y.
Thus either x is even or y is even. But x is odd and y is odd. This is a contradiction. We
conclude that if x and y are odd integers, then xy is odd. �

By now you may have the impression that, given a set of axioms and defini-
tions of a mathematical system, any properly stated proposition in that system can
be proved true or proved false. This is not the case. There are important examples
in mathematics of consistent axiom systems (so that there exist structures satisfy-
ing all the axioms) for which there are statements such that neither the statement
nor its negation can be proved. It is not a matter of these statements being difficult
to prove or that no one has yet been clever enough to devise a proof; it has been
proved that there can be no proof of either the statement or its negation within the
system. Such statements are called undecidable in the system because their truth is
independent of the truth of the axioms.

The classic case of an undecidable statement involves the fifth of five postu-
lates that Euclid set forth as his basis for plane geometry: “Given a line and a point
not on that line, exactly one line can be drawn through the point parallel to the line.”
For centuries, some thought Euclid’s axioms were not independent, believing that
the fifth postulate could be proved from the other four. It was not until the 19th cen-
tury that it became clear that the fifth postulate was undecidable. There are now the-
ories of Euclidean geometry for which the fifth postulate is assumed true and
non-Euclidean geometries for which it is assumed false. Both are perfectly reason-
able subjects for mathematical study and application.

Exercises 1.5

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof by the given method. Since the statements may con-
tain terms with which you are not familiar, you should not (and perhaps could
not) provide any details of the proof.

� (a) Outline a proof by contraposition that if is a cyclic group, then 
is abelian.

(b) Outline a proof by contraposition that if B is a nonsingular matrix, then
the determinant of B is not zero.

� (c) Outline a proof by contradiction that the set of natural numbers is not
finite.

(d) Outline a proof by contradiction that the multiplicative inverse of a
nonzero real number x is unique.

� (e) Outline a two-part proof that the inverse of the function f from A to B is
a function from B to A if and only if f is one-to-one and onto B.

(f) Outline a two-part proof that a subset A of the real numbers is compact
if and only if A is closed and bounded.

(G, *)(G, *)
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1.5 Basic Proof Methods II 47

2. A theorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1,
(a) outline a proof of the theorem by contraposition.
(b) outline a proof of the converse of the theorem by contraposition.
(c) outline a proof of the theorem by contradiction.
(d) outline a proof of the converse of the theorem by contradiction.
(e) outline a two-part proof that A and B are invertible matrices if and only

if the product AB is invertible.

3. Let x, y, and z be integers. Write a proof by contraposition to show that
� (a) if x is even, then is odd.

(b) if x is odd, then is odd.
(c) if is not divisible by 4, then x is odd.
(d) if xy is even, then either x or y is even.

� (e) if is even, then x and y have the same parity.
(f) if xy is odd, then both x and y are odd.
(g) if 8 does not divide then x is even.
(h) if x does not divide yz, then x does not divide z.

4. Write a proof by contraposition to show that for any real number x,
(a) if then 

� (b) if then 
(c) if then 

5. A circle has center (2, 4).
(a) Prove that and (5, 1) are not both on the circle.
(b) Prove that if the radius is less than 5, then the circle does not intersect

the line 
(c) Prove that if (0, 3) is not inside the circle, then (3, 1) is not inside the circle.

6. Suppose a and b are positive integers. Write a proof by contradiction to show
that
(a) if a divides b, then 

� (b) if ab is odd, then both a and b are odd.
(c) if a is odd, then is even.
(d) if is odd, then is odd.
(e) if and then 

7. Suppose a, b, c, and d are positive integers. Write a proof of each bicondi-
tional statement.
(a) ac divides bc if and only if a divides b.
(b) divides b and b divides if and only if and 
(c) a is odd if and only if is even.
(d) and if and only if and 

8. Let m and n be integers. Then prove that m and n have different parity
is odd.

9. Prove by contradiction that if n is a natural number, then
n

n + 1
>

n

n + 2
 .

m2 − n2
  iff

b + c = d.a = b − c2b − a = da + c = b
a + 1

b = 3.a = 2b + 3a + 1

a = 1.ab < 3,a < b
a + ba − b

a + 1

a ≤ b.

y = x − 6.

(−1, 5)

x > 0.x3 + x > 0,
2 < x < 3.x2 − 5x + 6 < 0,

x < 0.x2 + 2x < 0,

x2 − 1,

x + y

x2
x + 2
x + 1
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48 CHAPTER 1 Logic and Proofs

10. Prove that is not a rational number.

11. Three real numbers, x, y, and z, are chosen between 0 and 1 with 
Prove that at least two of the numbers x, y, and z are within unit from

one another.

Proofs to Grade 12. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(a) Suppose m is an integer.

Claim. If is odd, then m is odd.
“Proof.” Assume that is not odd. Then is even and for
some integer k. Thus is a perfect square; that is, is an integer. 
If is odd, then for some integer n, which means

Thus ism2m2 = 2k = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1.

√
2k = 2n + 1

√
2k

√
2k2k

m2 = 2km2m2
m2

1
2

z < 1.
0 < x < y <

√
5

odd, contrary to our assumption. Therefore must be even.
Thus if is not odd, then m is not odd. Hence if is odd, then m
is odd. �

� (b) Suppose t is a real number.
Claim. If t is irrational, then is irrational.
“Proof.” Suppose is rational. Then where p and q are 
integers and Therefore, where p and are integers
and so t is rational. Therefore, if t is irrational, then is 
irrational. �

(c) Suppose x and y are integers.
Claim. If x and y are even then is even.
“Proof.” Suppose x and y are even but is odd. Then, for some
integer Therefore, The left side
of the equation is even because it is the sum of even numbers. However,
the right side, 1, is odd. Since an even cannot equal an odd, we have a
contradiction. Therefore,  is even. �

(d) Suppose a, b, and c are integers.
Claim. If a divides both b and c, then a divides 
“Proof.” Assume that a does not divide Then there is no integer
k such that However, a divides b, so for some
integer m; and a divides c, so for some integer n. Thus

Therefore is an integer satis-
fying Thus the assumption that a does not divide is
false, and a does divide   �

1.6 Proofs Involving Quantifiers

Recall that in our first example of a direct proof in Section 1.4 we proved the state-
ment “If x is odd then is even.” That statement has the meaning “For every
integer x, if x is odd then is even.” We dealt with the quantifier in that exam-
ple by asking you to think of the variable x as some fixed integer. This section dis-
cusses specifically the proof methods for statements with quantifiers.

x + 1
x + 1

b + c.
b + cak = b + c.

k = m + nam + an = a(m + n) = b + c.
an = c

am = bak = b + c.
b + c.

b + c.

x + y

x + y + (−2)k = 1.k, x + y = 2k + 1.
x + y

x + y

5t5q =
 0,
5qt = p/(5q),q =
 0.

5t = p/q,5t
5t

m2m2

√
2k = m
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1.6 Proofs Involving Quantifiers 49

To prove a proposition of the form we must show that is true
for every object x in the universe. A direct proof is begun by letting x represent an
arbitrary object in the universe, and then showing that is true for that object.
In the proof we may use only properties of x that are shared by every element of the
universe. Then, since x is arbitrary, we can conclude that is true.

Thus a direct proof of has the following form:(∀x) P (x)
(∀x) P (x)

P (x)

P (x)(∀x) P (x),

DIRECT PROOF OF
Proof.
Let x be an arbitrary object in the universe. (The universe should be
named or its objects described.)

Hence is true.
Since x is arbitrary, is true. �(∀x) P (x)

P (x)
o

(∀x) P (x)

A review of the proof examples in Sections 1.4 and 1.5 shows that whenever the
statement was universally quantified, the proof given had the form of a complete
proof, because each begins with an assumption such as “Let x be an integer” or “Let
x and y be real numbers.”

Example. Prove that for every natural number 

Proof. The statement has the form where the universe is and isP (x)�(∀x) P (x),〈

n, 4n2 − 6.8n + 2.88 > 0.

Let n be a natural number. Then so n − .8n ≥ 1,“4n2 − 6.8n + 2.88 > 0.”〉
and are both positive. Therefore is
positive. We conclude that  for all natural numbers n. �

Since the open sentence in will often be a combination of other
open sentences joined by the logical connectives, the selection of an appropriate
proof technique will depend on the logical form of In the next example 
has the form of a conditional sentence.

Example. If x is an even integer, then is an even integer.

Proof. The statement has the form where the universe is �,(∀x)(A(x) ⇒ B(x)),〈

x2

P (x)P (x).

(∀x) P (x)P (x)

4n2 − 6.8n + 2.88 > 0
4(n − .8)(n − .9) = 4n2 − 6.8n + 2.88n − .9

A(x) is “x is even,” and B(x) is is even.” Let We give a direct proof of
which we begin by assuming A(x). Assume x is even. Then for

some integer k. Thus Since 2k2 is an integer, is even. Since x
is arbitrary, we have that for all if x is even, then is even. �

It is essential in a direct proof of that the first step assume nothing
about x other than it is an object in the universe. In the example above there are two
assumptions about the variable x — for two very different reasons. The assumption
“Let appears first because we are assuming x is an object in the universe. x � �”

(∀x) P (x)

x2x � �,
x2x2 = (2k)2 = 2(2k2).

x = 2k〉A(x) ⇒ B(x),
〈x � �.〉“x2
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50 CHAPTER 1 Logic and Proofs

We make the statement “Assume x is even” because we are initiating a direct proof
of a conditional sentence, which starts by assuming the antecedent.

It is a mistake to give an example (or several examples) of the statement “If x
is even, then is even” and then claim that the statement has been proved for all
natural numbers n. Examples may sometimes help decide whether a statement is
true. Examples can also help guide our thinking about how to proceed with a proof.
However, we cannot prove that a universally quantified statement is true by show-
ing that it’s true for selected values of the variable.

The next example involves two quantifiers.

Example. For all rational numbers x and is a rational number.

Proof. The statement has the form where the universe is and�(∀x)(∀y) P (x, y),〈

y, 
x + y

2

x2

PROOF OF BY CONTRADICTION
Proof.
Suppose 
Then 
Let t be an object such that 

Therefore 
Thus is false, so   is true. �(∀x) P (x)(Ex) ∼P (x)

Q ∧ ∼Q.
o

∼P (t ).
(Ex) ∼P (x).

∼ (∀x) P (x).

(∀x) P (x)

The following example of a proof by contradiction comes from an exercise in
a trigonometry class. It uses algebraic and trigonometric properties available to stu-
dents in the class.

Example. Prove that for all 

Proof. The statement has the form where the universe is the open interval

and is Suppose that the statement is false. Then there“sin x + cos x > 1.”〉P (x)A0, π
2 B

(∀x) P (x),〈

sin x + cos x > 1.x � A0, π
2 B,

is “ is rational.” Let x and y be rational numbers. Then

Both and 2qt are integers and The sums and products of integers
are integers. The product of three nonzero numbers is not zero. Therefore, 

is a rational number. �

The method of proof by contradiction is often used to prove statements of the
form Since is equivalent to the form of the
proof is as follows:

(Ex) ∼ P (x),∼ (∀x) P (x)(∀x) P (x).

x + y

2
 

〉
〈2qt =
 0.pt + qs

x + y

2
 =  

1

2
 ap

q
 +  

s

t
b =  

1

2
 apt + qs

qt
b =  

pt + qs

2qt
 .

〉 

x + y

2
P(x, y)
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1.6 Proofs Involving Quantifiers 51

exists a real number t, with such that We have deduced

Since the functions sin x and cos x are positive for every 

and Therefore,

We use the identity But 2 sin is impossible since
both sin t and cos t are positive. Therefore, if then �

Notice the different roles that the symbols “x” and “t” play in the above exam-
ple. The variable x is used to express the statement of the theorem and also appears
as the independent variable in the sine and cosine functions. The symbol t represents
some fixed value in with the property that 

There are several ways to prove existence theorems—that is, propositions of the
form In a constructive proof we actually name an object a in the universe
such that is true, which directly verifies that the truth set of is nonempty.
Some constructive proofs are quite easy to devise. For example, to prove that “There
is an even prime natural number,” we simply observe that 2 is prime and 2 is even.

Other constructive proofs have eluded mathematicians for centuries. The
question of whether any nth power is a sum of fewer than n nth powers was
raised by Leonard Euler* in the mid 1700s. A computer search in 1968 discov-
ered a fifth power that was the sum of four fifth powers. Here is an example for
fourth powers.

Example. Prove that there exists a natural number whose fourth power is the sum
of three other fourth powers.

Proof. 20,615,673 is one such number because

�

Another strategy to prove is to show that there must be some object
for which is true, without ever actually producing a particular object. Both
Rolle’s Theorem and the Mean Value Theorem from calculus are good examples of
this. Here is another.

P (x)
(Ex) P (x)

206156734 = 26824404 + 15365394 + 187967604.

P (x)P (a)
(Ex) P (x).

sin t + cos t ≤ 1.A0, π
2 B

sin x + cos x > 1.0 < x <
π

2
,

t cos t ≤ 0sin2 t + cos2 t = 1.〉〈

 −1 < 2 sin t cos t ≤ 0.

 0 < 1 + 2 sin t cos t ≤ 1

 0 < sin2 t + 2 sin t cos t + cos2 t ≤ 1

 0 < (sin t + cos t)2 ≤ 12 = 1

 0 < sin t + cos t ≤ 1

cos t > 0.sin t > 0

x � A0, π
2 B(E t) ∼ P (t ).〉

〈sin t + cos t ≤ 1.0 < t <  π
2
,

* Leonard Euler (1707–1783) was a brilliant Swiss mathematician who spent much of his career at the
Imperial Russian Academy of Sciences in St. Petersburg and the Berlin Academy. He made profound
contributions to calculus, number theory, and graph theory as well as physics and astronomy. He was the
first to introduce the idea of function and the familiar f(x) notation.
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52 CHAPTER 1 Logic and Proofs

Example. Prove that the polynomial

has a real zero.

Proof. The universe is The statement has the form By the
Fundamental Theorem of Algebra†, has 71 zeros that are either real or complex.
Since the polynomial has real coefficients, its nonreal zeros come in pairs by the
Complex Root Theorem Hence the number of nonreal zeros is even, and that leaves
an odd number of real zeros. Therefore,   has at least one real zero. �

Existence theorems may also be proved by contradiction. The proof technique
has the following form:

r (x)
〉.

〈
r (x)

(E t)(r( t) = 0).〉�.〈

r (x) = x71 − 2x39 + 5x − 0.3

PROOF OF BY CONTRADICTION
Proof.
Suppose 
Then 

Therefore, a contradiction.
Thus is false.
Therefore is true. �(Ex) P (x)

∼(Ex) P (x)
∼Q ∧ Q,

o

(∀x) ∼  P (x)
∼(Ex) P (x).

(Ex) P (x)

The core of a proof of by contradiction involves making deductions
from the statement 

Example. Starting at 9 a.m. on Monday a hiker walked from a base camp up a
mountain trail and reached the summit at exactly 3 p.m. The hiker camped for the
night and then hiked back down the same trail, again starting at 9 a.m. On this second
walk the hiker stopped to look at a scenic overlook, but walked faster on other parts
of the trail and returned to the starting point in exactly six hours. Prove that there is
some point on the trail that the hiker passed at the identical time on the two days.

Proof. Clearly, the point on the trail is not at the base camp or summit. The uni-
verse is the open interval (0, 6), representing the time between (9 a.m.) and

(3 p.m.) along the trail. The statement has the form t (0, 6) (the point on
the trail at time t on Monday is the same as the point on the trail at time t on Tues-
day). Suppose there is no such point along the trail. Then for every time t (0, 6),
the point where the hiker is at time t on Monday is different from the point where
the hiker is at time t on Tuesday. Have two other people simultaneously walk the
trail, starting at 9 a.m. One goes up the trail at exactly the pace set by the hiker on

�〉

�Et = 6
t = 0

〈

(∀x) ∼  P (x).
(Ex) P (x)

† The Fundamental Theorem of Algebra says that every polynomial in one variable with complex coef-
ficients and degree has exactly n zeros, counting multiplicities.n > 0
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1.6 Proofs Involving Quantifiers 53

Monday and the other walks down the trail at exactly the pace set by the hiker on
Tuesday. Since these two people are at different points at every time between 9 a.m.
and noon, they will never meet. But they must meet at some point on the trail. This
is a contradiction. Therefore there is some point on the trail that the hiker passed at
the same time on the two days. �

Sometimes a statement to be proved has the form As a first step,
we assume However, the fact that some object x in the universe has the
property does not give us much to work with. A useful next step is to name some
particular object that has the property and use the property of the object to derive Q.

Example. The graph of with is a circle with center (0, 0) and
radius r. Prove that if one of the x-intercepts of the circle has rational coordinates,
then all four intercepts have rational coordinates.

Proof. Suppose an x-intercept of the circle has rational coordinates. Then a
is a rational number and so and Then the other
x-intercept is To find the y-intercepts, we solve and find

Therefore, the four intercepts are and 
all of which have rational coordinates. �

Many statements have more than one quantifier. We must deal with each in
succession, starting from the left.

Example. Between any two rational numbers x and y, where there is always
another rational number z.

Proof. The statement may be symbolized
We begin with the two universal quantifers. Suppose x

and y are rational numbers. Assume that Now we must prove the 

existence of a rational number z with the given property. We choose 

By a previous example, z is a rational number. Furthermore,

Therefore �

Example. Prove that for every natural number n, there is a natural number M such
that for all natural numbers 

Proof. The statement may be symbolized by

(∀n � �)(EM � �)(∀m � �) am > M ⇒  
1
m

<
1

3n
b .

〈

1
m

<
1

3n
 .

m > M,

x < z < y.

x = x + x

2
 < 

x + y

2
<

y + y

2
= y.

z = x + y

2
.〉

〈x < y.
〉(Ez � �)(x < z < y)].

(∀x � �)(∀y � �)[x < y ⇒〈

x < y,

(0,−a),(a, 0), (−a, 0), (0, a),y = ±r = ±a.
02 + y2 = r2(−a, 0).

a = ±r.a2 = r2a2 + 02 = r2,
(a, 0)

r > 0,x2 + y2 = r2,

P (x)
(Ex) P (x).

(Ex) P (x) ⇒ Q.
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54 CHAPTER 1 Logic and Proofs

We begin with the universal quantifier on the left. Let n be a natural number. We must
prove the existence of a natural number M with the given property. Choose M to be 3n.
Let m be a natural number, and suppose Then and so 3mn > 0,m > 3n,m > M.

〉
〈〉

PROOF OF
Proof.
(i) Prove that is true. Use any method.
(ii) Prove that 

Assume that y and z are objects in the universe such that and 
are true.

Therefore, 
From (i) and (ii) conclude that   is true. �(E !x) P (x)

y = z.
o

P (z)P (y)
(∀y)(∀z)[P(y) ∧ P (z) ⇒ y = z].
(Ex) P (x)

(∃!x) P (x)

dividing by 3mn we have The choice of 3n for M is the result of some 

scratchwork, working backward from the intended conclusion �

Example. There is a real number with the property that for any two larger num-
bers there is another real number that is larger than the sum of the two numbers and
less than their product.

Proof. The universe is �. A symbolic form of the statement is

We must choose z so that the statement

will be true for all x and y. We chose To understand this choice for z, first
notice that is not always less than xy. For example, let and Let
x and y be real numbers such that and Without loss of generality, we may
assume that Otherwise, we could rename x and y. Then

Now choose w to be the midpoint between and xy, so We

have �

A proof of a statement about unique existence always involves multiple
quantifiers. The standard technique for proving a proposition of the form

is based on proving the equivalent statement: 
Since the main connective is a conjunction, the method

will have two parts:
[P (y) ∧  P (z) ⇒ y = z].

(Ex) P (x) ∧ (∀y)(∀z)(E !x) P (x)

x + y < w < xy.

w =  
(x + y) + xy

2
.x + y

x + y ≤ 2y < xy.

〉〈y ≥ x.
y > z.x > z

y = 1.4.〉x = 1.6x + y
〈z = 2.〉

(x > z ∧ y > z) ⇒ (Ew)(x + y < w < xy)

(Ez)(∀x)(∀y)[(x > z ∧ y > z) ⇒ (Ew)(x + y < w < xy)].

〈

1
m

<
1

3n
.〉

〈1
m

<
1

3n
.
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1.6 Proofs Involving Quantifiers 55

Example. Every nonzero real number has a unique multiplicative inverse.

Proof. The statement has the form Let
We show there is a unique real number y such that in two steps: First

show that such a number y exists, and then show that x cannot have two different
inverses.

(i) This part is a constructive proof. Let Since y is a real 

number. Then Therefore, x has a multiplicative inverse.

(ii) Now suppose that y and z are multiplicative inverses for x. We do not assume
that this y is the same as the y in part (i). Then and so

Since Therefore  �

Great care must be taken in proofs that contain expressions involving more than
one quantifier. Here are some manipulations of quantifiers that permit valid deductions.

1.

2.

3.

4.

5.

6.

You should convince yourself that each of these is a logically valid conditional
or biconditional. For example, the last on the list is always true because if

is true, then there is (at least) one x that makes true no mat-
ter what y is. Therefore, for any y, is true because this particular x exists.

It is important to be aware of the most common incorrect deductions making
use of quantifiers. We list four here and show by example that each is not valid.
Notice that statements 2, 3, and 4 in the following list are the converses, respec-
tively, of valid deductions of statements 3, 4, and 6 above.

1. is not valid.
The implication says that if some object has property P, then all objects have
property P. If the universe is all integers and is the sentence “x is odd,”
then is true and is false. Thus, is true and is
false, so the implication fails.

2. is not valid.
This implication says that if every object has one of two properties, then either
every object has the first property or every object has the second property.

(∀x)[ P (x) ∨  Q (x)] ⇒ [(∀x) P (x) ∨ (∀x) Q (x)]

(∀x) P (x)(Ex) P (x)P (8)P (5)
P (x)

(Ex) P (x) ⇒ (∀x) P (x)

(Ex) P (x, y)
P (x, y)(Ex)(∀y) P (x, y)

(Ex)(∀y) P (x, y) ⇒ (∀y)(Ex) P (x, y).

(∀x)[ P (x) ∧  Q (x)] ⇐⇒ [ (∀x) P (x) ∧ (∀x) Q (x)].

(∀x)[ P (x) ⇒  Q (x)] ⇒ [(∀x) P (x) ⇒ (∀x) Q (x)].

[ (∀x) P (x) ∨ (∀x) Q (x)] ⇒ (∀x)[ P (x) ∨  Q (x)].

(Ex)(Ey) P (x, y) ⇐⇒ (Ey)(Ex) P (x, y).

(∀x)(∀y) P (x, y) ⇐⇒ (∀y)(∀x) P (x, y).

y = z.y − z = 0.x =
 0,

x (y − z) = 0.

xy − xz  = 0

 xy = xz

xz = 1,xy = 1〉
8

xy = xa1
x
b = 1.

x =
 0,y = 1
x

.〉〈

〉

xy = 1〈x =
 0.
(∀x � �)(x =
 0 ⇒ (E !y � �)(xy = 1).〉〈
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56 CHAPTER 1 Logic and Proofs

Suppose the universe is the integers, is “x is odd” and is “x is
even.” Then it is true that “All integers are either odd or even” but false that
“Either all integers are odd or all integers are even.”

3. is not valid.
The implication says that if every object has property P implies every object has
property Q, then every object that has property P must also have property Q.
Again, let the universe be the integers and let be “x is odd” and be “x
is even.” Because is false, is true. However,

is false.

4. is not valid.
This is probably the most troublesome of all the possibilities for dealing with
quantifiers. The implication says that if for every y there is some x that satisfies
P, then there is an x that works with every y to satisfy P. Let the universe be 
the set of all married people and be the sentence “x is married to y.” 
Then is true, since everyone is married to someone. But

would be translated as “There is some married person who is
married to every married person,” which is clearly false.

There are times when we will want to prove a quantified statement is false. We
know that is false precisely when is true and is
equivalent to Therefore, one way to prove is false is to prove

is true.
A constructive proof of names an object a in the universe such

that is false. The object a is called a counterexample to The
number 2 is a counterexample to the statement “All primes are odd.” The function

is a counterexample to “Every function that is continuous at 0 is dif-
ferentiable at 0.”

Example. Some beginning algebra students believe that In
symbolic terms, they believe that is true in the uni-
verse of real numbers. This mistake could be corrected by providing a counter-
example—for instance, and 

Our last example in this section is a proof of a statement of the form
which means it is also an example of a proof of an equivalent

statement of the form We proved in Section 1.4 that every odd
integer can be written in the form or We now show that there
does not exist an integer that can be written in both of these forms. The proof
is by contradiction.

Example. There is no odd integer that can be expressed in the form and in
the form for integers j and k.

Proof. Suppose n is an odd integer, and suppose and 
for integers j and k. Then so Therefore, 
The left side of this equation is which is even, but 1 is odd. This is a 
contradiction. �

2( j − k),
2j − 2k = 1.4j − 4k = 2.4j − 1 = 4k + 1,

n = 4k + 1n = 4j − 1

4k + 1
4j − 1

4k + 1.4j − 1
(∀x) ∼P (x).

∼ (Ex) P (x),

y = 4.x = 3

(∀x)(∀y)[(x + y)2 = x2 + y2]
(x + y)2 = x2 + y2.

f (x) = |x |

(∀x) P (x).P (a)
(Ex)(∼ P (x))

(Ex) ∼ P (x)
(∀x) P (x)(Ex) ∼P (x).

∼ (∀x) P (x)∼ (∀x) P (x)(∀x) P (x)

(Ex)(∀y) P (x, y)
(∀y)(Ex) P (x, y)

P (x, y)

(∀y)(Ex) P (x, y) ⇒ (Ex)(∀y) P (x, y)

(∀x)[ P (x) ⇒  Q (x)]
(∀x) P (x) ⇒ (∀x) Q (x)(∀x) P (x)

Q (x)P (x)

[(∀x) P (x) ⇒ (∀x) Q (x)] ⇒ (∀x)[ P (x) ⇒  Q (x)]

Q (x)P (x)
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1.6 Proofs Involving Quantifiers 57

Exercises 1.6

1. Prove that
� (a) there exist integers m and n such that 

(b) there exist integers m and n such that 
� (c) there do not exist integers m and n such that 

(d) there do not exist integers m and n such that 
(e) for every integer t, if there exist integers m and n such that 

then there exist integers r and s such that 
� (f) if there exist integers m and n such that then m and n

are both positive.
(g) for every odd integer m, if m has the form for some integer k,

then has the form for some integer j.
(h) for every odd integer m, for some integer k. (Hint: Use the

fact that is an even integer for every integer k.)
(i) for all odd integers m and n, if for some integer k, then m

or n is of the form for some integer j.

2. Prove that for all integers a, b, and c,
(a) if c divides a and c divides b, then for all integers x and y, c divides 

� (b) if a divides and a divides then a divides 
(c) if a divides b, then for all natural numbers n, divides 
(d) if a is odd, c divides a and c divides then 
(e) if there exist integers m and n such that and then

c does not divide a or c does not divide b.

3. Prove that if every even natural number greater than 2 is the sum of two primes,*
then every odd natural number greater than 5 is the sum of three primes.

4. Provide either a proof or a counterexample for each of these statements.
(a) For all positive integers x, is a prime.
(b) (Universe of all reals)
(c) (Universe of all reals)
(d) For integers a, b, c, if a divides bc, then either a divides b or a divides c.
(e) For integers a, b, c, and d, if a divides and a divides then a

divides 
(f) For all positive real numbers x, 
(g) For all positive real numbers x, 

� (h) For every positive real number x, there is a positive real number y less
than x with the property that for all positive real numbers z, 

� (i) For every positive real number x, there is a positive real number y with
the property that if then for all positive real numbers z, 

5. (a) Prove that the natural number x is prime and there is no posi-
tive integer greater than 1 and less than or equal to that divides x.

√
x

x > 1  iff  

yz ≥ z.y < x,

yz ≥ z.

2x > x + 1.
x2 − x ≥ 0.

b − d.
c − d,b − c

(∀x)( ∀y)(x > 1 ∧ y > 0 ⇒ yx > x).
(∀x)(Ey)(x + y = 0).

x2 + x + 41

c =
 ±1,am + bn = 1
c = 1.a + 2,c > 0,
bn.an

bc − 1.c − 1,b − 1
ax + by.

4j − 1
mn = 4k − 1

k(k + 1)
m2 = 8k + 1
4j − 1m + 2

4k + 1

12m + 15n = 1,
3r + 8s = t.

15m +16n = t,
12m + 15n = 1.
2m + 4n = 7.

15m + 12n = 3.
2m + 7n = 1.

* No one knows whether every even number greater than 2 is the sum of two prime numbers. This is the
famous Goldbach Conjecture, proposed by the Prussian mathematician Christian Goldbach in 1742. You
should search the Web to learn about the million dollar prize (never claimed) for proving Goldbach’s
Conjecture. Fortunately, you don’t have to prove Goldbach’s Conjecture to do this exercise.
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58 CHAPTER 1 Logic and Proofs

(b) Prove that if p is a prime number and then 3 divides 
(Hint: When p is divided by 3, the remainder is either 0, 1, or 2. That is,
for some integer k, or or 

6. Prove that

(a) for every natural number n, (Hint: Use the fact that and

divide by the positive number n.)
(b) there is a natural number M such that for all natural numbers 

� (c) for every natural number n, there is a natural number M such that 

(d) there is a natural number M such that for every natural number n, 
(e) there is no largest natural number.
(f) there is no smallest positive real number.

� (g) for every real number there is a natural number M such that for all

natural numbers 

� (h) for every real number there is a natural number M such that if

then 

(i) there is a natural number K such that whenever r is a real 

number larger than K.
(j) there exist integers L and G such that and for every real number

x, if then 
(k) there exists an odd integer M such that for all real numbers r larger than 

M, 

(l) for every natural number x there is an integer k such that 
(m) there exist integers and such that and for all

real numbers r and s, if and then 
(n) for every pair of positive real numbers x and y where there exists

a natural number M such that if n is a natural number and then 

Proofs to Grade 7. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

� (a) Claim. Every polynomial of degree 3 with real coefficients has a real zero.
“Proof.” The polynomial has degree 3, real coeffi-
cients, and a real zero Thus the statement “Every polynomial of
degree 3 with real coefficients does not have a real zero” is false, and
hence its denial, “Every polynomial of degree 3 with real coefficients
has a real zero,” is true. �

� (b) Claim. There is a unique polynomial whose first derivative is 
and which has a zero at 
“Proof.” The antiderivative of is If we let

then and So is the
desired polynomial. �

p (x)p (1) = 0.p ′(x) = 2x + 3p (x) = x2 + 3x − 4,
x2 + 3x + C.2x + 3

x = 1.
2x + 3

(x = 2).
p (x) = x3 − 8

1
n

< (y − x).

n > M,
x < y,

(r − 50)(s − 20) > 390.s > y,r > x
x + y < 128y < 30x < 100

3.3x + k < 50.

1

2r
< 0.01.

40 > 10 − 2x > 12.L < x < G,
L < G

1

r2
< 0.01

1
n

− 1
m

< ε.m > n > M,

ε > 0,

1
n

< ε.n > M,

ε > 0,

1
n

< M.

2n < M.

1
n

< 0.13.

n > M,

n ≥ 1
1
n

≤ 1.

p = 3k + 2.)p = 3k + 1p = 3k

p2 + 2.p =
 3,
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1.6 Proofs Involving Quantifiers 59

(c) Claim. Every prime number greater than 2 is odd.
“Proof.” The prime numbers greater than 2 are 3, 5, 7, 11, 13, 17,

None of these are even, so all of them are odd. �

� (d) Claim. There exists an irrational number r such that is rational.

“Proof.” If is rational, then is the desired example.

Otherwise, is irrational and which is

rational. Therefore either or is an irrational number r such that

is rational. �
(e) Claim. For every real number x, 

“Proof.” We proceed by three cases: and 

Case 1. Choose, for example, Then Thus

Case 2. Then Thus, 
Case 3. Choose, for example, Then Thus

�

(f) Claim. If x is prime, then is composite.
“Proof.” Let x be a prime number. If then which is
composite. If then x is odd, so is even and greater than 2. In
this case, too, is composite. Therefore, if x is prime, then is
composite. �

(g) Claim. For all irrational numbers t, is irrational.
“Proof.” Suppose there exists an irrational number t such that is
rational. Then where p and q are integers and Then 

with and q integers and This is a

contradiction because t is irrational. Therefore, for all irrational numbers
t, is irrational. �

(h) Claim. For real numbers x and y, if then or 
“Proof.”

Case 1. If then 
Case 2. If then 

In either case,  �

� (i) Claim. For every real number there is a natural number K such

that for all real numbers 
1

4x
< ε.x > K,

ε > 0,

xy = 0.

xy = x0 = 0.y = 0,
xy = 0y = 0.x = 0,

y = 0.x = 0xy = 0
t − 8

q =
 0.p + 8qt =  pq + 8 =  
p + 8q

q
,

q =
 0.t − 8 =  pq,
t − 8

t − 8

x + 7x + 7
x + 7x =
 2,

x + 7 = 9,x = 2,
x + 7

|x | ≥ 0.
|−5 | = 5.x = −5.x < 0.

|x | ≥ 0.|0 | = 0.x = 0.
|x | ≥ 0.

|4 | = 4.x = 4.x > 0.

x < 0.x = 0,x > 0,
|x | ≥ 0.

r
√

2

√
3

√
2

√
3

(
√

3
√

2)
√

2 = (
√

3)2 = 3,
√

3
√

2

r =
√

3
√

3
√

2

r
√

2

19, Á  .

“Proof.” Let be a real number. Let K be Assume x is a real
1

2ε
.ε > 0

number and Then so Therefore, so 

�

(j) Claim. For every natural number n, 
“Proof.” Let n be a natural number. Since n is a natural number,

Since n is positive, Therefore, for all natural
numbers n. �

n ≤ n2n · 1 ≤ n · n.1 ≤ n.

n ≤ n2.

1

4x
< ε.

4xε > 1,x >
1

4ε
.x >

1

2ε
,x > K.
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60 CHAPTER 1 Logic and Proofs

1.7 Additional Examples of Proofs

This section contains no new proof techniques but does offer pointers about how to
begin a proof and how the form of the statement to be proved usually suggests a
method for proving it. These discussions include references to exercises that have
complete solutions in the Answers to Selected Exercises section. And because the
subject provides an excellent setting for examples of proofs, we conclude this sec-
tion with additional concepts from number theory.

Here are some strategies to consider when you begin to write a proof.

1. Make a start. For most people, the hardest part of writing a proof is knowing
where or how to start. The most important step is to make a start—almost any
start. Once you’ve begun you may get stuck and need to begin again with a dif-
ferent approach, but often the first attempt will give you some ideas that can be
useful in a new approach. Writing a proof is not done by staring at a statement
to be proved until a full-blown proof pops into your head. It is done step by
step, piecing together facts, definitions, and previous results, and building
toward the statement to be proved.

2. Identify the assumption(s) and conclusion. Most theorems can be stated in the
form of a conditional sentence. The antecedent gives your hypotheses; the conse-
quent is your goal. Look for known facts and previous results that might connect
the antecedent with the consequent. For example, later in this section we shall see
that theorems about the greatest common divisor use the Division Algorithm.

3. Try working backwards and/or fill in the “middle” of the proof. Once the
hypotheses and conclusion have been identified, write your assumptions, leave
some space, and write the conclusion as the last line. Try to deduce statements
from the hypothesis that are more useful. Rewrite the conclusion or find a suitable
statement from which the conclusion follows. The idea is to try to reason forward
from your assumption and backward from your conclusion until you join them. At
the middle you will have steps that follow from the hypotheses and from which
the conclusion follows. This makes a complete proof. See Exercise 1(a).

4. Understand the concepts. Make sure you know the definitions of any techni-
cal terms that appear in the statement to be proved. Often the terms are defined
by equations or formulas that can be manipulated for use in the next steps of
the proof, as we did in previous sections with the definitions of even and odd
integers, rational numbers, and other terms. See Exercise 1(b).

5. Determine the logical form of the statement. It is important to be able to write
(or at least visualize) the complete symbolic translation, with quantifiers, of the
statement to be proved, because the logical form of the statement will usually
offer you insight into how to proceed. Don’t be overly concerned with naming
different types of proofs and devising “formulas” for writing proofs of a given
type. It’s not true that if a statement has a certain form you must always use a
certain proof technique. However, for each logical form there is always at least
one natural outline for its proof, as described in the following examples.
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1.7 Additional Examples of Proofs 61

“If P, then Q.” First consider a direct proof. Begin with the first step, “Assume P.”
P may be a conjunction of several statements, so we may assume all of these state-
ments are true. See Exercise 5(a). When a direct proof fails, consider a proof by
contrapositive, especially when Q has the form of a negation. See Exercise 3(a). If
direct proofs of and both fail, try the method of proof by contra-
diction. Assuming P and gives you more hypotheses to work with as you aim
for some contradiction. See Exercise 5(b).

“If then Q.” It is usually best to first try to prove this by cases because
is equivalent to That is, try to show that (i)

and (ii) See Exercise 7(b). Any proof of that is done by
considering cases has this form. See Exercise 1(h).

“If P, then ” A good first step is to try to prove the equivalent form
This method has that advantage of assuming that both P and

are true, giving you more hypotheses to utilize. Or if you prefer, you could
assume both P and and deduce See Exercises 1(d) and (e).

“P Q.” What you should hope for is an proof in which you construct a list
of equivalent statements linking P and Q. But usually, and especially when P and Q
are complicated, you will need to prove and separately. Rather than
worrying about which proof form to use, a good strategy is to begin by proving
either of the two implications and then checking to see whether each step can be
reversed so that (by modifying the words that connect statements) the proof can be
converted to an proof. See Exercise 1(c).

Here are some strategies for writing proofs of quantified sentences.

“ ” Usually there will be one or more universal quantifiers, which may be
hidden. Your first sentence will almost always have the form “Let x be an object in
_______” or “Suppose x is in _______,” where we specify the universe. See Exercises
1(f) and 2(c). Proofs by contradiction of universally quantified statements are not so
common. See the comments below on the form and Exercise 1(g).

“ ” You may be able to construct or guess an object that has the desired
property. See Exercise 6(b). If not, you may be able to still prove existence without
producing an actual object, perhaps by contradiction. See Exercise 4(b).

“ ” You have two options, and the one you choose will depend on the
form of You might first try a direct proof of the equivalent statement

The alternative is to assume and find a contradiction. (This
amounts to proving by contradiction.) See Exercise 1(g).

“ ” First prove as described above. To prove uniqueness, you
may choose any one of several approaches. You may (1) prove that any two objects
with the property must be equal, (2) derive a contradiction from the assumption that
two different objects have the property, or (3) prove that every object with the prop-
erty is identical to some specific object. See Exercises 3(c) and 4(d).

(Ex) P (x)(�!x) P (x).

(∀x) ∼P (x)
(Ex) P (x)(∀x) ∼P (x).

P (x).
�(�x) P (x).

(�x) P (x).

∼(Ex) P (x),

(∀x) P (x).

  “iff”  

Q ⇒ PP ⇒ Q

  “iff”   iff  

Q1.∼Q2,
∼Q1

(P ∧ ∼Q1) ⇒ Q2.
Q1 ∨ Q2.

P ⇒ QP2 ⇒ Q.P1 ⇒ Q
(P1 ⇒ Q) ∧ (P2 ⇒ Q).(P1 ∨ P2) ⇒ Q

P1 ∨ P2,

∼Q
∼Q ⇒ ∼PP ⇒ Q
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62 CHAPTER 1 Logic and Proofs

The remainder of this section is devoted to examples of proofs from
elementary number theory—that branch of mathematics concerned with the
integers and questions about divisibility, primes, and factorizations. The term
“elementary” is used, not because the subject is low level, but because no meth-
ods from other fields of mathematics are used. Some of the most simply stated,
yet still unsolved problems in mathematics come from elementary number
theory.

Our proof examples are all concerned with the greatest common divisor (gcd)
of two integers; a concept that is probably already familiar to you. We can’t rely on
just a general idea of gcd to prove theorems: It’s not enough just to be able to find
the gcd of 12 and 15. As you gain experience you will find that writing good proofs
requires that we understand and use concepts precisely. By precisely, we mean as
specified by the definition.

The most fundamental theorem about the integers is the Division Algorithm, which
we state here without proof. In Chapter 2 the Division Algorithm will be presented as
Theorem 2.5.1 and proved using a technique that will be introduced in Section 2.5.

The Division Algorithm (See Theorem 2.5.1)

For all integers a and b, with there exist unique integers q and r such that

The integer a is the divisor, q is the quotient, and r is the remainder. For
example, 23 divided by 4 gives a quotient of 5 and remainder 3, because

Note, however, it would be incorrect to say that divided by 4
has quotient and remainder even though Remain-
ders can’t be negative, so when we divide by 4 the only possible remainders are
0, 1, 2, and 3. Thus when is divided by 4 the quotient is and the remain-
der is 1.

It is the fact that the remainder must be nonnegative and as small as possible
that makes the quotient and remainder unique. Notice that dividing b by a produces
a remainder of 0 exactly when there is an integer q such that which
happens exactly when a divides b.

One of the most useful concepts regarding integers is that of the greatest com-
mon divisor.

b = aq + 0,

−6−23

−23 = 4(−5) + (−3).−3,−5
−2323 = 4 · 5 + 3.

b = aq + r and 0 ≤ r < |a | .

a =
 0,

DEFINITIONS Let a, b, c, and d be nonzero integers.

We say c is a common divisor of a and b c divides a and c divides b.
We say d is the greatest common divisor of a and b, and write 

(i) d is a common divisor of a and b, and
(ii) every common divisor c of a and b is less than or equal to d.

  iffd = gcd(a, b),

  iff  
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1.7 Additional Examples of Proofs 63

For example, the common divisors of 18 and 24 are 
and 6, so There is no requirement that a and b must be positive.
For example and The inte-
gers 24 and 35 have no positive common divisors except 1, so 
Since gcd(a, b) is greater than or equal to any common divisor of nonzero integers
a and b, gcd(a, b) is always a positive integer.

An integer of the form for integers x and y, is called a linear combi-
nation of a and b. For example, some linear combinations of 3 and 7 are:

You could experiment with different values of x and y to find that every integer mul-
tiple of 3 is a linear combination of 12 and 15. For example,

An exercise in the previous section established an interesting result
about linear combinations: For all integers x and y, if c divides both a and b, then
c also divides This fact (Exercise 2(a)) can be restated in our new ter-
minology as:

Theorem 1.7.1 Let a and b be integers. If c is a common divisor of a and b, then c divides every
linear combination of a and b. In particular, gcd(a, b) divides every linear
combination of a and b.

There is much more to be said about linear combinations. Whereas we look for
the greatest common divisor of a and b, we look for the smallest positive linear
combination of a and b. We see from the example above that 1 is a linear combina-
tion of 3 and 7, and so 1 must be the smallest positive linear combination. We also
see above that 3 is a linear combination of 12 and 15, so the smallest positive linear
combination of 12 and 15 must be 1, 2, or 3. But we can see that 1 is not a linear
combination of 12 and 15 (See Exercise 1(d) of Section 1.6), and we can show in
the same way that 2 is not a linear combination. Therefore, 3 is the smallest posi-
tive linear combination of 12 and 15.

It’s a natural question to ask whether there is, for every pair a, b of nonzero
integers, a smallest positive linear combination of a and b. There is, but once again
we simply state the result here and wait until we have the tools in Chapter 2 to give
the proof. See Theorem 2.5.2. Still, it’s not too soon to see how we can use this
result and basic proof techniques to understand the essential connection between
the gcd and linear combinations.

ax + by.

6 = 12 · 8 + 15 · (−6).−3 = 12 · (−4) + 15 · 3

3 = 12 · (−1) + 15 · 10 = 12 · 0 + 15 · 0

−7 = 3 · 0 + 7 · (−1).58 = 3 · 10 + 7 · 4

−2 = 3 · 4 + 7 · (−2)1 = 3 · (−2) + 7 · 1

ax + by,

gcd(24, 35) = 1.
gcd(−9,−27) = 9.gcd(−5, 20) = 5, gcd(21,−35) = 7,

gcd(18, 24) = 6.
−6, −3, −2, −1, 1, 2, 3,
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64 CHAPTER 1 Logic and Proofs

Lemma 1.7.2 Let a and b be nonzero integers. Then the smallest positive linear combination of a
and b is a common divisor of a and b.

Proof. Let be the smallest positive linear combination of a and b. We
need to show that d divides a and d divides b. By the Division Algorithm there
exist integers q and r such that where Then

which is a linear combination of a and b. But and d is the smallest positive
linear combination. We conclude that so d divides a. In the same way, d divides
b. Thus d is a common divisor of a and b. �

Theorem 1.7.3 Let a and b be nonzero integers. The gcd of a and b is the smallest positive linear
combination of a and b.

Proof. Let be the smallest positive linear combination of a and b. By
Lemma 1.7.2, d is a common divisor of a and b. We must now show that every com-
mon divisor of a and b is less than or equal to d.

To show that every common divisor is less than or equal to d, we first prove
that if c is any common divisor of a and b, then c divides d. Suppose c is a com-
mon divisor of a and b. Then for some integers n and m, and Then

Therefore c divides d. We conclude that We have used Exercise 7(g) of
Section 1.4. Therefore d is the greatest common divisor of a and b. �

Now we know that gcd(a, b) is a linear combination of a and b, in fact the small-
est linear combination, and it divides every linear combination. These facts are use-
ful in many important applications, from coding theory to the solution of equations
with integer coefficients. One immediate application is in establishing divisibility
relationships among integers. For example, if we know that we can write 1 as a lin-
ear combination of two integers, then the only common divisors of those integers are
1 and .−1

〉
〈c ≤ d.

 = c(ns + mt).

 = (cn)s + (cm)t

d = as + bt

b = cm.a = cn
〉

〈

d = as + bt

r = 0,
0 ≤ r < d

 = a(1 − s) + b(−tq),

 = a − as − btq

 = a − (as + bt)q

r = a − dq

0 ≤ r < d.a = dq + r,
〉

〈d = as + bt

DEFINITION We say nonzero integers a and b are relatively prime,
or coprime, gcd(a, b) = 1.  iff  
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1.7 Additional Examples of Proofs 65

The numbers 12 and 35 are relatively prime. The numbers 15 and 36 are not,
because The integer 2 is coprime with every odd integer.

Theorem 1.7.4 Let a and b be nonzero integers that are relatively prime, and let c be an integer.
Then the equation has an integer solution.

Proof. See Exercise 18. �

The next result, which is found in Euclid’s Elements, makes use of the concepts
of gcd and relatively prime.

Lemma 1.7.5 Euclid’s Lemma. Let a, b, and p be integers. If p is a prime and p divides ab, then
p divides a or p divides b.

Proof. Suppose p is prime and p divides ab. Assume that p does not divide a. 
We must show that p divides b. Since p does not divide a, p and a are relatively

prime, so there exist integers s and t such that Then 
Since p divides abs and bpt, it divides their sum, so p divides b. We conclude that
p divides a or p divides b. �

Euclid’s Lemma is frequently used in one of its equivalent forms:

if p divides ab and p does not divide a, then p must divide b,
or

if p does not divide a and p does not divide b, then p does not divide ab.

Exercises 1.7

1.
� (a) Prove that if n is an integer and is odd, then is divisible

by 4.
� (b) Assume Prove that if a is a solution to then a is

a solution to 
� (c) Assume Prove that a is a solution to a is a

solution to 
� (d) Let x be a real number. Prove that if then or

� (e) Let x and y be real numbers. Prove that if is irrational, then either
x or y is irrational.

� (f) Prove that if two nonvertical lines are perpendicular, then the product of
their slopes is (Recall that nonvertical lines are those lines in the
plane that have slope.)

� (g) No point inside the circle is on the line 

� (h) Prove that for all real numbers 
3 | x − 2 |

x
≤ 4.x ≥ 1,

y = x + 1.(x − 3)2 + y2 = 6

−1.

x + y

(x − 4)

(x − 3)
> 0.

x ≤ 2x2 = 2x + 15,
x3 + 2x2 + x + 3 = 0.

  iff  x2 − x − 6 = 0a =
 3.
x3 + 2x2 + x + 3 = 0.

x2 − x − 6 = 0,a =
 3.

2n + 83n + 1

b = abs + bpt.as + pt = 1.
〉〈

ax + by = c

gcd(15, 36) = 3.
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66 CHAPTER 1 Logic and Proofs

2. Prove that
(a) for all integers n, is even.
(b) for all odd integers n, is odd.
(c) the sum of 5 consecutive integers is always divisible by 5.
(d) if two nonvertical lines have slopes whose product is then the lines

are perpendicular.
� (e) for all integers n, is divisible by 6.

(f) for all integers n, is divisible by 12.

3. Let L be the line Prove that
(a) if then L does not have slope 
(b) for every real number k, L is not parallel to the x-axis.
(c) there is a unique real number k such that L passes through (1, 4).

4. (a) Prove that if x is rational and y is irrational, then is irrational.
� (b) Prove that there exist irrational numbers x and y such that is

rational.
(c) Prove that for every rational number z, there exist irrational numbers x

and y such that 
(d) Prove that for every rational number z and every irrational number x,

there exists a unique irrational number y such that 

5. (a) Prove that except for two points on the circle, if is on the circle
with center at the origin and radius r, then the line passing through 
and (r, 0) is perpendicular to the line passing through and 
Which two points are the exceptions?

(b) Let (x, y) be a point inside the circle with center at the origin and radius
r. Prove that the line passing through (x, y) and (r, 0) is not perpendicu-
lar to the line passing through (x, y) and 

6. Prove that
(a) every point on the line is outside the circle with radius 4 and

center 
(b) Prove that there exists a three-digit natural number less than 400 with

distinct digits, such that the sum of the digits is 17 and the product of the
digits is 108.

(c) Use the Extreme Value Theorem to prove that if f does not have a
maximum value on the interval [5, 7], then f is not differentiable on
[5, 7].

(d) Use Rolle’s Theorem to show that does not have more
than one real solution.

7. Prove that for all real numbers x,

(a) if then 

(b) if or then 
(x − 1)(x + 2)

(x − 3)(x + 4)
> 0.x > 3,−2 < x < 1

|2x − 1 |
x + 1

≤ 2.x > 0,

x3 + 6x − 1 = 0

(−3, 1).
y = 6 − x

(−r, 0).

(−r, 0).(x, y)
(x, y)

(x, y)

x + y = z.

x + y = z.

x + y
x + y

1
3
.k =
 −6,

2x + ky = 3k.

(n3 − n)(n + 2)
n3 − n

−1,

2n2 + 3n + 4
5n2 + 3n + 4
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8. Prove or disprove:
� (a) Every point inside the circle is inside the circle

(b) If (x, y) is inside the circle then 
(c) Every point inside the circle is inside the circle

9. For each given pair a, b of integers, find the unique quotient and remainder
when b is divided by a.
(a)
(b)
(c)

� (d)
(e)
(f)

10. (a) Let a and b be integers and Prove that if then when b is
divided by a, the quotient is 0.

(b) Let a and b be integers and Prove that if the quotient is 0 when b
is divided by a, then 

11. For each pair of integers, list all positive and negative common divisors, and
find gcd (a, b).
(a)
(b)
(c)
(d)

12. (a) Write 2 in two different ways as a linear combination of 12 and 22.
(b) Write in two different ways as a linear combination of 12 and 22.
(c) What is the set of all linear combinations of 12 and 22?

13. Find and integers x and y such that 
(a)
(b)
(c)

14. Let a, b, and c be natural numbers and Prove that
� (a) if c divides a and c divides b, then c divides d.

(b) a divides b
� (c) if a divides bc and then a divides c.

(d) if c divides a and c divides b, then In particular,

(e) for every natural number n, 

15. Which elements of the set {3, 6, 10, 63} are relatively prime to 7? to 21? to 30?

16. Prove that for every prime p and for all natural numbers a,
� (a) p divides a.

(b) p does not divide a.  iff  gcd(p, a) = 1
  iff  gcd(p, a) = p

gcd(an, bn) = dn.

gcd Aad, b
dB = 1.

gcd Aac, b
c B = d

c
.

d = 1,
d = a. iff 

gcd(a, b) = d.

a =  9, b = 30.
a = 26,  b = 32
a = 13,  b = 15

d = ax + by.d = gcd(a, b)

−4

a = −8, b = −52
a = 18, b = −54
a = −5,  b = 36
a = 8, b = 310

b ≥ 0.
a > b.

b ≥ 0,a > b.

a = −8, b = −52
a = 7, b = 44
a = 5, b = −36
a = −5, b = 36
a = 5, b = 36
a = 8, b = 310

(x − 5)2 + (y + 1)2 = 25.
(x − 3)2 + (y − 2)2 = 4

x − 6 < 3y.(x − 3)2 + (y − 2)2 = 4,
x2 + y2 = 41.

(x − 3)2 + (y − 2)2 = 4
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68 CHAPTER 1 Logic and Proofs

17. Let q be a natural number greater than 1 with the property that q divides a or
q divides b whenever q divides ab. Prove that q is prime.

18. Let a and b be nonzero integers that are relatively prime, and let c be an integer.
Prove that the equation has an integer solution. (Theorem 1.7.4.)
Hint: Use the fact that 1 is a linear combination of a and b.

19. Let a and b be nonzero integers and Let and Show

that if and is a solution to then so is and
for every integer k. (This shows how linear combinations help to

describe solutions to equations.)

20. For nonzero integers a and b, the integer n is a common multiple of a and b
a divides n and b divides n. We say the positive integer m is the least com-

mon multiple of a and b, written as lcm(a, b),
(i) m is a common multiple of a and b, and
(ii) if n is a positive common multiple of a and b, then 
Find lcm(a, b) for

� (a)
(b)
(c)
(d)

21. Let a, b, and c be natural numbers, and Prove
that

� (a) a divides b
(b)

� (c) if then 
(d) if c divides a and c divides b, then 

(e) for every natural number n, 
� (f)

22. Let a and b be integers, and let Use the Division Algorithm to
prove that if c is a common multiple of a and b, then m divides c.

Proofs to Grade 23. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(a) Claim. There is a unique 3-digit number whose digits have sum 8 and

product 10.
“Proof.” Let x, y, and z be the digits. Then and

The only factors of 10 are 1, 2, 5, and 10, but since 10 is not
a digit, the digits must be 1, 2, and 5. The sum of these digits is 8.
Therefore, 125 is the only 3-digit number whose digits have sum 8 and
product 10. �

� (b) Claim. There is a unique set of three consecutive odd numbers that are
all prime.
“Proof.” The consecutive odd numbers 3, 5, and 7 are all prime. Sup-
pose x, y, and z are consecutive odd numbers, all prime, and Then

and Since x is prime, when x is divided by 3, the
remainder is 1 or 2. In case the remainder is 1, then for somex = 3k + 1

z = x + 4.y = x + 2
x =
 3.

xyz = 10.
x + y + z = 8

m = lcm(a, b).

gcd(a, b) · lcm(a, b) = ab.
lcm(an, bn) = mn.

lcm Aac, b
c B = m

c
.

m = ab.d = 1,
m ≤ ab.

m = b.  iff  

lcm(a, b) = m.gcd(a, b) = d

a = 12, b = 48
a = 21, b = 39
a = 10, b = 35
a = 6, b = 14

m ≤ n.

  iff
iff  

y = t − kn
x = s + kmax + by = c,y = tx = s

n = a
d
.m = b

d
d = gcd(a, b).

ax + by = c
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1.7 Additional Examples of Proofs 69

integer But then so y is not
prime. In case the remainder is 2, then for some integer

But then so z is not prime. In
either case we reach the contradiction that y or z is not prime. Thus 
and Therefore, the only three consecutive odd primes are 3,
5, and 7. �

(c) Claim. If x is any real number, then either is irrational or 
is irrational.
“Proof.” It is known that is an irrational number; that is, cannot be
written in the form for integers a and b. Consider Then

which is rational, but If were rational, then
for some integers a and b. Then so is rational. This

is impossible, so is irrational. Therefore either or is 
irrational. �

(d) Claim. If x is any real number, then either is irrational or 
is irrational.
“Proof.” It is known that is an irrational number; that is, cannot
be written in the form for integers a and b. Let x be any real number.
Suppose both and are rational. Then since the sum of 
two rational numbers is always rational, is
rational. Then for some integers a and b. Then so is
rational. This is impossible. Therefore, at least one of or 
is irrational. �

(e) Claim. For all natural numbers n, 
“Proof.” (i) 1 divides n and 1 divides (ii) Suppose c divides n
and c divides Then 1 divides c. Therefore, �

(f) Claim. For all natural numbers n, 
“Proof.” Obviously 1 divides both and Suppose c
divides and Then c divides their sum, 4n, so c also
divides Furthermore, c divides their product, Since c
divides and c divides Therefore,

Thus 1 is the greatest common divisor. �c ≤ 1.
4n2 − (4n2 − 1) = 1.4n2 − 1,4n2

4n2 − 1.4n2.
2n + 1.2n − 1

2n + 1.2n − 1
gcd(2n − 1, 2n + 1) = 1.

gcd(n, n + 1) = 1.n + 1.
n + 1.

gcd(n, n + 1) = 1.

π + xπ − x
ππ =  a

2b
,2π =  a

b

(π − x) + (π + x) = 2π

π + xπ − x

a
b

ππ

π + xπ − x

π + xπ − x2π

ππ =  a
2b

,2π =  a
b

2ππ + x = 2π.π − x = 0,
x = π.a

b

ππ

π + xπ − x

z = 7.y = 5,
x = 3

z = x + 4 = 3k + 2 + 4 = 3(k + 2),k ≥ 1.
x = 3k + 2

y = x + 2 = 3k + 3 = 3(k + 1),k ≥ 1.
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71

Starting from the theory of sets, one can construct all the number systems, func-
tions, calculus, and other areas of mathematics. Thus, the study of sets is the foun-
dation for the entire structure of mathematics.

This chapter does not develop these constructions but does provide some
set-theoretic concepts used throughout the text and advanced mathematics.
Sections 2.1 and 2.2 provide precise definitions for familiar concepts such as
union and intersection. In Section 2.3 we extend the union and intersection oper-
ations to collections of sets and discuss how to use indices to organize a family
of sets. Proofs methods using forms of mathematical induction are discussed in
Sections 2.4 and 2.5. Basic methods for counting the elements in a finite set
appear in the optional Section 2.6.

2.1 Basic Concepts of Set Theory

We assume that you have had some experience with sets, set notations, and
common sets of numbers such as the integers and real numbers as described in
the Preface to the Student. In general, capital letters will be used to denote sets
and lowercase letters to denote the elements in sets. To designate a set, we use the
notation

where is a one-variable open sentence description of the property that defines
the set. For example, the set may be written as

The set of all integer multiples of 3 is the set and this set contains
etc.0, 3, −3, 6, −6, 9, −9,

3� = {3z: z � �},

{x: x � �, x is odd, and x < 14}.

A = {1, 3, 5, 7, 9, 11, 13}
P (x)

{x: P (x)},

C H A P T E R  2

Set Theory
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A word of caution: Some sentences may not be used to define a set. In
1902, when the theory of sets was new, Bertrand Russell* and others pointed out
flaws in the then common assumption that for every open sentence there cor-
responds a set See Exercise 3 for a version of the Russell paradox.

The resolution of Russell’s and other paradoxes involved making a distinction
between sets and arbitrary collections of objects. Sets may be defined within a system
of axioms for set theory, first developed by Ernst Zermelo† and Abraham Fraenkel.**
Their axioms assert, for example, that a collection of two sets constitutes a set (Axiom
of Pairing) and that the collection of all subsets of a set is a set (Axiom of Powers).
Under their system, known paradoxes such as Russell’s are avoided.

It is not our purpose here to carry out a formal study of axiomatic set theory.††

However, all of our discussions of sets are consistent with the Zermelo–Fraenkel
system of axiomatic set theory.

A second word of caution: Recall that the universe of discourse is a collection
of objects understood from the context or specified at the outset of a discussion and
that all objects under consideration must belong to the universe. Some ambiguity
may arise unless the universe is known. For example, membership in the set

depends on an agreed upon universe. For the universe of real
numbers A is but A is for the universe of natural numbers.{6}{0, 6},
A = {x: x2 − 6x = 0}

{x: P (x)}.
P (x),

P (x)

72 CHAPTER 2 Set Theory

* Bertrand Russell (1872–1970) was a British philosopher and mathematician and strong proponent for
social reform. He coauthored Principia Mathematica (1910–1913), a monumental effort to derive all of
mathematics from a specific set of axioms and a well defined set of rules of inference.
† Ernst Zermelo (1871–1953) was a German mathematician whose work on the axioms of set theory has
profoundly influenced the foundations of mathematics. In 1905 he discovered a paradox similar to the
Russell paradox. He developed a theory of sets based on seven axioms, but was unable to prove that no
new paradoxes could arise in his system.
** Abraham Fraenkel (1891–1965), born in Germany, spent much of his career in Israel. In the 1920s he
made attempts to improve the set theoretic axioms of Zermelo to eliminate paradoxes. Within his system
of ten axioms he proved the independence of the Axiom of Choice. (See Section 5.5.)
†† A complete study of the foundations of set theory from the Zermelo–Fraenkel axioms may be found
in Notes on Set Theory by Y. N. Moschovakis (Springer-Verlag, Berlin, 1994). The study of set theory is
still active today, with many unsolved problems.

DEFINITION Let Then � is a set, called the empty
set or null set.

� = {x: x =� x}.

It is an axiom that is a set. Since for every object x in every universe, x is
equal (identical) to x, there are no elements in the collection That is, the state-
ment is false for every object x. We could define other empty collections,
such as but we will soon prove that all such collections
are equal, so there really is just one empty set.

In the Preface to the Student we said A is a subset of B and wrote if and
only if every element of A is an element of B. If A is not a subset of B we write

For and and 
In symbols, we write the definition of as

A ⊆ B ⇐⇒ (∀x)(x � A ⇒ x � B).

A ⊆ B
X ⊆� Z.X ⊆ YZ = {2, 3, 6},Y = {2, 3, 4, 5},X = {2, 4},A ⊆� B.

A ⊆ B

B = {x: x � � and x2 < 0},
x � �

�.
�
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Therefore, a proof of the statement is often a direct proof, taking the form:A ⊆ B

2.1 Basic Concepts of Set Theory 73

DIRECT PROOF OF A ⊆ B
Proof.
Let x be any object.
Suppose 

o

Thus 
Therefore �A ⊆ B.

x � B.

x � A.

Example. Let and Prove that
.

Proof. Suppose We show by individually checking each element of A.
Then or For 
For In both
cases, Thus, �

Example. Let a and b be natural numbers, and let and be the sets of all inte-
ger multiples of a and b, respectively. Prove that if a divides b, then 

Proof. Suppose that a divides b. Then there exists an integer c such that 
To show we start with an element from Let Then x is a mul-

tiple of b, so there exists an integer d such that But then 
Therefore x is a multiple of a, so �

Theorem 2.1.1 (a) For every set 
(b) For every set 
(c) For all sets A, B, and C, if and then 

Proof.

(a) Let A be any set. Let x be any object. Because the antecedent is false, the sen-
tence is true. Therefore, 

(b) Let A be any set. To prove we must show that for all objects x,
if then Let x be any object. Then is true.
Here we use the tautology Therefore, and so

(c) See Exercise 8. �

Recall that sets A and B are equal they have exactly the same elements;
that is,

A = B  iff (∀x)(x � A ⇐⇒ x � B).

  iff  

A ⊆ A.
(∀x)(x � A ⇒ x � A)P ⇒ P.〉〈

x � A ⇒ x � Ax � A.〉x � A
A ⊆ A,〈

� ⊆ A.x � � ⇒ x � A

A ⊆ C.B ⊆ C,A ⊆ B
A, A ⊆ A.
A, � ⊆ A.

x � a�.(ac)d = a(cd).
x = bd =x = bd.

x � b�.b�.〉b� ⊆ a�,〈
b = ac.

b� ⊆ a�.
b�a�

A ⊆ B.x � B.
(−3)3 + 3(−3)2 − 4(−3) − 12 = −27 + 27 + 12 − 12 = 0.x = −3,

23 + 3(22) − 4(2) − 12 = 8 + 12 − 8 − 12 = 0.x = 2,x = −3.x = 2
〉A ⊆ B8x � A.

A ⊆ B
4x − 12 = 0}.B = {x � �: x3 + 3x2 −A = {2, −3}
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Thus, one method to prove is to give a sequence of equivalent state-
ments starting with the statement and ending with However,
since is equivalent to we
may also say

For this reason, a proof that will typically have the form:A = B

A = B  iff  A ⊆ B and B ⊆ A.

(x � A ⇒ x � B) ∧ (x � B ⇒ x � A),x � A ⇐⇒ x � B
x � B.x � A

A = B

74 CHAPTER 2 Set Theory

TWO PART PROOF OF
Proof.

(i) Prove that (by any method).
(ii) Prove that (by any method).
(iii) Therefore �A = B.

B ⊆ A
A ⊆ B

A � B

Example. Prove that where and 

Proof.

(i) We show by individually checking each element of By substitution,
we see that both 1 and are solutions to Thus 

(ii) Next, we must show Let Then, by definition of is a solu-
tion to Thus Factoring, we have 
This product is 0 exactly when or Therefore, or

Thus if is a solution, then or so This proves

(iii) By (i) and (ii), �

The set B is a proper subset of the set A and To denote that
B is a proper subset of A, some authors write and others write The
only improper subset of A is the set A itself.

We are now in a position to prove that there is only one empty set, in the sense
that any two empty sets are equal.

Theorem 2.1.2 If A and B are sets with no elements, then 

Proof. Since A has no elements, the sentence is true.
Therefore, Similarly, is true, so Therefore, by
definition of set equality, �

Theorem 2.1.3 For any sets A and B, if and then 

Proof. Suppose and Since A is nonempty, there is an object t such
that Since Therefore, �B =� �.t � A, t � B.t � A.

A =� �.A ⊆ B

B =� �.A =� �,A ⊆ B

A = B.
B ⊆ A.(∀x)(x � B ⇒ x � A)A ⊆ B.

(∀x)(x � A ⇒ x � B)

A = B.

B � A.B ( A
A =� B.B ⊆ A  iff  

X = Y.
X ⊆ Y.

t � Y.t = −1;t = 1tt = −1.
t = 1t + 1 = 0.t − 1 = 0

(t − 1)(t + 1) = 0.t2 − 1 = 0.x2 − 1 = 0.
tX,t � X.X ⊆ Y.

Y ⊆ X.x2 − 1 = 0.−1
Y.Y ⊆ X

Y = {−1, 1}.X = {x � �: x2 − 1 = 0}X = Y
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We sometimes use Venn* diagrams to display simple relationships among sets.
For example, suppose we want to find nonempty sets A, B, and C such that 

and We begin with three overlapping sets that represent the
sets A, B, and C in Figure 2.1.1(a). Since there are no elements in the two
regions of A that are outside B. Since there are no elements in the two
regions of C that are outside A. These four regions are shaded in Figure 2.1.1(b).
Since A is not a subset of C, there is some element x in the remaining region of A
that does not overlap C, and since there is some element y in B that is not in
A. Finally, C is required to be nonempty, so there is an element z in C. There may
be other elements in these sets, but the solution we have found is 

and (See Figure 2.1.1(c).)

Figure 2.1.1

One of the axioms of set theory asserts that for every set A, the collection of all
subsets of A is also a set.

A
B

C

(a) (b) (c)

A
x
z

y
B

C

A
B

C

C = {z}.B = {x, y, z}
A = {x, z},

A =� B

C ⊆ A,
A ⊆ B,

A � C.C ⊆ A,A =� B,
A ⊆ B,

DEFINITION Let A be a set. The power set of A is the set whose ele-
ments are the subsets of A and is denoted Thus

� (A) = {B: B ⊆ A}.

 � (A).

2.1 Basic Concepts of Set Theory 75

* John Venn (1834–1923) was a British philosopher and logician best known for his diagrams to describe
relationships.

Notice that the power set of a set A is a set whose elements are themselves sets,
specifically the subsets of A. For example, if then the power set of
A is

When we work with sets whose elements are sets, it is important to recognize
the distinction between “is an element of” and “is a subset of.” To use cor-
rectly, we must consider whether the object A (which happens to be a set) is an ele-
ment of the set B, whereas requires determining whether all objects in the set
A are also in B. If and the correct terminology is that A contains x and
A includes B.

B ⊆ A,x � A
A ⊆ B

A � B

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, A}.
� (A) = {�, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

A = {a, b, c, d},
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* This theorem is the reason that some mathematicians use 2A to denote the power set of A.

Example. Let Then X is a set with three elements,
namely, the set the set and the number 6. 

The set 
has one element; it is For the set X:

Notice that for the set which has four elements, has
elements and for the set X above with three elements, has ele-

ments. These observations illustrate the next theorem.

Theorem 2.1.4 If A is a set with n elements, then is a set with 2n elements.*

Proof. The number of elements in is the number of subsets of A. Thus to
prove this result, we must count all the subsets of A. If that is, if A is the
empty set, then which is a set with elements. Thus the theo-
rem is true for 

Suppose A has n elements, for We may write A as 
To describe a subset B of A, we need to know for each whether the element is
in B. For each there are two possibilities or so there are

(n factors) different ways of making a subset of A. Therefore 
has elements. The counting rule used here is called the Product Rule. See
Theorem 2.6.5 and the discussion following that theorem. �

The next theorem is a good example of a biconditional statement for which a
two-part proof is easier than an proof.

Theorem 2.1.5 Let A and B be sets. Then 

Proof.

(i) We must show that implies Assume that 
and suppose We must show that But 
implies Since and then by Theorem 2.1.1. But

implies Therefore, implies Thus

(ii) We must show that implies Assume that 
By Theorem 2.1.1 so Since 
Therefore �A ⊆ B.

A � � (B).� (A) ⊆ � (B),A � � (A).A ⊆ A;
� (A) ⊆ � (B).A ⊆ B.� (A) ⊆ � (B)

� (A) ⊆ � (B).
X � � (B).X � � (A)X � � (B).X ⊆ B

X ⊆ BA ⊆ B,X ⊆ AX ⊆ A.
X � � (A)X � � (B).X � � (A).

A ⊆ B� (A) ⊆ � (B).A ⊆ B

� (A) ⊆ � (B).  iff  A ⊆ B

  iff  

〉
〈2n

� (A)2 · 2 · 2 · Á · 2
xi � B),(xi � Bxi,

xi � A
A = {x1, x2, Á , xn}.n ≥ 1.

n = 0.
20 = 1� (�) = {�},

n = 0,〉
� (A)〈

� (A)

8 = 23� (X)16 = 24
� (A)A = {a, b, c, d},

� ⊆ X, so � �  � (X ), and {�} ⊆ � (X ).
{4, 5} � � (X ) but {{4, 5}} � � (X ).
{{4, 5}} ⊆ X because {4, 5} � X.
{6} � � (X ) but {6} � � (X ).
{6} ⊆ X but {6} � X.
{4, 5} � X because 5 � X.
{4} � {4, 5} but {4} ⊆ {4, 5}.
6 � X and {4, 5} � X, but 4 � X.

{4, 5}.
{{4, 5}}{{1, 2, 3}, 6}, {{4, 5}, 6}, X}.{{4, 5}}, {6}, {{1, 2, 3}, {4, 5}},

� (X) = {�, {{1, 2, 3}},{4, 5},{1, 2, 3},
X = {{1, 2, 3}, {4, 5}, 6}.

62025_02_ch02_p071-113.qxd  4/21/10  11:19 PM  Page 76

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



The second half of the proof of Theorem 2.1.5 could have been done differ-
ently. We could have shown that by giving a direct proof that implies

A proof that consists of a series of steps beginning with “Assume and
leads to a conclusion that “Therefore is often called an element-chasing
proof, and is the natural way to prove the most basic facts about sets. As we build
our knowledge of set properties in the next section, we may use theorems already
proved, as we did above by using Theorem 2.1.1, to shorten our proof of Theorem
2.1.5. An element-chasing proof of part (ii) would be just as correct, but most peo-
ple prefer a shorter, more elegant proof. When you write proofs, you may choose
one method of proof over another because it is shorter, is easier to understand, or
for any other reason.

Exercises 2.1

1. Write the following sets by using the set notation 
� (a) The set of natural numbers strictly less than 6

(b) The set of integers whose square is less than 17
� (c) [2, 6]

(d)
(e)
(f) The set of rational numbers less than 

2. Let Are the following statements true or false?
(a) If then 
(b) If then 
(c) If then 

3. � (a) (Russell paradox) A logical difficulty arises from the idea, which at
first appears natural, of calling any collection of objects a set. Let’s say
that set B is ordinary if For example, if B is the set of all chairs,
then because B is not a chair. It is only in the case of very unusual
collections that we are tempted to say that a set is a member of itself.
(The collection of all abstract ideas certainly is an abstract idea.) Let
X = {x: x is an ordinary set}. Is Is What should we say
about the collection of all ordinary sets?

(b) In the town of Seville, the (male) barber shaves all the men, and only the
men, who do not shave themselves. Let A be the set of all men in the
town who do not shave themselves. Who shaves the barber? (That is, is
the barber an element of A? Is he not an element of A?)

4. True or false?
� (a) (b)

� (c) (d)

� (e) (f)

� (g) (h)
� (i) ( j) (6, 9] ⊆ [6, 10).[7, 10) ⊆ {7, 8, 9, 10}.

[2, 5] = {2, 3, 4, 5}.[7, 10] ⊆ �.

� ⊆ �.C12, 5
2 D ⊆ A12, 5

2B.
C12, 5

2 D ⊆ �.� ⊆ �.

� ⊆ �.� ⊆ �.

X � X?X � X?

B � B,
B � B.

a � X.∼ P (a),
a � X. P (a),

 P (a).a � X,
X = {x:  P (x)}.

−1
[−5, −1)
(−1, 9]

{x: P (x)}.

x � B”
x � A”x � B.

x � AA ⊆ B

2.1 Basic Concepts of Set Theory 77
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5. True or false?
� (a) (b)
� (c) (d)
� (e) (f)
� (g) For every set A,  (h) For every set A, 
� (i) ( j)
� (k) (l)

6. Give an example, if there is one, of sets A, B, and C such that the following
are true. If there is no example, write “Not possible.”

� (a) and 
(b) and 

� (c) and 
(d) and 

7. Prove that if and then 

� 8. Prove part (c) of Theorem 2.1.1: For all sets A, B, and C, if and 
then 

� 9. Prove that if and then and 

10. Suppose that and x is a solution to and
Prove that 

11. Let and Prove that

12. Prove that where and 

13. For a natural number a, let a� be the set of all integer multiples of a. Prove
that for all 

14. Write the power set, for each of the following sets.
� (a) (b)
� (c) (d)

15. Let A, B, and C be sets and x and y be any objects. True or false?
� (a) If then 

(b) If then 
(c) If then 
(d) If then and 

� (e) If then 
(f) If then 

� (g) If then 
(h) If and then 

16. List all of the proper subsets for each of the following sets.
� (a) (b)
� (c) (d)

17. True or false?
� (a) (b)
� (c) (d)
� (e) (f) {{�}} ⊆ � ({�, {�}}).{�} ⊆ � ({�, {�}}).

� ⊆ � ({�, {�}}).{{�}} � � ({�, {�}}).
{�} � � ({�, {�}}).� � � ({�, {�}}).

{0, �, �}{1, 2}
{�, {�}}�

C � � (A).B � � (A),C ⊆ B
B ⊆ A.B � � (A),

B � � (A).B ⊆ A,
{B} � � (A).B ⊆ A,

y � A.x � A{x, y} � � (A),
{x} ⊆ � (A).x � A,
{x} � � (A).x � A,
x � � (A).x � A,

X = {1, {�}, {2, {3}}}X = {�, {a}, {b}, {a, b}}
X = {S, {S}}X = {0, �, �}

� (X ),

a, b � �, a = b  iff  a� = b�.

Y = {1, 2, 3, 4, 5}.X = {x � �: x2 < 30}X = Y,

X = Y.
Y = {−3, −2, −1, 0, 1, 2, 3}.X = {x � �: |x|≤ 3}

X = Y.Y = {3, 4}.
x2 − 7x + 12 = 0}X = {x: x � �

B = C.A = BC ⊆ A,B ⊆ C,A ⊆ B,

A ⊆ C.
B ⊆ C,A ⊆ B

x � A.A ⊆ B,x � B

A � C.B � C,A ⊆ B,
A ⊆ C.B � C,A � B,
C ⊆ A.B ⊆ C,A ⊆ B,
A ⊆ C.B � C,A ⊆ B,

{{4}} ⊆ {1, 2, 3, {4}}.{1, 2, 3} ⊆ {1, 2, 3, {4}}.
{1, 2} � {{1, 2, 3}, {1, 3}, 1, 2}.{�, {�}} ⊆ {{�, {�}}}.

{�} ⊆ A.� � A.
{{�}} ⊆ {�, {�}}.{{�}} � {�, {�}}.
{�} ⊆ {�, {�}}.{�} � {�, {�}}.
� ⊆ {�, {�}}.� � {�, {�}}.
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� (g) (h)
� (i) (j)
� (k) (l)

18. Let A and B be sets. Prove that 

Proofs to Grade 19. Assign a grade A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.
(a) Claim. If and then 

“Proof.” Since and �
(b) Claim. If A, B, and are sets, and and the 

“Proof.” Let and 
Then  and  and �

� (c) Claim. If A, B, and C are sets, and and then 
“Proof.” Suppose x is any object. If then since 
If then since  Thus, Therefore, �

(d) Claim. If A, B, and C are sets, and and then 
“Proof.” If then, since Since and 
it follows that Thus implies Therefore, �

� (e) Claim. If A, B, and C are sets, and and then 
“Proof.” Suppose and Then and because

Then and because Therefore, and
so �

(f) Claim. If A is a set, 
“Proof.” Assume A is a set. Suppose Then Thus

Therefore  �
(g) Claim. If A is a set, 

“Proof.” Assume A is a set. Suppose Then Thus
Therefore,  �

� (h) Claim. If A and B are sets and then 
“Proof.”

Therefore, Thus �
� (i) Claim. If and then 

“Proof.” Suppose and Then there exists such 
that Since by definition of subset. Thus and

Therefore �A � C.x � C.
x � Ax � Ax � B,x � C.

x � BB � C.A ⊆ B
A � C.B � C,A ⊆ B

A ⊆ B.x � A ⇒ x � B.
⇒ x � B.
⇒ {x} ⊆ B
⇒ {x} � � (B)
⇒ {x} � � (A)

x � A ⇒ {x} ⊆ A
A ⊆ B.� (A) ⊆ � (B),

A ⊆ � (A).{x} � � (A).
{x} ⊆ A.x � A.

A ⊆ � (A).
A ⊆ � (A).x � � (A).

x ⊆ A.x � A.
A ⊆ � (A).

A ⊆ C.x � C,
x � AB ⊆ C.x � C,x � BA ⊆ B.

x � B,x � AB ⊆ C.A ⊆ B
A ⊆ C.B ⊆ C,A ⊆ B

A ⊆ C.x � A.x � Cx � A.
x � B,A ⊆ Bx � B.B ⊆ C,x � C,

A ⊆ C.B ⊆ C,A ⊆ B
A ⊆ C.x � C.B ⊆ C.x � C,x � B,

A ⊆ B.x � B,x � A,
A ⊆ C.B ⊆ C,A ⊆ B

A ⊆ C.B ⊆ C,A ⊆ B,6, 8, 10}.
C = {1, 2, 4, 5,B = {1, 4, 5, 8, 10},A = {1, 5, 8},

A ⊆ C.B ⊆ C,A ⊆ BC
32 = 9 < 14, X = Y.12 = 1 < 14, 22 = 4 < 14,

X = Y.Y = {1, 2, 3},X = {x � �: x2 < 14}

� (A) = � (B).  iff  A = B

{{3}} � � (�).{3} ⊆ �.
{{3}} ⊆ � (�).{3} � � (�).
{3} ⊆ � (�).3 � �.

2.2 Set Operations 79

2.2 Set Operations

In this section we give precise definitions and prove some well-known properties of
familiar operations on sets. Set union, interesection, and difference are called
binary operations because each combines two sets to produce another set.
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80 CHAPTER 2 Set Theory

A ∪ B

A B

DEFINITIONS Let A and B be sets.

The union of A and B is the set 
The intersection of A and B is the set 
The difference of A and B is the set A − B = {x: x � A and x � B}.

A ∩ B = {x: x � A and x � B}.
A ∪ B = {x: x � A or x � B}.

The set is a set formed from A and B by choosing as elements the
objects contained in at least one of A or B; consists of all objects that
appear in both A and B; and contains exactly those elements of A that are
not in B. The shaded areas in the first three Venn diagrams of Figure 2.2.1 repre-
sent, respectively, the result of forming the union, intersection, and difference of
two sets. These visual representations are often useful for understanding relation-
ships among sets. However, when there are more than three sets involved, it is
difficult or impossible to use Venn diagrams.

A − B
A ∩ B

A ∪ B

Examples. For and 

Examples. For intervals of real numbers, we have

Two sets are said to be disjoint if they have no elements in common.

[4, 8) − (5, 6] = [4, 5] ∪ (6, 8).
[4, 8) − [3, 6] = (6, 8)
[3, 6] − [4, 8) = [3, 4)
[3, 6] ∩ [4, 8)  = [4, 6]
[3, 6] ∪ [4, 8)  = [3, 8)

B − A = {3, 9}.
A − B = {2, 4, 7},
A ∩ B  = {1, 5},
A ∪ B  = {1, 2, 3, 4, 5, 7, 9},

B = {1, 3, 5, 9},A = {1, 2, 4, 5, 7}

DEFINITION Sets A and B are disjoint A ∩ B = �.  iff  

A ∩ B

A B

A – B

A B

Disjoint sets A and B

A B

Figure 2.2.1
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2.2 Set Operations 81

As shown in the last Venn diagram of Figure 2.2.1, when sets A and B are
known to be disjoint we represent them as non-overlapping regions.

Examples. The sets and are disjoint. The set of even natural
numbers and the set of odd natural numbers are disjoint. The intervals (0, 1) and
[1, 2] are disjoint, but (0, 1] and [1, 2] are not disjoint because they both contain 
the element 1.

The set operations of union, intersection, and difference obey certain rules
that allow us to simplify our work or replace an expression with an equivalent
one. Some of the 18 relationships in the next theorem seem to be obviously true,
especially if you compare sets using Venn diagrams. For example, the Venn dia-
grams for and are exactly the same (see part (h)). However, simply
drawing a Venn diagram does not constitute a proof. Each statement requires a
confirmation of the relationship between the sets by using the set operation 
definitions. We prove parts (b), (f ), (h), (m), and (p) and leave the others as 
exercises.

Theorem 2.2.1 For all sets A, B, and C,

(a)
(b)
(c)
(d)
(e)
(f)
(g) f Commutative Laws
(h)
(i)
(j)
(k) f Associative Laws
(l)
(m) f Distributive Laws
(n)
(o)
(p)
(q) If then 
(r) If then 

Proof.

(b) We must show that, if then Suppose Then
and Therefore We used the tautology

(f) We must show that By the definition of union,
or This is equivalent to Therefore,

A ∪ A = A.
x � A.x � A.x � A  iff  x � A ∪ A

x � A〉.  iff  x � A ∪ A〈
P ∧ Q ⇒ Q.〉〈x � A.x � B.x � A
x � A ∩ B.x � A〉.x � A ∩ B,〈

A ∩ C ⊆ B ∩ C.A ⊆ B,
A ∪ C ⊆ B ∪ C.A ⊆ B,

A ∩ B = A.  iff  A ⊆ B
A ∪ B = B.  iff  A ⊆ B

A ∪ (B ∩ C ) = (A ∪ B ) ∩ (A ∪ C ).
A ∩ (B ∪ C ) = (A ∩ B ) ∪ (A ∩ C ).
A ∩ (B ∩ C ) = (A ∩ B ) ∩ C.
A ∪ (B ∪ C ) = (A ∪ B ) ∪ C.
� − A = �.
A − � = A.
A ∩ B = B ∩ A.
A ∪ B = B ∪ A.
A ∪ A = A.
A ∩ A = A.
A ∪ � = A.
A ∩ � = �.
A ∩ B ⊆ A.
A ⊆ A ∪ B.

B ∩ AA ∩ B

{−1, t, n, 8}{1, 2, b}
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82 CHAPTER 2 Set Theory

(h) This biconditional proof uses the definition of intersection and the equiva-
lence of and 

and 
and 

(m) As you read this proof, watch for the steps in which the definitions of union
and intersection are used (two for each). Watch also for the use of the equiv-
alence from Theorem 1.1.1 (f).

and 
and 

or 
or 

Therefore 

(p) We give separate proofs for each implication, making use of earlier parts
of this theorem. First, assume that We must show that 
Suppose Then from the hypothesis we have Therefore

and so This shows that which, com-
bined with from part (b) of this theorem, gives .

Second, assume that We must show that By parts (b)
and (h) of this theorem, we have and Therefore,

By hypothesis, so �

When you suspect that a relationship among sets is not always true, try to con-
struct a counterexample. To find a counterexample for 
we need sets such that the shaded regions of Figures 2.2.2 (a) and (b) have different
elements. That is, we find sets A, B, and C such that A contains at least one element
that is not in C. One counterexample is and 
Then while A ∪ (B ∩ C ) = {2, 3, 4, 5}.(A ∪ B ) ∩ C = {4, 5}

A = {2, 3, 4}.C = {4, 5, 6},B = {3, 5},

(A ∪ B ) ∩ C = A ∪ (B ∩ C )

A ⊆ B.A ∩ B = A,A ∩ B ⊆ B.
B ∩ A = A ∩ B.B ∩ A ⊆ B

A ⊆ B.A ∩ B = A.
A ∩ B = AA ∩ B ⊆ A

A ⊆ A ∩ B,x � A ∩ B.x � B,x � A
x � B.A ⊆ B,x � A.

A ∩ B = A.A ⊆ B.〉
〈

A ∩ (B ∪ C ) = (A ∩ B ) ∪ (A ∩ C ).

x � (A ∩ B ) ∪ (A ∩ C ).iff  

x � A ∩ Cx � A ∩ Biff  

(x � A and x � C )(x � A and x � B )iff  

(x � B or x � C )x � Aiff  

x � B ∪ Cx � A  iff  x � A ∩ (B ∪ C )

〉

〈

x � B ∩ A.iff  

x � Ax � Biff  

x � Bx � A  iff  x � A ∩ B

Q ∧ P.〉P ∧ Q
〈

A
B

C

(a) (b)

A
B

C

(A ∪ B) ∩ C A ∪ (B ∩ C )

Figure 2.2.2
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2.2 Set Operations 83

Recall that the universe of discourse is a collection of objects understood from
the context or specified at the outset of a discussion and that all objects under con-
sideration must belong to the universe.

DEFINITION Let U be the universe and The complement of A
is the set Ac = U − A.

A ⊆ U.

The set is the set of all elements of the universe that are not in A. (See
Figure 2.2.3.)

Ac

A

Ac

Figure 2.2.3

For the set we have if the universe
is all even natural numbers, while if the Ac = {1, 3, 5, 7, 9, 10, 11, 12, 13, Á}

Ac = {10, 12, 14, 16, Á}A = {2, 4, 6, 8},

universe is �. For the universe �, if then If 
then 

Since the universe is fixed throughout a discussion, finding the complement
may be thought of as a unary operation—it applies to a single set. The next theorem
includes several results about the relationships between complementation and the
other set operations.

Theorem 2.2.2 Let U be the universe, and let A and B be subsets of U. Then

(a)
(b)
(c)
(d)
(e)
(f) f De Morgan’s Laws
(g)
(h)

Proof.

(a) By definition of the complement Therefore

(e) To demonstrate different styles, we give two separate proofs.
(Ac)c = A.

x � A.  iff  x � Ac
  iff  x � (Ac)c

A ∩ B = �  iff  A ⊆ Bc.
(A ∩ B )c = Ac ∪ Bc.
(A ∪ B )c = Ac ∩ Bc.
A ⊆ B  iff  Bc ⊆ Ac.
A − B = A ∩ Bc.
A ∩ Ac = �.
A ∪ Ac = U.
(Ac)c = A.

Dc = (−∞, 5) ∪ (5, ∞).
D = {5}Bc = (−∞, 0].B = (0, ∞),

62025_02_ch02_p071-113.qxd  4/21/10  11:19 PM  Page 83

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



84 CHAPTER 2 Set Theory

First proof. 〈This is a two-part proof. The first part is an element chasing proof.
The second part is proved using the first part.〉
(1) 〈Show that if then Assume that Suppose 

Then Since and we have Therefore, 
Thus, 

(2) 〈Show that if then Assume that Then by part (1),
Therefore, using part (a), 

By parts (1) and (2), we conclude that 

Second proof. 〈This proof makes use of the fact that a conditional sentence is
equivalent to its contrapositive.〉

for all x, if then 
for all x, if then 
for all x, if then 

(f)
it is not the case that or 

and 
and 

The proofs of the remaining parts are left as Exercise 8. �

The ordered pair formed from two entities a and b is the object (a, b). Ordered
pairs have the property that if either of the coordinates a or b is changed, the
ordered pair changes. That is, two ordered pairs (a, b) and (c, d ) are equal

and Thus, even though the sets and are
equal. A more rigorous definition of an ordered pair as a set is given in Exercise 17.

In previous study you have dealt with the ambiguity of using the same notation
(3, 7) for the ordered pair that represents a point in the plane and also for the open
interval of real numbers with endpoints 3 and 7. The context in which (3, 7) appears
should always make the meaning clear.

We also say the ordered n-tuples and are equal
for Thus the ordered 5-tuples (4, 9, 5, 0, 1), (5, 4, 9, 0, 1)

and (0, 1, 4, 5, 9) are all different.
i = 1, 2, Á , n.ai = ciiff  

(c1, c2, Á , cn)(a1, a2, Á , an)

{7, 3}{3, 7}(3, 7) =� (7, 3)b = d.a = c
  iff

x � Ac ∩ Bc.iff  

x � Bcx � Aciff  

x � Bx � Aiff  

x � Bx � Aiff  

x � A ∪ B  iff  x � (A ∪ B )c

Bc ⊆ Ac.iff  

x � Acx � Bciff  

x � Ax � Biff  

x � Bx � A  iff  A ⊆ B

  iff  

A ⊆ B  iff  Bc ⊆ Ac.

A ⊆ B.(Ac)c ⊆ (Bc)c.
Bc ⊆ Ac.A ⊆ B.〉Bc ⊆ Ac,

Bc ⊆ Ac.
x � Ac.x � A.x � B,A ⊆ Bx � B.
x � Bc.A ⊆ B.Bc ⊆ Ac.〉A ⊆ B

DEFINITION Let A and B be sets. The product (or cross product) of
A and B is

We read as “A cross B.”A × B

A × B = {(a, b): a � A and b � B}.
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The set is the set of all ordered pairs having first coordinate in A and sec-
ond coordinate in B. The cross product is sometimes called the Cartesian product
of A and B, in honor of René Descartes.*

Example. If and then

Thus and In this exam-
ple, since

The product of three or more sets is defined similarly. For example, for sets A,
B, and and 

Some useful relationships between the cross product of sets and the other set
operations are presented in the next theorem.

Theorem 2.2.3 If, A, B, C, and D are sets, then

(a) .
(b)
(c)
(d)
(e)
(f)

Proof.

(a) Since both and are sets of ordered pairs,
their elements have the form (x, y). To show that each set is a subset of the
other we use an argument.”

and 
and 
and or 

or 

Therefore, 

(e) If then or If
then and Thus and 

〈Because and Thus, (x, y) � (A ∪ C ) × (B ∪ D ).B ⊆ B ∪ D.〉A ⊆ A ∪ C
y � B ∪ D.x � A ∪ Cy � B.x � A(x, y) � A × B,

(x, y) � C × D.(x, y) � A × B(x, y) � (A × B) ∪ (C × D),

A × (B ∪ C ) = (A × B ) ∪ (A × C ).
(x, y) � (A × B ) ∪ (A × C ).iff  

(x, y) � A × C(x, y) � A × Biff  

(x � A and y � C )y � B )(x � Aiff  

(y � B or y � C )x � Aiff  

y � B ∪ Cx � A  iff  (x, y) � A × (B ∪ C )

〉  “iff  

(A × B ) ∪ (A × C )A × (B ∪ C )〈

(A × B ) ∩ (B × A ) = (A ∩ B ) × (A ∩ B ).
(A × B ) ∪ (C × D ) ⊆ (A ∪ C ) × (B ∪ D ).
(A × B ) ∩ (C × D ) = (A ∩ C ) × (B ∩ D ).
A × � = �.
A × (B ∩ C ) = (A × B ) ∩ (A × C ).
A × (B ∪ C ) = (A × B ) ∪ (A × C )

c � C}.C, A × B × C = {(a, b, c): a � A, b � B,

B × A = {(2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.

A × B =� B × A
{(1, 3), (2,  2)} ⊆ A × B.(1, 2) � A × B, (2, 1) � A × B,

A × B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

B = {2, 3, 4},A = {1, 2}

A × B

* René Descartes (1596–1650) was a French mathematician, philosopher, and scientist. His work Discours
de la méthode defined analytical geometry by combining the geometric notions of curves and areas with alge-
braic equations and computations. He was the first person to use superscripts to indicate exponential powers
of a quantity.
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86 CHAPTER 2 Set Theory

If a similar argument shows 
This shows that �

Parts (b), (c), (d), and (f) are proved in Exercise 15. Part (e) of Theorem 2.2.3
cannot be sharpened to equality. See Exercise 16(a).

Exercises 2.2

1. Let and
Find

� (a) (b)
� (c) (d)
� (e) (f)
� (g) (h)
� (i) ( j )

2. Let the universe be all real numbers. Let 
and Find
(a) � (b)
(c) � (d)
(e) (f)
(g) � (h)
(i) ( j)

3. Let the universe be the set Let E, D, and be the sets of all even,
odd, positive, and negative integers, respectively. Find

� (a) (b) (c)
� (d) (e) (f)
� (g) (h) (i)

� 4. Let A, B, C, and D be as in Exercise 1. Which pairs of these four sets are disjoint?

5. Let A, B, C, and D be as in Exercise 2. Which pairs of these four sets are 
disjoint?

6. Give an example of nonempty sets A, B and C such that
� (a) and 

(b) and 
(c) and 
(d) and 
(e) and 
(f) and 

7. Prove the remaining parts of Theorem 2.2.1.

8. Prove the remaining parts of Theorem 2.2.2.

9. Let A, B, and C be sets. Prove that
� (a) A − B = �.  iff  A ⊆ B

A = B ∪ C.B ∩ C ⊆ A,A ∩ C ⊆ B,A ∩ B ⊆ C,
A =� B.A ∩ B = A ∩ C,C ⊆ A ∪ B,B ⊆ A ∪ C,A ⊆ B ∪ C,

C ⊆ A ∪ B.B � A ∪ C,A � B ∪ C,
C � B.A ∪ B ⊆ C

C ⊆ A ∩ B.A ⊆ B
A ∩ B � C.C ⊆ A ∪ B

�c.(E ∩ �−)c.E − �−.
Ec.�+ − �−.(�+)c.
D − E.�+ − E.E − �+.

�−�+,�.

(A ∪ C ) − (B ∩ D ).B − (A ∪ C ).
Ac.D − A.
B − D.A − B.
B ∩ C.A ∩ B.
A ∪ C.A ∪ B.

D = (5, ∞).
C = (1, 4),B = [2, 6],A = [3, 8),

(A ∪ B ) − (C ∩ D ).(A ∩ B ) ∪ (A ∩ C ).
A ∩ (B ∪ C ).(A ∩ C ) ∩ D.
A ∪ (C ∩ D ).(A − B ) − C.
A − (B − C ).A − B.
A ∩ B.A ∪ B.

D = {1,  2,  3,  5,  6,  7,  8,  9,  10}.
C = {1,  2,  4,  5,  7,  8},B = {0,  2,  4,  6,  8},A = {1,  3,  5,  7,  9},

(A × B ) ∪ (C × D) ⊆ (A ∪ C ) × (B ∪ D ).
(x, y) � (A ∪ C ) × (B ∪ D ).(x, y) � C × D,
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(b) if and then 
� (c) and 

(d) if then 
(e)
(f) if and then 
(g)
(h) and B are disjoint.

10. Let A, B, C, and be sets. Prove that
(a) if and then 
(b) if and then 

� (c) if and A and B are disjoint, then C and D are disjoint.
(d) if and then 
(e) if and then 

11. Provide counterexamples for each of the following.
� (a) If then 

(b) If then 
� (c) If then 

(d)
� (e)

(f)

12. Let A and B be sets.
� (a) Prove that You may use Exercise 9(c).

(b) Prove that 
(c) Show by example that set equality need not be the case in part (b). Under

what conditions on A and B is 
� (d) Show that there are no sets A and B such that 

13. List the ordered pairs in and in each case:
(a)

� (b)
(c)
(d)

14. Let A and B be nonempty sets. Prove that 

15. Complete the proof of Theorem 2.2.3 by proving
� (a)

(b)
(c)
(d)

16. Give an example of nonempty sets A, B, C, and D such that
(a)
(b)
(c) A × (B × C ) =� (A × B ) × C.

(C × C ) − (A × B ) =� (C − A ) × (C − B ).
(A × B ) ∪ (C × D ) =� (A ∪ C ) × (B ∪ D ).

(A × B ) ∩ (B × A ) = (A ∩ B ) × (A ∩ B ).
(A × B ) ∩ (C × D ) = (A ∩ C ) × (B ∩ D ).
A × � = �.
A × (B ∩ C ) = (A × B ) ∩ (A × C ).

A = B.  iff  A × B = B × A

A = {(2, 4), (3, 1)}, B = {(4, 1), (2, 3)}.
A = {�, {�}, {�, {�}}}, B = {(�, {�}), {�}, ({�}, �)}.
A = {1, 2, {1, 2}}, B = {q, {t}, π}.
A = {1, 3, 5}, B = {a, e, k, n, r}.

B × AA × B

� (A) − � (B).
� (A − B) =

� (A ∪ B) = � (A) ∪ � (B)?

� (A) ∪ � (B) ⊆ � (A ∪ B).
� (A ∩ B) = � (A) ∩ � (B).

A − (B − C ) = (A − B ) − C.
A − (B − C ) = (A − B ) − (A − C ).
� (A) − � (B) ⊆ � (A − B ).

B ∩ C = �.(A − B ) ∩ (A − C ) = �,
A ⊆ B.A ∩ C ⊆ B ∩ C,
A ⊆ B.A ∪ C ⊆ B ∪ C,

B ⊆ D.C ⊆ A,A ∩ B = �,A ∪ B ⊆ C ∪ D,
D − A ⊆ B − C.D ⊆ B,C ⊆ A

D ⊆ B,C ⊆ A,
C ∪ D ⊆ A ∪ B.D ⊆ B,C ⊆ A
C ∩ D ⊆ A ∩ B.D ⊆ B,C ⊆ A

D

A − B
(A ∪ B ) ∩ C ⊆ A ∪ (B ∩ C ).

A ∪ B ⊆ C.B ⊆ C,A ⊆ C
(A − B ) − C = (A − C ) − (B − C ).

A − C ⊆ B − C.A ⊆ B,
C ⊆ B.C ⊆ A  iff  C ⊆ A ∩ B

A ⊆ C.A ∩ B = �,A ⊆ B ∪ C
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17. One way to define an ordered pair in terms of sets is to say 
Using this definition, prove that and

18. Let A and B be sets. Define the symmetric difference of A and B to be
Prove that

(a) (b)
(c) (d)

Proofs to Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. If then 
“Proof.” Assume Suppose Then since 
Let C be any set. Then and Then and Thus

and Therefore, �
� (b) Claim. If then 

“Proof.” Assume Suppose Then and 
Then because Since and There-
fore, �

(c) Claim. If then 
“Proof.” Assume Then and Suppose 

Then and Since and 
Therefore, �

� (d) Claim.
“Proof.” Assume that Suppose Then and

so This shows that Now assume that 
Suppose Then since and, 

therefore, This shows that implies and so .  . �
� (e) Claim.

“Proof.” We know that and Since 
is false, and Therefore, 
that is, �

(f) Claim. If and then 
“Proof.” Assume and Since 
there exists x such that thus Since there
exists thus Hence and Therefore,

which show �
(g) Claim.

“Proof.” We show each side is a subset of the other. By Theorem
2.1.1, Now suppose Then and 
Thus and Therefore, Hence, by the definition of 

Therefore, �

(h) Claim.
“Proof.” Suppose Then and

Since and Since
Therefore, we can conclude that

�� (A) − � (B).� (A − B ) − {�} ⊆
x � � (A) − � (B).x � � (A − B ),

� � � (A) − � (B).� � � (B),� � � (A)x =� �.
x � � (A − B )x � � (A − B) − {�}.

� (A − B) − {�} ⊆ � (A) − � (B).
A ∩ Ac ⊆ �.x � �.

�,x =� x.x � A.x � A
x � Ac.x � Ax � A ∩ Ac.� ⊆ A ∩ Ac.

〉〈
A ∩ Ac = �.

A ∩ C =� �.x � A ∩ C,
x � C.x � Ax � C.x � B ∩ C;
B ∩ C =� �,x � A.x � A ∩ B;

A ∩ B =� �,B ∩ C =� �.A ∩ B =� �
A ∩ C =� �.B ∩ C =� �,A ∩ B =� �

A ∩ � = A.
x � A;  iff  x � A ∩ �x � A.  iff  x � �x � A
x � �x � �.x � A  iff  x � A ∩ �

A ∩ � = A.
A ⊆ Bx � B,x � Ax � B.

A = A ∩ B;x � A ∩ B,x � A.A ∩ B = A.
A ∩ B = A.x � A.x � B,

x � Ax � A ∩ B.A ⊆ B.
A ⊆ B   iff  A ∩ B = A.

A − C ⊆ B − C.x � B − C.
x � C,x � Bx � C.x � Ax � A − C.

x � B.x � AA ⊆ B.
A − C ⊆ B − C.A ⊆ B,

A − C ⊆ B − C.
B − C.x � C,x � BA ⊆ B.x � B,

x � C.x � AA − C.A ⊆ B.
A − C ⊆ B − C.A ⊆ B,

A − C ⊆ B − C.x � B − C.x � A − C
x � C.x � Bx � C.x � A

A ⊆ B.x � B,x � A.A ⊆ B.
A − C ⊆ B − C.A ⊆ B,

A Δ � = A.A Δ A = �.
A Δ B = (A ∪ B ) − (A ∩ B ).A Δ B = B Δ A.

A Δ B = (A − B ) ∪ (B − A ).

b = y.
a = x  iff  (a, b) = (x, y){{a}, {a, b}}.

(a, b) =
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2.3 Extended Set Operations and Indexed Families of Sets 89

� (i) Claim. If then 
“Proof.” Let Then A and B are related as in this figure.A ⊆ B.

A ∪ B = B.A ⊆ B,

BA

BA

Since is the set of elements in either of the sets A or B, is
the shaded area in this figure.

A ∪ BA ∪ B

Since this is B, 

2.3 Extended Set Operations and Indexed Families of Sets

A set of sets is often called a family or a collection of sets. In this section we extend
the definitions of union and intersection to families of sets and prove generaliza-
tions of parts of Theorem 2.2.1.

Throughout this section we will use script letters, �, �, �, . . . to denote fam-
ilies of sets. For example, 

is a family consisting of four sets. Notice that and but
The set and is a family of open intervals. Thex > 0}� = {(−x, x): x � �5 � �.

{3,  4,  5} � �,5 � {3,  4,  5}

� = {{1,  2,  3}, {3,  4,  5}, {3,  6}, {2,  3,  6,  7,  9,  10}}

A ∪ B = B.

321 540–1–2–3–4–5

(–1, 1)

(–5, 5)

(–√2, √2)

Figure 2.3.1

�

sets are elements of . See Figure 2.3.1.�(−1, 1), (−
√

2, 
√

2), and (−5, 5)
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90 CHAPTER 2 Set Theory

DEFINITION Let � be a family of sets. The union over � is

⋃
A��

A = {x: x � A for some A � �}.

Using this definition, for any object x we may write:

This symbolic statement expresses the direct relationship between the union over
a family and the existential quantifier To show that an object is in the union of
a family, we must show the existence of at least one set in the family that contains
the object. Figure 2.3.2(a) is a Venn diagram showing the union over the family
� = {R, S, T}.

∃.

x �
⋃

A��
A  iff  (∃ A � �)(x � A).

R
S

T

(a)

A∈�
∪ A

A∈�
∩ A

R
S

T

(b)

Figure 2.3.2

For the family � of four sets given above, 

The union of the family and is the set of all real 
numbers because every real number b is an element of the open interval
(−|b | − 1, |b | + 1).

x > 0}� = {(−x, x): x � �

⋃
A��

A = {1, 2, 3, 4, 5, 6, 7, 9, 10}.

DEFINITION Let � be a family of sets. The intersection over � is
⋂

A��
A = {x: x � A for every A � �}.

For the intersection over a family �, we write

x �
⋂

A��
A  iff  (∀A � �)(x � A).
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Figure 2.3.2(b) shows the Venn diagram for the intersection over the family 
Using the family � above again as an example, 

⋂
A��

A = {3}� = {R, S, T}.

2.3 Extended Set Operations and Indexed Families of Sets 91

Members of � include and Then 
and 

It is often helpful to associate an identifying tag, or index, with each set in a
family of sets. In the example above, each natural number n corresponds to a set 

. By specifying the index, as we did when we selected or 6, we specified
the corresponding set. By specifying a set of indices, we can specify the family of
sets we want to consider.

n = 2Bn

⋂
B��

B = {0, 1}.
⋃

B��
B = � ∪ {0}

B6 = {0, 1, 2, 3, 4, 5, 6}.B2 = {0, 1, 2}

because 3 is the only object contained in all four sets in �. The intersection of the
family and is the set because 0 is the only number
in every set in 

Example. For the family 

and If there are only two sets in the family, the union and intersection

over the family are the same as the union and intersection defined in Section 2.2.

Theorem 2.3.1 For every set B in a family � of sets, 

(a)

(b)

(c) If the family � is nonempty, then 

Proof.

(a) Let � be a family of sets and Suppose Then for every

〈Notice that the set A in the last sentence is a dummy symbol. It
stands for any set in the family. The set B is in the family.〉 In particular,

Therefore 
⋂

A��
A ⊆ B.x � B.

A � �.

x � Ax �
⋂

A��
A.B � �.

⋂
A��

A ⊆
⋃

A��
A.

B ⊆
⋃

A��
A.

⋂
A��

A ⊆ B.

⋂
A��

A = {k, s}.

� = {{r, k, s, t, a}, {k, d, s}}, 
⋃

A��
A = {r, k, s, t, a, d}

�.
{0}x > 0}� = {(−x, x): x � �

(b) The proof that B is a subset of the union over � is left as Exercise 3.
(c) Let � be a nonempty family. Choose any set By parts (a) and (b)

and therefore, �

It was necessary in part (c) that the family � be nonempty. If � is the empty
family, then intersection is equal to the universe of discourse. (See Exercise 4.) This
observation is a reason to be cautious about dealing with the empty family of sets.

Example. Let � be the collection where Bn = {0, 1, 2, Á , n}.{Bn: n � �},

⋂
A��

A ⊆
⋃

A��
A.

⋂
A��

A ⊆ C ⊆
⋃

A��
A

C � �.
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Indexing is a common phenomenon in everyday life. Suppose an apartment
building has six rental units, labeled A through F. At any given time, for each apart-
ment, there is a set of people residing in that apartment. These sets may be indexed
by Let be the set of people living in apartment k. Then 

is an indexed family of sets. An index is simply a label that pro-
vides a convenient way to refer to a certain set.

Example. For all let Then 
and so forth. The set with index 10 is 

Except for the set every set in the family has 3 ele-
ments. To form the family of sets that contains only and we change
the index set as follows: 

There is no real difference between a family of sets and an indexed family.
Every family of sets could be indexed by finding a large enough set of indices to
label each set in the family.

Example. For the sets and 
the index set has been chosen to be The family indexed by is 

The family could be indexed by another set.
For instance, if and and

then 

Example. Let and let for each
Then and

The indexing set has five elements but the indexed family 
has only three members, since and 

As the above examples demonstrate, an indexing family may be finite or infi-
nite, the number of elements in the member sets do not have to be the same, and dif-
ferent indices need not correspond to different sets in the family.

The operations of union and intersection over families of sets apply to indexed
families, although the notation is slightly different. For a family 
the notations for unions and intersection are:

⋂
a�Δ

Aa =
⋂

A��
A and x �

⋂
a�Δ

Aa  iff  (∀a � Δ)(x � Aa).

⋃
a�Δ

Aa =
⋃

A��
A and x �

⋃
a�Δ

Aa  iff  (∃a � Δ)(x � Aa).

� = {Aa: a � Δ},

A0 = A4.A1 = A3{Ax: x � Δ}
� ={4, 8, 12}.A4 =

A3 = {6, 8, 10},A2 = {8},A1 = {6, 8, 10},A0 = {4, 8, 12},x � Δ.
Ax = {2x + 4, 8, 12 − 2x}Δ = {0, 1, 2, 3, 4}

{Ai: i � Δ} = {Ai: i � ≠}.Aπ = {3, 4, 5, 6},
A21 = {2, 3, 5, 6},A10 = {1, 2, 4, 5},≠ = {10, 21, π},

�� = {A1, A2, A3} = {Ai: i � Δ}.
Δ�Δ = {1, 2, 3}.

A3 = {3, 4, 5, 6},A2 = {2, 3, 5, 6},A1 = {1, 2, 4, 5},

{A2, A3, A5, A10} = {Ai: i � {2, 3, 10, 15}}.
A15,A2, A3, A10,

{Ai: i � �}A1,{10, 11, 20}.
A10 =A2 = {2, 3, 4}, A3 = {3, 4, 6},

A1 = {1, 2},An = {n, n + 1, 2n}.n � �,

� = {Pk: k � Δ}
PkΔ = {A, B, C, D, E, F}.

DEFINITIONS Let be a nonempty set such that for each there
is a corresponding set The family is an indexed family of
sets. The set is called the indexing set and each is an index.a � ΔΔ

{Aa: a � Δ}Aa.
a � ΔΔ
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In the previous example with 

and 

Example. For let Then To show, for

example, that we need only point out some index n such that 

Either index 26 or 27 will do. Since there is no number x such that for all

Example. For each real number x, define Then 

and This is another example in which we 
have different indices representing the same set. For example, 
Here the index set is �, and 

There is a convenient variation on the notation for union and intersection when
the index set is the natural numbers. For an indexed family 

we can write instead of The intersection over � is written 

Also, 

Example. For each let For 

The next theorem restates Theorem 2.3.1 for indexed families and gives a ver-
sion of De Morgan’s Laws for indexed families.

Theorem 2.3.2 Let be an indexed collection of sets. Then

(a) for each 

(b) for each b � Δ.Ab ⊆
⋃
a�Δ

Aa

b � Δ.
⋂
a�Δ

Aa ⊆ Ab

� = {Aa: a � Δ}

⋂10

i=8
 Ai = �

⋃3

i=1
 Ai =  {1, 2, 3, 4, 9}

⋂4

i=2
 Ai = {4}

⋃∞
i=1

 Ai =  �

⋃6

i=4
 Ai = {4, 5, 6, 7, 16, 25, 36}

⋂∞
i=1

 Ai = �

� = {An: n � �}An = {n, n + 1, n2}.n � �,

A2 ∪ A3 ∪ A4 =
⋃4

i=2
 Ai and A11 ∩ A12 ∩ A13 ∩ A14 ∩ A15 =

⋂15

i=11
 Ai.

⋂∞
i=1

 Ai.
⋃

n��
 An.

⋃∞
i=1

 Ai

� = {An: n � �},

⋃
x��

Bx = [0, ∞).
⋂

x��

Bx = �,
B−2 = B2 = [4, 5].

B10 = [100, 101].C14, 5
4 D , B0 = [0, 1],

B−1/2 =Bx = [x2, x2 + 1].

n � �,
⋂

n��

An = �.

x � Cn

27 � An.27 �
⋃

n��

An,

⋃
n��

An = �.An = {n, n + 1, 2n}.n � �,

⋂
a�Δ

Aa = {8}.

Δ = {0, 1, 2, 3, 4}, 
⋃
a�Δ

Aa = {4, 6, 8, 10, 12}
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94 CHAPTER 2 Set Theory

(c)

∂ De Morgan’s Laws

(d)

Proof. The proofs of parts (a) and (b) are similar to those for Theorem 2.3.1 and
are left for Exercise 5(a).

(c)

it is not the case that for every 
for some 
for some 

.

Therefore, 

(d) One proof of part (d) is very similar to that given for part (c) and is left as
Exercise 5(b). However, since part (c) has been proved, it is permissible to
use it. We also use (twice) the fact that

. =
⋂
a�Δ

Aac

 = a a ⋂
a�Δ

Aac b
c

b
c

a ⋃
a�Δ

Aab
c

 = a ⋃
a�Δ

(Aac )cb
c

(Ac)c = A.〉

〈

a ⋂
a�Δ

Aab
c

=
⋃
a�Δ

Aac .

x �
⋃
a�Δ

Aaciff  

b � Δ, x � Ac
biff  

b � Δ, x � Abiff  

a � Δ, x � Aaiff  

x �
⋂
a�Δ

Aaiff  

x � a ⋂
a�Δ

Aab
c

a ⋃
a�Δ

Aab
c

=
⋂
a�Δ

Aac

a ⋂
a�Δ

Aab
c

=
⋃
a�Δ

Aac

The family in Figure 2.3.3(a) is pairwise disjoint. However, the
family in Figure 2.3.3(b) is not pairwise disjoint. Although

the sets and are neither identical nor disjoint. B3B1B1 ∩ B2 = �,
{B1, B2, B3}

{A1, A2, A3}

DEFINITION The indexed family of sets is pair-
wise disjoint for all and in either or Aa ∩ Ab = �.Aa = AbΔ,ba iff 

� = {Aa: a � Δ}

�
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2.3 Extended Set Operations and Indexed Families of Sets 95

Two questions are commonly asked about the concept of pairwise disjoint fami-
lies. The first is about why we bother with such a definition when we could simply say 

a family is disjoint if and only if Having an empty intersection is not the  

same as being pairwise disjoint and not nearly as useful (see Section 3.3). The family
with and is not pairwise disjoint, 

even though 

The second common question asks why the definition says “either or
instead of whenever That is, why not say “if

then and are disjoint?” The family is pairwise dis-
joint because whenever we have However, in
some families of sets it happens that different indices correspond to the same set, so
the definition allows for this possibility.

Example. Suppose where

The family � is pairwise disjoint. Note that and so

Example. Suppose for every x in and Then
and The family is pairwise disjoint

because whenever and whenever |x | =� |y | .Ax ∩ Ay = �|x | = |y |Ax = Ay

�A−7 = {7, −7} = A7.A3 = {−3, 3} = A−3

� = {Ax: x � �}.�Ax = {−x, x}

� = {B1, B2, B4}.
B2 = B3,B1 = B5 = B6

B6 = {a, c, e}.B5 = {a, c, e}
B4 = {b, f, h}B3 = {d, g}
B2 = {d, g}B1 = {a, c, e}

� = {B1, B2, B3, B4, B5, B6},

[n, n + 1) ∩ [m, m + 1) = �.n =� m
{[n, n + 1): n � �}AbAaa =� b
a =� b.”“Aa ∩ Ab = �Aa ∩ Ab = �”

Aa = Ab

⋂3

i=1
Ci = �.

C3 = {a, c}C1 = {a, b}, C2 = {b, c},{C1, C2, C3}

⋂
a�Δ

Aa = �.

Figure 2.3.3

(a) (b)

A1

A2

A3

B2

B3

B1
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96 CHAPTER 2 Set Theory

Exercises 2.3

1. Find the union and intersection of each of the following families or indexed
collections.

� (a) Let 
(b) Let 

� (c) For each natural number n, let and
let 

(d) For each natural number n, let and let

� (e) Let be the set of all sets of integers that contain 10.
(f) Let 

let 
� (g) For each natural number, let and let 

(h) For let and let � = {Ar: r � (0, ∞)}.Ar = [−π, r),r � (0, ∞),
� = {An: n � �}.An = A0, 1

nB,
� = {An: n � {1, 2, 3, Á , 10}}.

 A1 ={1}, A2 = {2, 3}, A3 = {3, 4, 5}, Á , A10 ={10, 11, Á , 19}, and
�

� = {Bn: n � �}.
Bn = � − {1, 2, 3, Á , n}

� = {An: n � �}.
An = {5n, 5n + 1, 5n + 2 Á , 6n},

� = {{1, 3, 5}, {2, 4, 6}, {7, 9, 11, 13}, {8, 10, 12}}.
� = {{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}}.

� (i) For each real number r, let and let 

(j) For each let and let

(k) For each natural number let and 

(l) For each let and let 

(m) For each let and 

(n) For each let and 
(o) For each prime number p, let and be the family

and p is prime}.
� (p) For each let and

(q) For each let and

� 2. Which families in Exercise 1 are pairwise disjoint?

3. Prove part (b) of Theorem 2.3.1.

4. Let the universe of discourse be the set � of real numbers, and let � be the
empty family of subsets of �.

� (a) Show that 

� (b) Show that 

(c) Conclude that is false in this example.
⋂

A��
A ⊆

⋃
A��

A

⋃
A��

A = �.

⋂
A��

A = �.

� = {Vn: n � �}.
xn ≤ y ≤

√n x}Vn = {(x, y) � � × �: 0 ≤ x ≤ 1,n � �,
	 = {Tn: n � �}.

Tn = {(x, y) � � × �: 0 ≤ x ≤ 1, 0 ≤ y ≤ xn}n � �,
{p�: n � �

�p� = {np: n � �}
� = {Dn: n � �}.Dn = A−n, 1

nBn � �,

� = {An: n � �}.An = (n, n + 1)n � �,

� = {Cn: n � �}.Cn = [n, n + 1)n � �,

{An: n ≥ 3}.
� =An = C1n, 2 + 1

n Dn ≥ 3,
� = {Mn: n � �}.

Mn = {Á , −3n, −2n, −n, 0, n, 2n, 3n, Á},n � �,
{Ar: r � �}.

� =Ar = [ |r | , 2 |r | + 1],
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2.3 Extended Set Operations and Indexed Families of Sets 97

5. � (a) Prove parts (a) and (b) of Theorem 2.3.2.
(b) Give a direct proof of part (d) of Theorem 2.3.2 that does not use 

part (c).

6. Let be a family of sets and let B be a set. Prove that

� (a)

(b)

7. Let and let Use Exercise 6 to write

� (a) as a union of intersections.

(b) as an intersection of unions.

8. Let be a family of sets, and B be a set. For each
part either prove the statement is true or give a counterexample.

(a)

(b)

� (c)

(d)

9. If is a family of sets and prove that

� (a)

(b)

10. Let � be a nonempty family of sets.

� (a) Suppose for every Prove that 

� (b) What is the largest set X such that for all That is, find the
set X such that (i) for all and (ii) if for all 
then 

(c) Suppose for every Prove that 

(d) What is the smallest set Y such that for all That is, find
the set Y such that (i) for all and (ii) if for all

then Y ⊆ W.A � �,
A ⊆ WA � �;A ⊆ Y

A � �?A ⊆ Y

⋃
A��

A ⊆ D.A � �.A ⊆ D

V ⊆ X.
A � �,V ⊆ AA � �;X ⊆ A

A � �?X ⊆ A

B ⊆
⋂

A��
 A.A � �.B ⊆ A

⋂
a�Δ

Aa ⊆
⋂
a�≠

 Aa.

⋃
a�≠

 Aa ⊆
⋃
a�Δ

Aa.

≠ ⊆ Δ,� = {Aa: a � Δ}

a ⋃
a�Δ

Aab − B =
⋃
a�Δ

(Aa − B ).

a ⋂
a�Δ

Aab − B =
⋂
a�Δ

(Aa − B ).

B − a ⋃
a�Δ

Aab =
⋃
a�Δ

(B − Aa).

B − a ⋂
a�Δ

Aab =
⋂
a�Δ

(B − Aa).

Δ =� �,� = {Aa: a � Δ}

a ⋂
a�Δ

Aab ∪ a ⋂
b�≠

Bbb
a ⋃
a�Δ

Aab ∩ a ⋃
b�≠

Bbb
� = {Bb: b � ≠}.� = {Aa: a � Δ}

B ∪ ⋂
a�Δ

Aa =
⋂
a�Δ

(B ∪ Aa ).

B ∩ ⋃
a�Δ

Aa =
⋃
a�Δ

(B ∩ Aa ).

� = {Aa: a � Δ}
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98 CHAPTER 2 Set Theory

11. Let Give an example of each of the following:

(a) a family � of subsets of X such that and 

(b) a family � of four pairwise disjoint subsets of X such that 

(c) a family � of twenty pairwise disjoint subsets of X such that 

12. Give an example of an indexed collection of sets such that each
and for all but 

13. Let � be a family of pairwise disjoint sets. Prove that if then � is a
family of pairwise disjoint sets.

14. Let � and � be two pairwise disjoint families of sets. Let and

(a) Prove that � is a family of pairwise disjoint sets.
(b) Give an example to show that � need not be pairwise disjoint.

(c) Prove that if and are disjoint, then � is pairwise disjoint.

15. Let be a family of sets and k, m be natural numbers with
Prove that

(a)

(b)

� (c)

(d)

(e)

(f)

16. Suppose is a family of sets such that for all i, if 
then (Such a family is called a decreasing nested family of sets.)

(a) Prove that for every 

(b) Prove that 

17. Give an example of a decreasing nested family (see Exercise 16)
for each condition.

� (a)

(b)
⋂∞
i=1

 Ai = (0, 1).

⋂∞
i=1

 Ai = [0, 1].

{Ai: i � �}

⋃∞
i=1

 Ai = A1.

⋂k

i=1
 Ai = Ak.k � �,

Aj ⊆ Ai.
i ≤ j,j � �,� = {Ai: i � �}

⋂m
i=1

 Ai ⊆
⋂k

i=1
 Ai.

⋃k

i=1
 Ai ⊆

⋃m
i=1

 Ai.

⋂∞
i=1

 Ai ⊆
⋂m
i=k

 Ai.

⋃m
i=k

 Ai ⊆
⋃∞
i=1

 Ai.

⋂k+1

i=1
 Ai =

⋂k

i=1
 Ai ∩ Ak+1.

⋃k+1

i=1
 Ai =

⋃k

i=1
 Ai ∪ Ak+1.

k ≤ m.
� = {Ai: i � �}

⋃
B��

 B
⋃

A��
 A

� = � ∪ �.
� = � ∩ �

� ⊆ �,

⋂
n��

 An = �.Am ∩ An =� �m, n � �,An ⊆ (0, 1),
{An: n � �}

⋃
C��

C = X.

⋃
B��

B = X.

⋃
A��

 A = X.
⋂

A��
 A = {1}

X = {1, 2, 3, 4, Á , 20}.
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2.3 Extended Set Operations and Indexed Families of Sets 99

(c)

(d)

Proofs to Grade 18. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

� (a) Claim. For every indexed family 

“Proof.” Choose any Then by Theorem 2.3.2, 

Therefore, by transitivity of set inclusion,  �

� (b) Claim. If for all then 

“Proof.” Suppose Then, since for all 

Therefore, �
⋃
a�Δ

A ⊆ B.x � B.

a � Δ,Aa ⊆ Bx �
⋃
a�Δ

Aa.

⋃
a�Δ

Aa ⊆ B.a � Δ,Aa ⊆ B

⋂
a�Δ

Aa ⊆
⋃
a�Δ

Aa.

⋂
a�Δ

Aa ⊆ Ab and Ab ⊆
⋃
a�Δ

Aa.

Ab � {Aa: a � Δ}.

⋂
a�Δ

Aa ⊆
⋃
a�Δ

Aa.{Aa: a � Δ},

⋂∞
i=1

 Ai = �.

⋂∞
i=1

 Ai = {0, 1}.

(c) Claim. For every indexed family 

“Proof.” Let 

Then �
⋂
a�Δ

Aa = {c, d} ⊆ {a, b, c, d, e, f } =
⋃
a�Δ

Aa.{c, d, e, f }.

At =As = {b, c, d, e},Ar = {a, b, c, d},Δ = {r, s, t},

⋂
a�Δ

Aa ⊆
⋃
a�Δ

Aa.{Aa: a � Δ},

(d) Claim. For every indexed family 

“Proof.” Assume Then for some 

Since it is not the case that for some

Therefore, for every But since 

for every This is a contradiction, so we conclude

�

� (e) Claim.

“Proof.” Let Choose a natural number y such that
Thus Therefore, x is an element of

Since for all 

Therefore, �
⋃∞

n=1
[n, n + 1) = �.

⋃∞
n=1

[n, n + 1) ⊆ �.n � �,[n, n + 1) ⊆ �
⋃∞

n=1
[n, n + 1).

x � [y, y + 1).y ≤ x < y + 1.
x � �.

⋃∞
n=1

[n, n + 1) = �.

⋂
a�Δ

Aa ⊆
⋃
a�Δ

Aa.

a � Δ.x � Aa

x �
⋂
a�Δ

Aa,a � Δ.x � Aaa � Δ.

x � Aax �
⋃
a�Δ

Aa,x �
⋃
a�Δ

Aa.

x �
⋂
a�Δ

Aa,
⋂
a�Δ

Aa �
⋃
a�Δ

Aa.

⋂
a�Δ

Aa ⊆
⋃
a�Δ

Aa.{Aa: a � Δ},
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2.4 Mathematical Induction

In 1889 Giuseppe Peano* set forth five axioms that provided a complete and rigor-
ous definition of the natural numbers based on the notion of successors. The axioms
assert that

(i) 1 is a natural number, 
(ii) every natural number has a unique successor, which is a natural number, 

(iii) no two natural numbers have the same successor, 
(iv) 1 is not a successor for any natural number, 
(v) if a property is possessed by 1 and possessed by the successor of every natural

number that possesses it, then the property is possessed by all natural numbers.

These axioms are sufficient to derive all the familiar arithmetic and order prop-
erties of that are listed in the Preface to the Student. The development of all these
properties as consequences of Peano’s axioms is certainly a worthy activity, but it
would take more time than we can devote to the topic here. Instead, we focus our
attention on the inductive property of given in the fifth axiom. Peano’s fifth
axiom can be restated as a property of sets of natural numbers.

Principle of Mathematical Induction (PMI)

Let S be a subset of with these two properties:

(i)
(ii) for all if then 

Then 

A set S of natural numbers is called an inductive set it has the property that
whenever then The set is inductive, as is the set

We leave it as an exercise to show that and are
inductive sets. The set is not inductive because, for example, 7 is
a member but 8 is not. Many sets of natural numbers have the inductive property,
but only one set is inductive and contains 1. By the Principle of Mathematical
Induction, that set is 

An important use of the PMI is to make inductive definitions. These definitions
follow the form of the PMI: We define a first object, and then the object is
defined in terms of the nth object. The PMI ensures that the set of all n for which
the corresponding object is defined is 

Example. The noninductive definition of the factorial of a natural number n is

n! = n · (n − 1) · Á · 3 · 2 · 1.

�.

(n + 1)st

�.

{1, 3, 5, 7, 9, Á}
��{100, 101, 102, 103, Á}.

{5, 6, 7, 8, Á}n + 1 � S.n � S,
  iff  

S = �.

n + 1 � S.n � S,n � �,

1 � S,

�

�

�

100 CHAPTER 2 Set Theory

* Giuseppe Peano (1858–1932) was an Italian mathematician who made many contributions to mathe-
matical logic and set theory, especially its language and symbolism. He was the first to use the modern
symbols for union and intersection. His “Formulario Mathematico” manuscript (1908) contains 4,200
precisely stated mathematical formulae and theorems. Other contributions include his “space filling
curve” counterexample, a forerunner of fractal images.
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2.4 Mathematical Induction 101

For example, The inductive definition of n! is

(i)
(ii) For 

To show that the inductive definition defines n! for all natural numbers n, we let
S be the set of n for which n! is defined. First, because of part (i). Second, S is
inductive because if then is defined and hence, by part (ii), is also
defined. Thus By the PMI, In other words, the set of numbers for
which the factorial is defined is so n! has been defined for all natural numbers.

The inductive definition makes clear the relationship between the factorial of a
number and the factorial of the next number; if you happen to know that

then you compute 

Example. Sets may be defined inductively. Suppose we let T be the set of integers
defined by

(i)
(ii) if then 

The set which may also be defined using the non-inductive
definition 

The real power of the Principle of Mathematical Induction is as a method for
proving statements that are true for all natural numbers. For example, we note that
the sum of the first three odd numbers is which happens to be 32, the
sum of the first four odd numbers is which is 42, the sum of
the first five odd numbers is and the sum of the first 6 odd numbers is 62.
This pattern leads to the conjecture that

We could never verify this statement by checking all possible values for n, but we
can prove it using the PMI.

Example. Prove that for every natural number n, 

Proof. Let We have defined S to
be the set of natural numbers for which the statement is true. We show the statement
is true for all natural numbers by showing that

(i) so 
(ii) Let n be a natural number such that Then

1 + 3 + 5 + Á + (2n − 1) = n2.

n � S.
1 � S.1 = 12,

S = �.〉

〈S = {n � �: 1 + 3 + 5 + Á + (2n − 1) = n2}.

1 + 3 + 5 + Á + (2n − 1) = n2.

for all n � �, 1 + 3 + 5 + Á + (2n − 1) = n2.

25 = 52,
1 + 3 + 5 + 7 = 16,

1 + 3 + 5 = 9,

T = {4k + 1: k � �}.
T = {5, 9, 13, 17, Á },

x + 4 � T.x � T,
5 � T,

12! = 12 · 11! = 479,001,600.11! = 39,916,800,

�,
S = �.n + 1 � S.

(n + 1)!n!n � S,
1 � S

(n + 1)! = (n + 1)n!.n � �,
1! = 1.

5! = 5 · 4 · 3 · 2 · 1 = 120.
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We have assumed that some n is in S. From this assumption we will show 
that Showing is accomplished by verifying that

At this point in the proof it is essential to compare the statements for n and for
Notice that the left-hand sides of the two equations are almost identical, but

the statement about has one more term. By adding to both
sides of we have

This shows that if then 
(iii) By the PMI, That is, for every nat-

ural number n. �

The first key step in the proof above was to define the set S as the set of all nat-
ural numbers for which is true. In general, for an
open sentence the statement is true the set of numbers for
which is true equals 

The second key step in the proof above was to assume that some natural num-
ber n is in S. This assumption is called the hypothesis of induction. Notice that we
must not assume that for all because that would be assuming what we
want to prove. For a direct proof of the inductive step, we start from the assumption
that (for some natural number n) and deduce that 

The third key step in the proof above was to compare the statement about n
with the statement about Every good proof by induction will use the hypoth-
esis of induction to show that Finding the connection between these
statements is the heart of a proof by induction.

Thus, a proof of using the PMI may take the form:(∀n � �)P(n)

n + 1 � S.
n + 1.

n + 1 � S.n � S

n � �,n � S

�.P (n)
  iff  (∀n � �)P(n)P (n),

1 + 3 + 5 + Á + (2n − 1) = n2

1 + 3 + 5 + Á + (2n − 1) = n2S = �.
n + 1 � S.n � S,

 = (n + 1)2.

 = n2 + 2n + 1

1 + 3 + 5 + Á + (2n − 1) + [2(n + 1) − 1] = n2 + [2(n + 1) − 1]

1 + 3 + 5 + Á + (2n − 1) = n2,
2(n + 1) − 1〉n + 1

n + 1.

1 + 3 + 5 + Á + [2(n + 1) − 1] = (n + 1)2.

n + 1 � Sn + 1 � S.
〈

102 CHAPTER 2 Set Theory

PROOF OF �� USING THE PMI
Proof.
Let 
(i) (Basis step) Show that 
(ii) (Inductive step) Show that for all if then 
(iii) Therefore, by the PMI, Thus is true. �(∀n � �)P(n)S = �.

n + 1 � S.n � Sn � �,
1 � S.

S = {n � �: P (n) is true}.

)P(n)(∀n �

In actual practice, very few induction proofs start by defining the set S. Since
is equivalent to is true,” the basis step is a determination that P (1)“P (1)“1 � S”
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is true. Since implies is equivalent to implies 
the inductive step often takes the form of a direct proof that “for all 
implies This gives us the preferred form for the outline of a proof using
the PMI:

P (n + 1).”
P (n)n � �,

P (n + 1),”“P (n)n + 1 � S”“n � S

2.4 Mathematical Induction 103

PROOF OF �� USING THE PMI
Proof.
(i) (Basis step) Show that is true.
(ii) (Inductive step) Suppose for some 

. . .
Therefore 

(iii) Therefore, by the PMI, is true. �(∀n � �)P(n)
P (n + 1).

n � �.P (n)
P (1)

)P(n)(∀n �

Proofs by induction may be used to establish inequalities and divisibility prop-
erties. Notice in the following examples that it is not enough just to figure out what
the correct statement is for To construct a valid inductive step, look for a
connection between what we know about some number n and what we want to
know about the next number 

Example. For all 

Proof.

(i) so the statement is true for 1.
(ii) Assume that for some Then 

Thus the statement is true for 
(iii) By the Principle of Mathematical Induction, for every �

Example. The polynomial divides the polynomials and 
because and This sug-
gests the possibility that for every natural number divides We
prove this by induction.

Proof.

(i) divides because Thus the statement
holds for n = 1.

x − y = 1(x − y).x1 − y1 = x − yx − y

xn − yn.n, x − y
x3 − y3 = (x − y)(x2 + xy + y2).x2 − y2 = (x − y)(x + y)

x3 − y3x2 − y2x − y

n � �.n + 3 < 5n2
n + 1.

 = 5(n + 1)2.

 < 5n2 + 10n + 5

 < 5n2 + 1

(n + 1) + 3 = n + 3 + 1

n � �, n + 3 < 5n2.
1 + 3 < 5 · 12,

n + 3 < 5n2.n � �,

n + 1.

n + 1.
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(ii) Assume that divides for some n this is the hypothesis of
induction We must show that divides We write

Now divides the first term because that term contains the factor
Also divides the second term because it divides 

by the hypothesis of induction Therefore, divides the sum. That is,
divides 

(iii) By the PMI, divides for every natural number n. �

Recall that sigma notation is a compact way to write sums. We may write the

sum as Our first result proved by induction  

was that The notation for products uses the capital Greek letter �.

For example 

Note that products with factors may be rewritten, as in

Our next example involves both factorial and product notation.

Example. Prove that for all 

Proof.

(i) The statement is true for because and 

(ii) Assume that for some We now use the hypothesis 

of induction  to prove that Then

= (2n)!

n!
 (4n + 2).

∏n+1

i=1
(4i − 2) =  c∏n

i=1
(4i − 2) d (4(n + 1) − 2)

∏n+1

i=1
(4i − 2) = (2(n + 1))!

(n + 1)!
.〉

〈n � �.
∏n

i=1
(4i − 2) = (2n)!

n!

(2 · 1)!

1!
= 2.

∏1

i=1
(4i − 2) = 2n = 1

∏n

i=1
(4i − 2) =  

(2n)!

n!
.n � �,

∏n+1

i=1
(2i ) = (2n + 2) ·

∏n

i=1
(2i ).

n + 1

∏4

i=1
(i2 + 1) = 2 · 5 · 10 · 17 = 1700.

∑n

i=1
(2i − 1) = n2.

∑n

i=1
(2i − 1).1 + 3 + 5 + Á + (2n − 1)

xn − ynx − y
xn+1 − yn+1.x − y

x − y〉.〈
xn − ynx − y(x − y).

x − y

 = (x − y)xn + y(xn − yn).

 = xxn − yxn + yxn − yyn

xn+1 − yn+1 = xxn − yyn

xn+1 − yn+1.x − y〉.
〈xn − ynx − y

104 CHAPTER 2 Set Theory

62025_02_ch02_p071-113.qxd  4/21/10  11:19 PM  Page 104

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



We also compute

Since these expressions are equal, the statement is true for 

(iii) By the Principle of Mathematical Induction, for all
∏n

i=1
(4i − 2) = (2n)!

n!

n + 1.

 =  
(4n + 2)(2n)!

n!
 .

 =  
2(2n + 1)(2n)!

n!

 =  
(2n + 2)(2n + 1)(2n)!

(n + 1)n!

(2(n + 1))!

(n + 1)!
  =  

(2n + 2))!

(n + 1)!
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Figure 2.4.1

�

The following examples show some other situations where induction is used.

Example. Consider any “map” formed by drawing straight lines in a plane to rep-
resent boundaries. Figure 2.4.1 shows ten countries, labeled A through J, formed by
drawing four lines in the plane. The problem is to color the countries so that adjoin-
ing countries (those with a line segment as a common border) have different colors.
This has been done in Figure 2.4.2 using only two colors—blue and white. We will
use induction to prove that every map formed by drawing n straight lines can be col-
ored using exactly two colors.

Proof.

(i) If a map is made by drawing one straight line, then there are only two
countries. Thus every map formed with one line can be colored with two
colors.

n � �.
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(ii) Assume that for some n, every map formed by drawing n lines can be col-
ored with exactly two colors. Now consider a map with lines. Before
coloring this map, choose any one of the lines and label it L. Now color the
map as though the line L were not there, using exactly two colors. This can
be done, initially, by the hypothesis of induction. Such a coloring is shown
in Figure 2.4.3, with the line L shown as a dashed line. Of course, only part
of the plane can be shown. To color the map with line L, proceed as follows.
Call one half-plane determined by L side 1, and the other half-plane side 2.
Leave all colors on side 1 exactly as they were but change every color on
side 2 to the other color. This gives a coloring to every country in the map
with line L. (See Figure 2.4.4.) It remains to verify that adjacent countries in
this map with lines have different colors.

Suppose we have two adjacent countries. There are two cases to consider:

Case 1. Suppose L is the border between the two countries, which means
that one country is on side 1 and the other on side 2. Initially, the
two countries had the same color because they were parts of the
same country in the map with n lines. When L was added to the
map, the color of the country on side 2 switched to a different color
from the country on side 1.

n + 1

〉

〈

n + 1
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Case 2. Suppose L is not the border between the two countries. Then both
countries are either on side 1 or side 2. If both countries are on side
1, they were initially colored differently and remain so when L is
added. If both countries are on side 2, their colors were initially
different, but are now switched, and still different.

In both cases, the two adjoining countries have different colors. 

(iii) By the PMI, every map can be colored using only two colors. �

The next example involves computations using trigonometry and complex
numbers.

Theorem 2.4.1 De Moivre’s Theorem
Let be a real number. For all 

Proof. In this proof we use addition and multiplication of complex numbers and
the following “sum of angles” formulas from trigonometry:

(i) For the equation is which is cer-
tainly true.

(ii) Assume that for some natural number
k. Then, using the sum of angles formulas, 

  = (cos ku cos u −  sin ku sin u) + i(sin ku cos u + cos ku sin u)

  =  cos ku cos u + i sin ku cos u + i cos ku sin u + i2 sin ku sin u

  = (cos ku + i sin ku)(cos u + i sin u) 〈by the hypothesis of induction〉
  = (cos u + i sin u)k(cos u + i sin u)

 (cos u + i sin u)k+1

(cos u + i sin u)k =  cos ku + i sin ku,

(cos u + i sin u)1 =  cos u + i sin u,n = 1,

 sin (a + b) = (sin a)(cos b) + (cos a)(sin b).〉
 cos (a + b) = (cos a)(cos b) − (sin a)(sin b)

〈

(cos u + i sin u)n = cos nu + i sin nu.n � �,u
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(iii) By steps (i) and (ii) and the PMI, is 
true for all  �

As one more example of the use of the Principle of Mathematical Induction,
we prove a seemingly simple but useful result, known as the Archimedean Princi-
ple, about the comparative sizes of natural numbers. Archimedes* said that given a
fulcrum and a long enough lever, he could move the world. See Figure 2.4.5. This
statement illustrates the principle of physics that relates the forces at the ends of a
lever to their distances from the fulcrum point. Even though it would take a very
large force to move the Earth, and a person could exert only a small force, the force
is multiplied when applied to a long lever.

n � �.
(cos u + i sin u)n = cos nu + i sin nu

  = cos(k + 1)u + i sin(k + 1)u.

  = cos(ku + u) + i sin(ku + u)

108 CHAPTER 2 Set Theory

Figure 2.4.5

Earth Fulcrum Archimedes

To understand the next theorem, think of a and b as any two natural numbers, with
a being much larger than b. The Archimedean Principle says that a can eventually be
surpassed by taking natural number multiples of b. We give a proof by induction.

Theorem 2.4.2 Archimedean Principle for ��
For all natural numbers a and b, there exists a natural number s such that 

Proof. Let b be a fixed natural number. The proof proceeds by induction on a.

(i) If choose s to be 2. Then 
(ii) Suppose the statement is true when for some natural number n. Then

there is a natural number t such that Choose s to be Then we
have so the statement is true when

(iii) By parts (i) and (ii) and the PMI, the statement is true for all natural numbers
a and b. �

a = n + 1.
sb = ( t + 1)b = tb + b > n + 1,

t + 1.tb > n.
a = n,

sb = 2b > a.a = 1,

sb > a.

* Archimedes (c. 287 B.C.E.–c. 212 B.C.E.) is considered the greatest scientist of his era, having made
fundamental discoveries in mathematics, astronomy, physics, and engineering. Many of his drawings of
proposed machines proved to be very effective devices. His “method of exhaustion” to calculate areas
under curves is similar to the methods of integral calculus used today.
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Some statements are not true for all natural numbers, but are true for numbers
in some inductive subset of �. To prove such statements in such cases, we need a
slightly generalized form of the PMI, where the basis step starts at some number
other than 1.

Generalized Principle of Mathematical Induction

Let k be a natural number. Let S be a subset of � with these two properties:
(i)

(ii) for all with if then 

Then S contains all natural numbers greater than or equal to k.

Example. Prove by induction that for all 

Proof. We will use the Generalized PMI starting at

(i) For which is greater than zero.
(ii) Assume for some natural number that Then

Since by the induction hypothesis and since k is
a natural number The sum of two positive integers
is positive. Thus 

(iii) By the Generalized PMI, is true for all �

We note that an algebraic proof of the last example is possible: Since
and for all natural numbers n,

for Neither proof is “more correct” than the other. We
chose the first proof to demonstrate the Generalized PMI.

Exercises 2.4

1. Which of these sets have the inductive property?
(a) � (b)
(c) � (d) {17}
(e) � (f) {1, 2, 3, 4, 5, 6, 7, 8}{x � �: x2 ≤ 1000}

{1, 2, 4, 5, 6, 7, Á }
{2, 4, 6, 8, 10, Á }{20, 21, 22, 23, Á }

n > 5.n2 − n − 20 > 0
n + 4 > 0n2 − n − 20 = (n + 4)(n − 5)

n > 5.n2 − n − 20 > 0

(k + 1)2 − (k + 1) − 20 > 0.〉
〈k2 − k − 20 + 2k > 0.〉,

〈2k > 0〉〈k2 − k − 20 > 0

 = k2 − k − 20 + 2k.

(k + 1)2 − (k + 1) − 20 = k2 + 2k + 1 − k − 1 − 20

k2 − k − 20 > 0.k > 5
62 − 6 − 20 = 10,n = 6,

n = 6.〉〈

n > 5.n2 − n − 20 > 0

n + 1 � S.n � S,n ≥ k,n � �

k � S,
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2. Suppose S is inductive. Which of the following must be true?
(a) If then  � (b) If then 
(c) If then  (d) If then 

� (e) and 

3. (a) Prove that is inductive.
(b) Prove that is inductive.

4. Evaluate or simplify each.

(a) 4! (b) 7! (c)

(d) � (e) (f)

(g)

5. Give an inductive definition for each:
(a) for some 
(b) and 

� (c) for some 
(d) where a and d are real numbers. (The ele-

ments of the set form an arithmetic progression.)
(e) where a and r are real numbers. (The elements of

the set form a geometric progression.)

(f) for some indexed family 

(g) The product of n real numbers.

6. Use the PMI to prove the following for all natural numbers n.

� (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

( j)
∏n

i=1
Q1 − 1

i + 1
R =  

1

n + 1
.

∑n

i=1

1

(2i − 1)(2i + 1)
 =  

n

2n + 1
.

1

2!
 +  

2

3!
 + Á +  

n

(n + 1)!
 = 1 −  

1

(n + 1)!
 .

1

1 · 2
 +  

1

2 · 3
+ 1

3 · 4
 + Á + 1

n(n + 1)
= n

n + 1
.

∑n

i=1
(2i − 1)3 = n2

 (2n2 − 1).

13 + 23 + Á + n3 = Sn(n + 1)

2
T2

1 · 1! + 2 · 2! + 3 · 3! + Á + n · n! = (n + 1)! − 1.

∑n

i=1
2i = 2n+1 − 2.

3 + 11 + 19 + Á + (8n − 5) = 4n2 − n.

∑n

i=1
(3i − 2) =  n

2
 (3n − 1).

∏n

i=1
xi = x1 · x2 · x3 ·  Á

 · xn

{Ai: i � �}.
⋃n

i=1
Ai,

{a, ar, ar2, ar3, Á },

{a, a + d, a + 2d, a + 3d, Á },
k � �}.{n: n = 2k

n > 10}.{n: n � �

k � �}.{n: n = 5k

(n2 + 3n + 2)n!

(n + 3)!

(n + 1)!

(n + 2)!

n!

8!

3! · 5!

97!

96!

�
�

11 � S.6 � S
11 � S.6 � S,n � S.n + 1 � S,
n + 2 � S.n � S,n � S.n + 1 � S,
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(k)

(l) (Sum of a finite geometric series)

for and 

7. Use the PMI to prove the following for all natural numbers:
(a) is divisible by 3.

� (b) is divisible by 3.
(c) is divisible by 6.
(d) is divisible by 12.
(e) 8 divides 
(f) is divisible by 9.
(g) 8 divides 
(h)

� (i)
( j)

(k)

(l) For every positive real number x, 

(m) is an integer.

(n) Using the differentiation formulas and 

prove that for all 

(o) If a set A has n elements, then has elements.

8. Use the Generalized PMI to prove the following.
� (a) for all 

(b) for all 
� (c) for 

(d) for 

(e) for all 

(f) for 

� (g) For all the sum of the angle measures of the interior angles of a
convex polygon of n sides is 

(h) for 

9. Use the PMI to prove DeMorgan’s Laws for an indexed family 
You may use De Morgan’s Laws for two sets.

(a) for all 

(b) for all n � �.a⋃n

i=1
 Aib

c

=
⋂n

i=1
Ai

c

n � �.a⋂n

i=1
 Aib

c

=
⋃n

i=1
Ai

c

{Ai: i � �}.

n ≥ 2.
√

n <
1√
1

+ 1√
2

+ 1√
3

+ Á + 1√
n

(n − 2) · 180°.
n > 2,

n ≥ 4.
∏n

i=1
 1
i
≤ 2−n

n ≥ 2.
∏n

i=2
 
i2 − 1

i2
 =  

n + 1

2n

n ≥ 4.n! > 3n
n ≥ 5.(n + 1)! > 2n+3

n > 4.2n > n2
n ≥ 6.n3 < n!

2n� (A)

d
dx

 (xn) = nxn−1.n � �,

d
dx

(
 
fg) = f dg

dx
+ g df

dx
,d

dx
(x) = 1

n3

3
+ n5

5
+ 7n

15
 

(1 + x)n ≥ 1 + nx.

∑n

i=1
 
1

i2
≤ 2 − 1

n
.

4n+4 > (n + 4)4.
3n+3 > (n + 3)3.
3n ≥ 1 + 2n.

9n − 1.
10 n+1 + 3 · 4n−1 + 5

52n − 1.
(n3 − n)(n + 2)
n3 − n
4n − 1
n3 + 5n + 6

n ≥ 1.r =� 1,r � �,
∑n−1

i=0
ari = a(rn − 1)

r − 1

∏n

i=1
(2i − 1) =  

(2n)!

n! 2n .
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With a little practice, perhaps using coins of various sizes, you should con-
vince yourself that if there are 3 disks, the puzzle can be solved in 7 moves. With
4 disks, 15 moves are required. Use the PMI to prove that with n disks, the puz-
zle can be solved in moves. (Hint: In the inductive step you must describe
the moves with disks, and use the hypothesis of induction to count them.)

12. In a certain kind of tournament, every player plays every other player exactly
once and either wins or loses. There are no ties. Define a top player to be a player
who, for every other player x, either beats x or beats a player y who beats x.
(a) Show that there can be more than one top player.
(b) Use the PMI to show that every n-player tournament has a top player.

Proofs to Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

� (a) Claim. All horses have the same color.
“Proof.” We must show that for all in every set of n horses, all
horses in the set have the same color. Clearly in every set containing
exactly 1 horse, all horses have the same color. 

Now suppose all horses in every set of n horses have the same color.
Consider a set of horses. If we remove one horse, the horses in the
remaining set of n horses all have the same color. Now consider a set of
n horses obtained by removing some other horse. All horses in this set
have the same color. Therefore all horses in the set of horses have
the same color. By the PMI, the statement is true for every �n � �.

n + 1

n + 1

n � �,

n + 1
2n − 1

� 11. A puzzle called the Towers of Hanoi consists of a board with 3 pegs and several
disks of differing diameters that fit over the pegs. In the starting position all the
disks are placed on one peg, with the largest at the bottom, and the others with
smaller and smaller diameters up to the top disk (see the figure). A move is made
by lifting the top disk off a peg and placing it on another peg so that there is no
smaller disk beneath it. The object of the puzzle is to transfer all the disks from
one peg to another.
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P1

P5
P2

P3P4

� 10. Let be n points in a plane with no three points collinear. Show that

the number of line segments joining all pairs of points is See the figure
for n = 5.

n2 − n

2
.

P1, P2, Á , Pn
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2.4 Mathematical Induction 113

� (b) Claim. For all is divisible by 3.
“Proof.”
(i) which is divisible by 3, so the statement is true

for 
(ii) Assume the statement is true for some Then is

divisible by 3. Therefore is divisible by 3. 
(iii) By the PMI, the statement is true for all �

(c) Claim. For every natural number n, is odd.
“Proof.” The number is odd. Suppose and is odd.
Then

is the sum of an odd and an even number. Therefore, 
is odd. By the PMI, the property that is odd is true for all natural
numbers n. �

(d) Claim. For every natural number n, the matrix

“Proof.” Let

Clearly, 

so . Assume that

Then so implies By the PMI, �
� (e) Claim. Every natural number greater than 1 has a prime factor.

“Proof.”
(i) Let Then n is prime.

(ii) Suppose k has a prime factor x. Then for some y. Thus
which is a prime factorization.

(iii) By the PMI, the theorem is proved. �
(f) Claim. For all natural numbers  

“Proof.” and so the statement is true for 
Assume that for some Then 

so By the PMI, the statement is
true for all  �n ≥ 4.

2n+1 < (n + 1)!.(n + 1)(n!) = (n + 1)!,
2n+1 = 2(2n) < 2(n!) ≤n � �.2n < n!

n = 4.4! = 24,24 = 16
2n < n!n ≥ 4,

k + 1 = xy + 1 = (x + 1)(y + 1),
k = xy

n = 2.

S = �.n + 1 � S.n � Sn + 1 � S,

c1 1

0 1
dn+1

= c1 n + 1

0 1
d .

1 � S

c1 1

0 1
d1 = c1 1

0 1
d .

S =
{

n � � : c1 1

0 1
dn = c1 n

0 1
d
}

.

c1 1

0 1
dn = c1 n

0 1
d .

n2 + n
(n + 1)2 + (n + 1)

 = (n2 + n) + (2n + 2)

(n + 1)2 + (n + 1) = n2 + 2n + 1 + n + 1

n2 + nn � �n = 1
n2 + n

n � �.
(n + 1)3 + 44(n + 1)

n3 + 44nn � �.
n = 1.

13 + 44(1) = 45,

n3 + 44nn � �,
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2.5 Equivalent Forms of Induction

In the previous section, we used the Principle of Mathematical Induction to prove a
variety of statements about natural numbers. The goal of this section is to learn how
to use two other versions of induction. The value of these new forms of induction is
that they may be used in situations where it would be difficult to apply the PMI.
Both new forms are equivalent to the PMI, which means that either of them could
replace the PMI in the list of axioms for 

To prove that a statement is true for all natural numbers using the PMI, the key step
is to assume that a statement is true for an arbitrary natural number n and then show that
the statement is true for When there might be no apparent connection between
the statement for n and the statement for there may be a connection between the
statement for the case and the statement for some value or values less than n.
There is a variation of the PMI to handle this situation. A much stronger assumption is
made in this alternate form of induction, called complete (or strong) induction.*

Principle of Complete Induction (PCI)

Suppose S is a subset of with this property:

For all natural numbers n, if then 

Then 

This form of induction begins with the assumption that a statement is true for
every natural number less than n and shows that the statement is also true for n.
Thus, we are allowed to assume the statement is true for each of all the
way through rather than just for 

Notice that the statement of the PCI does not require a basis step in which we
show that Nevertheless, for the PCI property has the form

which is equivalent to Practically speaking then, it is almost always best to
begin a PCI proof by verifying that 1 is in S. Sometimes special consideration is
also needed for or larger integers. We saw in Section 2.4 that this caution may
be necessary for the PMI as well (see Exercise 13(a) of Section 2.4).

Our first example of a proof using the PCI revisits the first example from
Section 2.4.

Example. Prove for all natural numbers n that 

Proof. Let We must show that

and then conclude by the PCI.〉S = �{1, 2, 3, Á , m − 1} ⊆ S ⇒ m � S

〈S = {n � �: 1 + 3 + 5 + Á + (2n − 1) = n2}.

1+ 3 + 5 + Á +  (2n − 1) = n2.

n = 2

1 � S.

� ⊆ S ⇒ 1 � S,

n = 1,1 � S.

n − 1.n − 1,
k = 1, 2, 3,

S = �.

n � S.{1, 2, 3, Á , n − 1} ⊆ S,

�

n + 1
n + 1,

n + 1.

�.

114 CHAPTER 2 Set Theory

* Because this form of induction employs such a strong assumption, the Principle of Mathematical
Induction is sometimes referred to as “weak induction.”
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2.5 Equivalent Forms of Induction 115

Suppose m is a natural number and also that In the
special case that we note that and so Otherwise, 
since

Adding to both sides of this equality yields

Thus and we conclude by the PCI. �

Like the PMI, the PCI has variations where the induction starts at some number
greater than one. To prove, for example, that some property holds for all numbers
greater than 6 we would verify that for all natural numbers if

then Our next example is a proof that every natural
number greater than 1 has a prime factor. This fact was used without proof in
Chapter 1 because we did not yet have induction available as a method of proof. It is
a good example of a proof where the PCI is much more natural to use than the PMI.

Example. Prove that every natural number greater than 1 has a prime factor.

Proof. Let S be Notice that 1 is not in S,
but 2 is in S. Let m be a natural number greater than 1. Assume that for all

We must show that If m has no factors other than
1 and m, then m is prime, and so m has a prime factor—itself. If m has a factor x
other than 1 and m, then so Therefore x has a prime factor by the
induction hypothesis which must also be a prime factor of m. In either case, 

Therefore, and every natural number greater than 1 has a
prime factor. �

Like the PMI, the PCI can be used to create inductive definitions, one of which
is the definition of the sequence examined by Leonardo
Fibonacci* in the 13th century (see Exercise 4). These numbers have played impor-
tant roles in applications as diverse as population growth, flower petal patterns, and
highly efficient file sorting algorithms in computer science. For each natural num-
ber n, the nth Fibonacci number is defined inductively by

We see that and so on.f6 = 8,f5 = 5,f4 = 3, f3 = 2,

f1 = 1, f2 = 1, and  fn+2 = fn+1 + fn for n ≥ 1.

fn

1, 1, 2, 3, 5, 8, 13, Á

S = {n � �: n > 1},m � S.
〉,

〈x � S.1 < x < m

m � S.k � {2, Á , m − 1}, k � S.

{n � �: n > 1 and n has a prime factor}.

n � S.{7, 8, Á , n − 1} ⊆ S,
n > 6,

S = �m � S

  = m2.

  = m2 − 2m + 1 + 2m − 1

  = (m − 1)2 + (2m − 1)

 1 + 3 + 5 + Á + (2(m − 1) − 1) + (2m − 1)

2m − 1(m − 1)2.
m − 1 � {1, 2, 3, Á , m − 1} ⊆ S〉 so 1 + 3 + 5 + Á + (2(m − 1) − 1 =〈

m − 1 � Sm � S.1 = 12m = 1,
{1, 2, 3, Á , m − 1} ⊆ S.

* Leonardo of Pisa, also called Leonardo Fibonacci (c. 1170–c. 1250) was a prominent mathematician in
the Middle Ages. His text, Liber Abaci (Book of Calculation) was influential in the European adoption of
Hindu-Arabic numerals. He did not invent the sequence named for him, but used it as an example.
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Inductive proofs of properties of the Fibonacci numbers usually involve the
PCI because we need to “reach back” to both and to prove the property
for . Here is a typical example.

Example. Let be the positive solution to the equation (The value of

is approximately 1.618.) Prove that for all 

Proof. In the special cases of and the inequality is true
since and Let m be a natural number,

and assume that for all For we
have

Therefore, 
By the PCI, we conclude that for all �

Theorem 2.5.4, at the end of this section, shows that the PMI and PCI are
equivalent. Thus both properties are true for �.

A third property that characterizes the set � is the Well-Ordering Principle.
Although it is quite simple to state, the WOP turns out to be a powerful tool for con-
structing proofs. The WOP, like the PCI, may be derived from the Peano Axioms
and is equivalent to the PMI. (See Theorem 2.5.5.)

Well-Ordering Principle (WOP)*

Every nonempty subset of � has a smallest element.

Proofs using the WOP frequently take the form of assuming that some desired
property does not hold for all natural numbers. This produces a nonempty set of
natural numbers that do not have the property. By working with the smallest such
number, one can often find a contradiction.

In the next example, we prove again that every natural number greater than
1 has a prime factor. Compare the structure of this proof using the WOP with that
of the PCI proof given earlier.

Example. Every natural number has a prime factor.n > 1

n ≥ 1.fn ≤ an−1
fm ≤ am−1.

 = am−1.

 = am−3(a2) 〈since a is a solution to x2 = x + 1, a + 1 = a2〉
 = am−3(a + 1)

 ≤ am−2 + am−3 〈by the induction hypothesis for m − 1 and m − 2〉
fm = fm−1 + fm−2

m ≥ 3,k � {1, 2, 3, Á , m − 1}. fk ≤ a k−1m ≥ 3,
f2 = 1 ≤ a1 = (1 +

√
5)/2.f1 = 1 ≤ a0 = 1

fm ≤ am−1m = 2,m = 1

n ≥ 1. fn ≤ an−1(1 +
√

5)

2
,a

x2 = x + 1.a

fn
 fn−2 fn−1

116 CHAPTER 2 Set Theory

* Some mathematicians refer to the Well-Ordering Principle as the Well-Ordering Property. They
reserve the use of the term Well-Ordering Principle for the statement that for every set there is an order
that makes the set a well-ordered set. Orderings are discussed in Section 3.4.
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2.5 Equivalent Forms of Induction 117

Proof. If n is prime, then n is a prime factor of n. If n is composite, then n has fac-
tors other than 1 and n. Therefore the set

is a nonempty subset of �. By the WOP, T has a smallest element, which we call p.
We will show by contradiction that p is prime.

Suppose p is composite. Then p has a divisor d, with and Since
d divides p and p divides n, d divides n. Therefore, But this is a contradiction
since and p is the smallest element of T. Therefore p is a prime factor of n. �

As another example, we will prove that for every The
purpose of this example is not to establish the fact that but to see
how a proof using the WOP is done. So imagine for a moment that we did not know
that addition is commutative, and we will show how the statement can be proved
(from the associative property) by using the WOP.

Example. For every natural number n, 

Proof. Suppose there exists a natural number n such that Let b be
the smallest such number. Obviously, so Thus b must be of
the form for some See the successor properties for Then

Therefore, by the associative property for ,
Subtracting 1 from the right side from each expres-

sion, we have But this is a contradiction because and b is the
smallest natural number with the property. We conclude that for all
natural numbers n. �

The next three theorems were stated without proof earlier in the text. Each may
be proved using the WOP. The Division Algorithm was the primary result that we
used in Section 1.7 to develop interesting results about the greatest common divi-
sor (gcd) of two integers and linear combinations of the integers.

Theorem 2.5.1 The Division Algorithm
For all integers a and b, with there exist unique integers q and r such that

and 

Proof. Let a and b be integers and Assume that The proof in the case
is similar, and is left as an exercise. We must first show the existence of q and r.

Let If 0 is in S, then a divides b,

and we may take q to be the integer and Now assume that 
It follows from the assumption that Otherwise

Now if then and if then In
either case, the set S is nonempty.

By the Well-Ordering Principle, S has a smallest element, which we will call r.
Then for some integer q, so and We must also show
that Suppose  Then b − a(q + 1) = b − aq − a = r − a ≥ 0,r ≥ a.r < |a | = a.

r ≥ 0.b = aq + r,r = b − aq

b − a(2b) = b(1 − 2a) � S.b < 0b − a0 � S,b > 0
b − a0 = 0 � S.〉〈b =	 0.0 � S

0 � S.r = 0.b
a

S = {b − ak: k is an integer and b − ak ≥ 0}.
〉a < 0

〈a > 0.a =	 0.

0 ≤ r < |a | .b = aq + r
a =	 0,

n + 1 = 1 + n
c < bc + 1 =	 1 + c.

〉〈 (c + 1) + 1 =	  (1 + c) + 1.
�(c + 1) + 1 =	 1 + (c + 1).

�.〉〈c � �.b = c + 1
b =	 1.1 + 1 = 1 + 1,

n + 1 =	 1 + n.

n + 1 = 1 + n.

n + 1 = 1 + n,
n + 1 = 1 + n.n � �,

d < p
d � T.

d =	 1.d =	 p,
〉〈

T = {m � �: m divides n, m =	 n, and m =	 1}

62025_02_ch02_p114-134.qxd  4/21/10  11:18 PM  Page 117

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



so But and is the smallest mem-
ber of S. We conclude that 

To complete the proof, we must show that q and r are unique. Suppose there
exist integers q, , r, and such that

Without loss of generality, we may assume that Otherwise, we could re-
label r and Then which implies Then a
divides and Then must be 0, so Since

�

Section 1.7 also contained the following result about linear combinations of
integers. The short proof using the WOP is Exercise 8.

Theorem 2.5.2 Let a and b be nonzero integers. Then there is a smallest positive linear
combination of a and b.

The Fundamental Theorem of Arithmetic, stated in the Preface to the Student,
may also be proved using the WOP. See Exercise 9.

Theorem 2.5.3 The Fundamental Theorem of Arithmetic
Every natural number greater than 1 is prime or can be expressed uniquely as a
product of primes.

The final two theorems of this section show that the PMI, the PCI, and the
WOP are all equivalent.

Theorem 2.5.4 The Principle of Mathematical Induction and the Principle of Complete Induction
are equivalent.

Proof. The proof proceeds in two parts: The first part shows that PMI implies the
PCI, and the second part shows the converse.

Part 1. Assume that the PMI holds for �. Suppose S is a subset of � with this
property:

* 

As a step toward proving we first use the PMI to show that for every natu-
ral number 

(i) For the set is the empty set. Thus,
Therefore, by the property * for S, Thus,

Hence, for we have 
(ii) Assume that We must show

Since by the property *, we have Therefore,
{1, 2, 3, Á , n, n + 1} ⊆ S.

n + 1 � S.{1, 2, 3, Á , n} ⊆ S,
{1, 2, 3, Á , n + 1} ⊆ S.〉〈{1, 2, 3, Á , n} ⊆ S.

{1, 2, 3, Á , n} ⊆ S.n = 1,{1} ⊆ S.
1 � S.{1, 2, 3, Á , n − 1} ⊆ S.

{1, 2, 3, Á , n − 1}n = 1,

n, {1, 2, 3, Á , n} ⊆ S.
S = �,

for all natural numbers m, if {1, 2, 3, Á , m − 1} ⊆ S, then m � S.

〉
〈

a(q − q ′) = 0, q ′ = q.
r ′ = r.r ′ − r0 ≤ r ′ − r ≤ r ′ < |a | .r ′ − r,

a(q − q ′) = r ′ − r.aq + r = aq ′ + r ′,r ′.〉
〈r ′ ≥ r.

 b = aq ′ + r ′ with 0 ≤ r ′ < |a | .
 b = aq + r  with 0 ≤ r < |a |   and

r ′q ′

r < |a | .
b − aqb − a(q + 1) < b − aqb − a(q + 1) � S.

118 CHAPTER 2 Set Theory
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2.5 Equivalent Forms of Induction 119

(iii) By steps (i) and (ii), and the PMI, for every natural
number n. Now let n be a natural number. Then so

This shows Since S is a subset of we conclude that

Part 2. Now assume that the PCI holds for To show that the PMI is true, we
assume its hypothesis and use the PCI to show that the conclusion of the PMI

must also be true. Suppose S is a subset of � with two properties:

(i)
(ii) For all natural numbers n, if then 

We will prove To prove that we show that S satisfies the hypothesis 
for the PCI; namely, that for all if then

Let m be a natural number such that There are
two cases:

Case 1 If then by the first property of S. Thus the statement
implies is true when 

Case 2 If then from we have But
then by the second property for S, we have In this case, too, we
have implies .

We conclude that the statement implies is true form � S{1, 2, 3, Á , m − 1} ⊆ S,

m � S{1, 2, 3, Á , m − 1} ⊆ S
m � S.

m − 1 � S.{1, 2, 3, Á , m − 1} ⊆ S,m > 1,
m = 1.m � S{1, 2, 3, Á , m − 1} ⊆ S

1 � Sm = 1,

{1, 2, 3, Á , m − 1} ⊆ S.m � S.〉
{1, 2, 3, Á , m − 1} ⊆ S,m � �,

S = �,〈S = �.

n + 1 � S.n � S,
1 � S.

〉(S = �)

〈�.

S = �.
�,� ⊆ S.n � �.

{1, 2, 3, Á , n} ⊆ S,
{1, 2, 3, Á , n} ⊆ S

all natural numbers m. Therefore, by the PCI, �

Theorem 2.5.5 The Well-Ordering Principle is equivalent to the Principle of Mathematical
Induction.

Proof. This proof, like Theorem 2.5.4, proceeds in two parts: The first part shows
that the PMI implies the WOP, and the second part shows the converse.

Part 1. Assume that the PMI holds for To show that the WOP is true, we show
that every nonempty subset of has a smallest element. Suppose T is a nonempty
subset of Let Since The proof now proceeds by con-
tradiction. We suppose T has no smallest element and use the PMI to show that

Suppose that T has no smallest element.

(i) Since 1 is the smallest element of � and T has no smallest element, 
Therefore, 

(ii) Suppose that No number less than n belongs to T, because, if any of
the numbers were in T, then one of those numbers would
be the smallest element of T. We know because Therefore,

cannot be in T, or else it would be the smallest element of T. Thus,

(iii) By parts (i) and (ii) and the PMI, which is a contradiction to 
Therefore, T has a smallest element.

Part 2. The proof that the WOP implies the PMI is Exercise 12(b). �

S =	 �.S = �,
n + 1 � S.
n + 1

n � S.n � T
1, 2, 3, Á , n − 1
n � S.

1 � S.
1 � T.

S = �.〉

〈S =	 �.T =	 �,S = � − T.�.
〉�

〈�.

〉
〈

S = �.
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Exercises 2.5

1. Use the PCI to prove that

� (a) every natural number greater than 22 can be written in the form 
where s and t are integers, and 

(b) every natural number greater than 33 can be written in the form 
where s and t are integers, and 

2. Let and for all Prove that 
for all natural numbers n.

3. In this exercise you are to prove some well-known facts about numbers as a
way of demonstrating use of the WOP. Use the WOP to prove the following:
(a) If then for every natural number n, 
(b) For all positive integers a and b, (Hint: Suppose for some a

there is b such that By the WOP, there is a smallest such
that, for some b, Apply the WOP again.)

� (c) is irrational.

4. In 1202, Leonardo Fibonacci posed the following problem: Suppose a partic-
ular breed of rabbit breeds one new pair of rabbits each month, except that a
1-month-old pair is too young to breed. Suppose further that no rabbit breeds
with any other except its paired mate and that rabbits live forever. At 1 month
we have our original pair of rabbits. At 2 months we still have the single pair.
At 3 months, we have two pairs (the original and their one pair of offspring).
At 4 months we have three pairs (the original pair, one older pair of off-
spring, and one new pair of offspring).
(a) Show that at n months, there are pairs of rabbits.
(b) Calculate the first ten Fibonacci numbers 
(c) Find a formula for 

5. Use the PMI to show that each of the following statements about Fibonacci
numbers is true:

� (a) is even and both and are odd for all natural numbers n.
(b) for all natural numbers n.
(c) for all natural numbers n.

� (d) for all natural numbers n.

6. Use the PCI to prove the following properties of Fibonacci numbers:
(a) is a natural number for all natural numbers n.
(b) for all natural numbers n.
(c) For any natural number a, for all natural

numbers n.
� (d) (Binet’s formula) Let be the positive solution and the negative 

solution to the equation (The values are and 

Show for all natural numbers n that

fn =  
an − bn

a − b  .

b = 1 −
√

5

2
.)

a = 1 +
√

5

2
x2 = x + 1.

ba

fa fn +  fa+1 fn+1 =  fa+n+1

fn+6 = 4 fn+3 + fn
fn

f1 +  f2 +  f3 + Á +  fn =  fn+2 − 1
gcd(  fn, fn+2) = 1
gcd(  fn, fn+1) = 1

f3n+2f3n+1f3n

fn+3 −  fn+1.
f1,  f2,  f3, Á ,  f10.

fn

√
2

b = a0 + b.
a0b = a + b.

b =	 a + b.
an > 0.a > 0,

an = 2nn ≥ 1.an+2 = 5an+1 − 6ana2 = 4,a1 = 2,

t ≥ 2.s ≥ 3
4s + 5t,

t ≥ 2.s ≥ 3
3s + 4t,

120 CHAPTER 2 Set Theory
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2.5 Equivalent Forms of Induction 121

� 7. Complete the proof of the Division Algorithm (Theorem 2.5.1) for the case
That is, show that for all integers a and b, with there exist

unique integers q and r such that and 

8. Let a and b be nonzero integers. Prove that there is a smallest positive linear
combination of a and b. (Theorem 2.5.2)

� 9. Prove the Fundamental Theorem of Arithmetic: Every natural number greater
than 1 is prime or can be expressed uniquely as a product of primes.

10. In the tournament described in Exercise 12 of Section 2.4, a top player is
defined to be one who either beats every other player or beats someone who
beats the other player. Use the WOP to show that in every such tournament
with n players there is at least one top player.

11. Let the “Fibonacci-2” numbers be defined as follows:

(a) Calculate the first five “Fibonacci-2” numbers.
(b) Show that 

12. Complete the proof of the equivalences of the PMI, PCI, and WOP by
(a) using the PCI to prove the WOP.

� (b) using the WOP to prove the PMI.
(c) using the WOP to prove the PCI.

Proofs to Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. For all natural numbers n, 5 divides 

“Proof.” Suppose there is such that 5 does not divide 
Then by the WOP there is a smallest such natural number t. Now 
since 5 does divide Therefore is a natural number smaller
than t, so 5 divides But then 5 divides and
5 divides so 5 divides their sum, which is This is a con-
tradiction. Therefore, 5 divides for all �

� (b) Claim. For every natural number n, 3 divides 
“Proof.” Suppose there is a natural number n such that 3 does not
divide By the WOP, there is a smallest such number. Call
this number m. Then is a natural number and 3 does divide

But 3 also divides so 3 divides the sum of these two
expressions, which is This contradicts what we know about
m. Therefore, the set 3 does not divide must be
empty. Therefore, 3 divides  for every natural number n. �

(c) Claim. The PCI implies the WOP.
“Proof.” Assume the PCI. Let T be a nonempty subset of �. Then
T has some element x. Then By the PCI, {1, 2, Á , x − 1} ⊆ � − T.

n3 + 2n + 1,
n3 + 2n + 1}{n � �:

m3 + 2m + 1.
3m2 − 3m + 3,

 = m3 − 3m2 + 5m − 2.

 (m − 1)3 + 2(m − 1) + 1 = m3 − 3m2 + 3m − 1 + 2m − 2 + 1

m − 1
n3 + 2n + 1.

n3 + 2n + 1.
n � �.8n − 3n

8t − 3t.5(3t−1),
8(8t−1 − 3t−1)8t−1 − 3t−1.

t − 181 − 31.
t =	 1

8n − 3n.n � �

8n − 3n.

gn = 2 fn.

g1 = 2, g2 = 2, and gn+2 = gn+1gn for all n ≥ 1.

gn

(n � �),

0 ≤ r < |a | = −a.b = aq + r
a < 0,a < 0.
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This is a contradiction, because and 
Therefore T has a smallest element. �

(d) Claim. The WOP implies the PCI.
“Proof.” Assume the WOP. To prove the PCI, let S be a subset of such
that for all natural numbers m, Let Then

is an integer, so However,
so Thus every natural number is in S, so �S = �.k � S.(k + 1) − 1 = k,

{1, 2, Á , (k + 1) − 1} ⊆ S.k + 1
k � �.{1, 2, 3, Á , m − 1} ⊆ S.

�

x � � − T.x � Tx � � − T.

122 CHAPTER 2 Set Theory

2.6 Principles of Counting

Recall from the Preface to the Student that a set A is finite or A has n ele-
ments for some For a finite set A the number of elements in A is denoted 
For example, if and then and This sec-
tion describes some of the fundamental techniques for counting the number of ele-
ments in finite sets.

A more precise development of the concepts of the cardinality (number of ele-
ments) and finiteness of a set appears in Chapter 5. For this reason, proofs of the
basic counting rules in this section appear in Section 5.1.

Theorem 2.6.1 The Sum Rule
Let A and B be finite sets with m and n elements, respectively. If A and B are disjoint
then 

We use the Sum Rule so often, we don’t have to think about it: If a basket has
5 oranges and 6 apples, then there are 11 pieces of fruit in the basket. The rule can
be extended to any finite number of sets. We prove the Generalized Sum Rule by
using the Principle of Mathematical Induction.

Theorem 2.6.2 The Generalized Sum Rule
For all and for every family of n distinct
pairwise disjoint sets, if for then

Proof. The proof is by induction on the number n of sets in the family �.

(i) If then 

(ii) Suppose for some that for and 

for every family of n distinct pairwise disjoint
sets. Let be a family of distinct pairwise 
disjoint sets with for Then i = 1, 2, Á , n + 1.Ai = ai

n + 1� = {A1, A2, A3, Á , An+1}
� = {Ai: i = 1, 2, 3, Á , n}

⋃n

i=1
Ai =

∑n

i=1
aii = 1, 2, Á , nAi = ain � �

⋃1

i=1
Ai = A1 = a1 =

∑1

i=1
ai.n = 1,

⋃n

i=1
Ai =

∑n

i=1
ai.

1 < i < n,Ai = ai

� = {Ai : i = 1, 2, 3, Á , n}n � �

A ∪ B = m + n.

B = 5.A = 2B = {3, 2, 1, 5, 9}A = {p,  q}
A.n � �.

A = �  iff  
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2.6 Principles of Counting 123

〈 〉

(iii) By the PMI, the Generalized Sum Rule is true for every family of n distinct
pairwise disjoint sets, for all �

The Generalized Sum Rule is useful in situations where it would be practically
impossible for any individual to make an acceptably accurate count. For example,
a good estimate of the total population of a country on a fixed date (a census) may
be accomplished by summing the results of the combined work of thousands of
individuals, each of whom does a count for a designated small geographic area.

If sets A and B are not disjoint (see Figure 2.6.1), then determining the number
of elements in by simply adding and overcounts by counting
twice each element of Theorem 2.6.3 corrects this error by subtracting

from 

Figure 2.6.1

Theorem 2.6.3 For finite sets A and B, 

Proof. By the Sum Rule, and Applying
the Generalized Sum Rule to the distinct and pairwise disjoint sets 
and we have �

If we know the number of elements in A, B, and we can use Theorem 2.6.3
to determine 

A ∩ B = A + B − A ∪ B.

A ∩ B:
A ∪ B,

A ∪ B = A − B + A ∩ B + B − A = A + B − A ∩ B.B − A,
A ∩ B,A − B,

B = B − A + A ∩ B.A = A − B + A ∩ B

A ∪ B = A + B − A ∩ B.

A B

A + B.A ∩ B
A ∩ B.

A ´ BBAA ∪ B

n � �.

=  
∑n+1

i=1
ai.

n distinct pairwise disjoint sets〉
{A1, A2, A3, Á An} is a collection of

=
∑n

i=1
ai + an+1  〈by the hypothesis of induction since

by the Sum Rule since 
⋃n

i=1
 Ai and An+1 are disjoint=

⋃n

i=1
Ai + An+1

⋃n+1

i=1
Ai = a⋃n

i=1
Aib ∪ An+1
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124 CHAPTER 2 Set Theory

Example. During one week a total of 46 patients were treated by Dr. Medical for
either a broken leg or a sore throat. Of these, 32 had a broken leg and 20 had a sore
throat. How many did she treat for both ailments? 

Letting B be the set of patients with broken legs and S the set of patients with
sore throats, the solution is

Applying the Sum Rule to the disjoint sets and we could also find
that so there were 26 patients with a broken leg but
no sore throat. Similarly, we could determine that 14 patients had just a sore throat.
See Figure 2.6.2.

Figure 2.6.2

Example. French and German are two of the four national languages of Switzer-
land. Suppose 80% of Swiss residents speak German fluently, 66% speak French
fluently, and 52% are fluent in both languages. What percentage of Swiss residents
are not fluent in either French or German?

To solve this problem, we first find the percentage of residents fluent in at
least one of the two languages and subtract this result
from 100%. Based on the given estimates, 6% of residents are not fluent in either
language.

Theorem 2.6.3 can be extended to three or more sets by the Principle of Inclu-
sion and Exclusion. The idea is that, in counting the number of elements in the
union of several sets by counting the number of elements in each set, we have
included too many elements more than once; so some need to be excluded, or sub-
tracted, from the total. When more than two sets are involved, this first attempt at
exclusion will subtract too many elements, so that some need to be added back or
included again, and so forth. For three sets A, B, C, the Principle of Inclusion and
Exclusion states that

The inclusion and exclusion formulas for more than 3 sets are lengthier. (See
Exercise 5.) The Principle is often applied to determine the number of elements not
in any of several sets, as in Exercise 6.

The next basic counting rule is as simple to state as the Sum Rule.

A ∪ B ∪ C = [ A + B + C] − [A ∩ B + A ∩ C + B ∩ C ] + A ∩ B ∩ C.

(80 + 66 − 52 = 94)

B S

6 1426

B − S = B − B ∩ S = 32 − 6,
B ∩ S,B − S

B ∩ S = B + S − B ∪ S = 32 + 20 − 46 = 6.
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2.6 Principles of Counting 125

Theorem 2.6.4 The Product Rule
If A and B be finite sets with m and n elements, respectively, then 

The Product Rule may be applied to counting the total number of ways to 
perform two independent tasks (jobs or activities). By independent we mean that 
the occurrence of one task has no influence on the occurrences of other tasks. For
example, if we want to select one prime number (task #1) and one composite number
(task #2) from the set there are possible ways to per-
form the two tasks.

Like the Sum Rule, the Product Rule can be extended to more than 2 sets.

Theorem 2.6.5 The Generalized Product Rule
For all and for every family of n sets, if 
for then

Proof. See Exercise 12. �

Example. To find the number of three-digit positive integers, we must perform
three tasks: Choose each of the three digits. There are 10 possibilities for the units
digit and 10 for the tens digit, but only 9 possibilities for the hundreds digit, because
it can’t be zero. By the product rule there are ways to form a
three-digit positive integer. We can check this result easily: Of the 999 numbers
from 1 to 999, the first 99 have only one or two digits, so 900 have three digits.

Example. To find the number of three-digit positive integers with no repeated digits,
we might begin by observing that there are 10 possibilities for the units digit and nine
remaining possibilities for the tens digit. At this point we see that the task of choosing
the hundreds digit is not independent of the other tasks: The number of possibilities
depends on whether 0 is chosen for either the units or the tens digit. To use the Product
Rule we must think of a different sequence of tasks, or perhaps of carrying out these
tasks in a different order. Beginning with the hundreds digit there are 9 possibilities
(everything but 0), then 9 possibilities for the tens digit, and 8 for the units digit. Thus
there are three-digit positive integers with no repeated digits.

Example. To find the number of odd three-digit positive integers with no repeated
digits, one method is to choose the units digit (there are 5 possibilities), then the
hundreds digit (8 possibilities, to avoid 0 and the chosen units digit), and finally the
tens digit (again, 8 possibilities). Thus, there are 320 odd three-digit positive inte-
gers with no repeated digits. 

It is instructive to use another method for this problem. A situation similar to that
of the previous example arises if we begin with the units digit, then the tens digit, and
finally the hundreds digit. To resolve this problem, we consider two disjoint sets of
three-digit integers: those with 0 as the tens digit and those with a nonzero tens digit.
For the first set, there are 5 possible units digits, only one possible tens digit, and 8

9 · 9 · 8 = 648

10 · 10 · 9 = 900

A1 × A2 × Á × An =
∏n

i=1
ai.

1 < i < n,
Ai = ai� = {Ai: i = 1, 2, 3, Á , n}n � �

4 · 7 = 28{10, 11, 12, Á 20},

A × B = mn.
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126 CHAPTER 2 Set Theory

possible hundreds digits. There are 40 such integers. For the second set, there are 5
possible units digits, 8 possible tens digits, and 7 possible hundreds digits, making
280 integers in this set. By the Sum Rule, there are a total of 320 odd three-digit pos-
itive integers with no repeated digits.

If the set A has n elements, then forming a subset of A amounts to carrying out
n independent tasks, where each task is to decide whether to place the element in
the subset. Since each task has two outcomes, there are ways this process can be
carried out, so has elements. This argument is a restatement of the proof of
Theorem 2.1.4.

2n� (A)
2n

DEFINITION A permutation of a set with n elements is an arrangement
of the elements of the set in a specific order.

Example. To find all permutations of the set we might begin by
writing down all the arrangements of elements of A that begin with the element a.
These are:

abcd abdc acbd acdb adbc adcb

The other permutations of A are:

bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba

There are 24 permutations of the 4-element set A.

Recall that n! (n-factorial) is defined inductively by

or explicitly as We also define 

Theorem 2.6.6 The number of permutations of a set of n elements is n!.

Proof. See Exercise 13. �

Example. A shuffle of the playlist on a portable music device is simply a permu-
tation of the set of song titles. For a playlist of 10 songs there are 
possible different playlists.

Example. Find the number of possible user passwords with 7 characters that con-
sist of digits or letters of the alphabet, without repetition.

Ignoring the case of the letters, we can think of the problem as having to select
7 different symbols without repetition from a set of 36, and then arranging them in 

10! = 3,628,800

0! = 1.n! = n(n − 1)(n − 2) · Á · 3 · 2 · 1.

n! = n(n − 1)! for n > 1

1! = 1

A = {a, b, c, d},
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2.6 Principles of Counting 127

some order. For the first symbol there are 36 choices; for the second 
symbol there are 35 choices, and so on. The number of arrangements is

according to the next theorem.

Theorem 2.6.7 The Permutation Rule
If n is a natural number and r is an integer such that then the number of
permutations of any r distinct objects from a set of n objects is

Proof. See Exercise 14. �

Example. An entertainment agent has five celebrity clients and wants to list three
of them on an Internet pop-up ad. Celebrities want to be listed first, not last, so the

order is important. The agent has permutations from which to
choose.

If the ad were animated with the three pictures rotating around a circle, the
order of selection would not be important—we simply select a group of three
clients from the five. This is a combination of 5 people taken 3 at a time.

5!

(5 − 2)!
= 5!

2!
 = 60

n!

(n − r)!

0 ≤ r ≤ n,

36 · 35 · 34 · 33 · 32 · 31 · 30 =  
36!

29!
,

DEFINITIONS For a natural number n and an integer r with a
combination of n elements taken r at a time is a subset with r elements from
a set with n elements.

The number of combinations of n elements taken r at a time is called the

binomial coefficient read “n choose r” or “n binomial r.”an

r
b

0 ≤ r ≤ n,

Example. Choosing three people from a set of five people is the same as forming

a 3-element subset. There are different possible combinations. If we identify

the five people as R, C, W, H, and P, the 3-element subsets are {R, C, W}, {R, C,
H}, {R, C, P}, {R, W, H}, {R, W, P}, {R, H, P}, {C, W, H}, {C, W, P}, {C, H, P},

and {W, H, P}. Thus, 

For any set with n elements, there is only one way to select a subset of n ele-
ments. Therefore, 

Also, there is only one way to construct a subset with zero elements. Therefore, 

an

0
b = 1 for all n � �.

an

n
b = 1 for all n � �.

a5

3
b = 10.

a5

3
b
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128 CHAPTER 2 Set Theory

In particular, there is only one 0-element subset of —the empty set itself. Thus

Example. The set has four subsets with one element and four sub-
sets with three elements. A has six subsets with two elements. They are {a, b}, {a, c},

{a, d}, {b, c}, {b, d}, and {c, d}. Thus, and 

The next theorem develops a simple calculation for binomial coefficients. The
proof is a good example of a technique called two-way counting, in which expres-
sions for a given quantity are determined using two different counting approaches,
thereby creating an equality.

Theorem 2.6.8 The Combination Rule
Let n be a positive integer and r be an integer such that Then

Proof. The quantity we count in two different ways is the number of ways to
arrange the n objects in an n-element set. Let A be a set with n elements. By
Theorem 2.6.6, the number of permutations of all n objects in A is n!

The n elements of the set A may also be arranged as follows: Select r objects,
order them, and then order the remaining objects. Selecting r objects can be

done in ways; ordering the r objects can be done in r! ways; and ordering 

the remaining objects can be done in ways. Thus, the number of 

permutations of all n objects in A is 

Comparing the two methods for counting the number of permutations of the

elements of A, we have Therefore �

Example. In a company with 15 employees, suppose 5 are selected for bonus pay.
The number of ways the 5 employees could be selected is

For this calculation, we assumed that all 5 employees will receive the same bonus
amount, so that there is no need to think of the 5 employees as being selected in any
order. They may be selected simultaneously as a subset of the 15.

If the 5 selected employees are to get different bonus amounts, we need to
arrange these employees in order. There are 5! ways to order 5 employees. Thus the
number of ways to give 5 different bonuses is the number of combinations times the
number of permutations within each combination, or 3003(5!) = 360,360.

a15

5
b = 15!

5! 10!
= 15 · 14 · 13 · 12 · 11

5 · 4 · 3 · 2 · 1
= 3003.

Qn
r
R = n!

r!(n − r)!
.an

r
b · r! · (n − r)! = n!.

an

r
b · r! · (n − r)!.

(n − r)!n − r

an

r
b

n − r

〉
〈

an

r
b = n!

r!(n − r)!
.

0 ≤ r ≤ n.

a4

3
b = 4.a4

1
b = 4, a4

2
b = 6,

A = {a, b, c, d}

a0

0
b = 1.

�
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2.6 Principles of Counting 129

If we know from the start that there will be five different bonus amounts, we
use the Permutation Rule to conclude that the five employees can be selected, in
order, in ways.

Example. Let In how many ways
can four elements of A be selected so that their sum is (a) less than 400? (b) odd?
(c) even and less than 400?

(a) For the sum to be less than 400, we can choose any four of the six elements

of A that are less than 100. This can be done in ways.

(b) There are three odd numbers in A, so for the sum to be odd we must select

either all three of them or exactly one. There is only way to

choose all three of them, and then  ways to choose the fourth 

summand from the seven even numbers. By the Product Rule there are
combinations using all three odd numbers. To form an odd sum 

with only one odd summand, there are ways to choose the odd 

number and ways to choose three even numbers from A. By the 

Product Rule there are combinations involving one odd num-
ber. Thus there are combinations of four elements of A
whose sum is odd.

(c) A contains two odd numbers less than 400; for an even sum we must use both

of them or neither. There are ways to choose two odd

and two even numbers and way to choose four even

numbers less than 400. Thus, there are seven combinations whose sum is
even and less than 400. As an alternative, we could compute that an odd sum
less than 400 requires one of two odd elements of A and three of the four

even elements. There are such combinations, which

leaves 7 of the 15 sums that are even.

The next theorem describes some relationships among binomial coefficients.

First, part (a) explains why is called a binomial coefficient: The coefficient 

of in the expansion of is For example, 

Thus, the coefficient of is

and the coefficient of is 

Part (b) tells us that there are as many ways to choose r objects out of a set with
n elements as there are ways to choose objects from the set. This must be truen − r

a  

5

1
b = 5.a1b4a  

5

3
b = 10,

a3b2a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

(a + b)5 =an

r
b .(a + b)rar bn−r

an

r
b

a  

2

1
b · a  

4

3
b = 2 · 4 = 8

a  

2

0
b a  

4

4
b = 1 · 1 = 1

a  

2

2
b a  

4

2
b = 1 · 6 = 6

7 + 105 = 112
3 · 35 = 105

a  

7

3
b = 35

a  

3

1
b = 3

1 · 7 = 7

a  

7

1
b = 7

a  

3

3
b = 1

a  

6

4
b = 15

A = {2, 3, 6, 18, 38, 81, 442, 469, 574, 608}.

15 · 14 · 13 · 12 · 11 = 360,360
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130 CHAPTER 2 Set Theory

because choosing r elements to take out is the same as choosing objects to
leave behind. We will consider an interpretation of part (c) at the end of this section.

Relationships among binomial coefficients can often be proved either alge-
braically or combinatorially. An algebraic proof is one that applies formulas such as
those in Theorem 2.6.8. Combinatorial proofs are based on the meaning of the bino-
mial coefficients. In Theorem 2.6.9, we give a combinatorial proof for part (a) and
an algebraic proof for part (b).

Theorem 2.6.9 Let n be a positive integer and r be an integer such that 

(a) For a, 

(b)

(c)

Proof.

(a) Since each term of the expansion 

of contains one term from each of the n factors Thus,
each term of contains a total of n a’s and b’s and, therefore, each
term includes a factor of the form for some For a given
r, the coefficient of is the number of times is obtained in the
expansion of Since the term with is obtained by choosing

a from exactly r of the factors the coefficient for is 

(b)

(c) See Exercise 21. �

Part (a) of Theorem 2.6.8 provides another way to count the number of subsets of

a finite set. If a set A has n elements, we start with the number of 0-element

subsets of A, plus the number of 1-element subsets of A, and so on, up through

the number of n-element subsets of A. The sum, is the number of 

subsets of A. By part (a), Therefore, A

has subsets.
To explain the relationship among coefficients in part (c) of Theorem 2.6.9, we

refer to Pascal’s* triangle, shown in Figure 2.6.3. The triangle provides a simple

2n

2n = (1 + 1)n =
∑n

r=0
an

r
b1r1n−r =

∑n

r=0
an

r
b .

∑n

r=0
an

r
ba  

n

n
b ,

a  

n

1
b ,

a  

n

0
b ,

Qn
r
R =  

n!

r!(n − r)!
 =  

n!

(n − r)! (n − (n − r))!
 = Q  

n

n − r
 R.

a  

n

r
b .arbn−r(a + b),

arbn−r(a + b)n.
arbn−rarbn−r

0 ≤ r < n.arbn−r
(a + b)n

(a + b).(a + b)n

(a + b)n = (a + b)(a + b) Á (a + b),

Qn
r
R = Q  

n − 1

r
R + Q  

n − 1

r − 1
R for r ≥ 1.

Qn
r
R = Q  

n

n − r
 R.
(a + b)n =

∑n

r=0
an

r
b arbn−r.b � �,

0 ≤ r ≤ n.

n − r

* Blaise Pascal (1623–1662) was a French mathematician, physicist, and philosopher. He made pro-
found contributions to projective geometry. He used the triangle, which was known centuries earlier by
Chinese, Indian, and Arabian mathematicians, to advance the study of probability.

{
n factors
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2.6 Principles of Counting 131

means for computing binomial coefficients. For example, we read on row 
(rows are labeled on the left) the coefficients for , for r increasing from 0 to
4. Thus

Figure 2.6.3

Pascal’s triangle illustrates part (c) of Theorem 2.6.9. The triangle is con-
structed by beginning with the first two rows

and constructing the next row by putting 1 on the far left and far right. All other
entries in a row are found by adding the two entries immediately to the left and right
in the preceding row. Thus, the first 10 in the fifth row is the sum of 4 and 6 from
the fourth row. Part (c) of Theorem 2.6.9 tells precisely how each entry in one row
of the triangle is formed from the two entries in the row above.

Exercises 2.6

1. Find the number of elements in each set.
(a) (b) {2, 6, 2, 6, 2}.

(c) (d)

2. Suppose and
Find

(a) � (b)
(c) (d)
(e) (f)

� 3. How many natural numbers less than or equal to 1 million are either squares
or cubes of natural numbers?

A ∪ C.C.
B ∪ C.B − A.
A − B.A ∩ B.

C − B = 12.
B − C = 10,A ∩ C = 11,A ∪ B = 37,B = 21,A = 24,

{n � �: n + 1 = 4n − 10}.{x � �: x2 = −1}.

{n � �: n2 < 41}.

1

1  1

n � 6 1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

n � 5

n � 4

n � 3

n � 2

n � 1

n � 0

r �
 0

r �
 1

r �
 2

r �
 3

r �
 4

r �
 5

r �
 6

(a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4.

an bn−r
n = 4
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132 CHAPTER 2 Set Theory

4. Of the four teams in a softball league, one team has four pitchers and the other
teams have three each. Give the counting rules that apply to determine each of
the following.
(a) The number of possible selections of pitchers for an all-star team, if

exactly four pitchers are to be chosen.
(b) The number of possible selections if one pitcher is to be chosen from

each team.
(c) The number of possible selections of four pitchers, if exactly two of the

five left-handed pitchers in the league must be selected.
(d) The number of possible orders in which the four pitchers, once they are

selected, can appear (one at a time) in the all-star game.

� 5. State the Principle of Inclusion and Exclusion for four sets, A, B, C, 
and D.

6. Among the 40 campers at Camp Forlorn one week, 14 fell into the lake during
the week, 13 suffered from poison ivy, and 16 got lost trying to find the dining
hall. Three of these campers had poison ivy rash and fell into the lake, 5 fell
into the lake and got lost, 8 had poison ivy and got lost, and 2 experienced all
three misfortunes. How many campers got through the week without any of
these mishaps?

7. (a) If you have 10 left shoes and 9 right shoes and do not care whether they
match, how many “pairs” of shoes can you select?

(b) A cafeteria has 3 entrée selections, 2 side dishes, and 4 dessert selections
for a given meal. If a meal consists of one entrée, one side dish, and one
dessert, how many different meals could be constructed?

(c) There are 3 roads from Abbottville to Bakerstown, 4 roads from Baker-
stown to Cadez, and 5 roads from Cadez to Detour Village. How many
different routes are there from Abbottville through Bakerstown and then
Cadez to Detour Village?

8. Calculate the number of even three-digit positive integers with no repeated
digits by finding the number of such integers that have (a) units digit 0 and (b)
nonzero units digit. Verify your answer by comparing the number of odd
three-digit positive integers with no repeated digits with the total number of
three-digit positive integers with no repeated digits.

9. (a) Find the number of four-digit positive integers with no repeated digits.
(b) Find the number of odd four-digit positive integers with no repeated digits.
(c) Without using your results from (a) and (b), find the number of even

four-digit positive integers with no repeated digits.

� 10. A square is bisected vertically and horizontally into 4 smaller squares, and
each of the 4 smaller squares is to be painted so that adjacent squares have dif-
ferent colors. If there are 20 paints available, in how many ways can the 4
smaller squares be painted?

11. Prove that if A and B are disjoint and C is any other set, then 

12. Prove Theorem 2.6.5 by induction on the number of sets.

13. Prove Theorem 2.6.6 by induction on the number of elements.

A ∪ B ∪ C = A + B + C − A ∩ C − B ∩ C.
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2.6 Principles of Counting 133

14. Prove Theorem 2.6.7.
(a) by using the Product Rule.
(b) by induction on n. Use part (c) of Theorem 2.6.9.

15. Find the number of passwords that use each of the digits 3, 4, 5, 6, 7, 8, 9
exactly once.

16. In how many of the passwords of Exercise 15
(a) are the first three digits even?
(b) are the three even digits consecutive?
(c) are the four odd digits consecutive?
(d) are no two odd digits consecutive?

17. The number of four-digit numbers that can be formed using exactly the digits
1, 3, 3, 7 is less than 4!, because the two 3’s are indistinguishable. Prove that
the number of permutations of n objects, m of which are alike, is Gen-
eralize to the case when are alike and others are alike.

18. Among ten lottery finalists, four will be selected to win individual amounts of
$1000, $2000, $5000, and $10,000. In how many ways can the money be
distributed?

19. A vacationer is selecting 3 out of 19 recommended books to take along for
reading at the beach. Eleven are fiction books.
(a) How many selections are possible?
(b) How many of these selections have exactly 2 of the 11 fiction books?
(c) How many of these selections have exactly one fiction book?

20. Among 14 astronauts training for a Mars landing, 5 have advanced train-
ing in exobiology. If 4 astronauts are to be selected for a mission, how
many selections can be made in which 2 astronauts have expertise in
exobiology?

21. Prove these parts of Theorem 2.6.9 as follows:
� (a) Prove part (a) by induction on n.

(b) Prove part (c) algebraically.
� (c) Prove part (c) using a combinatorial argument.

22. Find
(a)
(b)
(c) the coefficient of in the expansion of 
(d) the coefficient of in the expansion of 

23. (a) Give a combinatorial proof that if n is an odd integer, then the number of
ways to select an even number of objects from a set of n objects is equal
to the number of ways to select an odd number of objects.

� (b) Give a combinatorial proof of Vandermonde’s identity: For positive
integers m and n, and r an integer such that 

+ Á +  an

r
b  am

0
b .

an + m

r
b = an

0
b  am

r
b + an

1
b  a m

r − 1
b + an

2
b  a m

r − 2
b

0 ≤ r ≤ n + m,

(a + 2b)12.a2b10
(a + b)13.a3b10

(a + 2b)4.
(a + b)6.

m2m1

n!/m!.
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134 CHAPTER 2 Set Theory

(c) Prove that

Proofs to Grade 24. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

(a) Claim. For all 

“Proof.” Consider a set of elements, and let one of these elements

be x. There are ways to choose of these elements.

Of these, there are ways to choose the elements

without choosing x, and ways to choose ele-

ments including x. Therefore,  �

(b) Claim. For 

“Proof.”

�

(c) Claim. For the number of ways to select an even number of
objects from n is equal to the number of ways to select an odd number.
“Proof.” From part (b) of this exercise The claim made there is
correct. we have that

The left side of this equality gives the number of ways to select an even
number of objects from n and the right side is the number of ways to
select an odd number. �

an

0
b + an

2
b + Á = an

1
b + an

3
b + Á

〉,
〈

n ≥ 1,

 = an

0
b − an

1
b + an

2
b − Á + (−1)k an

k
b + Á + (−1)n an

n
b .

 0 = (−1 + 1)n =
∑n

k=0
 an

k
b  (−1)k (1)n−k

an

0
b − an

1
b + an

2
b − Á + (−1)k an

k
b + Á + (−1)n an

n
b = 0.

n ≥ 1,

n2 + n

2
 = n +  

n2 − n

2
.

n − 1Q n

n − 2
R = n2 − n

2

n - 1Q n

n − 1
R = n

n − 1Qn + 1

n − 1
R = n2 + n

2

n + 1

n2 + n

2
 = n +  

n2 − n

2
.n ≥ 0,

Q  
2n

n
R + Q  

2n

n + 1
 R = 1

2
 Q  

2n + 2

n + 1
R
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135

C H A P T E R  3

Relations and Partitions

Given a set of objects, we may want to say that certain pairs of objects are related
in some way. For example, we may say that two people are related if they have the
same citizenship or the same blood type, or if they like the same kinds of food. If a
and b are integers, we might say that a is related to b when a divides b. In this chap-
ter we will study the idea of “is related to” by making precise the notion of a rela-
tion and then concentrating on certain relations called equivalence relations. The
last two sections of the chapter introduce order relations and the theory of graphs.

3.1 Cartesian Products and Relations

When we speak of a relation on a set, we identify the notion of “a is related to b” with
the ordered pair (a, b). For the set of all people, if Phoebe and Monica were born on
the same day of the year, then the pair (Phoebe, Monica) is in the relation “has the
same birthday as.” Thus a relation may be defined simply as a set of ordered pairs.

DEFINITIONS Let A and B be sets. R is a relation from A to B R is
a subset of A relation from A to A is called a relation on A.

If we write a R b and say a is R-related (or simply related)
to b. If we write a R b.(a, b) � R,

(a, b) � R,
A × B.

  iff  

Examples. If and let

Then R is a relation from A to B, S is a relation from B to A and the set T is a rela-
tion on A.

 T = {(−1, 3), (2, 3), (4, 4)}.

 S = {(5, 2), (4, 3), (1, 3)}, and

 R = {(−1, 5), (2, 4), (2, 1), (4, 2)},

B = {1, 2, 4, 5, 6},A = {−1, 2, 3, 4}
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136 CHAPTER 3 Relations and Partitions

We could describe the relation R by writing and 
Since we write We can also describe R by listing the pairs of R in a
two-column table, by displaying the relation with an arrow diagram, or by drawing the
graph of R as in Figure 3.1.1.

3 R 5.(3, 5) � R,
4 R 2.2 R 1,2 R 4,−1 R 5,

• 5 --    

4 --         •2

3 --

•
•

6 -- 

1
 –1

2

4
2 -- 3

5 1 -- 
4

 –1

2

2

4

 5

4

1

2

 | |   |   |     |  
6 –1     2    3    4   

(a) Table for R (b) Arrow diagram for R (c) Graph of R

Figure 3.1.1

An equation, inequality, expression, or graph is often used to describe a relation,
especially when listing all pairs is impractical or impossible. For example, the rela-
tion is the familiar “less than” relation on since 

The graph of LT is shown (shaded) in Figure 3.1.2.x < y.  iff  x LT y
�,LT = {(x, y) � � × �: x < y}

y

x < y

x

Figure 3.1.2

You have worked with the graphs of relations in previous courses, because, as
we will see in Chapter 4, functions are relations that satisfy an additional condition.

Example. The phone faceplate pictured on the next page may be used to define a
relation from the set of digits to the set of 26 letters

The relation R defined by “appear on the same phone button” is
a subset of containing 24 pairs. The pair since 4 and G appear on
the same button. Likewise, and are true. since 3 and T do
not appear together. Also E and P are true.4 R 1 R 

(3, T) � R6 R M9 R Y
(4, G) � RΔ × ≠

≠ = {A, B, C, Á}.
Δ = {0, 1, 2, Á , 9}
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3.1 Cartesian Products and Relations 137

Consider the relation S on the set given by 
Then (3, 17) S (12, 8), but (5, 4) is not S-related to (6, 15). Notice

that S is a relation from to and consists of ordered pairs whose
entries are themselves ordered pairs. For this reason, the description above is some-
what simpler than defining S with set notation:

The empty set and the set are relations from A to B. In general,
there are many different relations from a set A to a set B because every subset of

is a relation from A to B. In Exercise 12 you are asked to prove that if A
has m elements and B has n elements, then there are different relations from
A to B.

2mn
A × B

A × B�

S = {((m, n), (k, j)) � (� × �) × (� × �): m + n = k + j}.

� × �� × �

m + n = k + j.
  iff  (m, n) S (k, j)� × �

DEFINITIONS The domain of the relation R from A to B is the set

The range of the relation R is the set

Rng (R) = {y � B: there exists x � A such that x R y}.

Dom (R) = {x � A: there exists y � B such that x R y}.

Thus the domain of R is the set of all first coordinates of ordered pairs in R, and 
the range of R is the set of all second coordinates. By definition, and 

For the relation 
and For the relation LT on where both
the domain and range are For the relation defined by “appears on same phone but-
ton,” the domain is {2, 3, 4, 5, 6, 7, 8, 9} and the range is the set of all capital letters
except Q and Z.

Every set of ordered pairs is a relation. If M is any set of ordered pairs, then M
is a relation from A to B, where A and B are any sets for which Dom and
Rng .( M ) ⊆ B

(M ) ⊆ A

�.
x < y,  iff  x LT y�,Rng (R ) = {1, 2, 4, 5}.

Dom (R ) = {−1, 2, 4}R = {(−1, 5), (2, 4), (2, 1), (4, 2)},
Rng (R ) ⊆ B.

Dom (R ) ⊆ A

2
ABC

1

* #

3
DEF

5
JKL

4 6
MNO

8
TUV

GHI

PRS
7 9

WXY

0
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138 CHAPTER 3 Relations and Partitions

DEFINITION For any set A, the relation is called
the identity relation on A.

IA = {(x, x): x � A}

For Clearly, for any set A, 
and The graph of the identity relation on is

shown in Figure 3.1.6.
[−2, ∞)Rng (IA) = A.Dom (IA) = A

A = {1, 2, a, b}, IA = {(1, 1), (2, 2), (a, a), (b, b)}.

Example. Let The graph of S is the shaded

area in Figure 3.1.3. The domain is and the range is [−8, 8].[−18, 18]

S =
{

(x, y) � � × �: 
x2

324
+ y2

64
≤ 1

}
.

8

18–18
x

y

Dom(S ) � [–18, 18]

Rng(S ) � [–8, 8]

–8

Figure 3.1.3

6

5

12

2

3 6

9 12

3

I[–2, ∞)2

1

3
–1

–2

21–1–2
x

y

Figure 3.1.6Figure 3.1.4 Figure 3.1.5

We can use a directed graph or digraph to represent a relation R on a small
finite set A. We think of the objects in A as points (called vertices) and the relation
R as telling us which vertices are connected by arcs. Arcs are drawn as arrows:
There is an arc from vertex a to vertex b An arc from a vertex to itself
is called a loop. For example, let and 

The digraph for R is given in Figure 3.1.4.
The digraph of the relation “divides” on the set {3, 6, 9, 12} has a loop at each

vertex, as shown in Figure 3.1.5.

(6, 6), (12, 2)}.
R = {(6, 12), (2, 6), (2, 12),A = {2, 5, 6, 12}

(a, b) � R.  iff  
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3.1 Cartesian Products and Relations 139

DEFINITION If R is a relation from A to B, then the inverse of R is the
relation 

R−1 = {(y, x): (x, y) � R}.

Since inversion is a matter of switching the order of each pair in a relation, if
R is a relation from A to B, then is a relation from B to A.

Examples. The inverse of the relation is the relation
For any set A, the inverse of is itself. For the real

numbers, the inverse of the “less than” relation is the
“greater than” relation on � because

In case R is a relation on A, the digraph of is obtained from the digraph of
R by copying all the loops and arcs, but reversing the direction of the arrows for

R−1

iff  x > y.

iff  y < x

(x, y) � LT−1  iff  (y, x) � LT

LT = {(x, y) � � × �: x < y}
IAIAR−1 = {(b, 1), (c, 1), (c, 2)}.

R = {(1, b), (1, c), (2, c)}

R−1

Figure 3.1.7

4
3
2
1

5–1
–2

3

(a) S

1
x

y

–1
–2

2

53 42

(b) T

1
x

y

–1
–2

4
3
2
1

53 42

(c) S ∩ T

1
x

y

–1
–2

2

53

(d) S ∪ T

1
x

y

The remainder of this section is devoted to methods of constructing new rela-
tions from given relations. These ideas are important in the study of relations, and
will be used again when we study functions.

Since relations from set A to set B are subsets of the union and intersec-
tion of two relations from A to B are again relations from A to B.

Example. Let and Let S be the relation on defined
by and let T be the relation on defined by The
graphs of S and T are given in Figures 3.1.7(a) and (b). Figure 3.1.7(c) shows the graph
of Note that and Figure 3.1.7(d)
shows the graph of S ∪ T.

S ∩ T = X × Y.S = X × �, T = � × Y,S ∩ T.

y � Y.  iff  x T y�x � X,  iff  x S y
�Y = (1, 3) ∪ {4}.X = [2, 4]

A × B,
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arcs. Figure 3.1.8 shows the digraphs of R and where R is the relation on
the set {�, {1}, {3}, {1, 2}}.

⊆R−1,

140 CHAPTER 3 Relations and Partitions

{1, 2}

{1}

⊇(a)

{3}

{1, 2}

{1} {3}

⊇–1(b)

Figure 3.1.8

Figure 3.1.9

4

5

6

7

8

3

3

2

1

2

(a) x EXP y: y = ex (b) ln = EXP–1: y = ln x

1–2 –1

–1,

x

y

))
))

1
e (0, 1)

(1, e)

(2, e2)

4 5 6 7 8

3

2

1

–1
321

x

y

1
e , –1

(1, 0)
(e, 1)

(e2, 2)

Example. Let EXP be the relation on given by The inverse of
EXP is given by We know that 
where ln is the natural logarithm. Thus, the inverse of EXP is the relation ln. The
familiar graphs of EXP and ln are given in Figure 3.1.9.

x ln y,  iff  y = ln x  iff  x = eyx = ey.  iff  x EXP−1 y
y = ex.  iff  x EXP y�

In the previous example, and while
and The next theorem says that this switch of the

domain and range of a relation to the range and domain of inverse relation always
happens.

Theorem 3.1.2 Let R be a relation from A to B.

(a)
(b) Rng (R−1) = Dom (R ).

Dom (R−1) = Rng (R ).

Rng(ln) = �.Dom (ln) = (0, ∞)
Rng (EXP) = (0, ∞),Dom (EXP) = �
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Proof.

(a) there exists such that there exists
such that 

(b) The proof is similar to the proof for part (a). �

Given a relation from A to B and another from B to C, composition is a method
of constructing a relation from A to C.

(a, b) � R  iff  b � Rng (R ).a � A
  iff  (b, a) � R−1a � A  iff  b � Dom (R−1)

3.1 Cartesian Products and Relations 141

Figure 3.1.10

DEFINITION Let R be a relation from A to B, and let S be a relation
from B to C. The composite of R and S is

S ◦ R = {(a, c): there exists b � B such that (a, b) � R and (b, c) � S}.

The relation is a relation from A to C since It is always true
that but it is not always true that 

(See Exercise 9.)
We have adopted the right-to-left notation for that is commonly used in

analysis courses. To determine you need to remember that R is the relation
from the first set to the second and S is the relation from the second set to the third.
Thus, to determine we apply the relation R first and then S.

Example. Let and and Let
R be the relation from A to B:

and S the relation from B to C:

S = {(p, x), (q, x), (q, y), (s, z), (t, z)}.

R = {(1, p), (1, q), (2, q), (3, r), (4, s)}

C = {x, y, z, w}.B = {p, q, r, s, t},A = {1, 2, 3, 4, 5},

S ◦ R,

S ◦ R,
S ◦ R

Dom (R ).
Dom (S ◦ R ) =Dom (S ◦ R ) ⊆ Dom (R )

S ◦ R ⊆ A × C.S ◦ R

A

1

2

3

4

5

B
R S

p

q

r

s

t

C

x

y

z

w

These relations are illustrated in Figure 3.1.10 by arrows from one set to another.
An element a from A is related to an element c from C under if there is 
at least one “intermediate” element b of B such that and (b, c) � S.(a, b) � R

S ◦ R
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142 CHAPTER 3 Relations and Partitions

For example, since and then By following 
all possible paths along the arrows from A to B and B to C in Figure 3.1.10, we 
have

If R is a relation from A to B, and S is a relation from B to A, then and
are both defined, but you should not expect that Even when 

R and S are relations on the same set, it may happen that 

Example. Let and 
Then

Clearly, since is seldom equal to 

The last theorem of this section presents several results about inversion, com-
position, and the identity relation. We prove part (b) and the first part of (c), leaving
the rest as Exercise 10.

Theorem 3.1.3 Suppose A, B, C, and D are sets. Let R be a relation from A to B, S be a relation from
B to C, and T be a relation from C to D.

(a)
(b) so composition is associative.
(c) and 
(d)

Proof.

(b) The pair for some and 

(Ey � B)(Ez � C)[(x, y) � R and (y, z) � S and (z, w) � T ]iff  

(Ez � C)(Ey � B)[(x, y) � R and (y, z) � S and (z, w) � T ]iff  

(Ez � C)[(Ey � B)((x, y) � R and (y, z) � S) and (z, w) � T ]iff  

(Ez � C)[(x, z) � S ◦ R and (z, w) � T ]iff  

w � Dx � A(x, w) � T ◦ (S ◦ R)

(S ◦ R)−1 = R−1 ◦ S−1.
R ◦ IA = R.IB ◦ R = R

T ◦ (S ◦ R) = (T ◦ S) ◦ R,
(R−1)−1 = R.

(x + 1)2.x2 + 1S ◦ R =� R ◦ S,

 = {(x, y): y = (x + 1)2}.

 = {(x, y): z = x + 1 and y = z2 for some z � �}

S ◦ R = {(x, y): (x, z) � R and (z, y) � S for some z � �}

 = {(x, y): y = x2 + 1}.

 = {(x, y): z = x2 and y = z + 1 for some z � �}

R ◦ S = {(x, y): (x, z) � S and (z, y) � R for some z � �}

S = {(x, y) � � × �: y = x2}.R = {(x, y) � � × �: y = x + 1}

R ◦ S =� S ◦ R.
R ◦ S = S ◦ R.S ◦ R

R ◦ S

S ◦ R = {(1, x), (1, y), (2, x), (2, y), (4, z)}.

(1, x) � S ◦ R.(p, x) � S,(1, p) � R
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3.1 Cartesian Products and Relations 143

Therefore, 
(c) We first show that Suppose Then there exists

such that and Since Thus

Conversely, suppose Then and thus 
Thus �

The storage and manipulation of data in tables (n-tuple relations) is an important
field of computer science called relational databases. Operations such as union and
composition for ordered pairs may be extended to operations on n-tuples. One gen-
eralization of composition in relational databases is the “join” of two tables.

Example. Suppose the student information at a small university includes both
directory information and billing information. We let A be the set of first names, B
be last names, C be 4-digit student ID numbers, D be names of campus residence
halls, E be residence hall room numbers, F be tuition amounts due, and G be room
charges due.

The student records in the directory may be described in a table R:

R (directory)

First Name Last Name Student ID Residence Hall Room Number

Krista Maire 1234 Orlando 77
Harold Dorman 2490 Mountain 455
Ferlin Husky 5555 Dove 213A
Martha Reeves 3215 Vandella 238
Kim Anen 6920 Bowie 1979

The directory relation R is a subset of consisting of five 
5-tuples. The 5-tuple (Krista, Maire, 1234, Orlando, 77) is one student record in the
directory R.

The financial information relation S is a subset of C × F × G:

A × B × C × D × E

IB ◦ R = R.
( p, q) � IB ◦ R.(q, q) � IB(p, q) � R.

(x, y) � R 〈since (x, y) = (x, z) � R〉.
(z, y) � IB, z = y.(z, y) � IB.(x, z) � Rz � B

(x, y) � IB ◦ R.IB ◦ R ⊆ R.〉〈
T ◦ (S ◦ R) = (T ◦ S) ◦ R.

(x, w) � (T ◦ S) ◦ R.iff  

(Ey � B)[(x, y) � R and (y, w) � T ◦ S ]iff  

(Ey � B)[(x, y) � R and (Ez � C)((y, z) � S and (z, w) � T)]iff  

S (financial)

Student ID Tuition Room Charges

1234 $80 $40
2490 $150 $20
5555 $75 $25
3215 $0 $0
6920 $0 $60
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144 CHAPTER 3 Relations and Partitions

The join of these two tables, denoted is a table with 7 columns. The
rows of the table are obtained by merging 5-tuples from R and 3-tuples from S that
share a common ID number:

R ⊗ S

First Last Student Residence Room Room
Name Name ID Hall Number Tuition Charges

Krista Maire 1234 Orlando 77 $80 $40
Harold Dorman 2490 Mountain 455 $150 $20
Ferlin Husky 5555 Dove 213A $75 $25
Martha Reeves 3215 Vandella 238 $0 $0
Kim Anen 6920 Bowie 1979 $0 $60

The join operation is one of several database operations that allow a manager
to create tables in response to requests for information (queries). There are many
advantages to storing data in simple tables like R and S, but requests such as “What
is the room charge for Harold Dorman?” cannot be answered using either of the
tables by itself.

Exercises 3.1

1. Let T be the relation Find
(a) (b)
(c) (d)

2. Find the domain and range for the relation W on given by 
� (a) (b)

� (c) (d)

� (e) (f) and 
(g) or (h)

� 3. Sketch the graph of each relation in Exercise 2.

4. The inverse of may be expressed in the

form the set of all pairs subject to

some condition. Use this form to give the inverses of the following relations.
In (i), (j), and (k), P is the set of all people.

� (a)
(b)

� (c)
(d)

� (e) R5 = {(x, y) � � × �: y = −4x2 + 5}
R4 = {(x, y) � � × �: y = x2 + 2}
R3 = {(x, y) � � × �: y = 7x − 10}
R2 = {(x, y) � � × �: y = −5x + 2}
R1 = {(x, y) � � × �: y = x}

(x, y)R−1 =
{

(x, y) � � × �: y = x − 1

2

}
,

R = {(x, y) � � × �: y = 2x + 1}

y =� x.y = 3.| x | < 2
y = 3.| x | < 2y ≤ x2.

y = 1

x2
y =

√
x − 1.

y = x2 + 3.y = 2x + 1.
  iff  x W y�

(T−1)−1.T−1.
Rng (T ).Dom (T ).

{(3, 1), (2, 3), (3, 5), (2, 2), (1, 6), (2, 6), (1, 2)}.

R ⊗ S,
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3.1 Cartesian Products and Relations 145

(f)
� (g)

(h)

� (i)
( j)
(k)

5. Let and
Find

(a) � (b)
(c) � (d)
(e) (f)
(g) (h)

6. Find these composites for the relations defined in Exercise 4.
� (a) (b)

(c) � (d)
(e) (f)

� (g) (h)
(i) � (j)
(k) (l)
(m) � (n)
(o) � (p)

7. Give the digraphs for these relations on the set {1, 2, 3}.
(a) = (b)
(c) (d) where 
(e) (f) where 

8. Let Give an example of relations R, S, and T on A such that
(a) (b)
(c) but 
(d) R and S are nonempty, and and are empty.

9. Let R be a relation from A to B and S be a relation from B to C.
(a) Prove that Dom .
(b) Show by example that Dom may be false.
(c) Which of these two statements must be true:

Give an example to show that the other statement may be false.

10. Complete the proof of Theorem 3.1.3.

11. Show by example that may be false.

12. Prove that if A has m elements and B has n elements, then there are 
different relations from A to B.

2mn

(A × B) × C = A × (B × C)

Rng(S ) ⊆ Rng(S ◦ R ) or Rng(S ◦ R ) ⊆ Rng(S )?

(S ◦ R) = Dom (R)
(S ◦ R) ⊆ Dom (R)

S ◦ RR ◦ S
S =� T.S ◦ R = T ◦ R

(S ◦ R )−1 =� S−1 ◦ R−1.R ◦ S =� S ◦ R.
A = {a, b, c, d}.

S = {(1, 3), (2, 1)}S ◦ S,= �
S = {(1, 3), (2, 1)}S−1,≤

S = {(1, 3), (2, 1)}

R9 ◦ R9R8 ◦ R3

R3 ◦ R8R8 ◦ R8

R5 ◦ R5R7 ◦ R7

R6 ◦ R6R6 ◦ R4

R6 ◦ R2R4 ◦ R5

R4 ◦ R2R2 ◦ R4

R2 ◦ R3R2 ◦ R2

R1 ◦ R2R1 ◦ R1

(R ◦ S ) ◦ T.R ◦ (S ◦ T ).
T ◦ T.S ◦ R.
R ◦ R.T ◦ S.
R ◦ T.R ◦ S .

T = {(1, 4), (3, 5), (4, 1)}.
R = {(1, 5), (2, 2), (3, 4), (5, 2)}, S = {(2, 4), (3, 4), (3, 1), (5, 5)},

R11 = {(x, y) � P × P: y loves x}
R10 = {(x, y) � P × P: y is a sibling of x}
R9 = {(x, y) � P × P: y is the father of x}

R8 =
{

(x, y) � � × �: y = 2x

x − 2

}R7 = {(x, y) � � × �: y > 3x − 4}
R6 = {(x, y) � � × �: y < x + 1}
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146 CHAPTER 3 Relations and Partitions

13. (a) Let R be a relation from A to B. For define the vertical section of
R at a to be Prove that 

(b) Let R be a relation from A to B. For define the horizontal section
of R at b to be Prove that 

14. We may define ordered triples in terms of ordered pairs by saying that
Use this definition to prove that 

and and 

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.

� (a) Claim.
“Proof.”

or 
and or 

or 
�

� (b) Claim. If and then .
“Proof.” Suppose Then there exists 
with . But implies that and 
whereas implies that and However, 
and so and This is a contradiction. Therefore,

�
(c) Claim. If and then 

“Proof.” Suppose Then

Therefore �

� (d) Claim. If and then 
“Proof.” To show suppose Choose any 
Then But since Thus

This proves A proof of is similar. Therefore,
�

(e) Claim. Let R and S be relations from A to B and from B to C, respec-
tively. Then 
“Proof.” The pair 
Therefore, �

(f) Claim. Let R be a relation from A to B. Then 
“Proof.” Suppose Choose any such that 
Then, Thus Therefore, �

(g) Claim. Suppose R is a relation from A to B. Then 
“Proof.” Let Then for some and

Thus Since and Thus
and  so  �(x, y) � IA.x � A,(x, y) = (x, x)

(y, z) � R, x = y.(x, z) � R(y, z) � R.(z, y) � R−1.
(x, z) � Rz � B,(x, y) � R−1 ◦ R.

R−1 ◦ R ⊆ IA.
IA ⊆ R−1 ◦ R.(x, x) � R−1 ◦ R.(y, x) � R−1.

(x, y) � R.y � B(x, x) � IA.
IA ⊆ R−1 ◦ R.

 S ◦ R = (R ◦ S )−1.
(x, y) � (R ◦ S )−1

  iff  (y, x) � R ◦ S  iff  (x, y) � S ◦ R
S ◦ R = (R ◦ S )−1.

B = C.
C ⊆ BB ⊆ C.b � C.

(a, b) � A × C.A × B = A × C,(a, b) � A × B.
a � A.b � B.B = C,

B = C.A =� �,A × B = A × C

B = C.

A × B

A
= A × C

A
.

A × B = A × C.
B = C.A =� �,A × B = A × C

A × C ⊆ B × D.
c � D.a � BC ⊆ D,

A ⊆ Bc � D.a � B(a, c) � B × D
c � C,a � A(a, c) � A × C(a, c) � B × D

(a, c) � A × CA × C � B × D.
A × C ⊆ B × DC ⊆ D,A ⊆ B

x � (A × C ) ∪ (B × C ).iff  

x � B × Cx � A × Ciff  

x � Cx � Bx � Aiff  

x � Cx � A × Biff  

x � (A × B ) ∪ C
(A × B ) ∪ C = (A × C ) ∪ (B × C ).

c = z.b = ya = x
  iff  (a, b, c) = (x, y, z)(a, b, c) = ((a, b), c).

⋃
b�B

b R = Dom (R ).bR = {x � A: (x, b) � R}.
a � A,

⋃
a�A

Ra = Rng (R ).Ra = {y � B: (a, y) � R}.
a � A,
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3.2 Equivalence Relations 147

3.2 Equivalence Relations

The goal of this section is to describe a way to equate objects in a set according
to some value, property, or meaning. We might say that among all students who
completed a certain math class, students are equivalent if they had the same
numeric score on the final exam. With this meaning of equivalence, a student
with a score of 87 on the final exam is related to every other student with a score
of 87 and not related to any other student. We could also have said that two stu-
dents are equivalent if they have the same favorite movie, or if they have the
same blood type.

The three properties we define next, when taken together, comprise what we
mean by objects being equivalent.

DEFINITIONS Let A be a set and R be a relation on A.

R is reflexive on A for all 
R is symmetric for all x and if then 
R is transitive for all x, y, and if and then x R z.y R z,x R yz � A,  iff  

y R x.x R y,y � A,  iff  

x � A, x R x.  iff  

The relation R, defined as “had the same final exam score,” on the set C of all
students in a given class has all three of these properties. R is symmetric because if
student x had the same score as student y, then student y must have had the same
score as student x. R is transitive because if student x had the same score as student
y and student y had the same score as student z, then x had the same score as z.
Finally, for every student x in C, x must have had the same score as x. Thus R is
reflexive on C.

To prove that a relation R is symmetric or transitive, we usually give a direct
proof, because these properties are defined by conditional sentences. A proof that
R is reflexive on A is different. What we must do is show that for all x is 
R-related to x.

For a relation R on a nonempty set A, only the reflexive property actually
asserts that some ordered pairs belong to R. The empty relation is not reflexive
on a set A except in the special case when A is the empty set. The empty relation 
is, however, symmetric and transitive for any set A. See Exercise 4. For each of the
three properties there is an alternate condition (involving the identity relation or the
operations of inversion or composition) that may be used to prove that a relation has
or does not have that property. See Exercise 13.

To prove that a relation R on a set A is not reflexive on A, we must show that
there exists some such that Since the denial of “If then ” is
“ and not ” a relation R is not symmetric there are elements x and y in
A such that and Likewise, R is not transitive there exist elements x,
y, and z in A such that and but x R z.y R zx R y

  iff  y R x.x R y
  iff  y R x,x R y

y R xx R yx R x.x � A

�
�

x � A,
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148 CHAPTER 3 Relations and Partitions

Examples. For , let and 
Since and neither S nor T is reflexive on B. The relation

S is not symmetric because but Likewise, T is not symmetric because
but 

Both S and T are transitive relations. To verify that S is transitive we check all
pairs (x, y) in S with all pairs of the form (y, z). We have (2, 5) and (5, 6) in S, so we
must have (2, 6); we have (7, 7) and (7, 7) in S so we must have (7, 7). The relation
T is transitive for a different reason: there do not exist x, y, z in B such that and

Because its antecedent is false, the conditional sentence “If and 
then ” is true.

Example. Let R be the relation “is a subset of” on the power set of R is
reflexive on since every set is a subset of itself. R is transitive by Theorem
2.1.1(c). Notice that but Therefore, R is not
symmetric.

Example. Let STNR designate the relation on In this
example, x STNR x for all x in except the integer 0; hence the relation STNR is
not reflexive on STNR is symmetric since, if x and y are integers and 
then STNR is also transitive. To verify this, we assume that x STNR y and
y STNR z. Then and If y is positive, then both x and z are positive;
so If y is negative, then both x and z are negative; so Thus in either
case, x STNR z. This relation gets its name from the fact that it is symmetric, tran-
sitive, and not reflexive on 

For a relation R on a set A, the properties of reflexivity on A, symmetry, and
transitivity can also be characterized by properties in the digraph of R:

R is reflexive on A every vertex of the digraph has a loop.
R is symmetric between any two vertices there are either no edges or 
an edge in both directions.
R is transitive whenever there is an edge from vertex x to y and an 
edge from vertex y to z, there is an edge (a direct route) from x to z.

Examples. Figure 3.2.1 shows the digraphs of three relations on 
Figure 3.2.1(a) is the digraph of the relation “divides” and Figure 3.2.1(b) is the
digraph of “>.” Figure 3.2.1(c) is the digraph of the relation S, where 

There is a loop at every vertex in Figure 3.2.1(a) because the relation “divides”
is reflexive: Every integer divides itself. The relations “ ” and S are not reflexive;
there is no loop at 2 in Figure 3.2.1(b) or (c).

S is a symmetric relation, but the others are not. In Figure 3.2.1(a) there is an
arc from 2 to 6, but not in the reverse direction; in Figure 3.2.1(b) there is an arc
from 6 to 2, but not from 2 to 6.

The relation S is not transitive—there is an arc from 2 to 6 and one from 6 to 3,
but no arc from 2 to 3. The other two relations are transitive. Note that for the

>

x + y > 7.
  iff  x S y

A = {2, 3, 6}.

  iff  

  iff  

  iff  

�.

xz > 0.xz > 0.
yz > 0.xy > 0

yx > 0.
xy > 0,�.

�

�.{(x, y) � � × �: xy > 0}

{1, 2, 3} � {1, 2}.{1, 2} ⊆ {1, 2, 3}
�(�)

�.�(�),

x T z
y T z,x T yy T z.

x T y

6 T 5.5 T 6
5 S 2.2 S 5,

2 T 2,6 S 6{(2, 6), (5, 6)}.
T =S = {(2, 5), (5, 6), (2, 6), (7, 7)}B = {2, 5, 6, 7}
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3.2 Equivalence Relations 149

digraph in Figure 3.2.1(a), every pair of arcs to be checked for transitivity involves
a loop. For example, there is an arc from 3 to 3 and an arc from 3 to 6; the shortcut
is to go directly from 3 to 6.

2

(a) divides

3

6

2

(b) >

3

6

2

(c) S

3

6

Figure 3.2.1

For every set A, the identity relation is reflexive on A, symmetric, and
transitive. The identity relation is, in fact, the relation “equals,” because 

Equality is a way of comparing objects according to whether they are
the same. Equivalence relations, defined next, are a means for relating objects
according to whether they are, if not identical, at least alike in the sense that they
share a common trait. For example, if T is the set of all triangles, we might say 
two triangles are “the same” (equivalent) when they are congruent. This generates
the relation on T, which is reflexive on T,
symmetric, and transitive. The notion of equivalence, then, is embodied in these
three properties.

R = {(x, y) � T × T: x is congruent to y}

x = y.
  iffx I A y

IA

DEFINITION A relation R on a set A is an equivalence relation on A
R is reflexive on A, symmetric, and transitive.iff  

Suppose we say two integers are related they have the same parity. For this
relation, we see that all the odd integers are
related to one another (since the sum of two odd numbers is even) and all the evens
are related to each other. The relation R is reflexive on symmetric, and transitive
and is, therefore, an equivalence relation.

For the set P of all people, let L be the relation on P given by x and y
have the same family name. We have Lucy Brown L Charlie Brown, James
Madison L Dolly Madison, and so on. If we make the assumption that everyone has
exactly one family name, then L is an equivalence relation on P.

The subset of P consisting of all people who are L-related to Charlie Brown
is the set of all people whose family name is Brown. This set contains Charlie by
reflexivity. It also contains Sally Brown, James Brown, Buster Brown, Leroy
Brown, and all other people who are like Charlie Brown in the sense that they

  iff  x L y

�,

R = {(x, y) � � × �: x + y is even},
  iff  
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150 CHAPTER 3 Relations and Partitions

have Brown as a family name. The same is true for the Madisons: The set of peo-
ple L-related to Dolly Madison is the set of all people with the family name
Madison.

DEFINITIONS Let R be an equivalence relation on a set A. For 
the equivalence class of x determined by R is the set

When R is fixed throughout a discussion or clear from the context, the
notations [x] and are commonly used instead of .

We read as “the class of x modulo R,” or simply “x mod R.”
The set of all equivalence classes is called 

A modulo R.
A/R = {x/R: x � A}
x/R

x/Rx

x/R = {y � A: x R y}.

x � A,

The equivalence class of Charlie Brown modulo L is the set of all people whose
family name is Brown. Furthermore, Buster Brown/L is the same set as Charlie
Brown/L.

Example. The relation is an equivalence
relation on the set Here and Thus

Example. Let S is an equivalence relation on 

We have etc. Also, In this example, for every
the equivalence class of x and the equivalence class of are the same. 

modulo S is 

Example. For the equivalence relation on ,
there are only two equivalence classes: D, the set of all odd integers and E, the set
of even integers. Thus 

Note that in the examples above— and —any two equivalence
classes are either equal or disjoint. The next theorem tells us for all equivalence rela-
tions, distinct equivalence classes never “overlap.”

Theorem 3.2.1 Let R be an equivalence relation on a nonempty set A. For all x, y in A,

(a) and Thus every equivalence class is a nonempty subset 
of A.

(b) Thus elements of A are related their equivalence
classes are identical.

(c) Thus elements of A are unrelated their equiva-
lence classes are disjoint.

 iff x/R ∩ y/R = �. iff x R y

 iff x/R = y/R. iff x R y

x � x/R.x/R ⊆ A

�/R�/S,A/H,

�/R = {D, E}.

�R = {(x, y) � � × �:  x + y is even}

�/S = {{x, −x}: x � �}.
�−xx � �

0 = {0}.2 = {2, −2}, π = {−π, π},

�.S = {(x, y) � � × �: x2 = y2}.

A/H = {{1, 2}, {3}}.
3/H = {3}.1/H = 2/H = {1, 2}A = {1, 2, 3}.

H = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
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3.2 Equivalence Relations 151

Proof.

(a) By the definition of Since R is reflexive on A, Thus

(b) (i) Suppose To show we first show Let
Then From by symmetry, Then, by transi-

tivity, Thus The proof that is similar.
(ii) Suppose Since Thus 

(c) (i) If then, since Thus 
(ii) Finally, we show implies We prove the contra-

positive. Suppose Let Then and
Therefore, and Thus �

For the rest of this section, we explore the properties of an equivalence relation
that has a multitude of important applications. This relation, called congruence,
provides a valuable way to deal with questions associated with divisibility in the
integers. The notion of congruence, first introduced by Carl Friedrich Gauss,* leads
to modular arithmetic, which is an abstraction of our usual arithmetic, and this leads
in turn to methods for converting computational problems with large integers into
more manageable problems.

x R y.k R y.x R ky R k.
x R kk � x/R ∩ y/R.x/R ∩ y/R =� �.〉

〈x/R ∩ y/R = �.x R y
x R y.y � x/R.y � y/R,x/R ∩ y/R = �,

x R y.y � x/R.y � y/R,x/R = y/R.
y/R ⊆ x/Rz � y/R.y R z.

y R x.x R y,x R z.z � x/R.
x/R ⊆ y/R.x/R = y/R,x R y.

x � x/R.
x R x.x/R, x/R ⊆ A.

* The German Carl Friedrich Gauss (1777–1855), one of the greatest mathematicians of all time, also
made major contributions to astronomy and physics. Congruence and modular arithmetic (and much
more) appeared in his masterwork Disquisitiones Arithmeticae, which he completed at the age of 21. He
proved the Fundamental Theorem of Algebra and the Prime Number Theorem, among many other
results in number theory, statistics, analysis, and differential geometry.

DEFINITIONS Let m be a fixed positive integer. For we say
x is congruent to y modulo m m divides We write 
or simply The number m is called the modulus of the
congruence.

x = y (mod m).
x ≡m y,(x − y).  iff  

x, y � �,

Examples. Using 3 as the modulus, (mod 3) because 3 divides Like-
wise, (mod 3) because 3 divides Since 3 does not divide

we have (mod 3). It is easy to see that 0 is congruent to
and and, in fact, 0 is congruent modulo 3 to every multiple of 3.

Theorem 3.2.2 For every fixed positive integer is an equivalence relation on �.

Proof. We note that ≡m is a set of ordered pairs of integers and, hence, is a rela-
tion on . Now we show that is reflexive on symmetric, and transitive.

(i) To show reflexivity on let x be an integer. We show that (mod m).
Since divides . Thus is reflexive on 

(ii) For symmetry, suppose (mod m). Then m divides Thus there is
an integer k so that But this means that or
that Therefore, m divides so that (mod m).y = xy − x,y − x = (−k)m.

−(x − y) = −(km),x − y = km.
x − y.x = y

�.≡mx − xm · 0 = 0 = x − x, m
x = x�,

〉�,≡m〈�

m, ≡m

−60, 3, −3, 6,
5 =� −95 − (−9) = 14,

10 − 16 = −6.10 = 16
4 − 1.4 = 1
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152 CHAPTER 3 Relations and Partitions

(iii) Suppose (mod m) and (mod m). Thus m divides both and
Therefore, there exist integers h and k such that and

But then is an integer, and 

Thus m divides so (mod m). Therefore, is transitive. �≡mx = zx − z,

x − z = (x − y) + (y − z) = hm + km = (h + k)m.

h + ky − z = km.
x − y = hmy − z.

x − yy = zx = y

DEFINITION The set of equivalence classes for the relation is
denoted �m.

≡m

We can now determine the set of all equivalence classes modulo 3. For 
the equivalence class of x is which we now denote by .

Since the integers congruent to 0 (mod 3) are exactly the multiples of 3, we have

To form the equivalence class of 1, denoted , we begin with 1 (because and
repeatedly add or subtract 3. This produces the positive integers and
the negative integers that are congruent to 1 modulo 3, so

In the same way we form

If we compute we find that and in fact
etc., so there are really only three different equivalence

classes. We have found that 
Notice that the class of 0 modulo 3 above is not the same as the congruence

class of 0 modulo 4. The class of 0 modulo 4 contains and all the
other multiples of 4. See Exercise 9.

Using the notation for the equivalence class of x modulo m works well as
long as the modulus remains unchanged, but suppose we want to compare compu-
tations with two different moduli. To work with elements of, say, as well as ele-
ments of we will write elements of as [0], [1], [2], [3], [4], and [5], to
distinguish them from the elements 

The 12 hours on the clock correspond to the 12 classes in Rather than talk-
ing about hours beyond 12 o’clock, we start over again with 1 o’clock instead of 
13 o’clock because (mod 12), and 2 o’clock instead of 14 o’clock because 

(mod 12), etc. The hours on a clock face show only the hours since the pre-
vious midnight or noon. We are so accustomed to working with equivalence classes 
14 = 2

13 = 1

�12.
0, 1, and 2, of �3.

�6�3,
�6

xq

0, ±4, ±8, ±12,

�3 = {0, 1, 2}.
4 = 1, 5 = 2, 6 = 0,

3 = 03 = {Á , −6, −3, 0, 3, 6, Á}

2 = {Á , −4, −1, 2, 5, 8, Á}.

1 = {Á , −8, −5, −2, 1, 4, 7, 10, 13, Á}.

−2, −5,−8, Á

4, 7, 10, 13, Á

1 ≡3 1)1

0 = {Á ,−6,−3, 0, 3, 6, Á }.

xq{y � �: x ≡3 y},x � �,
�3
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3.2 Equivalence Relations 153

modulo 12 that we routinely do arithmetic with them: 9 hours after 8 o’clock is
5 o’clock, because and (modulo 12) and 4 hours before 3 o’clock
is 11 o’clock, because (modulo 12).

Our next theorem will show that there are always m different equivalence
classes for the relation and the set is always It is help-
ful to observe that and are exactly all the possible remaindersm − 10, 1, 2, Á ,

{0, 1, 2, Á , m − 1}.�m≡m

3 − 4 = −1 = 11
17 = 58 + 9 = 17

when integers are divided by m. For this reason the elements of are sometimes
called the residue (or remainder) classes modulo m.

Theorem 3.2.3 Let m be a fixed positive integer. Then

(a) For integers x and (mod m) the remainder when x is divided by
m equals the remainder when y is divided by m.

(b) consists of m distinct equivalence classes: 

Proof.

(a) Let x and y be integers. By the Division Algorithm, there exist integers q, 
r, t, and s such that with and with

. We must show that (mod m) Then

m divides 
m divides 
m divides 

This is because

(b) We first show that For each k, where
the set is an equivalence class, so is

a subset of Now suppose for some integer x. By the Division
Algorithm, there exist integers q and r such that with

Then so m divides Thus (mod m). By
Theorem 3.2.1(b) Therefore 

Finally we will know that has exactly m elements when we show that
the equivalence classes are all distinct. Suppose 
where Then (mod m), and thus m divides 
But so Then Therefore the m equiva-
lence classes are distinct. �

Exercises 3.2

1. Indicate which of the following relations on the given sets are reflexive on a
given set, which are symmetric, and which are transitive.

� (a) on  (b)
(c) (d) < on �= on �

≤ on �{1, 2}{(1, 2)}

k = r.k − r = 0.0 ≤ k − r ≤ m − 1,
k − r.k = r0 ≤ r ≤ k ≤ m − 1.
k = rq0, 1, 2, Á , m − 1

�m

�m ⊆ {0, 1, 2, Á , m − 1}.x = r.
x = rx − r.x − r = mq,0 ≤ r < m.
x = mq + r,

x � �m�m.
{0, 1, 2, Á , m − 1}k0 ≤ k ≤ m − 1,

�m = {0, 1, 2, Á , m − 1}.〉〈
0 ≤ r < m and 0 ≤ s < m.〉〈r = s.iff  

r − siff  

m(q − t) + (r − s)iff  

(mq + r) − (mt + s)iff  

x = y (mod m)  iff  m divides x − y

r = s.〉 iff   x = y〈0 ≤ s < m
y = mt + s,0 ≤ r < mx = mq + r,

�m = {0, 1, 2, Á , m − 1}.�m

  iff  y, x = y

�m
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154 CHAPTER 3 Relations and Partitions

� (e) (f) = � on �≥ on �
(g) “divides” on (h)
(i) {(1, 5), (5, 1), (1, 1)} on the set 
(j) and m are lines and l is perpendicular to m} on the set of

all lines in a plane
(k) R, where on the set 

� (l) S, where x is a sibling of y, on the set P of all people
(m) T, where on the set 

2. Let List the ordered pairs and draw the digraph of a relation on
A with the given properties.

� (a) not reflexive, not symmetric, and not transitive
(b) reflexive, not symmetric, and not transitive
(c) not reflexive, symmetric, and not transitive

� (d) reflexive, symmetric, and not transitive
(e) not reflexive, not symmetric, and transitive
(f) reflexive, not symmetric, and transitive
(g) not reflexive, symmetric, and transitive
(h) reflexive, symmetric, and transitive

� 3. For each part of Exercise 2, give an example of a relation on with the
desired properties.

4. Let R be a relation on a set A. Prove that
(a) if A is nonempty, the empty relation is not reflexive on A.
(b) the empty relation is symmetric and transitive for every set A.

5. For each of the following, prove that the relation is an equivalence relation.
Then give information about the equivalence classes as specified.
(a) The relation R on given by Give the equivalence

class of 0; of 1, of 
(b) The relation R on given by m and n have the same digit in

the tens places. Find an element of that is less than 50; between
150 and 300; greater than 1,000. Find three such elements in the equiv-
alence class 

(c) The relation V on given by or Give the 
equivalence class of 3; of of 0.

� (d) On , the relation R given by the prime factorizations of a and
b have the same number of 2’s. For example, 16 R 80 because 
and Name three elements in each of these classes: 

(e) The relation T on given by 
Sketch the equivalence class of (1, 2); of (4, 0).

(f) For the set let R be the relation on given by
A and B have the same number of elements. List all the elements

in in How many elements are in How
many elements are in � (X )/R?

X/R?{m, n, p, q, r, s}/R.{m}/R;
  iff  A R B

�(X )X = {m, n, p, q, r, s},

x2 + y2 = a2 + b2.  iff  (x, y) T (a, b)� × �

4/R, 72/R.
1/R,80 = 24 · 5.

16 = 24
  iff  a R b�

−2
3
;

xy = 1.x = y  iff  x V y�

635/R.

106/R
  iff  m R n�

√
2.

x − y � �.  iff  x R y�

�
�

�

A = {1, 2, 3}.

� × �x + y ≤ z + w,  iff  (x, y) T (z, w)
  iff  x S y

� × �x + z ≤ y + w,  iff  (x, y) R (z, w)

⊥= {(l, m): l
A = {1, 2, 3, 4, 5}

{(x, y) � � × �: x + y = 10}�
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3.2 Equivalence Relations 155

� (g) The relation P on defined by 
Name at least one ordered pair in each quadrant that is related

to (3, 0). Describe all ordered pairs in the equivalence class of (0, 0); in
the class of (1, 0).

(h) Let R be the relation on the set of all differentiable functions defined by
f and g have the same first derivative, that is, Name three

elements in each of these classes: Describe 
and 

(i) The relation T on given by Describe the equiv-
alence class of 0; of of 

6. Let R be the relation on defined by Show that R is anpt = qs.  iff  
p
q R s

t
�

π/4.π/2;
sin x = sin y.  iff  x T y�

7/R.
x3/Rx2/R, (4x3 + 10x)/R.

  f ′ = g ′.  iff  f R g

|z − w | .
|x − y |  =  iff  (x, y) P (z, w)� × �

1

2

4

3

76

31

42

5

1 6

2 5

43

1 4

2 3

� (c)

(d)

8. Determine the equivalence classes for the relation of
� (a) congruence modulo 5. (b) congruence modulo 8.

(c) congruence modulo 1. (d) congruence modulo 7.

9. Name a positive integer and a negative integer that are
(a) congruent to 0 (mod 5) and not congruent to 0 (mod 6).
(b) congruent to 0 (mod 5) and congruent to 0 (mod 6).
(c) congruent to 2 (mod 4) and congruent to 8 (mod 6).
(d) congruent to 3 (mod 4) and congruent to 3 (mod 5).
(e) congruent to 1 (mod 3) and congruent to 1 (mod 7).

equivalence relation. Describe all ordered pairs in the equivalence class of 

7. Which of these digraphs represent relations that are (i) reflexive? (ii) symmetric?
(iii) transitive?

� (a) (b)

2
3
.
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156 CHAPTER 3 Relations and Partitions

10. Using the fact that is an equivalence relation on and without reference
to Theorems 3.2.1 and 3.2.3, prove that for all x and y in 
(a) � (b)

� (c) if then  (d) if then 
(e) if then  (f) if then 

11. Consider the relation S on defined by 3 divides Prove that
S is not an equivalence relation.

12. Suppose that R and S are equivalence relations on a set A. Prove that is
an equivalence relation on A.

13. The properties of reflexivity, symmetry, and transitivity are related to the 
identity relation and the operations of inversion and composition. Prove that
(a) R is a reflexive relation on A

� (b) R is symmetric
(c) R is transitive

14. Prove that if R is a symmetric, transitive relation on A and the domain of R is
A, then R is reflexive on A.

15. Let R be a relation on the set A.
� (a) Prove that is symmetric. is the symmetric closure

of R.)
(b) Prove that if S is a symmetric relation on A and then 

16. Let R be a relation on the set A. Define for some 
there exists such that 

(a) Prove that is transitive. ( is the transitive closure of R.)
(b) Prove that if S is a transitive relation on A and then 

17. The complement of a digraph has the same vertex set as the original digraph,
and an arc from x to y exactly when the original digraph does not have an arc
from x to y. The two digraphs shown below are complementary. Call a
digraph symmetric (transitive) its relation is symmetric (transitive).  iff  

TR ⊆ S.R ⊆ S,
TRTR

(a2, a3), Á , (an−1, an) � R}.
(a0, a1), (a1, a2),a0 = x, a1, a2, Á , an = y � An � �

TR = {(x, y) � A × A:

R−1 ⊆ S.R ⊆ S,

(R ∪ R−1R ∪ R−1

R ◦ R ⊆ R.  iff  

R = R−1.  iff  

IA ⊆ R.  iff  

R ∩ S

x + y.  iff  x S y�

xq =� yq.xq ∩ yq = �,xq = yq.xq ∩ yq =� �,
x ≡m y.xq = yq,xq = yq.x ≡m y,

xq =� �.x � xq.
�:

�≡m

r
r

s
t

s

t

(a) Show that the complement of a symmetric digraph is symmetric.
(b) Show by example that the complement of a transitive digraph need not

be transitive.

� 18. Let L be a relation on a set A that is reflexive on A and transitive but not nec-
essarily symmetric. Let R be the relation defined on A by and

Prove that R is an equivalence relation.

Proofs to Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

y L x.
x L y  iff  x R y
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3.3 Partitions 157

(a) Claim. If the relation R is symmetric and transitive, it is also reflexive.
“Proof.” Since R is symmetric, if then Thus

and and since R is transitive, Therefore,
R is reflexive. �

(b) Claim. The relation T on given by 
is symmetric.r + s

x + y =  iff  (x, y) T (r, s)� × �

(x, x) � R.(y, x) � R,(x, y) � R
(y, x) � R.(x, y) � R,

DEFINITION Let A be a nonempty set. is a partition of A is
a set of subsets of A such that

(i) If then 

(ii) If and then or 

(iii)
⋃

X��
X = A.

X ∩ Y = �.X = YY � �,X � �

X =� �.X � �,

�  iff  �

“Proof.” Suppose Then because 
Therefore, T is symmetric. �

(c) Claim. The relation W on given by 
is symmetric.

“Proof.” Suppose and are in and 
Then Therefore, so Thus 
W is symmetric. �

(d) Claim. If the relations R and S are symmetric, then is symmetric.
“Proof.” Let R be the relation of congruence modulo 10 and S the
relation of congruence modulo 6 on the integers. Both R and S are sym-
metric. If then 6 and 10 divide Therefore, 2, 3, and
5 all divide so 30 divides Also if 30 divides then 6
and 10 divide so is the relation of congruence modulo 30.
Therefore, is symmetric. �

(e) Claim. If the relations R and S are symmetric, then is symmetric.
“Proof.” Suppose Then and Since R
and S are symmetric, and Therefore, �

� (f) Claim. If the relations R and S are transitive, then is transitive.
“Proof.” Suppose and Then 
and Therefore,  �

3.3 Partitions

Partitioning is frequently used to organize the world around us. The United States,
for example, is partitioned in several ways—by postal zip codes, state boundaries,
time zones, etc. In each case nonempty subsets of the United States are defined that
do not overlap and that together comprise the entire country. This section intro-
duces this concept of partitioning of a set and describes the close relationship
between partitions and equivalence relations.

(x, z) � R ∩ S.( y, z) � S.
(x, y) � R(y, z) � R ∩ S.(x, y) � R ∩ S

R ∩ S
(y, x) � R ∩ S.(y, x) � S.(y, x) � R

(x, y) � S.(x, y) � R(x, y) � R ∩ S.
R ∩ S

R ∩ S
R ∩ Sx − y,

x − y,x − y.x − y,
x − y.(x, y) � R ∩ S,

R ∩ S

(r, s) W (x, y).r − x = s − y,x − r = y − s.
(x, y) W (r, s).� × �(r, s)(x, y)

y − s
x − r =  iff  (x, y) W (r, s)� × �

y + x.
x + y =(x, y) T (y, x)(x, y) � � × �.
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158 CHAPTER 3 Relations and Partitions

The set W of all employees in a large work area can be partitioned into work
groups by putting up physical partitions (walls) to form cubicles. If we are care-
ful so that (i) every cubicle contains at least one worker, (ii) no worker is
assigned to two different cubicles, and (iii) every worker must be in some cubi-
cle, then we have formed a partition of W. Notice that the workers are not ele-
ments of the partition; each element of the partition is a set of workers within a
common cubicle. In Figure 3.3.1, W is a set of 6 workers and the partition of W
consists of four sets—two sets each with two workers and two sets each with a
single worker.

Figure 3.3.1

Examples. The 2-element family where E is the even integers and D� = {E, D},
is the odd integers, is a partition of �. The 3-element collection � = {�, {0}, �−},
where is the set of negative integers is also a partition of For each let

The family is an infinite family that is
a partition of . Some elements of are and

Two other partitions of are 
and In fact, for any nonempty set A, the families and {A} are
partitions of A.

Example. For each let The collection of half
open intervals is a partition of 

By definition, a partition of A is a pairwise disjoint collection of nonempty
subsets of A whose union is A. Recall from Section 2.3 that the definition of

�.
{Gn: n � �}Gn = [n, n + 1).n � �,

{{x}: x � A}{�}.
{. . . , {−3}, {−2}, {−1}, {0}, {1}, {2}, {3}, . . .}�

A−1 = {−3, −2, −1}.
A1 = {3, 4, 5},A0 = {0, 1, 2},��

� = {Ak : k � �}Ak = {3k, 3k + 1, 3k + 2}.
k � �,�.�-
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3.3 Partitions 159

“pairwise disjoint” allows for the possibility that sets in a pairwise disjoint fam-
ily may be equal.

Example. For the set , the family where

is a partition of A even though the sets and are not disjoint. The family
, is the same as the family .

Let W be a set of six people and . For each 
let

and let . The family may not be a partition of W
because any of the three parts of the definition might be violated. If no one is
wearing red, then is empty, so condition (i) fails. If someone is wearing green
only, while a second person is wearing green and blue, then the different sets 
and Bgreen overlap, in violation of condition (ii). If someone is wearing only 
yellow clothing, then that person does not belong to any set in in violation of
condition (iii).

The first half of the connection between partitions and equivalence relations is:
Every equivalence relation on a set determines a partition of that set.

Theorem 3.3.1 If R is an equivalence relation on a nonempty set A, then the set of equivalence
classes for R, is a partition of A.

Proof. By Theorem 3.2.1 every equivalence class is a subset of A and is
nonempty because it contains x, and any two equivalence classes are either equal
or disjoint. All that remains is to show that the union over is equal to A.

First because each To prove suppose 

Since Thus  �

Example. Let and T be the equivalence relation

By Theorem 3.3.1, we can form a partition of A by finding the equivalence classes
of T. These are and The partition pro-
duced by T is A/R = {{4}, {5, 6, 7}}.

5/T = 6/T = 7/T = {5, 6, 7}.4/T = {4}

{(4, 4), (5, 5), (6, 6), (7, 7), (5, 7), (7, 5), (7, 6), (6, 7), (5, 6), (6, 5)}.

A = {4, 5, 6, 7}

A =
⋃
x�A

x/R.t � t/R, t �
⋃
x�A

x/R.

t � A.A ⊆
⋃
x�A

x/R,x/R ⊆ A.
⋃
x�A

x/R ⊆ A

A/R

x/R

A/R,

�,

Bblue

Bred

�� = {Bblue, Bgreen, Bred, Bwhite}

Bc = {x � W : x is wearing clothing with color c}.

c � C,C = {blue, green, red, white}
{C2, C3}{C1, C2, C3}

C3C1

C1 = {b, e}, C2 = {a, c, d}, and C3 = {b, e},

C = {C1, C2, C3},A = {a, b, c, d, e}
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160 CHAPTER 3 Relations and Partitions

B1

B2

B3

B4

B5

Figure 3.3.2

The Five Boroughs of New York City
B1: Manhattan
B2: Brooklyn
B3: Queens
B4: The Bronx
B5: Staten Island

New York City is divided into 5 boroughs (counties). The boroughs are labeled
through in Figure 3.3.2. If A is the set of all residents of New York City, then

A is partitioned into 5 subsets: the set of residents living in B1, the residents living in
B2, and so on. How can we use this fact to define an equivalence relation on A? We
say that two residents of New York City are equivalent they are in the same par-
tition element; that is, they reside in the same borough.

The method we will use to produce an equivalence relation from a partition
is based on this idea that two objects will be said to be related they belong
to the same member of the partition. The next theorem proves that this method for
defining a relation always produces an equivalence relation and, furthermore, the
set of equivalence classes of the relation is the same as the original partition.

Theorem 3.3.2 Let be a partition of the nonempty set A. For x and define there
exists such that and Then

(a) Q is an equivalence relation on A.
(b)

Proof.

(a) We prove Q is transitive and leave the proofs of symmetry and reflexivity on
A for Exercise 10. Let Assume and Then there are
sets C and D in such that and Since is a partition of
A, the sets C and D are either identical or disjoint; but since y is an element
of both sets, they cannot be disjoint. Hence, there is a set that con-
tains both x and z, so that Therefore, Q is transitive.

(b) We first show Let Then choose such that
We claim If then Then there is some 

such that and Since so On the other
hand, if then and so Therefore, x/Q = B.y � x/Q.x Q y,y � B,

y � B.C = B,x � C ∩ B,y � C.x � C
C � �x Q y.y � x/Q,x/Q = B.x � B.

B � �x/Q � A/Q.A/Q ⊆ �.
x Q z.

C 〈= D〉

�y, z � D.x, y � C�
y Q z.x Q yx, y, z � A.

A/Q = �.

y � C.x � CC � �
  iff  x Q yy � A,�

  iff  

  iff  

B5B1
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3.3 Partitions 161

To show let As an element of a partition, 
Choose any then we claim If then so 
On the other hand, if then so s and t are elements of the same
member of which must be B.                                                                �

Example. Let and be a partition of A with
three sets. The equivalence relation Q associated with is 

The three equivalence classes for Q are 
and The set of all equivalence classes is precisely .

Example. The set is a partition of where

Then integers x and y are in the same set Ai and for some
integers n and m or, in other words, is a multiple of 4. Thus, the equiva-
lence relation associated with the partition is the relation of congruence modulo
4 and each is the residue class of i modulo 4, for 

We have seen that every equivalence relation on a set determines a partition for
the set and every partition of a set determines a corresponding equivalence relation
on that set. Furthermore, if we start with an equivalence relation, the partition we
make is the set of equivalence classes, and if we use that partition to form an equiv-
alence relation, the relation formed is the relation we started with. Thus, each con-
cept may be used to describe the other. This is to our advantage, for we may use
partitions and equivalence relations interchangeably, choosing the one that lends
itself more readily to the situation at hand.

Exercises 3.3

1. Describe four different partitions of the set of all students enrolled at a 
university.

2. For the given set A, determine whether is a partition of A.
(a)

(b)

(c)
� (d)

(e)

(f) and where Sy = {x � �: x < y}y > 0},� = {Sy: y � �A = �,

� = (−∞, −1) ∪ [−1, 1] ∪ (1, ∞)A = �,
� = {1, 2, 3, 4, 5} ∪ {n � �: n > 5}A = �,

� = {{1, 3}, {5, 6}, {2, 4}, {7}}A = {1, 2, 3, 4, 5, 6, 7},

� = {{1, 2}, {3}, {4, 5}}A = {1, 2, 3, 4, 5, 6, 7},

� = {{1, 2}, {2, 3}, {3, 4}}A = {1, 2, 3, 4},
�

i = 0, 1, 2, 3.Ai

�
x − y  iff  

y = 4m + ix = 4n + i  iff  

A3 = {4k + 3 : k � �}.

A2 = {4k + 2 : k � �}.

A1 = {4k + 1 : k � �}.

A0 = {4k : k � �}.

�,� = {A0, A1, A2, A3}

�4/Q = {4}.3/Q = {2, 3},
2/Q =1/Q = {1},(4, 4), (2. 3), (3, 2)}.

{(1, 1), (2, 2), (3, 3),�
� = {{1}, {2, 3}, {4}}A = {1, 2, 3, 4}

�,
t Q s;s � t/Q,

s � t/Q.t Q s,s � B,B = t/Q.t � B;
B =� �.B � �.� ⊆ A/Q,
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162 CHAPTER 3 Relations and Partitions

3. Describe the partition for each of the following equivalence relations.
(a) For 

� (b) For n and m have the same tens digit.
(c) For 
(d) For 
(e) For and , or
(f) .

4. Let where The relation R on C given by 
is an equivalence relation on C. Give the partition of C associated

with R.

� 5. Let C be as in Exercise 4. The relation S on given by 
is an equivalence relation. Give the partition of associated

with S.

6. Describe the equivalence relation on each of the following sets with the given
partition.

(a)
� (b)

(c)

� (d) ,

(e) where and 

7. For each let 
(a) Sketch a graph of the set Aa for a = −2, −1, 0, 1, and 2.
(b) Prove that is a partition of 
(c) Describe the equivalence relation associated with this partition.

8. List the ordered pairs in the equivalence relation on asso-
ciated with these partitions:

� (a) (b)
(c)

9. Partition the set into two subsets: those symbols
made from straight line segments only (like 4), and those that are drawn with
at least one curved segment (like 2). Describe or draw the digraph of the cor-
responding equivalence relation on D.

10. Complete the proof of Theorem 3.3.2 by proving that if is a partition of A,
and there exists such that and then
(a) Q is symmetric.
(b) Q is reflexive on A.

� 11. Let R be a relation on a set A that is reflexive and symmetric but not 
transitive. Let [Note that R(x) is the same as except 
that R is not an equivalence relation in this exercise.] Does the set 

always form a partition of A? Prove that your answer is 
correct.
{R(x): x � A}

� =
x/RR(x ) = {y: x R y}.

y � C,x � CC � �  iff  x Q y
�

D = {1, 2, 3, 4, 5, 6, 7}

{{2, 3, 4, 5}, {1}}
{{1}, {2}, {3, 4}, {5}}{{1, 2},{3, 4, 5}}

A = {1, 2, 3, 4, 5}

� × �.{Aa: a � �}

Aa = {(x, y) � � × �: y = a − x2}.a � �,

B = � − AA = {x � �: x < 3}{A, B},�,

{2}, (2, 3), Á}(1, 2),

{Á , (−3, −2), {−2}, (−2, −1), {−1}, (−1, 0), {0}, (0, 1), {1}�,

{(−∞, 0), {0}, (0, ∞)}�,
{Á , {−2}, {−1}, {0}, {1}, {2}, {3, 4, 5, Á }}�,

�, {{1, 2, Á 9}, {10, 11, Á 99}, {100, 101, Á 999}, Á }

C × Cxy = uviff  

(x, y) S (u, v)C × C

xy = ±1iff  

x R yi2 = −1.C = {i, −1, −i, 1},

x + v = y + u  iff  (x, y) R (u, v)
xyuv > 0.xy = uv = 0  iff  (x, y) S (u, v)(u, v) � � × �(x, y)

x2 = y2.  iff  x R yx, y � �,
sin x = sin y.  iff  x R yx, y � �,

  iff  n R mn, m � �,
x − y � �.  iff  x R yx, y � �,
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3.4 Ordering Relations 163

12. Repeat Exercise 11, assuming R is reflexive and transitive but not symmetric.

13. Repeat Exercise 11, assuming R is symmetric and transitive but not reflexive.

14. Let A be a set with at least three elements.
� (a) If is a partition of A with , is a partition

of A? Explain. What if 
(b) If is a partition of A, is a partition of A?

Explain. Consider the possibility that two or more of the elements of 
may be equal.

(c) If is a partition of A, �1 is a partition of and �2 is a par-
tition of and prove that is a partition of A.

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. Let R be an equivalence relation on the set A, and let and

z be elements of A. If and then 
“Proof.” Assume that and Then and By
transitivity, so Therefore, if and then

�
(b) Claim. Let R be an equivalence relation on the set A, and let x, y, and

z be elements of A. If and then 
“Proof.” Assume that and assume that Then 
and By symmetry, and by transitivity, Therefore,

We conclude that if and then �
(c) Claim. If is a partition of a set A and is a partition of a set B, then

is a partition of 
“Proof.”
(i) If then or In either case 
(ii) If and then and or 

and or and or and Since both
and are partitions, in each case either or 

(iii) Since and  �

� (d) Claim. If is a partition of A, and if there exists such
that and then the relation Q is symmetric.
“Proof.” First, there exists such that and 
Also, there exists such that and Therefore,

�

3.4 Ordering Relations

Familiar ordering relations for and such as “less than,” “greater than,” and
“less than or equal to” are basic to our understanding of number systems but they are
not equivalence relations. For instance, is not reflexive on because is 
false, and is not symmetric because is true but is false. The relation is<π < 22 < π

3 < 3�<

��, �,

y Q x.  iff  x Q y
x � C.y � CC � �  iff  y Q x

y � C.x � CC � �  iff  x Q y
y � C,x � C

C � �  iff  x Q y�

⋃
X��∪�

X = A ∪ B.
⋃

x��
X = B,

⋃
X��

X = A

X ∩ Y = �.X = Y��
Y � �.X � �Y � �,X � �Y � �,

X � �Y � �,X � �Y � � ∪ �,X � � ∪ �
X =� �.X � �.X � �,X � � ∪ �,

A ∪ B.� ∪ �
��

z � y/R.z � x/R,x � y/Rz � x/R.
x R z.x R y,y R z.

y R xz � y/R.x � y/R
z � y/R.z � x/R,x � y/R

z � y/R.
z � x/R,x � y/Rz � y/R.y R z,

x R z.y R xz � x/R.x � y/R
z � y/R.z � x/R,x � y/R

x, y,

�1 ∪ �2B1 =� B2,B2,
B1,� = {B1, B2}

�
EBc

1, Bc
2, Bc

3 F� = {B1, B2, B3}
B1 = B2?

EBc
1, Bc

2 FB1 =� B2� = {B1, B2}
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164 CHAPTER 3 Relations and Partitions

transitive, because the conjunction and implies This section
describes those properties of relations that characterize orderings like and We
begin with some examples.

Example. In addition to transitivity and reflexivity on the relation on has
two properties we have not previously considered. The first of these properties is
comparability: every two elements of are comparable. This means that for all

either or The other property is that for all if 
and then 

Example. We saw earlier that the relation “divides” is reflexive on . While we
did not use the term “transitive” in Section 1.4, in effect we proved in that section
that “divides” is transitive. Two other properties of this relation are notable. If a
divides b and b divides a, then Also, there are elements of that are not
comparable. That is, there are natural numbers x and y (for example, 10 and 21)
such that both “x divides y” and “y divides x” are false.

Example. Let X be a set. The set inclusion relation on the power set of X is
reflexive on and transitive. Also, if A and B are subsets of X with and 

then . In this relation some pairs of elements are not comparable. For
example, if then and are elements of but both

and are false.

Example. Let Y be the relation “is the same age in years or younger than” on
a fixed set P of people. Then Y is reflexive on P and transitive. This relation
also has the property that any two elements of P are comparable. However, the
relation Y has a property that is undesirable for an ordering. If a and b are 
two different people in P, and both a and b are 20 years old, then and 
but 

Although we find it acceptable in an ordering for two elements to not be
comparable, we wish to avoid the situation in the previous example where two
different objects are both related to each other. The property we want is called
antisymmetry.

a =� b.
b Y a,a Y b

{1, 4} ⊆ {1, 3}{1, 3} ⊆ {1, 4}
� (X ){1, 4}{1, 3}X = {1, 2, 3, 4},

A = BB ⊆ A
A ⊆ B� (X )

⊆

�a = b.

�

x = y.y ≤ x,
x ≤ yx, y � �,y ≤ x.x ≤ yx, y � �,

�

�≤�,

≤.<

x < z.y < zx < y

DEFINITION A relation R on a set A is antisymmetric for all
if and then x = y.y R x,x R yx, y � A,

  iff  

Examples. We have already noted that the relations “divides” on , on , and
on are antisymmetric. The relation differs from the relation on 

because is not reflexive on Like the relation is antisymmetric but for a<≤,�.<

�≤<� (A)⊆
�≤�,
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3.4 Ordering Relations 165

DEFINITION A relation R on a set A is a partial order (or partial
ordering) for A if R is reflexive on A, antisymmetric, and transitive. A set
A with partial order R is called a partially ordered set, or poset.

different reason: the statement “For all x, y in , if and then ” is
true because the antecedent is false.

The relation “divides” is an antisymmetric relation on However, “divides”
is not an antisymmetric relation on For example, 6 divides and divides 6,
but 

Antisymmetry is an important concept for maintaining the chain of command
in the military where the relation “can give orders to” must be explicit. It would be
chaotic if two different officers could give orders to each other.

A relation may be antisymmetric and not symmetric, symmetric and not anti-
symmetric, both, or neither. See Exercise 2. In Exercise 3, you are asked to show
that if R is an antisymmetric relation, then and implies That is, the
only possible symmetry that an antisymmetric relation may exhibit is that an object
may be related to itself.

y R x.x =� yx R y

6 =� −6.
−6−6�.

�.

x = yy < xx < y�

Three relations discussed above: “divides” on on and on for
any set X, are examples of partial orderings.

Example. Let W be the relation on given by is even and 
Then W is a partial order. For example, and 

but we never have where m and n have opposite parity. We verify
that W is a partial order:

Proof.

(i) 〈Show W is reflexive on 〉 Let Then is even and 
so 

(ii) 〈Show W is antisymmetric.〉 Suppose and Then is even,
and By antisymmetry of on 

(iii) 〈Show W is transitive.〉 Suppose and Then is even,
and is even. By transitivity of on Also, is

even because is the sum of three even
numbers. Therefore, �

Suppose R is a partial order on the set A and a, b, c are three distinct elements of
A. Further suppose that and A portion of the digraph of R is
shown in Figure 3.4.1. The chain of relationships is called a
closed path (of length 3) in the digraph. (See the next section for more about paths in
graphs.) The path is closed because as we move from vertex to vertex along the path,
we can start and end at the same vertex. From and by transitivityb R c,a R b

c R ab R c,a R b,
c R a.b R c,a R b,

x W z.
x + z = (x + y) + (y + z) + (−2y)

x + zx ≤ z.�,≤y + zy ≤ z,
x + yx ≤ y,y W z.x W y

x = y.�,≤y ≤ x.x ≤ y,
x + yy W x.x W y

x W x.
x ≤ x,x + x = 2xx � �.�.

m W n5 W 7, Á ,
3 W 5,1 W 3,6 W 8, Á ,4 W 6,2 W 4,
x ≤ y.x + y  iff  x W y�

� (X )⊆�,�, ≤
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166 CHAPTER 3 Relations and Partitions

we must have (The arc from a to c is not shown in the portion of the digraph
in Figure 3.4.1.) But is also true, and this contradicts the antisymmetry prop-
erty of R. Using this reasoning, we conclude that the digraph of a partial order can
never contain a closed path except for loops at individual vertices.

c R a
a R c.

DEFINITION Let R be a partial ordering on a set A and let 
with Then a is an immediate predecessor of b and there
does not exist such that and c R b.a R cb =� c,a =� c,c � A

a R b  iff  a =� b.
a, b � A

In other words, a is an immediate predecessor of b when and no other element
lies “between” a and b.

Example. For is partially ordered by the set inclusion
relation For the set there are three immediate predecessors in 

and The empty set has no immediate predecessor. Also, is
the only immediate predecessor for {3}. We have but {4} is not 
an immediate predecessor of {2, 4, 5} because 

and 

Let be the set of all positive divisors of 30. The
relation “divides” is a partial order for M whose digraph is given in Figure 3.4.2(a).
We can simplify the digraph significantly. First, since we know that every vertex

M = {1, 2, 3, 5, 6, 10, 15, 30}

{4, 5} ⊆ {2,  4, 5}.{4} ⊆ {4, 5},
{4} =� {4, 5}, {4, 5} =� {2, 4, 5},

{4} ⊆ {2, 4, 5},
�{3, 5}.{2, 3}, {2, 5},

� (A):{2, 3, 5},⊆ .
� (A)A = {1, 2, 3, 4, 5},

a R b

a

b c

Figure 3.4.1

Theorem 3.4.1 If R is a partial order for a set A and then

Proof. We prove this by induction on n. For suppose we have and
By antisymmetry, we conclude that 

Now suppose that for some natural number whenever 
then and suppose that 

By transitivity applied to and
we have From and the hypothesis of

induction, we have Since we have and 
so Therefore, �x = x1 = x2 = ··· = xk+1.x = xk+1.xk+1 R x,

x R xk+1xk = xx = x1 = x2 = ··· = xk.
x1 R x2, Á , xk R xx R x1,xk  R x.xk+1 R x〉

xk R xk+1〈x2 R x3, Á , xk  R xk+1, xk+1 R x.x1 R x2,
x R x1,x = x1 = x2 = x3 = ··· = xkx2 R x3, Á , xk R x,

x1 R  x2,x R x1,k,
x = x1.x1 R x.

x R x1n = 1,〉〈

x = x1 = x2 = x3 = ··· = xn.
x2 R x3, Á , xn R x,x1 R x2,x R x1,
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3.4 Ordering Relations 167

Figure 3.4.2

must have a loop, we need not include them in the digraph. Also, since there are no
closed paths, we can orient the digraph so that all edges point upward; thus we may
eliminate the arrowheads, assuming that each edge has the arrowhead on the upper
end. We can also remove edges that can be recovered by transitivity. For example,
since there is an edge from 2 to 10 and another from 10 to 30, we do not need to
include the edge from 2 to 30. In other words, we need only include those edges that
relate immediate predecessors. The resulting simplified digraph, Figure 3.4.2(b), is
called a Hasse diagram of the partial order “divides.”

30

10

3

15

5

6

2

1

30

10

3

15

5

6

2

1

Figure 3.4.3

{1, 2, 3}

{1, 3} {2, 3}{1, 2}

{1} {2}

φ

{3}

Hasse diagram for    .

Example. Let The Hasse diagram for partially ordered by
is given in Figure 3.4.3. It bears a striking resemblance to Figure 3.4.2(b) for good
reason. Except for the naming of the elements in the sets, the orderings are the
same. In fact, it can be shown that every partial order is “the same” as the set inclu-
sion relation on subsets of some set. Although we need the concepts of Chapter 4 to

⊆�(A)A = {1,  2, 3}.

(a) Digraph of “divides.” (b) Hasse diagram for “divides.”
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168 CHAPTER 3 Relations and Partitions

DEFINITIONS Let R be a partial order for a set A. Let B be any subset
of A and Then

a is an upper bound for B for every 
a is a lower bound for B for every 
a is a least upper bound for B (or supremum for B)

(i) a is an upper bound for B, and
(ii) for every upper bound x for B.

a is a greatest lower bound for B (or infimum for B)

(i) a is a lower bound for B, and
(ii) for every lower bound x for B.

We write sup (B) to denote a supremum of B and inf (B) for an infimum 
of B.

x R a

  iff  

a R x

  iff  

b � B.a R b  iff  

b � B.b R a  iff  

a � A.

We shall soon see (Theorem 3.4.2) that there is at most one supremum and one
infimum for a set. 

Examples. For A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, let B = {{1, 4, 5, 7}, {1, 4, 7, 8},
B is a subset of Using the partial order for we see that 

{1, 2, 3, 4, 5, 6, 7, 8} is an upper bound for B because

, and

Another upper bound for B is The least upper bound for B is
sup

Elements of that are lower bounds for B are {4}, {7}, and {4, 7}. The
greatest lower bound for B is inf

You should notice in the example above that sup(B) is the union of the sets in
B and inf(B) is the intersection of the sets in B. This is true in general: for any non-
empty set A with partially ordered by ⊆, if B is a set of subsets of A, then

and See Exercise 14.

Example. Here are least upper bounds and greatest lower bounds for some subsets
of with the usual ordering 

for B = {1, 6, 3, 9, 12, −4, 10}, sup(B) = 12 and inf(B) = −4.
for A = [0, 4),  sup(A) = 4  and  inf(A) = 0.

≤:�

inf(B) =
⋂

X�B
 X.sup(B) =

⋃
X�B

 X

�(A)

(B) = {4, 7}.
�,�(X )

(B) = {1, 2, 4, 5, 7, 8}.
{2, 4, 5, 7, 8, 9, 10}.

{2, 4, 7} ⊆ {1, 2, 3, 4, 5, 6, 7, 8}.
{1, 4, 7, 8} ⊆ {1, 2, 3, 4, 5, 6, 7, 8}
{1, 4, 5, 7} ⊆ {1, 2, 3, 4, 5, 6, 7, 8},

�(A),⊆�(A).{2, 4, 7}}.

make precise what we mean by “same,” Exercise 19 outlines how one might start to
show this.
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3.4 Ordering Relations 169

Example. Let A be the set of all positive divisors of 1000 with the ordering
relation “divides” on A. Let Both 500 and 1000 are upper
bounds for B; the least upper bound is 100. The greatest lower bound for B is 5.
Note that for “divides,” the least upper bound is the lcm (least common multiple)
and the greatest lower bound is the gcd (greatest common divisor).

Theorem 3.4.2 Let R be a partial order for a set A and Then if sup(B) exists, it is unique.
Also, if inf(B) exists, it is unique.

Proof. Suppose that x and y are both least upper bounds for B. We prove that
Since x and y are least upper bounds, then x and y are upper bounds. Since

x is an upper bound and y is a least upper bound, we must have Likewise,
since y is an upper bound and x is a least upper bound, we must have From

and we conclude that by antisymmetry. Thus, if it exists, sup(B)
is unique.

The proof for inf(B) is left as an exercise. �

We have seen examples of sets B where, when they exist, the least upper and
greatest lower bounds for B are in B and other examples where they are not in B.

x = yy R x,x R y
x R y.

y R x.
x = y.〉

〈

B ⊆ A.

B = {10, 20, 25, 100}.

for D = {2−k: k � �}, sup(D) =  1
2
  and inf(D) = 0.

for C = {2k: k � �},  sup(C) does not exist and inf(C) = 2.

DEFINITION Let R be a partial order for a set A. Let If the
greatest lower bound for B exists and is an element of B, it is called the
smallest element (or least element) of B. If the least upper bound for B is
in B, it is called the largest element (or greatest element) of B.

B ⊆ A.

The usual ordering of the number systems has the comparability property: for any
x and y, either or A partial ordering with this property is called linear.y ≤ x.x ≤ y

DEFINITION A partial ordering R on A is called a linear order (or total
order) on A if for any two elements x and y of A, either or y R x.x R y

Examples. Each of and with the ordering is linearly ordered. (A) with
set inclusion, where is not a linearly ordered  set because the two ele-
ments and cannot be compared. Likewise, the relation “divides” is not
a linear order for because 3 and 5 are not related (neither divides the other).

If R is a linear order on A, then by antisymmetry, if x and y are distinct elements
of A, or (but not both). The Hasse diagram for a linear ordered set is a
set of points on a vertical line.

y R xx R y

�

{1, 3}{1, 2}
A = {1, 2, 3},

�≤���,
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170 CHAPTER 3 Relations and Partitions

DEFINITION Let L be a linear ordering on a set A. L is a well ordering
on A if every nonempty subset B of A contains a smallest element.

In Chapter 2 we proved the Well-Ordering Principle from the Principle of
Mathematical Induction. Using the terminology of this section, the Well-Ordering
Principle says that the natural numbers are well ordered by ≤. The integers, �, on
the other hand, are not well ordered by ≤ because we have seen that 

is a nonempty subset that has no smallest element.
Finally, we state without proof a remarkable result.

Theorem 3.4.3 Well-Ordering Theorem
Every set can be well ordered.

The Well-Ordering Theorem should not be confused with the Well-Ordering
Principle of Section 2.5, which is a property of the natural numbers. The theorem says
for any nonempty set A there is always a way to define a linear ordering on the set so
that every nonempty subset of A has a least element. Even the set of real numbers,
which we know is not well ordered by the usual linear order ≤, has some other linear
ordering so that � is well ordered by that ordering. The proof of the Well-Ordering
Theorem requires a new property of sets, the Axiom of Choice. (See Section 5.5.)

Exercises 3.4

1. Which of these relations on the given set are antisymmetric?
� (a)

(b)
� (c)

(d)
(e)

� (f) R as given in the digraph:A = {1, 2, 3, 4},
y = x − 1.  iff  x S y� × �,

x ≤ 2y.  iff  x R y�,
x2 = y2.  iff  x R y�,

A ={1, 2, 3, 4, 5}, R ={(1, 4), (1, 2), (2, 3), (3, 4), (5, 2), (4, 2), (1, 3)}.
A ={1, 2, 3, 4, 5}, R = {(1, 3), (1, 1), (2, 4), (3, 2), (5, 4), (4, 2)}.

−16, −32, Á}
{−2, −4, −8,

For a given linear order on a set it is not always true that every subset has a small-
est or largest element. The set of integers with ≤ is linearly ordered but the set

has neither upper bounds nor a least upper bound. Likewise,
has no greatest lower bound (and hence no smallest

element).
{−2, −4, −8, −16, −32, Á }
B = {1, 3, 5, 7, Á }

4 3

1 2
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3.4 Ordering Relations 171

2. Let Give an example of a relation on A that is
(a) antisymmetric and symmetric.
(b) antisymmetric, reflexive on A, and not symmetric.
(c) antisymmetric, not reflexive on A, and not symmetric.
(d) symmetric and not antisymmetric.
(e) not symmetric and not antisymmetric.

3. Let R be an antisymmetric relation on the set A and x, 
(a) Prove that if and then 
(b) Prove that if R is symmetric and , then 

4. (a) Give an example of a relation R on a set A that is antisymmetric and such
that for some, but not all, x in A.

(b) Give an example of a relation S on the set such that S is
transitive, antisymmetric, and irreflexive (that is, is false for all x
in A).

5. Show that the relation R on given by for some integer
is a partial ordering.

6. Define the relation R on by and Prove
that R is a partial ordering for 

7. Define the relation R on � by Is R(a + bi) R (c + di)  iff  a2 + b2 ≤ c2 + d2.

� × �.
b ≤ y.a ≤ x  iff  (a, b) R (x, y)� × �

k ≥ 0
b = 2ka  iff  a R b�

x R x
A = {a, b, c, d}

x R x

R = IA.Dom (R) = A
y R x.x =� y,x R y

y � A.

A = {a, b, c}.

4 3

1 2

(g) R as given in the digraph:A = {1, 2, 3, 4},

a partial order for �? Justify your answer.

8. Let A be a partially ordered set, called “the alphabet.” Let W be the set of 
all “words” of length two—that is, all permutations of two letters of the alpha-
bet. Define the relation ≤ on W as follows: for and 

(i) or (ii) and Prove that ≤ is a partial
ordering for W (called the lexicographic ordering, as in a dictionary).

9. Draw the Hasse diagram for the poset with the set inclusion relation,
where 

10. For each Hasse diagram, list all pairs of elements in the relation on the indi-
cated set.

� (a) (b) (c) A = {a, b, c, d}A = {a, b, c, d}A = {a, b, c}

A = {a, b, c, d}.
� (A)

x2 ≤ y2.x1 = y1x1 < y1  iff  x1x2 ≤ y1y2

y1y2 � W,x1x2 � W

a

b

c

d

b

a

c

d

b

a c
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172 CHAPTER 3 Relations and Partitions

11. Use your own judgment about which tasks should precede others to draw a Hasse
diagram for the partial order among the tasks for each of the following projects.

� (a) To make his special stew, Fubini must perform 9 tasks:

t1: wash the vegetables
t2: cut up the vegetables
t3: put vegetables in cooking pot
t4: cut up the meat
t5: brown the meat in a skillet
t6: add seasoning to the skillet
t7: add flour to the skillet
t8: put the skillet ingredients in the pot
t9: cook the stew for 30 minutes

(b) To back a car out of the garage, Kim must perform 11 tasks:

t1: put the key in the ignition
t2: step on the gas
t3: check to see if the driveway is clear
t4: start the car
t5: adjust the mirror
t6: open the garage door
t7: fasten the seat belt
t8: adjust the position of the driver’s seat
t9: get in the car
t10: put the car in reverse gear
t11: step on the brake

12. Let A be a nonempty set and let be partially ordered by set inclusion.
Show that

� (a) if and then is an immediate predecessor of B.
(b) if and then B is an immediate predecessor of 

13. Let R be the rectangle shown here, including the edges. Let
H be the set of all rectangles whose sides have positive
length, are parallel to the sides of R, and lie within R. H is
partially ordered by set inclusion.
(a) Does every subset of H have an upper bound? a least upper bound?

� (b) Does every subset of H have a largest element?
� (c) Does every subset of H have a lower bound?

(d) Does every subset of H have a smallest element?

14. Let A be a set and ⊆ be the ordering for 
� (a) Let C and D be subsets of A. Prove that the least upper bound of {C, D}

is and the greatest lower bound of is C ∩ D.{C, D}C ∪ D

� (A).

B ∪ {x}.x � B,B � � (A)
B − {x}x � B,B � � (A)

� (A)

� (b) Let be a family of subsets of A. Prove that the least upper bound of 

is and the greatest lower bound of is 

15. Which are linear orders on ? Prove your answers.
(a) T, where m < 2n  iff  m T n

�

⋂
B��

B.�
⋃

B��
B

��

62025_03_ch03_p135-184.qxd  4/18/10  12:28 PM  Page 172

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



3.4 Ordering Relations 173

(b) V, where 
m is odd and n is even, or
m and n are even and or
m and n are odd and 

(c)
(d)

16. Prove that the relation V in Exercise 15(b) is a well ordering.

17. In determining whether a given relation is a well ordering, it is not necessary
to verify all the conditions for a linear order as well as the additional condi-
tion for a well ordering:
(a) Prove that a partial order R on a set A is a well ordering every 

nonempty subset of A has a smallest element.
(b) Prove that a relation R on a set A is a well ordering every nonempty

subset B of A contains a unique element that is R-related to every ele-
ment of B.

18. Prove that every subset of a well-ordered set is well ordered.

19. This exercise provides the steps necessary to prove that every partial order-
ing is in a sense the same as the set inclusion relation on a collection of sub-
sets of a set. Let A be a set with a partial order R. For each leta � A,

  iff  

  iff  

T = {(m, n): m, n � �, m ≤ n and n =� 5} ∪ {(5, m): m � �}
S = {(m, n): m, n � �, m ≤ n and m =� 5} ∪ {(m, 5): m � �}

m ≤ n
m ≤ n,

  iff  m V n

. Let Then � is a subset of and
thus may be partially ordered by ⊆.
(a) Show that if then 
(b) Show that if Sa ⊆ Sb, then 
(c) Show that for every an immediate predecessor of b in A correspondsb � A,

a R b.
Sa ⊆ Sb.a R b,

� (A)� = {Sa: a � A}.Sa = {x � A: x R a}

to an immediate predecessor of in �.
(d) Show that if and x is the least upper bound for B, then is the

least upper bound for 
Proofs to Grade 20. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.
(a) Claim. Let A be a set with a partial order R. If and sup(C )

and sup(B) exist, then sup(C ) ≤ sup(B).
“Proof.” sup(B) is an upper bound for B. Therefore, sup(B) is an upper
bound for C. Thus sup(C) ≤ sup(B). �

� (b) Claim. Let A be a set with a partial order R. If u is an upper
bound for B, and then sup(B) exists and 
“Proof.” Since Since u is an upper bound,

Thus �
(c) Claim. For A, with the usual ordering, 

“Proof.” If then or Therefore or
Thus for all x in Therefore

Also and so by
part (a), and Therefore

Thus �sup(A) + sup(B) = sup(A ∪ B).sup(A) + sup(B) ≤ sup(A ∪ B).
sup(B) ≤ sup(A ∪ B).sup(A) ≤ sup(A ∪ B)

B ⊆ A ∪ B,A ⊆ A ∪ Bsup(A ∪ B) ≤ sup(A) + sup(B).
A ∪ B.x ≤ sup(A) + sup(B),x < sup(B).

x < sup(A)x � B.x � Ax � A ∪ B,
sup(A) + sup(B).

sup(A ∪ B) =≤B ⊆ �

u =  sup(B). sup(B) ≤ u.
u ≤ sup(B).u � B,

u = sup(B).u � B,
B ⊆ A,

C ⊆ B ⊆ A

{Sb: b � B}.
SxB ⊆ A

Sb
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174 CHAPTER 3 Relations and Partitions

3.5 Graphs

In Section 3.1 we used a digraph—a collection of vertices and directed edges—to
represent a relation on a set. In this section we present a similar, but different, method
to represent some relations. The representation is called simply a graph.

Graph theory is a significant branch of mathematics with applications to many
fields, such as computer science, linguistics, and chemistry. There is great variation
in the terminology about graphs and types of graphs, in part because of all the
diverse areas of applications.

Like a digraph of a relation R on a set A, a graph will have a vertex for each
element of A. Vertices may be connected by edges, but unlike digraphs, the edges
are not directed.

DEFINITIONS A graph G is a pair (V, E), where V is a nonempty set
and E is a set of unordered pairs of distinct elements of V.

An element of V is called a vertex and an element of E is called an
edge. An edge between vertices u and v is written uv (or vu) rather than as
the set {u, v}.

A graph as defined above is also called a simple graph because the definition
allows at most one edge between two vertices and does not allow loops at vertices.
A more general definition allows multiple edges and loops.

We begin with an example representing conversations at a party. The five peo-
ple (vertices) at the party are Doc, Grumpy, Sneezy, Dopey, and Happy. Rather
than listing ordered pairs in the relation S on this set of people, where x
had a conversation at the party with y, we describe the relation with the graph in
Figure 3.5.1.

  iff  x S y

Doc

Happy

Sneezy

Dopey

Grumpy

Figure 3.5.1

This graph has 7 edges; an edge connects vertices x and y exactly when per-
son x has had a conversation with person y. It can be seen from the graph that Doc
spoke with each of the others except Dopey and that Grumpy had a conversation
only with Doc and Happy. The graph does not show anything about where the
party-goers stood, how long they talked, or whether they had more than one 
conversation.
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3.5 Graphs 175

Other graphs could be used to represent the relation S of having had a conver-
sation at the party. For example, both of the two graphs in Figure 3.5.2 convey
exactly the same information as the graph in Figure 3.5.1, because these graphs
have the same vertices and the same edges.

The order of our conversation graph is 5 and the size is 7. Doc has degree 3,
meaning he held conversations with three other people. Dopey and Sneezy are 
adjacent, whereas Dopey and Doc are not.

Doc

Grumpy

SneezyDopey

Happy

Dopey

Sneezy

Happy Doc

Grumpy

We call two graphs and isomorphic their vertices are the
same except for renaming and whenever there is an edge in joining two vertices
in there is a corresponding edge in that joins the corresponding vertices in 

Example. Each of the three graphs in Figure 3.5.3 is isomorphic to the other two.
For the first two graphs, the vertices A, B, C, and D correspond, respectively to �,
�, �, and �. The edge AB corresponds to the edge ��, the edge BD corresponds to
the edge ��, and so on.

V2.E2V1

E1

  iff  (V2, E2)(V1, E1)

a b

c

d

B

A

C

D

a b g

d

Figure 3.5.2

Figure 3.5.3

DEFINITIONS Let be a graph. The order of the graph G
is the number of vertices. The size of the graph G is the number of edges.

Vertices u and v are adjacent the edge uv is said to be
incident with u and with v.

The degree of a vertex u is the number of edges incident with u.
A vertex is isolated it has degree zero.  iff  

uv � E;  iff  

G = (V, E )
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176 CHAPTER 3 Relations and Partitions

The definition of a graph allows for E to be empty. Such a graph is
a null graph. Figure 3.5.4 is a null graph of order 5. Every vertex of a null graph is
isolated.

G = (V, E)

1

5
The null graph of order 5.

3

4

2

Figure 3.5.4

K2
K3

K5K4

K1

1 1 2

1

3

2

3

45

3

21

4

1

2

Figure 3.5.5

If you look again at Figure 3.5.1, you will see that the degrees of the vertices are
3, 3, 4, 2, and 2. The sum of the degrees is 14, which is even. The explanation for 
the fact that the sum of the degrees of the vertices of a graph is even is the same as
the explanation for the fact that if a group of people shake hands, the total number 
of hands shaken must be even.

Theorem 3.5.1 (a) The Handshaking Lemma. For every graph G, the sum of the degrees of the
vertices is twice the number of edges. Thus the sum of the degrees is even.

(b) For every graph G, the number of vertices of G having odd degree is even.

Proof.

(a) Each edge is incident with two vertices. Thus the sum of the degrees of the
vertices is exactly twice the number of edges. Therefore, the sum is even.

(b) Obviously, the sum of the degrees of the vertices that have even degree is an
even number. If there were an odd number of vertices with odd degree, then
the sum of all the degrees would be odd. By the Handshaking Lemma, this is
impossible. �

A graph in which every pair of distinct vertices are adjacent is called a com-
plete graph. If has order n and is complete, then every vertex has
degree The complete graph of order n is denoted Figure 3.5.5 shows the
complete graphs of order 5 and less.

Kn.n − 1.
G = (V, E )
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3.5 Graphs 177

For the complete graph each vertex has degree Therefore, the sum
of the degrees of the vertices is Since this number is twice the number of

edges, the number of edges in is 

The graph is a subgraph of the graph if and only if and
Thus we can form a subgraph of by selecting some of the vertices

from V and some of the edges from E, but it is understood that an edge cannot be in
unless both its vertices are in Figure 3.5.6 shows three subgraphs of our

graph of conversations.
V ′.E ′

(V, E)E ′ ⊆ E.
V ′ ⊆ V(V, E )(V ′, E ′ )

n(n − 1)

2
.Kn

n(n − 1).
n − 1.Kn,

Dopey

Happy

Sneezy

Doc

Dopey

Happy

Sneezy

Doc

Sneezy

Happy

Figure 3.5.6

DEFINITIONS A walk* in a graph G is a finite sequence of vertices
where each is an edge in G. The walk is said to

traverse the vertices in the sequence, starting with the initial vertex v0

and ending with the terminal vertex vm. The length of the walk 
is m, the number of edges. If the walk is closed.

A path in G is a walk where all the vertices, except for possibly the
initial and terminal vertices, are distinct.

v0 = vm,

vivi +1v0, v1, v2, v3, Á , vm,

Some sequences in the graph of order 6 of Figure 3.5.7 are

 p5: 1, 2, 5, 4, 3, 6, 1.
 p4: 2, 5, 3, 4
 p3: 3, 2, 5, 2, 3
 p2: 1, 2, 5, 6, 4, 3
 p1: 6, 3, 5

* What we call a walk is called by some a path, an edge-sequence, a route, a trail, or a chain.

2

5

6 4

31

Figure 3.5.7
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178 CHAPTER 3 Relations and Partitions

The sequence is a walk because there is an edge from 6 to 3 and from 3 to 5; the
initial vertex of is 6 and the terminal vertex 5. The sequence is not a walk
because the graph has no edge from 6 to 4. The sequence is a walk but not a path
because of the repeated vertex 2. The walk is closed. Walk is a path of length
3 and is not closed. Walk is a closed path of length 6 with initial and terminal
vertices 1.

The graph in Figure 3.5.7 might represent airline routes among 6 cities. It’s
natural to think of planning a trip that would traverse certain vertices (cities) by
taking a sequence of edges (flights). If we think of the graph in this way, then a
salesperson’s trip would be a walk through certain cities. Because the salesperson
does not want to visit cities twice, the route should be a path. In addition, the path
should be closed so that the trip starts and ends in the city of the salesperson’s home
office.

Since the vertices of a path p in a graph are distinct, the length of p is limited
by the order of the graph.

Theorem 3.5.2 Let G be a graph of order n.

(a) If there is a walk originating at v and terminating at u in a graph G, then there
is a path from v to u.

(b) The length of a path in G that is not closed is at most The length of a
closed path is at most n.

Proof.

(a) Suppose is a walk from v to u, with If the walk is not
a path, then some vertex appears twice in the sequence. Let x be the first such
vertex. Then the walk contains at least one closed walk of the form

v =� u.v, v1, v2, Á , u

n − 1.

p5

p4p3

p3

p2p1

p1

Delete the vertices from the sequence 
If the result is a path, we are done. Otherwise another such repeated vertex
can be found and the deletion process repeated. Since we delete at least one
vertex each time and there are finitely many vertices in 
eventually no more vertices can be deleted, so this process must result in a
path from v to u.

In the case the same process is applied to delete all repetitions
of vertices except the initial and terminal vertex. The result is a closed
path.

(b) Consider a path in the graph G, where G has n vertices. If the path has length
t, then there are vertices traversed by the path. In a path that is not
closed, all vertices are distinct so there are at most n vertices traversed. Thus

and the path has length at most In a closed path the initial
and terminal vertices are the same and there is no other repeated vertex. Thus
if the closed path has length t, there are t distinct vertices. Therefore, if G has
n vertices, the length of a closed path is at most n. �

n − 1.t + 1 ≤ n

t + 1

v = u,

v, v1, v2, Á , u,

v2, Á , u.v, v1,vj, vj+1, Á , vm, x
x, vj, vj+1, Á , vm,  x.
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3.5 Graphs 179

DEFINITIONS Let G be a graph and u be a vertex of G. The vertex v
is reachable (or accessible) from u if and only if there is a path from u to
v. The number of edges in a path of minimum length from u to v is called
the distance from u to v, denoted For any vertex u, we say u is
reachable from itself and d (u, u) = 0.

d (u, v).

Example. Let G be the graph with vertex set 
shown in Figure 3.5.8. The vertex q is reachable from the vertices q, c, g, h, j, and k
and from no other vertices in G. The distances to vertex q are 

and Likewise,
and is not defined.d (q, b)d (e, i ) = 1,d (a, f  ) = 1,

d (q, k ) = 2.d (q, j ) = 3,d (q, h) = 1,d (q, g) = 2,d (q, c) = 1,
d (q, q) = 0,

V = {a, b, c, q, e, f, g, h, i, j, k}

DEFINITION Let G be a graph. If u is a vertex of G, the component
containing u is the subgraph whose vertex set consists of all vertices
reachable from u and whose edge set is all the edges of G that are incident
with those vertices.

C (u)

The graph in Figure 3.5.8 has three components. The component 
has vertex set and 3 edges. The vertices c, g, h, j, k, and q all

have the same component that has 7 edges, and has vertex set 
and one edge.

If we think of the vertices of the graph G in Figure 3.5.8 as representing cities
and the edges representing roads, the figure might represent cities and roads on
three islands. The vertices of G are partitioned into three components (“islands”).
Since every partition of a set is associated with an equivalence relation, it is not sur-
prising that reachability determines an equivalence relation.

Theorem 3.5.3 Let G be a graph with vertex set V and let R be the relation on V defined by 
v is reachable from u. Then R is an equivalence relation on V and the equivalence
classes for R are the vertex sets of the components.

  iffu R v

{e, i}C (e) = C (i)
{a, b, f}C (b) = C (  f  )

C (a) =

a b
c q

e

i

h

kj

gf

Figure 3.5.8
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180 CHAPTER 3 Relations and Partitions

Proof. By our definition, every vertex is reachable from itself. Thus, R is reflexive
on V.

If v is reachable from u, then there is a path from u to v. By reversing the order
of the edges of this path, we have a path from v to u. Thus, u is reachable from v.
Thus, R is symmetric.

Let v be reachable from u and w reachable from v. By following the path from
u to v then the path from v to w, we have a walk from u to w. By Theorem 3.5.2(a)
there is a path from u to w. Thus, the relation R is transitive.

Therefore, R is an equivalence relation on V. For each the equivalence
class determined by u is all the vertices reachable from u, which is precisely the
vertex set of �C (u).

u � V,

DEFINITIONS A graph G is connected if and only if every vertex
is reachable from every other vertex. G is disconnected G is not
connected.

  iff  

When a graph is pictured as in Figure 3.5.8 it is easy to determine the compo-
nents of G and that G is disconnected. The null graph is disconnected as long as the
graph has at least two vertices. The complete graph is connected for every 

Choose any of the three components of the graph G shown in Figure 3.5.8, say
the component with vertices a, b, and f. Notice that if we were to take any
subgraph of G that included the vertices of the component and at least one more
vertex, that subgraph would not be connected. We say the component is a maxi-
mally connected subgraph of G.

C (a)

n � �.Kn

DEFINITION Let be a graph and be a sub-
graph of G. Then is a maximally connected subgraph of G

(i) is connected and
(ii) for every subgraph of G whose vertex set properly includes 

is disconnected.G ′′
V ′,G ′′

G ′
  iffG ′

G ′ = (V ′, E ′)G = (V, E)

The three components of the graph G in Figure 3.5.8 are the only maximally
connected subgraphs. For example, the subgraph is con-
nected but not maximally connected, because there exist subgraphs, such as the
component that are connected and have a vertex set that properly includes

The properties of components are collected in the next theorem.

Theorem 3.5.4 For each vertex v in a graph G, let be the component of v in G. Then

(a) w is reachable from v.
(b) no vertex is in both and C (w).C (v)  iff  C (v) =� C (w)

  iff  C (v) = C (w)

C (v)

{c, g, h}.
C (h),

H = ({c, g, h},{ch, gh})
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3.5 Graphs 181

(c) for each v, is connected.
(d) for each v, is a maximally connected subgraph of G.

Proof. Parts (a) and (b) follow from the fact that the vertex set of each component
is the equivalence class of v under the reachability relation. See Exercise 14.

(c) Let x and y be any two vertices in Then both x and y are reachable in G
from v, so y is reachable from v, and v is reachable from x. Since all the edges
needed to reach x and y from v are also in y is reachable from x in 
Therefore, is connected.

(d) We must show that if is a subgraph of G, and properly con-
tains the vertices of any component then is disconnected. Suppose
u is a vertex in that is not in Then u is not reachable from v in G, so
there can be no path from v to u in Thus is disconnected. �

Theorem 3.5.4 tells us that every vertex belongs to exactly one component, and
that the collection of components is pairwise disjoint. Further, components are
maximally connected subgraphs. It follows that every isolated point forms a com-
ponent, and that a graph is connected it has exactly one component.

Exercises 3.5

1. List the degrees of the vertices of each of these graphs. Verify both parts of
Theorem 3.5.1 in each case.

  iff  

G ′G ′.
C (v).V ′

G ′C (v),
V ′G ′ = (V ′, E ′)

C (v)
C (v).C (v),

C (v).
C (v)

C (v)
C (v)

b
a

c

(c)(b)(a)

d

e

e

a

b

d
d

b

e

c

a

c

2. If possible, give an example of a graph with order 6 such that
(a) the vertices have degrees 1, 1, 1, 1, 1, 5.
(b) the vertices have degrees 1, 1, 1, 1, 1, 1.
(c) the vertices have degrees 2, 2, 2, 2, 2, 2.

� (d) the vertices have degrees 1, 2, 2, 2, 3, 3.
(e) exactly two vertices have even degree.
(f) exactly two vertices have odd degree.

3. If possible, give an example of a graph
(a) with order 6 and size 6.
(b) with order 4 and size 6.

� (c) with order 3 and size 4.
(d) with order 6 and size 3.
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182 CHAPTER 3 Relations and Partitions

4. For the graph at the right, find all subgraphs
(a) with two vertices.
(b) with three vertices.

5. The complement of a graph is the graph with 
vertex set V in which two vertices are adjacent they are 
not adjacent in G. Give the complements of the graphs below.

  iff  

G = (V, E )

b

a

c

d

(c) (d)(b)(a)

6. For the graph shown, give
(a) all paths of length 4 and initial vertex g. (There

are eight.)
(b) all cycles of length 6 and initial vertex c. (There

are eight.)
(c) a path of length 7.
(d) a walk of length 4 that is not a path.

7. Give an example of a graph with 6 vertices having
degrees 1, 1, 2, 2, 2, 2 that is
(a) connected.
(b) disconnected.

8. Give an example of a graph with 6 vertices having
(a) one component. (b) two components.
(c) three components. (d) six components.

� 9. Prove that in every graph of order there are two vertices with the same
degree.

10. Give an example of a graph with order 6 such that
(a) two vertices u and v have distance 5.
(b) for any two vertices u and v, 

11. Verify these properties for the distance between vertices in a connected graph:
(a)
(b)
(c)

12. Let u and r be vertices in a graph such that Show that there exists
a vertex w such that d (u, w) + d (w, r) = d (u, r).

d (u, r) ≥ 2.

d (u, w) ≤ d (u, v) + d (v, w).
d (u, v) = 0  iff  u = v.
d (u, v) ≥ 0.

d (u, v) ≤ 2.

n ≥ 2

c
b

a

d

g

f

e

h
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14. Prove parts (a) and (b) of Theorem 3.5.4. Keep in mind that and are
graphs; to be the same they must have the same vertices and the same edges.

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. If v and w are vertices in a graph such that and

then 
“Proof.” Suppose and Then there is a path

from u to v with length 3 and a path from u
to w with length 4. Then is a path from v to w
with length 7. The distance from v to w is the length of the shortest path
from v to w and there is a path of length 7, so �

(b) Claim. Every connected graph G of order n has a closed path of order n.
“Proof.” Let G be connected graph of order n with vertices 

Since G is connected, each of the vertices is reachable from
and is reachable from Thus connecting these paths there is a

path from to to to and back to By Theorem 3.5.2(b)
the length of any closed path, including this one, is at most n. �

x1.xnx3, Á ,x2x1

xn.x1xi−1

xix3, Á , xn.
x1, x2,

d (v, w) ≤ 7.

v, x2, x1, u, y1, y2, y3, w
u, y1, y2, y3, wu, x1, x2, v

d (u, w) = 4.d (u, v) = 3
d (v, w) ≤ 7.d (u, w) = 4,

d (u, v) = 3

C (w)C (v)

g
d

fcb
a

13. An edge e of a connected graph is called a bridge when e is removed
from the edge set, the resulting subgraph is disconnected. For example, the
edges in the graph below that are bridges are ab, bc, and fg. Give an example
of a connected graph of order 7
(a) with no bridges. (b) with one bridge. (c) with 6 bridges.

  iff,  

62025_03_ch03_p135-184.qxd  4/18/10  12:28 PM  Page 183

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



185

C H A P T E R  4

Functions

The notion of a function is familiar to you from previous study in algebra,
trigonometry, and calculus. The Preface to the Student reviews the concept of a
function as a rule of correspondence and the basic properties of and notations for
functions. In this chapter, where we view functions as single-valued relations,
our goals are (1) to develop a deeper understanding of methods of constructing
functions and the properties of being one-to-one and onto, and (2) to write
proofs establishing that a relation is a function, or has (or does not have) these
properties. The techniques and results developed here are used throughout the
remainder of the text.

4.1 Functions as Relations

The concept of a function is very old, but the word function was not explicitly used
until 1694 by G. W. Leibnitz.* It is only relatively recently that it has become stan-
dard practice to treat a function as we define it below—as a relation with special
properties. This is possible because the rule that makes an element in one set cor-
respond to an element from a second set may be viewed as forming a collection of
ordered pairs.

* Gottfried Wilhelm Leibnitz (1646–1716) was a versatile German scholar, lawyer, and diplomat who
made major contributions to mathematics, philosophy, logic, technology, and physics. Although they
worked independently, both he and Isaac Newton developed calculus. Leibnitz devised the now standard

and notations, referring to dy and dx as “infinitesimals.” His development of the binary 
number system is the basis of all modern computing devices.

1f  (x )dx
dy
dx
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No restriction is placed on the sets A and B. They may be sets of numbers, sets
of ordered pairs, or even sets of functions.

The conditions for f to be a function from A to B have a lot to say about the first
coordinates of the ordered pairs in f : Condition (i) ensures that every element of A
is a first coordinate in f, and condition (ii) says that each first coordinate appears in
just one ordered pair in f. There are no corresponding requirements for second
coordinates: It may happen that some elements of B are not used as second coordi-
nates, or that some elements of B are used as second coordinates in two or more dif-
ferent ordered pairs.

Examples. Let and All of the sets

are relations from A to B. Since (2, 5) and (2, 6) are distinct ordered pairs with the
same first coordinate, is not a function from A to B. Both and satisfy condi-
tions (i) and (ii) and are functions from A to B. The domain of is the set {1, 3},
which is not equal to A, so is not a function from A to B. However, satisfies con-
dition (ii), so it is correct to say that is a function from {1, 3} to B.

The codomain B for a function is the set of all objects available for
use as second coordinates (images). As with any relation, the range of f is

which is the set of objects that are actually used as second coordinates. The range of
f is always a subset of the codomain. In the examples above, the range of is the
same as its codomain, but the range of is We say that is a function
from A to B, but we could also say that is also a function from A to {4, 5}, and 
is a function from A to or to any other set that contains both 4 and
5. A function has only one domain and one range, but many possible codomains,
because any set that includes the range may be considered to be a codomain.

{
√

3, π, 4, 5, 8}
R3R3

R3{4, 5} =� B.R3

R2

Rng(  f ) = {v � B: there is u � A such that (u, v) � f},

f : A → B

R4

R4R4

R4

R3R2R1

R4 = {(1, 4), (3, 6)}

R3 = {(1, 5), (2, 5), (3, 4)}

R2 = {(1, 4), (2, 6), (3, 5)}

R1 = {(1, 4), (2, 5), (3, 6), (2, 6)}

B = {4, 5, 6}.A = {1, 2, 3}

186 CHAPTER 4 Functions

DEFINITIONS A function (or mapping) from A to B is a relation f
from A to B such that

(i) the domain of f is A, and
(ii) if and then 

We write and this is read “ f is a function from A to B,” or 
“f maps A to B.” The set B is called the codomain of f. In the case where

we say f is a function on A.B = A,

f : A → B

y = z.(x, z) �  f,(x, y) �  f
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4.1 Functions as Relations 187

DEFINITIONS Let We write when 
We say that y is the value of f at x (or the image of f at x) and that x is a
pre-image of y under f.

(x, y) �  f.y =  f  (x )f : A → B.

Suppose It is condition (ii) of the definition that makes f a single-
valued correspondence, which means that for every there corresponds a
unique (single) value in B. This condition allows us to refer to the image of x,
rather than an image and to write the familiar for the image of x.

Example. Let Then F is a mapping with domain 
and The image of 4 is 16, and the

value of F at 10 is 100. Both 5 and are pre-images of 25. Since 7 has no pre-image
in 7 is not in the range of F. The range is 

Example. Prove that is a function from to 

Proof. First, observe that g is a relation from to 

(i) Show that Suppose By definition of g, the first
coordinates of elements of g are real numbers, so 

Let Then is a real number and Thus there exists
(namely ) for which Thus x � Dom(g).(x, y) � g.y =

√
x3y � �

x = (
√3 x)3.

√3 xx � �.
x � �.

x � Dom(g).Dom(g) = �.〉〈
�.�

�.�g = {(x, y) � � × �: x = y3}

Rng(F ) = {0, 1, 4, 9, 16 Á}.�,
−5

F (t + 2) = (t + 2)2,F (−3) = 9,F (x) = x2.�

F = {(x, y) � � × �: y = x2}.

f (x )

x � A
f : A → B.

(ii) Show that f is single-valued. Suppose and Then 
and Therefore from which we conclude that .

By parts (i) and (ii), g is a function from to �

To prove that a given relation r from A to B is not a function from A to B, we
may either show that (i) some element of A is not a first coordinate (that is, some
element of A is not in Dom(r)), or (ii) find some element x of A that is a first coor-
dinate with two different second coordinates—thus showing the existence of some

and with 
The relation with domain is not a

function from to because, for example, and (See the
graph in Figure 4.1.1 on the next page). Since we have the graph to view, an easy way
to tell that H is not a function is to apply the Vertical Line Test for a relation r on 

r is a function no vertical line intersects the graph of r more than once.

Visualizing the vertical line helps us discover that H is not a function
because (3, 4) and are both in H.(3, −4)

x = 3

  iff  

�:

(3, −4) � H.(3, 4) � H�[−5, 5]
[−5, 5]H = {(x, y) � � × �: x2 + y2 = 25}

y =� z.(x, z) � r(x, y) � r

�.�

u = vu3 = v3,x = v3.
x = u3(x, v) � g.(x, u) � g〉〈
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The graph of in the example above appears in
Figure 4.1.2. If we apply the Vertical Line Test to the graph of g, the relation g
appears to be a function. However, this observation does not constitute a proof
because the graph represents only a portion of the relation g and our representation
might not reveal small vertical segments of the graph.

g = {(x, y) � � × �: x = y3}

188 CHAPTER 4 Functions

Figure 4.1.2

(a) (b)

a 1

b 2

c 3

4

a 1

b 2

c 3

4

Figure 4.1.3

Note that arrow diagrams for relations with small finite domains may be used to
determine whether the relation is a function. The diagram in Figure 4.1.3(a) repre-
sents a function with domain but the diagram in Figure 4.1.3(b) does not.{a, b, c}

Functions whose domains and codomains are subsets of are often referred to
as “real functions.” The words “f is defined on the interval I,” mean that

The domain of a real function is usually understood to be the
largest possible subset of so that, for example, the domain of the function

is (0, ∞).f  (x ) =  
1√

x

�,
I ⊆ Dom(  f ).

�

x

y

(3, 4)

(3, –4)

x = 3

Figure 4.1.1
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Because functions are sets of ordered pairs, we may say that functions f and g are
equal if and only and For example, let be given by

and be given by

Although f and g have different rules and different codomains, the two functions
have the same domain and both are equal to Therefore

A very natural and useful way to express the idea that two functions are equal
is to assert that they have the same domain (so they act on the same objects) and that
for each object in the common domain the function images are the same.

Theorem 4.1.1 Two functions f and g are equal

(i) and
(ii) for all 

Proof. We prove that conditions (i) and (ii) hold when The converse is left
as Exercise 14. Assume 

(i) Suppose Then for some y and, since we have
Therefore This shows Similar

reasoning shows that Therefore, 
(ii) Suppose Then for some Since 

Therefore, �

Examples. Suppose f, g, and h are real functions given by andf  (x ) = x
x
, g (x ) = 1,

f  (x ) = y = g (x ).
f = g, (x, y) � g.y, (x, y) �   f.x � Dom (  f ).

Dom(g ) = Dom(  f ).Dom(g ) ⊆ Dom(  f ).
Dom(  f ) ⊆ Dom(g).x � Dom(g).(x, y) � g.

f = g,(x, y) � fx � Dom (  f ).

f = g.〉
f = g.8

x � Dom(  f ),  f  (x) = g (x ).
Dom(  f ) = Dom(g )

  iff  

f = g.
{(−2, 4), (3, 9)}.{−2, 3}

g (x) = x + 6.

g: {−2, 3} → [0, ∞)

f  (x ) = x2

 f : {−2, 3} → {4, 9}g ⊆  f.f ⊆ g

4.1 Functions as Relations 189

Then because they have different domains: The number 0 is inf =� gh (x) = |x |
x

.

but not in The functions f and h are different because they have
different function values. For instance, and 

The remainder of this section describes several types of functions, some of
which will be familiar to you.

Let A be any set. The identity relation is the identity function
given by If A is a subset of B, we define the inclusion function
by for all Since they both have domain A and for
all by Theorem 4.1.1. There is no difference between these functions,
but it is customary to write when we think of the function from A to A and i when
we think of the function from A to B.

Assume that a universe U has been specified, and that Define
by

xA(x) =
{

1 if x � A
0 if x � U − A

.

xA: U → {0, 1}
A ⊆ U.

IA

x � A, IA = i
IA(x) = i (x) = xx � A.i (x) = x

i: A → AIA(x) = x.
IA: A → AIA

h (−2) = −1. f  (−2) = 1
Dom(  f ).Dom(g )
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Then is called the characteristic function of A. For example, if 
with the universe being the real numbers, then Figure 4.1.4
is a graph of x[1, 4).

1 ≤ x < 4.  iff  xA(x ) = 1
A = [1, 4),xA(x )

190 CHAPTER 4 Functions

5
�1

x

y

4321�3 �2 �1

2

1

[1, 4)

Figure 4.1.4

5
x

y

4321

4

3

2

1

Figure 4.1.5

The greatest integer function is an example of a step function with domain 
and range It assigns to each real number x the integer part of x, by which we mean
the largest integer n such that On graphing calculators this function is usually
denoted as “int.” For instance, and int (−π) = −4.int (

√
2) = 1,int(5.9) = 5,

n ≤ x.
�.

�

One variation of the characteristic function is a step function. Suppose ,
is a partition of a set A, and for each is in the set B.

Define by 
As an example, let with and 

and let with The graph of the corresponding step
function is given in Figure 4.1.5.

b1 = 3, b2 = 4, b3 = 2.B = �

C3 = [4, 5],C1 = [1, 2], C2 = (2, 4),A = [1, 5]
f  (x) = bd if x � Cd.f : A → B

d � Δ, bd� = {Cd: d � Δ}
A ⊆ �

DEFINITION A function x with domain is called an infinite
sequence, or simply a sequence. The image of n is usually written as 
instead of and is called the nth term of the sequence.x(n)

xn

�

For sequence x given by the 63rd term is The range of x is{
1
2
, 1

3
, 1

4
, 1

5
, . . .

}
.

x63 = 1
64

.xn = 1

n + 1
,
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The terms of a sequence need not be distinct. The first ten terms of the
sequence x given by are 0, 8, 0, 32, 0, 72, 0, 128, 0, 200.

If R is an equivalence relation on the set X, then the function from X to that
maps each to the equivalence class of a is called the canonical map for the
relation R. Recall that in Chapter 3 we used to denote the equivalence class of a.
If f is the canonical map for the relation of congruence modulo 5 on the images
of and 9 are

The equivalence classes under the family name relation L on the set P of all peo-
ple with family names (see Section 3.1) are sets of people all having the same family
name. Under the canonical map f from P to every person corresponds to his
or her equivalence class. Thus is the set of all people with family
name Brown and The canonical map is a
natural function to consider, and it plays an essential role in the development of
many mathematical structures.

Rules of correspondence between equivalence classes have interesting proper-
ties. Consider for example the classes and of and the rule that in 
corresponds to the equivalence class in (Note, for clarity, we use here the
bar notation for the equivalence classes of and the bracket notation for equiva-
lence classes in ) Under this rule,

However, 0 and 4 are in the same class in so by the rule In 
however, so the rule assigns two different values to the same element,

of . Thus, f is not a function. In cases where an object in the domain has
more than one representative (for instance, the object can be represented by

) and a supposed function assigns different values that depend
on the representative, we say “the function is not well defined,” meaning that it is
not really a function.

Exercises 4.1

1. Which of the following relations are functions? For those relations that are
functions, give the domain and two sets that could be a codomain.

� (a) {(0, 
), (
, �), (�,
(b)
(c)
(d)
(e)
(f)
(g) {(�, {�}), ({�}, �), (�, �), ({�}, {�})}

{(x, y) � � × �: y2 = x}
{(x, y) � � × �: x ≤ y}
{(x, y) � � × �: x = sin y}
{(1, 2), (2, 1)}
{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}

∩), (∩, ∪), (∪, 0)}

0, 4, −4, 8, −8, Á

0
�40 = 4,
[0] =� [8],

�10,f  (4) = [8].�4,

f  (0) = [0], f  (1) = [2], f  (2) = [4], and f  (3) = [6].

�10.
�4

�10.[2x]
�4xq�430, 1, 2,

f  (Charlie Brown) =  f  (Buster Brown).
f  (Charlie Brown)

P/L,

f  (9) = 9 = 4 = {Á , −6, −1, 4, 9, 14, Á}.

f  (−3) = −3 = 2 = {Á , −8, −3, 2, 7, 12, Á},

−3
�,

a
a � X

X/R
xn = ((−1)n + 1)n2

4.1 Functions as Relations 191

62025_04_ch04_p185-232.qxd  4/19/10  3:37 PM  Page 191

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



2. Give a relation r from to such that
(a) r is not a function.
(b) r is a function, but not a function from A to B.
(c) r is a function from A to B, with 
(d) r is a function from A to B, with 

3. Identify the domain, range, and another possible codomain for each of the fol-
lowing mappings.

� (a)

(b)

(c)

� (d)

(e)

(f)

(g)

(h)

4. Assuming that the domain of each of the following functions is the largest
possible subset of find the domain and range of

� (a) (b)

(c) (d)

(e) (f) f  (x) =
√

x + 2 +
√

−2 − x.f  (x) =
√

5 − x +
√

x − 3.

f  (x) =
√

5 − x.f  (x) =  
1√

x + π
.

f  (x) = 2x + 5.f  (x) =  
x2 − 7x + 12

x − 3
.

�,

{
(x, y) � � × �: y = x2 − 4

x − 2

}
{

(x, y) � � × �: y = x2 − 4

x − 2

}
{

(x, y) � � × �: y = ex + e−x

2

}{(x, y) � � × �: y = x�(x)}

{(x, y) � � × �: y = tan x}

{(x, y) � � × �: y = x + 5}

{(x, y) � � × �: y = x2 + 5}

{
(x, y) �  � × �: y = 1

x + 1

}

Rng(r) =� B.
Rng(r) = B.

B = {3, 4, 5}A = {5, 6, 7}

(i) a 1

b 2

c 3

d 4              

(h) a 1

b 2

c 3

d
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� 5. (a) Let A be the set and let R be the relation on A given by
is prime and not equal to 5 Prove that R is a function

with domain A.
(b) Let A be the set and let R be the relation on A given by

is prime}. Prove that R is a function with domain A.
(c) Let R be the relation on given by Prove that R is

a function with domain 

6. Show that the following relations are not functions on �.
(a)

(b)

(c)

(d)

7. Let the universe be and Sketch the graph of
(a) (b) (c) (d)

8. Let U be the universe and with Let be the charac-
teristic function of A.

� (a) What is (b) What is 
(c) What is 

9. Give an example of a sequence x such that
� (a) the range of x is the negative integers.

(b) the terms of x are alternately positive and negative.
� (c) all terms of x are distinct and between 3 and 4.

(d) the range of x has exactly 3 elements.

10. For the canonical map find
� (a) (b) the image of 6.

(c) a pre-image of  (d) all pre-images of 

11. Which of the following are functions from the indicated domain to the indi-
cated codomain? In each case, we represent an element of the domain as an
equivalence class and use the notation for equivalence classes in the
codomain. For those relations that are not functions, show that the function is
not well defined by naming an equivalence class in the domain that is
assigned two different values.
(a) given by 

� (b) given by 

(c) given by 

(d) given by 

� (e) given by 

(f) given by 

12. Explain why the functions and are not equal.

13. (a) Prove that the empty set is a function with domain �.�

g (x ) = 3 − xf  (x) = 9 − x2

x + 3

f  ( xq ) = [3x]f : �4 → �2

f  ( xq ) = [x]f : �3 → �4

f  ( xq ) = [2x + 1]f : �4 → �6

f  ( xq ) = [2x]f : �3 → �6

f  ( xq ) = [x + 1]f : �6 → �6

f  ( xq ) = [x]f : �3 → �6

[x]xq,

1.3.
f  (3).

f : � → �6,

{x � U : xA(x ) = 2}?
{x � U : xA(x ) = 0}?{x � U : xA(x ) = 1}?

xAA =� U.A =� �,A ⊆ U

x
�.x{1/2}.xAc.xA.

A = [1, 3).�

{(x, y) � � × �: y2 =
√

x}

{(x, y) � � × �: x = cos y}

{(x, y) � � × �: x2 + y2 = 1}

{(x, y) � � × �: x2 = y2}

�.
{(x, y): x2 + y = 2}.�

{(x, y): 3x + y
{1, 2, 3}

}.{(x, y): 2x + y
{1, 2, 3, 4}

4.1 Functions as Relations 193

62025_04_ch04_p185-232.qxd  4/19/10  3:37 PM  Page 193

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



(b) Prove that if and any one of f, A, or is empty, then all
three are empty.

14. Complete the proof of Theorem 4.1.1. That is, prove that if (i) 
and (ii) for all then 

15. Let S be a relation from A to B. We define two projection functions
and as follows: For all (a, b) in and

In terms of S, find
� (a) (b)

16. A metric on a set X is a function such that for all 
(i)

(ii)
(iii)
(iv)
Prove that each of the following is a metric for the indicated set.

� (a)

(b)

(c)

(d)

17. Suppose that set A has m elements and set B has n elements. We have seen
that has mn elements and that there are relations from A to B. Find
the number of relations from A to B that are
(a) functions from A to B.
(b) functions with one element in the domain.

� (c) functions with two elements in the domain.
(d) functions whose domain is a subset of A.

18. (a) Let f be a function from A to B. Define the relation T on A by x T y
Prove that T is an equivalence relation on A.

(b) In the case when is given by describe the equiva-
lence class of 0; of 2; of 4.

(c) In the case when is the cosine function, describe the equiva-
lence class of 0; of of 

Proofs to Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. The functions f and g are equal, where f and g are given by

“Proof.” Let x be a real number. If x is positive, then so
x

|x | = x
x

= 1,

f  (x) = x

|x |  and g (x) =
{

1 if x ≥ 0

−1 if x < 0
.

π/4.π/2;
f : � → �

f  (x ) = x2, f : � → �

 f  (x) =  f  (y).iff  

2mnA × B

d (( x, y ), ( z, w )) = |x − z | + |y − w |X = � × �,

d (( x, y ), ( z, w )) =
√

( x − z )2 + ( y − w )2X = � × �,

d (x, y) =
{

0 if x = y
1 if x =� yX = �,

d (x, y ) = |x − y |X = �,

d (a, b) + d (b, c) ≥ d (a, c).
d (a, b) = d (b, a).

a = b.  iff  d (a, b) = 0
d (a, b) ≥ 0.

a, b, c � X,d: X × X → �

Rng(π2).Rng(π1).
π2(a, b) = b.

S, π1 (a, b) = aπ2 : S → Bπ1 : S → A

 f = g. f  (x ) = g (x ),x � Dom(  f ),Dom (g )
Dom(  f ) =

Rng(  f )f : A → B

194 CHAPTER 4 Functions

If x is negative, then so f  (x) = g (x ).
x

|x | = x
−x

= −1,f  (x ) = g (x ).

In every case, so � f = g. f  (x ) = g (x ),
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(b) Claim. The functions and are equal.

“Proof.” The domain of each function is assumed to be the largest
possible subset of Thus For every

we have

Therefore, by Theorem 4.1.1,  �

(c) Claim. The relation defines a function from to 
“Proof.” The graph of the relation is given here:x2 = y3

�.�x2 = y3

 f = g.

f  (x ) = 1 + 1
x

 = x
x
 + 1

x
 = x + 1

x
= g (x ).

x � � − {0}
Dom(  f ) = Dom(g) = � − {0}.�.

g (x) = x + 1
x

 f  (x) = 1 + 1
x
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Since no vertical line crosses the graph more than once, defines
a function. �

(d) Claim. If and then 
“Proof.” Suppose and Then 
or and or If and 
then Otherwise, and so again 
Therefore, is a function. Thus, we have that 

so �
(e) Claim. The rule that assigns to each equivalence class in the

class in is a function.
“Proof.” Suppose and are two ordered pairs in the rela-
tion determined by the rule. We must show that According to the
rule, and for some in the class 
Since and are in the same equivalence class (mod 4), 
for some integer k. Then so 
and are in the same equivalence class (mod 2). Therefore 

�

4.2 Constructions of Functions

This section discusses several methods for constructing new functions from given
ones. You have already seen the operations of composition and inversion of rela-
tions in Chapter 3. Since every function is a relation, these operations are performed
on functions in the same way.

[y] = [z].
x2 + 1

x1 + 1(x1 + 1) − (x2 + 1) = 4k = 2(2k),
x1 − x2 = 4kx2x1

x.x1, x2[z] = [x2 + 1][ y] = [x1 + 1]
[ y] = [z].

(x, [z])(x, [ y])
�2[x + 1]

�4x
h ∪ g: A ∪ C → B ∪ D.Dom(g) = A ∪ C,Dom(h) ∪

Dom(h ∪ g) =h ∪ g
y = z.(x, z ) � g;(x, y ) � gy = z.

(x, z ) � h,(x, y ) � h(x, z ) � g.(x, z ) � h(x, y ) � g,
(x, y ) � h(x, z ) � h ∪ g.(x, y ) � h ∪ g

h ∪ g: A ∪ C → B ∪ D.g: C → D,h: A → B

x2 = y3
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For a function the inverse of F is the relation from B to A:

We are careful to say is a relation because the inverse of a function is a rela-
tion, but might not be a function. Conditions on F to ensure that is a function
will be given in Section 4.4.

For functions and the composite of F and G is the rela-
tion from A to C:

Here, too, we say the relation but we will soon see in Theorem 4.2.1 that the
composite of two functions is a function.

Examples. Let and Then F and
G are mappings with domain and codomain The inverses of F and G are

and

The inverse of F is a function. The inverse of G is not a function since, for instance,
and 

The composite of F and G is

We can also compute other composites, such as

and

 = {( x, z ) � � × �: z = 2x2 + 1}.
F ◦ G = {( x, z ) � � × �: Ey � � such that y = x2 and z = 2y + 1}

 = {( x, z ) � � × �: z = 4x + 3}
 = {( x, z ) � � × �: z = 2(2x + 1) + 1}

F ◦ F = {( x, z ) � � × �: Ey � � such that y = 2x + 1 and z = 2y + 1}

 = {( x, z ) � � × �: z = (2x + 1)2}.
 = {( x, z ) � � × �: Ey � � such that y = 2x + 1 and z = y2} 

G ◦ F = {( x, z ) � � × �: Ey � � such that ( x, y ) � F and ( y, z ) � G}

(4, −2) � G−1.(4, 2) � G−1

= {( x, y ) � � × �: x = y2}.
G−1 = {( x, y ) � � × �: ( y, x ) � G}

=
{

( x, y ) � � × �: y = x − 1

2

}= {( x, y ) � � × �: x = 2y + 1}
F−1 =  {( x, y ) � � × �: ( y, x ) � F}

�.
G = {( x, y ): y = x2}.F = {( x, y ): y = 2x + 1}

G ◦ F,

G ◦ F = {( x, z ) � A × C : ( x, y ) � F and ( y, z ) � G, for some y � B}.

G : B → CF : A → B

F−1
F−1

F−1 = {( x, y ) : ( y, x ) � F}.

F : A → B,

196 CHAPTER 4 Functions
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These examples show that and are not always equal. Thus, com-
position of functions is not commutative.

Theorem 4.2.1 Let A, B, and C be sets and and Then is a function
from A to C and 

Proof. The relationships among mappings and their domains and codomains are
given in Figure 4.2.1. In Section 3.1, we proved that is a relation from A to
C. To show that is a function from A to C, let and

We must show that Since there exists
such that and Likewise, there exists such that

and Since F is a function, and imply
that Since G is a function, and imply that

We next show that In Section 3.1, we proved that
. We must now show that

Suppose Since there is such that Since
there is such that Then Therefore

�a � Dom(G ◦ F ).
(a, c) � G ◦ F.(b, c) � G.c � CB = Dom(G )

(a, b) � F.b � BA = Dom(F )a � A.
A ⊆ Dom(G ◦ F ).〉〈Dom(G ◦ F ) ⊆ Dom(F ) = A

Dom(G ◦ F ) = A.〉〈
y = z.

u = v(v, z ) � G,(u, y ) � G,u = v.
(x, v ) � F(x, u ) � F(v, y ) � G.(x, v ) � F

v � B(u, y ) � G.(x, u ) � Fu � B
(x, y ) � G ◦ F,y = z.〉〈(x, z ) � G ◦ F.

(x, y ) � G ◦ FG ◦ F
G ◦ F

Dom(G ◦ F ) = A.
G ◦ FG : B → C.F : A → B

F ◦ GG ◦ F

4.2 Constructions of Functions 197

B

g o  f

C

gf

A

Figure 4.2.1

We can take advantage of the fact that each element of the domain of a func-
tion has a unique image to simplify the notation for composition. Let 
and Since and may be written in the form

and we can write that is,

Notice that the first function applied in composition is the function on the right,
which is closer to the variable x.

Examples. For and the composites 
and are

and

(L ◦ H )(x) = L (H (x )) = L (sin x) = e sin x.

(K ◦ L )(x) = K (L (x )) = K (ex) = (ex)2 + 6 = e2x + 6,

(H ◦ K )(x) = H (K (x )) = H (x2 + 6) = sin(x2 + 6),

L ◦ HK ◦ L,H ◦ K,
L (x ) = ex,K (x ) = x2 + 6,H (x ) = sin x,

(K ◦ H )(x) = K (H (x )).

z = K (H (x ));z = K (y ),y = H (x )
(y, z ) � K(x, y ) � HK : B → C.

H : A → B
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198 CHAPTER 4 Functions

Example. In this example, we consider functions on the sets 
and (As usual, we use a different notation for an equiva-
lence class when the modulus is different.) Let be given by

and 
Let be given by and Then

and so on. In this example, is a function. In fact, The composite
has images 

and Thus  is the identity
function on 

Generally, when we use composite functions, the domain of the composite is
the domain of the first function applied. If it happens that is not a subset
of we need to be aware that if is not in the domain of G, then

is undefined.

For example, let F and G be the functions given by and

Then but In this example, 

is not the same as because is not defined.
In Chapter 3 we proved that composition of relations is associative. As a result,

composition of functions is associative as well. Similarly, the result of forming the
composite of a function f with the appropriate identity function yields the same
function f. These properties are restated for functions here with proofs that take
advantage of functional notation.

Theorem 4.2.2. Let A, B, C, and D be sets and and Then
That is, composition of functions is associative.

Proof. We must show that the domains of and are the 
same and that By Theorem 4.2.1 the domain
of each function is A. Now let Then 

�

The relationship in Theorem 4.2.2 is represented in
the diagram in Figure 4.2.2. For any by following the diagram from A to D
along the upper route the image of x is while along the lower
route, the image of x is Theorem 4.2.2 says that these images are
always the same, and consequently the figure is called a commutative diagram.
This theorem allows us to avoid the use of parentheses for composition and to
simply say is a function from A to D and the image of x is (h ◦ g ◦  f ) (x).h ◦ g ◦  f 

(h ◦ (g ◦  f )) (x ).
( (h ◦ g) ◦  f ) (x),

x � A,
(h ◦ g) ◦  f = h ◦ (g ◦  f )

h (g (  f (x))) = h(( g ◦  f ) (x)) = (h ◦ ( g ◦  f )) (x ).
(  f (x)) =((h ◦ g) ◦  f ) (x) = (h ◦ g)x � A.

((h ◦ g) ◦  f ) (x) = (h ◦ ( g ◦  f )) (x ).〉
h ◦ (g ◦  f )(h ◦ g) ◦  f〈

(h ◦ g) ◦  f = h ◦ (g ◦  f ).
h: C → D.g: B → C,f : A → B,

(G ◦ F )(2)Dom (F )Dom (G ◦ F )

F (2) = 4 � Dom(G ).2 � Dom(F )G (x) = 1

x − 4
.

F (x ) = x2

(G ◦ F )(x)
F (x )Dom(G ),

Rng(F )

�3.
K−1 ◦ K(K−1 ◦ K )([2]) = K−1([1]) = [2].K−1([2]) = [1],

(K−1 ◦ K )([1]) =(K−1 ◦ K )([0]) = K−1([0]) = [0],K−1 ◦ K
K−1 = K.K−1

 (K ◦ H )(4) = K (H (4)) = K ([1]) = [2],

(K ◦ H )(0) = K (H (0)) = K ([0]) = [0],

K ([2]) = [1].K ([1]) = [2],K ([0]) = [0],K: �3 → �3

H (5) = [2].H (4) = [1],H (3) = [0],H (2) = [2],H (1) = [1],H (0) = [0],
H : �6 → �3

�3 = {[0], [1], [2]}.
�6 = {0, 1, 2, 3, 4, 5}
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Theorem 4.2.3 Let Then and 

Proof. If then 
Therefore The proof that is left as 

Exercise 6. �

Theorem 4.2.4 Let with If is a function, then and
f ◦ f −1 = IC.

f −1 ◦  f = IAf −1Rng(  f ) = C.f : A → B

IB ◦ f =  ff ◦ IA =  f.f (IA(x )) = f (x ).
(  f ◦ IA)(x) =x � A,Dom(  f ◦ IA) = Dom( IA) = A = Dom(  f ).

IB ◦  f = f. f ◦ IA = ff : A → B.

4.2 Constructions of Functions 199

f                               
A B

  g ◦ f g   h ◦ g

h
C D

Figure 4.2.2

Proof. Suppose and is a function. Then 
by Theorem 4.2.1 Thus Suppose

From the fact that we have Therefore,
This proves that 

The proof that is left as Exercise 7. �

Every subset of a single-valued relation (i.e., a function) is single-valued, so a
subset of a function is always a function. Thus, removing some of the ordered pairs
from a given function is yet another way to create a function. If we
say the function g is a restriction of f. A restriction is usually defined by specifying
what we want the new, smaller, domain to be.

g ⊆  f,f : A → B

 f ◦  f −1 = IC

f −1 ◦  f = IA.(  f −1 ◦  f ) (x) =  f −1(  f  (x )) = x = IA(x ).
(  f  (x ), x ) � f −1.(x,  f  (x )) � f,x � A.

Dom(  f −1 ◦ f ) = A =  Dom( IA).〉.〈Dom(  f )
Dom(  f −1 ◦  f ) =f −1f : A → B

DEFINITIONS Let and let The restriction of f to D
is the function

If g and h are functions and g is a restriction of h, we say h is an exten-
sion of g.

f |D = {( x, y ): y =  f  (x )  and x � D}.

D ⊆ A.f : A → B

Examples. Let and g be the function 
Then and

g |A = g.
g |{1, 4} = {(1, a ), (4, c)}, g |{3} = {(3, d )},(4, c)}.(3, d ),(2, a ),{(1, a ),

B = {a, b, c, d},A = {1, 2, 3, 4},
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Let F: be given by Figure 4.2.3 shows the graphs of
and 

Example. Recall that restricting the trigonometric function sin: to a
smaller domain is the first step in defining the inverse of sine. When the domain of
sine is restricted to the result is usually referred to as the Sine function
(with a capital S), abbreviated Sin, and is the principal branch of the sine func-
tion. The graphs of sine and Sine are shown in Figures 4.2.4(a) and 4.2.4(b),

respectively. and but is not definedSin 2π

3
Sin 0 =  sin  0 = 0,Sin π

3
= sin π

3
=

√
3

2

C−π

2
, π

2 D ,
� → �

F |{−2, −1, 0, 1, 2}.F | [1, 2]

F (x ) = 2x + 1.� → �

200 CHAPTER 4 Functions

5

x

y

4321�3 �2 �1

4

3

2

1

�3

�2

�1

5

x

y

4321�3 �2 �1

4

3

2

1

�3

�2

�1

F�{�2,�1.0, 1.2}F [1, 2]

Figure 4.2.3

because 2π

3
� C−π

2
, π

2 D .

1

�1

�� �
x

y

��
2

�
2

sine
1

�1

�� �
x

y

��
2

�
2

�
2

��
2

Sine = sin �
,[ ]

(a) (b)

Figure 4.2.4

Because functions are sets (of ordered pairs), it is appropriate to ask about
unions and intersections of functions. If h and g are functions, is a function?
For the functions

is which is a function. Notice that is
a proper subset of This is because 
and but H (1) =� G (1).1 � Dom(G ),

1 � Dom(H )Dom(H ) ∩ Dom(G ) = {1, 2, 5}.
Dom(H ∩ G ) = {2, 5}{(2, 6), (5, 7)},H ∩ G

G = {(1, 8), (2, 6), (4, 8), (5, 7), (8, 3)},
H = {(1, 2), (2, 6), (3, −9), (5, 7)},

h ∩ g
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It turns out that if h and g are functions, then is always a function (see
Exercise 10), but can just as easily be expressed as a restriction of either h or g.

The situation regarding is much more interesting and useful. First, in gen-
eral, need not be a function. In the case of the functions H and G above, the union
is not a function because and . However, if the domains
of h and g are disjoint sets, then is a function. The next theorem states that we
can put together functions with disjoint domains to define a function “piecewise.”

Theorem 4.2.5 Let h and g be functions with and If 
then is a function with domain Furthermore,

Proof. See Exercise 11. �

Example. Let and The restrictions and 
have disjoint domains. Their union f is an extension of each (but not an extension
of h or g). See Figure 4.2.5. The function f may be described in two pieces:

f  (x ) =
{

x2 if x ≤ 2

6 − x if x > 2.

g | (2, ∞)h | (−∞, 2]g (x ) = 6 − x.h (x ) = x2

(h ∪ g )(x) =
{

h (x ) if x � A 

g (x ) if x � B.

A ∪ B.h ∪ g
A ∩ B = �,Dom(G ) = B.Dom(h ) = A

h ∪ g
(1, 8) � H ∪ G(1, 2) � H ∪ G

h ∪ g
h ∪ g

h ∩ g
h ∩ g
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4

6
�1

�3
x

y

3

2

1

�2 �1 54321

f � h�(��, 2]     g�(2, �)∪

Figure 4.2.5

Functions can be constructed piecewise from three or more functions, and
Theorem 4.2.5 may also be extended to the case where domains are not disjoint, pro-
vided that the functions agree on the intersection of the domains. See Exercise 13.
The characteristic and step functions discussed in Section 4.1 are examples of
piecewise defined functions. 

We conclude this section with examples of proofs about increasing and decreas-
ing functions. Recalling the definitions of these properties from previous study:

DEFINITIONS Let f be a function from a set of reals to whose
domain includes an interval I. We say f is increasing on I for all

if then Similarly, f is decreasing on I for
all if then  f  (x ) > f  (y ).x < y,x, y � I,

  iff   f  (x ) < f  (y ).x < y,x, y � I,
  iff  

�
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The graph of the function f in Figure 4.2.5 is increasing on the interval [0, 2]
and decreasing on the intervals and This seems clear from the
graph, but remember that looking at its graph does not constitute a proof because
we cannot see the entire graph or all the details of its behavior. We give two exam-
ples of proofs of these properties.

Example. Prove that the function f of Figure 4.2.5 is increasing on the interval [0, 2].

Proof. Let and suppose Then and Since
and Since and Therefore, Thus

so g is increasing on [0, 2]. �

Example. Let Prove that f is decreasing for 

Proof. Suppose Then and Since x and y f  (y ) = 2 + 1
y

. f  (x ) = 2 + 1
x

 0 < x < y.

x > 0.f  (x ) = 2 + 1
x

.

g (x ) < g (y ),
x2 < y2.xy < y2.y > 0,x < yx2 ≤ xy.x ≥ 0,x < y

g (y ) = y2.g (x ) = x2x < y.x, y � [0, 2]

[2, ∞).(−∞, 0]

202 CHAPTER 4 Functions

are positive and we have Thus that is,   f  (x ) > f  (y ).2 + 1
y

< 2 + 1
x

;
1
y

<
1
x

.x < y

Therefore f is decreasing on  �

Exercises 4.2

1. Find and for each pair of functions f and g. Use the understood
domains for f and g.

� (a)
(b)

� (c)
(d)

� (e)
(f) ,

(g)

(h)

� (i)

(j)

� 2. Find the domain and range of each composite in Exercise 1.

3. Give two different examples of
� (a) a pair of functions f and g such that 

(b) a pair of functions f and g such that 
(c) a pair of functions f and g such that (  f ◦ g )(x) = sin |2x + 4 | .

(  f ◦ g )(x) = 22x2 − 5.

(  f ◦ g )(x) = (3x + 7)2.

f  (x ) =
{

2x + 3 if x < 3  
x2          if x  ≥   3

, g (x ) =
{

7 − 2x if x ≤ 2
x    + 1    if x  > 2

f  (x ) =
{

x + 1 if x ≤ 0
2x          if x > 0

, g (x ) =
{

2x if x ≤ −1
  −x        if x  > −1

f  (x ) = 3x + 2, g (x ) = |x |
f  (x ) =  

x + 1

x + 2
, g (x) = x2 + 1

g (x ) = {(1, 5), (2, 3), (3, 7), (4, 3), (5, 4)}
f  (x ) = {(1, 3), (2, 6), (3, 5), (4, 2), (5, 2)}

g (x ) = {(k, s), (t, s), (s, k)}f  (x ) = {(t, r), (s, r), (k, l)},
g (x ) =  sin  xf  (x ) =  tan  x,
g (x ) = 2x2 + 1f  (x ) =  sin  x,

g (x ) = 2x + 1f  (x ) = x2 + 2x,
g (x ) = 6 − 7xf  (x ) = 2x + 5,

g ◦ f  f ◦ g

(0, ∞).
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4. Let and Define
and as follows:
and By com-

paring images, verify the following equalities.
(a) for all x in 
(b) for all x in 
(c) for all x in 
(d) for all x in 

5. For which of the following functions f is the relation a function? When
is a function, write an explicit expression for Use the understood

domain for each function.

� (a) (b) � (c)

(d) � (e) (f)

(g) (h) (i)

6. Prove the remaining part of Theorem 4.2.3: if then 

7. Prove the remaining part of Theorem 4.2.4: if with 
and if is a function, then 

8. Let with domain and Sketch the graphs of
the functions and What is the range of 

9. Describe two extensions of f with domain for the function
� (a) .

(b) .
(c) .

10. Prove that, if f and g are functions, then is a function by showing that
where 

11. Prove Theorem 4.2.5.

12. Let f be a function with domain D, and let g be an extension of f with domain
A. Then by definition, and Let i be the inclusion mapping
from D to A given by for all Prove that 

� 13. Let and suppose Prove is a function
from to if and only if 

14. For each pair of functions h and g, determine whether is a function. In
each case sketch a graph of 

� (a)

(b)

(c)
g: [0, ∞) → �, g (x ) = 3 − |x − 3 |
h: (−∞, 1] → �, h (x ) = |x |
g: (−∞, −1] → �, g (x ) = x + 3
h: [−1, ∞) → �, h (x ) = x2 + 1

g: (0, ∞) → �, g (x) = 1
x

h: (−∞, 0] → �, h (x ) = 3x + 4
h ∪ g.

h ∪ g

h |E = g |E.B ∪ DA ∪ C
h ∪ gE = A ∩ C.g: C → Dh: A → B,

 f = g ◦ i.x � D.i (x ) = x
D ⊆ A.f = g |D

A = {x : g (x ) =  f (x )}.f ∩ g = g |A

f ∩ g

f = {(x, y ) � [−1, 1] × [−1, 1]: y = −x}
f = {(x, y ) � � × �: y = 3}
f = {(x, y ) � � × �: y = x2}

�

 f |�? f |{6}. f |A,  f |[−1, 3],  f |(2, 4],
A = {1, 2, 3, 4}.�f  (x ) = 4 − 3x

f ◦ f −1 = IC. f −1
Rng(  f ) = C,f : A → B

IB ◦ f = f. f : A → B,

f  (x) = −x

3x − 4
f  (x ) = −x + 3f  (x) = 1

1 − x

f  (x) = 1 − x
−x

f  (x ) = ex+3f  (x ) = sin x

f  (x) = x + 1

x + 2
f  (x ) = 2x2 + 1f  (x ) = 5x + 2

f −1(x ).f −1
f −1

�8.(h ◦ ( h ◦ h ))(x ) = 4
�4.(  f ◦ g)(x) = k (x)
�8.(g ◦ f ) (x) = h (x )

�4.(k ◦ k )(x) = [2]

k([x]) = [2x + 2]).h (x) = 2x + 4,g([x]) = 2x,f (x) = [x + 2],
k : �4 → �4,h : �8 → �8,g : �4 → �8,f : �8 → �4,

�4 = {[0], [1], [2], [3]}.�8 = {0, 1, 2, 3, 4, 5, 6, 7,}
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(d)

(e)

15. Let f : and Define 

(a) Prove that is a function from to 
(b) For write in terms of and .

16. Prove each of these statements.
� (a) f is increasing on where 

(b) g is decreasing on where 
(c) h is increasing on where 

� (d) f is increasing on where 

17. Prove or give a counterexample:
(a) If f is a linear function with positive slope, f is increasing on 
(b) If f and g are decreasing functions on an interval I and is defined on

I, then is decreasing on I.
(c) If f and g are decreasing functions on I and is defined on I, then

is increasing on I.
� (d) If and f is increasing on the intervals and [1, 2],

then f is increasing on 
(e) If f is decreasing on and decreasing on then f is de-

creasing on 

18. Let and Define the pointwise sum and
pointwise product as follows:

� (a) Prove that and are functions with domain 
(b) Let and Com-

pute and 
(c) Prove or disprove: If f and g are increasing on and h is decreasing on

then is increasing on 

19. Let and Define the scalar product

Prove that is a function with domain 

Proofs to Grade 20. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. Let If is a function, then 
“Proof.” Suppose Then there is z such that 

and But this means that and
Since is a function, Hence (x, y ) �  f −1 ◦ fx = y.f −1(z, y ) �  f −1.

(z, x ) �  f −1(z, y ) �  f −1.(x, z ) �  f
(x, y ) �  f −1 ◦ f.

 f −1 ◦  f = IA. f −1f : A → B.

�.cf 

cf (x) = c · f  (x ) for all x � �.

c f :c � �.f : � → �

�.(  f + g ) + h�,
�,
(g · h )(x).(  f + h )(x),(  f · g )(x),(  f + g )(x),

h (x ) = 3x2 − 7x + 2.g (x ) = 6 − 7x,f  (x ) = 2x + 5,
�. f1 · f2 f1 + f2

(  f1 · f2)(x) =  f1(x ) · f2(x ) for all x � �.

(  f1 + f2)(x) =  f1(x ) + f2(x ) for all x � � and

 f1 · f2
f1 + f2f2: � → �.f1: � → �

�.
[0, ∞),(−∞, 0)

[−2, 2].
[−2, −1]Dom(  f ) = �

f ◦ g
f ◦ g

f ◦ g
f ◦ g

�.

 f  (x) = x − 1

x + 3
.(−3, ∞),

h (x ) = x2.[0, ∞),
g (x ) = 2 − 5x.�,

 f  (x ) = 3x − 7.�,

 g (c ) f  (a )(  f × g )(a, c)(a, c ) � A × C,
B × D.A × Cf × g

(c, d ) � g}.
(a, b ) �  f andf × g = {(a, c ), (b, d )):g: C → D.A → B

g: (0, ∞) → �, g (x ) = x + 1
h: (−∞, 3) → �, h (x ) = 3 − x
g: [2, ∞) → �, g (x ) = x2
h: (−∞, 2] → �, h (x ) = cos  x
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implies that is, Now suppose 
Since there is such that Hence

But implies and so But
from and we have This
shows Therefore, �

(b) Claim. If f and are functions on A, and then 
“Proof.” Suppose and Since 

By associativity, we have 
This gives Since by cancellation we have �

(c) Claim. If f, g, and are functions on A, then 
“Proof.” Using associativity and Theorems 4.2.3 and 4.2.4,

�

(d) Claim. If on an open interval (a, b), then f is increasing
on (a, b).
“Proof.” Assume that on the interval (a, b). Suppose 
and are in (a, b) and We must show that 
We know from calculus that since f is differentiable on (a, b), it is
continuous on and differentiable on By the
Mean Value Theorem, there exists c in such that

Therefore, By hypothesis 
and since Therefore, We con-
clude that �

4.3 Functions That Are Onto; One-to-One Functions

The definition of a function is stated in terms of conditions on the first
coordinates of f. Two important properties of functions are defined by requiring
additional conditions on the second coordinates of f.

f : A → B

 f  ( x1) < f  ( x2).
f  ( x2) − f  ( x1) > 0.x1 < x2.x2 − x1 > 0

f ′(c) > 0, f  ( x2) − f  (x1) = f ′(c)(x2 − x1).

f  ( x2) − f  ( x1)
x2 − x1

 = f ′(c).

(x1, x2)
(x1, x2).[x1,  x2] ⊆ (a, b ),

f  ( x1) < f  ( x2).x1 < x2.x2

x1 f ′( x ) > 0

 f ′( x ) > 0

f −1 ◦ (g ◦ f ) =  f −1 ◦ (  f ◦ g ) = (  f −1 ◦ f ) ◦ g = IA ◦ g = g.

g = f −1 ◦ (g ◦ f ). f −1
IA = f.IA ◦ f = f,IA = IA ◦ f.

 f −1 ◦ f = (  f −1 ◦ f ) ◦ f.f −1 ◦ f =  f −1 ◦ (  f ◦ f ).
f = f  ◦ f,f −1: A → A.f : A → A

 f = IA. f ◦ f = f,  f −1
 IA = f −1 ◦  f.IA ⊆  f −1 ◦ f.

(x, y ) �  f −1 ◦  f.(w, y ) �  f −1,(x, w ) �  f
(w, y ) �  f −1.x = y(x, y ) � IA(w, x ) �  f −1.

(x, w ) �  f.w � BA = Dom(  f ),
(x, y ) � IA.f −1 ◦  f ⊆  IA.(x, y ) � IA;

4.3 Functions That Are Onto; One-to-One Functions 205

DEFINITION A function is onto B (or is a surjection)
When f is a surjection, we write f : A −→onto  BRng(  f ) = B.

  iff   f : A → B

For it is always the case that so a function always maps
to its codomain. We say f maps onto its codomain when the codomain is 

From our discussion in Section 4.1, we know that the functions

 and  g:  � → E+, where g (n ) = 2n
 f :  � → �,  where  f  (n ) = 2n

Rng(  f ).
Rng(  f ) ⊆ B, f : A → B,
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are equal because they are the same sets of ordered pairs. The range of this func-
tion is the set of even natural numbers. This range is the same as the given
codomain for g, so we say g maps onto It would be incorrect to say 

Properly speaking, when we say a function f is onto, we should finish the sen-
tence by saying what set it is that f maps onto. However, when the codomain of a
surjection f is clear from the context, it is common practice, even if not perfectly
correct, to say simply that “f is onto.” If we are given a function f and we want to
say that f is onto, what we must do first is determine the range of f. We can then say
f is onto that range.

Since is always true, is a surjection if and only if
that is, every has a pre-image. Therefore, to prove that

is onto its codomain B, one must show that for every for
some 

Example. Prove that F: where is onto �.

Proof. We must show that for every there exists such that
Let We choose Since we want the

pre-image we need is Then Therefore, is
onto �

When and the sets A and B are subsets of it is often helpful to look
at the graph of f and apply this Horizontal Line Test for onto functions:

A visual check is not the same as a proof, but can help us decide whether to attempt
a proof that f is onto, or else to identify an element of B that is not in the range.

Examples. Figure 4.3.1 shows the graphs of two functions, h and k, from [1, 3] to
[1, 4]. The function h can be shown to be onto [1, 4] because every horizontal line
with y-intercept b, where intersects the graph. The function k is not onto
[1, 4]. The line does not intersect the graph.y = 1.5

1 ≤ b ≤ 4,

line y = b intersects the graph of  f.
f  maps onto B  iff  for every b � B,  the horizontal

�, f : A → B

�.
F : � → �F ( t ) = t + 2 = w.t = w − 2.〉

w = F ( t) = t + 2,〈t = w − 2.w � �.F ( t) = w.〉
t � �w � �,〈

F (x ) = x + 2,� → �,

a � A.
b =  f  (a ),b � B,f : A → B

b � B  iff  B ⊆ Rng(  f );
f : A → BRng(  f ) ⊆ B

f : � −→onto  
�.E+.

E+

206 CHAPTER 4 Functions

y = h(x) y = k(x)

y = 1.5

(a)

x

y

4
3
2
1

1 2 3

(b)

x

y

4
3
2
1

1 2 3

Figure 4.3.1
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Proof. Let We must show that for some The equation
is a third degree polynomial equation in the variable x. Since the

degree of the equation is odd and since nonreal (complex) roots of all equations with
coefficients in occur in conjugate pairs, the equation has at least one
real root Thus Therefore Hence p is onto �

Example. Let be defined by Then G is not onto To
show this, we find an element y in the codomain that has no pre-image in the
domain Let y be Since for every real number x, there is no 
such that Hence G is not onto 

Example. The function where is a surjection. For
any and Even though some integers
have many pre-images (for example, to
prove that M maps onto we only need to show that there is at least one pre-image
for each 

When you prove that a given function f maps A onto B by showing that every
element of B has a pre-image, be sure to verify that each pre-image is in the
domain A. This very important step is the statement “Then in the
following example.

Example. Let be defined by Prove that s
is onto 

Proof. Let Then so Choose 
Note that we do not choose Then It follows that

Therefore the function f maps onto �[−4, ∞).

s (x ) = (−
√

w + 4 B2 − 4 = (w + 4) − 4 = w.

x � (−∞, 0].x =
√

w + 4.〉〈
x = −

√
w + 4.w + 4 ≥ 0.w ≥ −4,w � [−4, ∞).

[−4, ∞).
s (x ) = x2 − 4.s: (−∞, 0] → [−4, ∞)

x � (−∞, 0]”

z � �.
�

24 = M(3, 8) = M(12, 2) = M(4, 6)),
M (z, 1) = z · 1 = z.(z, 1) � � × �z � �,

M (x, y ) = xy,M: � × � → �,

�.G (x ) = −2.
x � �x2 + 1 ≥ 1−2.�.

�

�.G (x ) = x2 + 1.G: � → �

�.p (a ) = w.p (a ) − w = 0.a � �.
p (x ) − w = 0�

p (x ) − w = 0
a � �.〉w = p (a )〈w � �.

4.3 Functions That Are Onto; One-to-One Functions 207

w

x
a

y

f (x) � x3 � 3x2 � 24x

Figure 4.3.2

Example. Let be the polynomial function 
(Figure 4.3.2). Prove that p is onto �.

p (x ) = x3 + 3x2 − 24xp: � → �
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The next two theorems relate composition and the property of being a surjection.

Theorem 4.3.1 If and then That is, the composite of
surjective functions is a surjection.

Proof. Exercise 5. �

Theorem 4.3.2 If and then g is onto C. That is, when the
composite of two functions maps onto a set C, then the second function applied
must map onto C.

Proof. We must show Suppose Since maps onto C,
there is such that Let which is in B. Then

Thus there is such that and
g maps onto C. �

For a function we said that f is onto B if every element of B is used
at least once as a second coordinate. For the property of being one-to-one, the con-
dition is that every element of B is used as a second coordinate at most once.

f : A → B,

g (b ) = c,b � B(g ◦  f ) (a ) = g (  f  (a )) = g (b ) = c.
b =   f  (a ),(g ◦ f ) (a ) = c.a � A

g ◦ fc � C.C ⊆ Rng(g ).〉〈

g ◦ f : A −→onto  C,g: B → C,f : A → B,

g ◦ f : A −→onto  C.g: B −→onto  C,f : A −→onto  B,

DEFINITION A function is one-to-one (or is an injection)
whenever then When f is an injection, we write 

f : A −→1−1   B.
x = y.f  (x) = f  (y ),iff  

f : A → B

A direct proof that is one-to-one begins with the assumption that x
and y are elements of A and that the rest of the proof shows that 
A proof by contraposition assumes that and shows that To show
that f is not one-to-one, it suffices to exhibit two different elements of A with the
same image.

Example. Show that the function defined by is 
one-to-one.

Proof. Suppose x and z are real numbers and Then 
Therefore so �

Example. The function is not one-to-one because and

Given the graph of a function where the sets A and B are subsets of
we can apply this Horizontal Line Test for one-to-one functions:

From Figure 4.3.1(a) we see that the line meets the graph of h twice.
Therefore 3 has two pre-images and so h is not one-to-one. The graph in Figure
4.3.1(b) suggests that the function k is one-to-one.

y = 3

f is one-to-one  iff  every horizontal line intersects the graph of f at most once.

�,
f : A → B

r (2) = r (−2).
2 =� −2r (x) = |x |

x = z.2x = 2z,
2x + 1 = 2z + 1.F (x ) = F (z ).

F (x ) = 2x + 1F : � → �

f  (x ) =�  f  (y ).x =� y
x = y.f  (x ) =  f  (y );

f : A → B
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The next example shows that we need to consider the domain when we deter-
mine whether a function is one-to-one.

Example. Let be given by Show that f is one-to-
one.

Proof. Suppose and Then so either or
Since and we conclude that Therefore f is one-to-one. �

Example. Let be given by We attempt to show G is an

injection by assuming that Then

Therefore, so It does not follow from this that 
This unsuccessful proof suggests a way to find distinct real numbers with equal
images. We note that and then compute Thus G is
not an injection.

The next two theorems relate composition with the property of being an injec-
tion. Compare these theorems with those above regarding surjections.

Theorem 4.3.3 If and then That is, the composite of 
injective functions is an injection.

Proof. Assume that Thus Then
since g is one-to-one. Then since f is one-to-one. Therefore, 

is one-to-one. �

Theorem 4.3.4 If and then That is, if the
composite of two functions is one-to-one, then the first function applied must be 
one-to-one.

Proof. Exercise 6. �

Mappings that are constructed by means of restrictions or unions may share
injective or surjective properties. These results will be used in the study of cardinal-
ity in Chapter 5.

Theorem 4.3.5 (a) A restriction of a one-to-one function is one-to-one.
(b) If and then 

(c) If and then
h ∪ g: A ∪ B −→1−1  C ∪ D.

C ∩ D = �,A ∩ B = �,g: B −→1−1 D,h: A −→1−1 C,

h ∪ g: A ∪ B −→onto  C ∪ D.A ∩ B = �,g: B−→onto  
D,h: A−→onto  

C,

f : A −→1−1  B.g ◦ f : A −→1−1  C,f : A → B, g: B → C,

g ◦ f 

x = zf  (x ) =  f  (z )
g (  f  (x )) = g (  f  (z )).(g ◦ f ) (x) = (g ◦ f ) (z).

g ◦ f : A −→1−1  C.g: B −→1−1  C,f : A −→1−1  B

G (2) = G (−2) = 1
5
.22 = (−2)2,

x = y.x2 = y2.x2 + 1 = y2 + 1,

1

x2 + 1
 =  

1

y2 + 1
 .

G (x ) = G (y ).

G (x) = 1

x2 + 1
.G : � → �

x = y.y ≥ 0,x ≥ 0x = −y.
x = yx2 = y2,f  (x ) =  f  (y ).x, y � [0, ∞)

 f  (x ) = x2.  f : [0, ∞) → [0, ∞)

4.3 Functions That Are Onto; One-to-One Functions 209
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Proof. Parts (a) and (b) are left as Exercise 7.

(c) Suppose and Then by
Theorem 4.2.5, is a function with domain 

Suppose Assume 

(i) If then Since h is
one-to-one, 

(ii) If then by a similar argument, and g is one-to-
one; so 

(iii) Suppose and Then and and 
But This case is impossible.

(iv) Similarly, and is impossible.

In every possible case, Therefore, is one-to-one. �

Examples. Let H be the function on that sends r to 1, s to 2, t to 3, and
u to 4. Then H is one-to-one and onto {1, 2, 3, 4}. The function

maps one-to-one and onto {4, 5}. Since the domains are
disjoint, is a function. By Theorem 4.3.5 (b), is onto

Notice that we cannot apply part (c) of
Theorem 4.3.5, because the ranges of H and G are not disjoint. See Figure 4.3.3(a).

If we let then the domains of H and K are disjoint and the
ranges of H and K are disjoint. In this case, is a function that maps

one-to-one and onto See Figure 4.3.3(b).{1, 2, 3, 4, 5, 6}.{r, s, t, u, w, z}
H ∪ K

K = {(w, 5), (z, 6)},

{1, 2, 3, 4} ∪ {4, 5} = {1, 2, 3, 4, 5}.
H ∪ GH ∪ G

{x, y}G = {(x, 4), (y, 5)}

{r, s, t, u}

h ∪ gx = y.

y � Ax � B
C ∩ D = �.g (y ) � D.

h (x ) � Ch (x ) = g (y )y � B.x � A
x = y.

g (x ) = g (y ),x, y � B,
x = y.

h (x ) = ( h ∪ g )(x) = (h ∪ g )(y) = h (y ).x, y � A,

(h ∪ g )(x) = (h ∪ g )(y).x, y � A ∪ B.
A ∪ B.h ∪ g

C ∩ D = �.A ∩ B = �,g: B −→1−1  D,h: A −→1−1  C,

210 CHAPTER 4 Functions

Figure 4.3.3
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Exercises 4.3

1. Which of the following functions map onto their indicated codomains? Prove
each of your answers.

� (a)
(b) f : � → �,  f (x) = −x + 1,000

f : � → �,   f (x) = 1
2

x + 6
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� (c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)

� (k)

(l)

� 2. Which of the functions in Exercise 1 are one-to-one? Prove each of your answers.

3. For each function, determine whether the function maps onto the given codomain
and whether it is one-to-one. Prove your answers.
(a) The identity function from A to A.
(b) The canonical map from to 
(c) The greatest integer function int: 
(d) The sequence whose nth term is 

4. Let Describe a codomain B and a function such 
that f is

� (a) onto B but not one-to-one.
(b) one-to-one but not onto B.
(c) both one-to-one and onto B.
(d) neither one-to-one nor onto B.

5. Prove that if and then (Theorem 4.3.1).

6. Prove that if and then 
(Theorem 4.3.4).

7. Prove parts (a) and (b) of Theorem 4.3.5.

8. Find sets A, B, C, and functions and such that
� (a) f is onto B, but is not onto C.

(b) g is onto C, but is not onto C.
(c) is onto C, but f is not onto B.
(d) f is one-to-one, but is not one-to-one.

� (e) g is one-to-one, but is not one-to-one.
(f) is one-to-one, but g is not one-to-one.

9. Prove that

(a) is one-to-one but not onto 

(b) is onto but not one-to-one.�f  ( x ) = c x + 4  if x ≤ −2

−x if −2 < x < 2

x − 4 if x ≥ 2

�.f (x) = d2 − x if x ≤ 1
1
x if x > 1

g ◦  f
g ◦  f
g ◦  f

g ◦  f
g ◦  f
g ◦  f

g: B → C f : A → B

f : A −→1−1  Bg ◦  f : A −→1−1 C,g: B → C,f : A → B,

g ◦ f : A −→onto  Cg: B −→onto  C,f : A −→onto  B,

f : A → BA = {1, 2, 3, 4}.

an = 2n.a: � → �

� → �.
�5.�

IA

f : (1, ∞) → (1, ∞),   f  (x) = x

x − 1

f : [2, 3) → [0, ∞),   f  (x) = x − 2

3 − x

f : � → [1, ∞),   f  (x ) = x2 + 1
f : � → [−1, 1],   f  (x ) = cos x
f : � × � → �,  f  (x, y ) = x − y
f : � → �,  f  (x ) = sin x
f : � → �,  f  (x ) = 2x
f : � → �,   f  (x) =

√
x2 + 5

f : � → �,   f  (x ) = x3
f : � → � × �,   f  (x ) = (x, x )

4.3 Functions That Are Onto; One-to-One Functions 211
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� (c) is one-to-one and onto 

(d) is neither one-to-one nor onto 

10. Prove that if the real-valued function f is increasing (or decreasing), then f is
one-to-one.

11. � (a) Let be given by for each Prove that
f is one-to-one but not onto 

(b) Let be given by for each Prove that
f is onto , but not one-to-one.

(c) Let be given by for each Prove that 
f is a bijection.

(d) Let be given by Prove that f is not one-to-one
and not onto 

12. Give two examples of a sequence x of natural numbers (i.e., a function with
domain and range that is a subset of ) such that
(a) x is neither one-to-one nor onto 

� (b) x is one-to-one and onto 
(c) x is one-to-one and not onto 
(d) x is onto and not one-to-one.

13. Suppose the set A has m elements and the set B has n elements. By Exercise 17
in Section 4.1, there are relations from A to B and functions from A to B.
(a) If find the number of one-to-one functions from A to B.
(b) If find the number of one-to-one functions from A to B.

� (c) If find the number of one-to-one functions from A to B.
(d) If find the number of functions from A onto B.
(e) If find the number of functions from A onto B.

� (f) If find the number of functions from A onto B.
(g) If find the number of one-to-one correspondences from A onto B.

Proofs to Grade 14. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. The function given by is a
surjection.
“Proof.” Suppose Then so Also,

so Therefore Thus so f is a
surjection. �

� (b) Claim. The function defined by maps
onto (0, ∞).

f (x) = 1
x

f : [1, ∞) → (0, ∞)

f (x, y ) � �,2x − 3y � �.3y � �.y � �,
2x � �.x � �,(x, y ) � � × �.

f  (x, y ) = 2x − 3yf : � × � → �

m = n,
m = n + 1,
m = n,
m < n,
m > n,
m = n,
m < n,

nm2mn

�

�.
�.

�.
��

�4.
f  (xq ) = 2x.f : �4 → �4

xq � �6.f  (xq ) = x + 1,f : �6 → �6

�2

x � �4.f  (xq ) = [3x],f : �4 → �2

�8.
xq � �4.f  (xq ) = [2x],f : �4 → �8

�.f  (x ) =
{

 |x |   if x ≤ 2

x − 3 if x > 2

�.f  (x) = d x − 2

x + 4
if x =� −4

1 if x = −4

212 CHAPTER 4 Functions

“Proof.” Suppose Choose Then f (x ) = 1
1
w

= w.x = 1
w

.w � (0, ∞).

Therefore the function f is onto  �(0, q).
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(c) Claim. If and then maps onto
C. (Theorem 4.3.1)
“Proof.” Suppose Then Since 
Therefore, so is onto C. �

� (d) Claim. The function given by is onto 
“Proof.” Suppose f is not onto Then there exists with

Thus for all real numbers x, But 

is a real number and  This is a contradiction. Thus f is onto .�
(e) Claim. Let I be the interval (0, 1). The function given

by is a surjection.
“Proof.” Let Then so so 

Choose and Then 
Therefore, so the function f is onto I. �

(f) Claim. If and then (Theo-
rem 4.3.3).
“Proof.” We must show that if and are elements of 
then If then there is such that 
and If then there is such that 
and However, and imply since g
is one-to-one. Then and and therefore, 

since f is one-to-one. Hence and in imply
Therefore, is one-to-one. �

(g) Claim. The function given by is one-to-one.
“Proof.” Suppose x1 and x2 are real numbers with 
Then and thus Hence which
shows that f is one-to-one. �

(h) Claim. The function f in part (e) is an injection.
“Proof.” Suppose and are in and 
Then Dividing by we have Since 
and must be 0. Therefore, This shows that

so f is an injection. �
(i) Claim. The function f in part (e) is not an injection.

“Proof.” Both and are in But

�

4.4 One-to-One Correspondences and Inverse Functions

In this section we consider functions that have both the desirable properties of being
one-to-one and mapping onto their codomains. The key role played by these func-
tions in succeeding chapters suggests their importance in advanced mathematics.

f a1

4
, 

1

4
b = a1

4
b

1
4 = a a1

2
b2b

1
4 = a1

2
b

1
2 = f a1

2
, 

1

2
b .

I × I.A14, 1
4BA 12, 1

2B
(x, y) = (x, z),

y = z.y − zxy−z = 1,
x =� 1xy−z = x0 = 1.xz,xy = xz.

f  (x, y) = f  (x, z).I × I(x, z )(x, y )

x1 =� x2,2x1 =� 2x2.2x1 + 7 =� 2x2 + 7
f  (x1) =�  f  (x2).

f  (x ) = 2x + 7f : � → �

g ◦ fx = z.
g ◦ f (z, y )(x, y )x = z,

u = v;(z, v ) � f(x, u ) � f
u = v(v, y) � g(u, y ) � g(v, y) � g.

(z, v ) � fv � B(z, y ) � g ◦ f,(u, y) � g.
(x, u) � fu � B(x, y ) � g ◦ f,x = z.

g ◦ f,(z, y )(x, y )

g ◦  f : A −→1−1  Cg: B −→1−1  C,f : A −→1−1  B

I ⊆ Rng(  f ),
f  (x, y ) = xy = (t2)1/2 = t.y =  1

2
� I.x = t2

t2 � I.0 < t2 < t < 1,0 < t < 1,t � I.
f  (x, y ) = xy

f : I × I → I
� f  (a ) = b.

a =  1
2
 (b − 7)b =� 2x + 7.b � Rng(  f ).

b � ��.
�. f  (x ) = 2x + 7f : � → �

g ◦ f(g ◦ f )(a) = g (  f  (a)) � C,
g (  f  (a)) � C.f  (a) � B,f  (a ) � B.a � A.

g ◦ f : A → Cg : B −→onto  C,f : A −→onto  B
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214 CHAPTER 4 Functions

DEFINITION A function is a one-to-one correspondence
(or a bijection) f is one-to-one and onto B.  iff  

f : A → B

Example. Let and The function where
and is a bijection from A onto B.

Example. The function given by is a one-to-one correspon-
dence between the natural numbers and the set of positive even integers.

Example. Let be defined by For
example, and 

The function F is a one-to-one correspondence.

Proof.

(i) To show that F is onto let We must show that for
some in If s is even, then s may be written as where

and t is odd. Since t is odd, for some Choosing
we have If s is odd, then
for some For this n and we find

Therefore, F is onto 
(ii) To show that F is one-to-one, suppose and are in and

We first prove that Without loss of generality, we
may assume that If we could relabel the arguments. From

we have which implies 
Since the right side of the equality is odd, the left side

is odd. Thus Therefore, and we conclude that 
Dividing both sides of the equation by

we have which implies or
Thus and which gives Hence the function

F is one-to-one. �

The last theorem of the previous section is a useful tool for constructing bijec-
tions. Applying this theorem to the examples above, we can say that there exists a
one-to-one correspondence between and the set 
Since the domains of F and h in the examples above are disjoint, the union 
is a function that maps onto Since their ranges are disjoint, the 
function is one-to-one. This observation is easier than actually defining a 
correspondence.

Combining Theorems 4.3.1 and 4.3.3, we have the following theorem.

Theorem 4.4.1 If and then That is, the composite of one-
to-one correspondences is a one-to-one correspondence.

g ◦  f : A −→1−1  

onto  
C.g: B −→1−1  

onto  
C,f : A −→1−1  

onto  
B

F ∪ h
� ∪ {p, q, r}.

F ∪ h
� ∪ {p, q, r}.(� × �) ∪ {a, b, c}

(m, n) = (r, s).n = s,m = rn = s.
2n = 2s,2n − 1 = 2s − 1,2m−1〈2m−1 = 2r−1〉,

2m−1(2n − 1) = 2r−1(2s − 1)
m = r.m − r = 0,2m−r = 1.

2m−r(2n − 1) = 2s − 1.
2m−1(2n − 1) = 2r−1(2s − 1),F(m, n) = F(r, s),

〉m < r,〈m ≥ r.
m = r.F (m, n) = F (r, s).

� × �(r, s)(m, n)
�.F (m, n) = 20(2n − 1) = s.

m = 1,n � �.s = 2n − 1
F (m, n) = 2m−1(2n − 1) = 2kt = s.m = k + 1,

n � �.t = 2n − 1k ≥ 1
2kt,� × �.(m, n)

s = F (m, n)s � �.�,

24(2·5 − 1) = 144.
F(5, 5) =F(1, 3) = 20(2·3 − 1) = 5, F(3, 1) = 22(2·1 − 1) = 4,

F (m, n) = 2m−1(2n − 1).F : � × � → �

E+
d (n) = 2nd: � → E+

 h (c) = qh (a) = p, h (b) = r,
h: A → B,B = {p, q, r}.A = {a, b, c}
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Example. Let d and F be the bijections defined earlier in this section. Then
the function is a bijection from As a sample computation we
find that In general, 

It was observed in Section 4.2 that the inverse of a function is not always a
function. The situation is clarified when we understand the connection between
inverses and one-to-one mappings.

Theorem 4.4.2 Let 

(a) is a function from to A F is one-to-one.
(b) If is a function, then is one-to-one.

Proof.

(a) Assume that is a function from to A. To show that F is one-to-one,
assume that Now show that Then and

Therefore, and Since is a func-
tion,

Now assume that F is one-to-one. To show that is a function, let
and Therefore, and Since F

is one-to-one, 
(b) See Exercise 4. �

Example. The trigonometric function sin: is clearly not one-to-one be-
cause, for example, In Section 4.2 we defined the restriction

of sine, Sin: to the domain The Sine function has range

and is one-to-one and onto By Theorem 4.4.2 Sine has an inverse

function 

We must be careful not to conclude that if then 
since F may not be onto B. Recall that the domain and range of a relation and
its inverse are interchanged. Therefore if then all we can say by
Theorem 4.4.2(a) is 

Corollary 4.4.3 If then That is, the inverse of a one-to-one correspon-
dence is a one-to-one correspondence.

The next result relates the concepts of injection, surjection, composition, and
inversion. It gives a simple, practical method using composition to determine whether
a given function is the inverse of a function F and, thereby, indirectly proves that F is a
bijection. Part (b) of the theorem is a useful shortcut when someone wants to verify the
inverse of a one-to-one correspondence: It suffices to test only one of the composites.

Theorem 4.4.4 Let and Then

(a) and 
(b) If F is one-to-one and onto B, then or F ◦ G = IB.G ◦ F = IA  iff  G = F−1

F ◦ G = IB.G ◦ F = IA  iff  G = F−1

G: B → A.F: A → B

F−1: B −→1−1  

onto  
A.F : A −→1−1  

onto  
B,

F−1: Rng(F ) −→1−1 A.
F : A −→1−1  B,

F−1
 : B −→1−1  A,F : A −→1−1  B,

Sin−1 : [−1,  1] → C−π

2
, 
π

2 D .
[−1, 1].[−1, 1]

C−π

2
, 
π

2 D .C−π

2
, 
π

2 D → �,

sin(0) =  sin(2π) = 0.
� → �

y = z.
(z, x ) � F.(y, x ) � F(x, z ) � F−1.(x, y) � F−1

F−1
x = y.

F−1(z, y) � F−1.(z, x ) � F−1(y, z ) � F.
(x, z ) � Fx = y〉.〈F (x ) = F (y ) = z.

Rng(F )F−1

F−1F−1
  iff  Rng(F )F−1

F be a function from set A to set B.

2(2m−1(2n − 1)) = 2m(2n − 1).
d ◦ F ((m, n)) =d ◦ F (1, 1) = d (F (1, 1)) = d (20(1)) = 2.

� × � to E+.d ◦ F
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Proof.

(a) If then and by Theorem 4.2.3. We use
the fact that

Assume now that and Then F is one-to-one by
Theorem 4.3.4 and F maps onto B by Theorem 4.3.2. Thus is a function
on B and 

(b) See Exercise 6. �

Another way to read Theorem 4.4.4 is that it explains what inverse functions do to
each other: Whatever a function F does to x, applying the inverse to takes you
right back to x. You know this idea already from previous study. For instance, as prop-
erties of the natural logarithm and exponential functions, Theorem 4.4.4(a) says that

Example. The function maps one-to-one and

onto Prove that where

Proof. There are two cases to consider. If 
Since the value of K is 

when If Since
the value of K is In either case,

so  �

Example. Let and be functions where 

and We can prove that F (and likewise G) is one-to-one and onto 

by showing that G and F are inverse functions. 

Proof. We calculate the two composites:

It follows that F and G are one-to-one and onto �

We conclude this section with the special case of functions that are bijections
from a set to itself. These functions will appear again in Chapter 6 because they are
essential to the understanding of the algebraic structures called groups.

�.

= (x − 1) + 1 = x.

For all x in �, (F ◦ G )(x) =  F (G (x )) = F a  
x − 1

2
b = 2a x − 1

2
b + 1

= 2x

2
= x.

For all x  in �, (G ◦ F )(x) =  G (F (x )) = G (2x + 1) =  
(2x + 1) − 1

2

�G (x) = x − 1

2
.

F (x ) = 2x + 1G : � → �F : � → �

K = H−1.(K ◦ H )(x) = x,

√
2 − (2 − x2) =

√
x2 = x if x > 0.2 − x2 < 2,

(K ◦ H )(x) = K (H (x )) = K (2 − x2).x > 0,x ≤ 0.−|x | = x
−

√
(x2 + 2) − 2 = −

√
x2 =x2 + 2 ≥ 2,K (x2 + 2).

x ≤ 0, (K ◦ H )(x ) = K(H (x )) =

K (x) =
{−

√
x − 2   if x ≥ 2√

2 − x      if x < 2
.

H−1 = K,�.

�H(x) =
{

x2 + 2     if x ≤ 0

2 − x2       if x > 0

for all x > 0,        e ln x = x             and            for all x � �,        ln ex = x.

F (x )

F−1 = F−1 ◦ IB = F−1 ◦ (F ◦ G ) = (F−1 ◦ F ) ◦ G = IA ◦ G = G.
F −1

F ◦ G = IB.G ◦ F = IA

Rng (F ) = Dom (F−1) = B.〉
〈F ◦ G = IB,G ◦ F = IAG = F−1,

216 CHAPTER 4 Functions
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4.4 One-to-One Correspondences and Inverse Functions 217

If f is a permutation of the set A and then is another (perhaps differ-
ent) element of A. Thus f has the effect of arranging (or permuting) the elements of A.

Examples. Let A be the set {1, 2, 3}. The identity function on A, the function
and the function are three dif-

ferent permutations of A. The resulting arrangements (or permutations) of the ele-
ments of A are obtained by listing the images of 1, 2, and 3 in order.

From we get the arrangement 1 2 3.
From t we get the arrangement 2 1 3.
From s we get the arrangement 2 3 1.

The word permutation can also be used to describe the result of arranging the
elements of A in some specified order; for example, the list dbac is a permutation
of abcd. (This was the meaning we used in Section 2.6.) This use is the basis for a
simplified notation for a permutation of a finite set. By listing the images in order,
we write the function s in the example above as [2 3 1], to indicate that 2 is the
image of 1, 3 is the image of 2, and 1 is the image of 3. The permutation t is writ-
ten [2 1 3] and is [1 2 3].

Examples. The function is a permutation of the set
It maps 1 to 4, 2 to 2, 3 to 6, 4 to 5, 5 to 3, and 6 to 1. The

identity permutation on B is 

Previous results about one-to-one correspondences and inverses can be com-
bined to yield this important list of facts about permutations.

Theorem 4.4.5 Let A be a nonempty set. Then

(a) the identity mapping is a permutation of A.
(b) the composite of permutations of A is a permutation of A.
(c) the inverse of a permutation of A is a permutation of A.
(d) if f is a permutation of A, then 
(e) if f is a permutation of A, then 
(f) if f and g are permutations of A, then 

Proof. These statements follow immediately from:

(a) Exercise 3 of Section 4.3.
(b) Theorem 4.4.1.
(c) Corollary 4.4.3.
(d) Theorem 4.2.4.
(e) Theorem 4.2.5.
(f) Theorem 3.1.3(d). �

(g ◦  f )−1 =  f −1 ◦ g−1.
f ◦  f −1 =  f −1 ◦   f =  IA.
f ◦ IA =  IA ◦ f =  f.

IA

[1 2 3 4 5 6].
B = {1, 2, 3, 4, 5, 6}.

h = [4 2 6 5 3 1]

IA

IA

s = {(1, 2), (2, 3), (3, 1)}t = {(1, 2), (2, 1), (3, 3)}
IA

f  (a)a � A,

DEFINITION Let A be a nonempty set. A permutation of A is one-to-
one correspondence from A onto A.
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Composites and inverses of permutations can be easily computed using the
notation described above. Remember to evaluate a composite from right to left,
because the function on the right is applied first.

Examples. For and the functions and 
is The thought process begins with [2 3 1 4],

where “1 goes to 2.” Then we see that in [2 4 1 3], “2 goes to 4.” Thus in the com-
posite “1 goes to 4.” We find the other images similarly. For example, s sends 2 to
3 and t sends 3 to 3, so the composite sends 2 to 3.

To find the inverse of the permutation we think of reversing its
action. The permutation sends 1 to 2 so the inverse of t sends 2 to 1 Since t sends
2 to 4, sends 4 to 2, etc. In this way we find that We can verify
that this is correct by computing which is the iden-
tity permutation.

Exercises 4.4

1. Show that each of these functions is a one-to-one correspondence.

(a) given by 

(b) given by 
(c) where and

(d) given by 
(e) given by You may use the fact that an

exponential function maps one-to-one and onto 

2. Find a one-to-one correspondence between each of these pairs of sets. Prove
that your function is one-to-one and onto the given codomain.
(a) {a, b, c, d, e, f} and {2, 4, 8, 16, 32, 64}
(b) and 
(c) and 
(d) and 
(e) and where and 

3. For each one-to-one-correspondence, find the inverse function. Verify your
answer by computing the composite of the function and its inverse.

(a) given by 

� (b) given by 

(c) h: given by 

(d) given by 

4. Prove part (b) of Theorem 4.4.2: If and is a function, then F is
one-to-one.

F−1F : A → B

G (x) = 5(x − 1)

x − 3
.G: (3, ∞) → (5, ∞)

h (x ) = ex+3.� → (0, ∞)

g (x) = 4x

x + 2
.g: (−2, ∞) → (−∞, 4)

f  (x) = 1
x

.f : (0, ∞) → (0, ∞)

20� = {20k : k � �}12� = {12k : k � �}20�,12�

(−1, ∞)(−∞, 1)
(5, ∞)(3, ∞)

� − {1}�

(0, ∞).�

k (x ) = 2ex + 3.k : � → (3, ∞)
G (m, n) = 2m+2(2n − 1).G: � × � →8�

h (x ) = 1.25x.
8� = {8k: k � �}, 10� = {10k: k � �},h: 8� → 10�,

g (x ) = − ƒ x + 4 ƒ .g: (−∞, −4) → (−∞, 0)

 f  (x) = −x

x − 2
.f : (2, ∞) → (−∞, −1)

[2 4 3 1] ◦ [4 1 3 2] = [1 2 3 4],
t −1 = [4 1 3 2].t −1

t
t = [2 4 3 1],

[2 4 3 1] ◦ [2 3 1 4] = [4 3 2 1].t ◦ s
s = [2 3 1 4],t = [2 4 3 1]A = {1, 2, 3, 4}

218 CHAPTER 4 Functions
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5. (a) Assume that Prove that or 

(Theorem 4.4.4, part (b)).
(b) Give an example of sets A and B and functions F and G such that

and 

6. Let and Use the results of this section to prove that if
and then and 

7. Use the one-to-one correspondences ln: and
where to describe a one-to-one correspondence
(a) from onto 
(b) from onto 
(c) from onto 

8. Prove that if and then 
is a one-to-one correspondence from D to A.

9. Use the notation of this section to write these permutations of the set

(a) (b)
� (c)

(d)
� (e) (f) (g) (h) � (i)

(j) (k) (l) (m)

Proofs to Grade 10. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

(a) Claim. If f is a one-to-one correspondence from A to B and g is a one-
to-one correspondence from B to A, then 
“Proof.” Suppose f is a one-to-one correspondence from A to B and g
is a one-to-one correspondence from B to A. Then by Theorem 4.4.1,

is a one-to-one correspondence from A to A. Likewise, is a
one-to-one correspondence from A to A. Then 

�
(b) Claim. If f is a permutation of A, then 

“Proof.” Since is the identity, Also is the identity, so
Therefore �

(c) Claim. Let and be permutations of 
{1, 2, 3, 4, 5}. Then the inverse of is [3 2 4 1 5].

“Proof.” Let and Then and
Therefore �

(d) Claim. If f and g are permutations of A, then 

“Proof.” We know by Theorem 4.4.5 that is a permutation of A, so
is a permutation of A. Also by Theorem 4.4.5, and are

permutations of A, so is a permutation of A. By Theorem 4.4.4,
we can check whether is the inverse of by computing their
composite. We find that 

There-
fore �(  f ◦ g)−1 = g−1 ◦ f −1.

 f ◦ f −1 = IA.(  f ◦ IA) ◦ f −1 = f ◦ (g ◦ g−1) ◦  f −1 =  f ◦ IA ◦ f −1=
f ◦ (g ◦ (g−1 ◦ f −1)) =(  f ◦ g) ◦ (g−1 ◦ f −1) =
f ◦ gg−1 ◦  f −1

g−1 ◦  f −1
f −1g−1(  f ◦ g)−1

f ◦ g

(  f ◦ g)−1 = g−1 ◦ f −1.
(r ◦ s)−1 = r−1 ◦ s−1 = r ◦ s = [3 2 4 1 5].s−1 = s.

r −1 = rs = [4 2 3 1 5].r = [1 2 4 3 5]

r ◦ s
s = [4 2 3 1 5]r = [1 2 4 3 5]

IA ◦
 f = f ◦ IA.f ◦ IA = f.

IAIA ◦ f = f.IA

IA ◦ f = f ◦ IA.
f −1 ◦ (  f ◦ g) = (  f −1 ◦  f ) ◦ g = IA ◦ g = g.

f −1 = f −1 ◦ (g ◦ f ) =
f ◦ gg ◦  f

g =  f −1.

u−1 ◦ v−1v−1 ◦ u−1(u ◦ v)−1v−1
u−1u ◦ v ◦ ww ◦ wv ◦ uu ◦ v

w = {(1, 2), (2, 1), (3, 4), (4, 3), (5, 5), (6, 7), (7, 6)}
v = {(1, 2), (2, 5), (3, 4), (5, 1), (4, 6), (6, 7), (7, 3)}

u = {(1, 5), (6, 7), (4, 4), (5, 1), (3, 2), (2, 6), (7, 3)}IC

C = {1, 2, 3, 4, 5, 6, 7}.

f −1 ◦ g−1 ◦ h−1h: C −→1−1  

onto  
D,g: B −→1−1  

onto  
C,f  : A −→1−1  

onto  
B,

(2, ∞).�

�.(2, ∞)
(2, ∞).(0, ∞)

f (x ) = x − 2,
 f : (2, ∞) → (0, ∞),(0, ∞) → �

G : B −→1−1  

onto  
A.F : A −→1−1  

onto  
BF ◦ G = IB,G ◦ F = IA

G: B → A.F: A → B

G =� F−1.G ◦ F = IAF : A → B, G: B → A,

F ◦ G = IB

G ◦ F = IA  iff  G = F−1F : A −→1−1  

onto  
B.
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4.5 Images of Sets

Let f be a function from A to B. Up to this point we have considered the mapping of
individual elements in A to their images in B or considered pre-images of individ-
ual elements in B. The next step is to ask about collections of points in A or in B and
what corresponds to them in the other set.

220 CHAPTER 4 Functions

DEFINITIONS Let and let and The image of
X or image set of X is 

and the inverse image of Y is 

f −1(Y ) = {x � A: f  (x ) � Y}.

x � X}f  (X ) = {y � B: y = f  (x ) for some

Y ⊆ B.X ⊆ Af : A → B

1

3

0 0

9

1
2

2

4
6

f −1(Y )

f  (X)f  

Y

X

A B

−1

−3

−2

Figure 4.5.1

Example. Let 
and be given by Figure 4.5.1 shows that

and

f −1(B) = A.
f −1({6}) = �

f −1(Y ) = f −1({4, 6}) = {−2, 2}

f  (A) = {0, 1, 4, 9}
f  ({−3, 3}) = {9}

f  (X ) =  f  ({−1, 3}) = {1, 9}

f  (x ) = x2.f : A → BY = {4, 6},
X = {−1, 3},B = {0, 1, 2, 4, 6, 9},A = {0, 1, 2, 3, −1, −2, −3},
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Note that is not a function from B to A, so it would not make sense to consider
However, is meaningful and equal to 

Examples. Let be given by Then we have 
and so Also, 
and The image set of is 

which is the range of f. There is no x in such that 
or so Also, is the same as

The inverse image of is which is the
same as

Examples. Let be given by Then since
both and From Figure 4.5.2 we see that 
Also, f  ([−1, 0]) = [0, 1].

f  ([1, 2]) = [1, 4].f  (−2) = 4.f  (2) = 4
f  ({−2, 2}) = {4}f  (x ) = x2.f : � → �

 f −1({x � �: x ≥ 5}).
Dom(  f ) = �,�f −1({1, 2, 3, 4, 5, 6}).

f −1({5, 6}) = {1, 2}f −1({2, 3}) = �.f  (x) = 3,
f  (x ) = 2�{5, 6, 7, Á},
f  (�) =�f  ({x � �: x > 20}) = {x � �: x > 24}.

f  ({10, 11, 12}) = {14, 15, 16}f  ({1, 2}) = {5, 6}.f  (2) = 6,
f  (1) = 5f  (x ) = x + 4.f : � → �

{1, −1}. f −1({1})f −1(1).
  f −1

4.5 Images of Sets 221

In this example it is tempting to guess that 
but this is incorrect. By definition, is the set of all images of 

elements of Since and 0.7 are in their images and 0.49

must be in Figure 4.5.3 shows that f  ([−1, 2]) = [0, 4].f  ([−1, 2]).

1
4
, 0,[−1, 2],−1

2
 , 0,[−1, 2].

f  ([−1, 2])[1, 4],
f  ([−1, 2]) = [(−1)2, 22] =

5

x

y

4321

4

3

2

1

[1, 4]

[1, 2]

�4 �3 �2 �1

f  ([1, 2]) = [1, 4]

5

x

y

4321�4 �3 �2 �1

4

3

2

1

[0, 4]

[�1, 2]

f  ([−1, 2]) = [0, 4]

Figure 4.5.2

Figure 4.5.3

62025_04_ch04_p185-232.qxd  4/19/10  3:38 PM  Page 221

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



We also have 
and since all images of f are nonnegative. Even though

Figure 4.5.4 illustrates why 
[−2, −1] ∪ [1, 2].

f −1([1, 4]) =f  ( [0, 2]) = [0, 4],  f −1([0, 4]) = [−2, 2].
f −1([−4, −3]) = �

f −1({1, 4, 9}) = {−3, −2, −1, 1, 2, 3},f −1({16}) = {−4, 4},

222 CHAPTER 4 Functions

5

x

y

4321

4

3

2

1

[1, 4]

[�2, �1] [1, 2]

�4 �3 �2 �1

f −1([1, 4]) = [−2, −1] ∪ [1, 2]

Figure 4.5.4

Proofs involving set images take some special care because of the interplay 
between points, sets, and images of sets. Let and 
Here are some facts about images of sets that follow from the definitions:

(a) If then 
(b) If then 
(c) If then 
(d) If then provided that f is one-to-one.

For part (d) we note that it is not correct to say that always implies
For the function and we see that 

but

Examples. Let be the function given by Let 
and Then and 

so 
On the other hand, and , 

so but it is not true that 

Theorem 4.5.1 Let C and D be subsets of A, and E and F be subsets of B. Then

(a)
(b)
(c)
(d) f −1(E ∪ F ) =  f −1(E ) ∪  f −1(F ).

f −1(E ∩ F ) =  f −1(E ) ∩  f −1(F ).
f  (C ∪ D) =  f  (C ) ∪  f  (D).
f  (C ∩ D) ⊆  f  (C ) ∩   f  (D).

f : A → B,

f  (A ∩ C ) =  f  (A) ∩  f  (C ).f  (A ∩ C ) ⊆  f  (A) ∩  f  (C ),
f  (A) ∩  f  (C ) = [1, 9]f  (A ∩ C ) = f  ([1, 2]) = [1, 4]

f  (A ∪ C ) = f  (A ) ∪ f  (C ).[0, 9] ∪ [1, 25] = [0, 25],
f  (A ) ∪  f  (C ) =f  (A ∪ C ) =  f  ([−3, 5]) = [0, 25]C = [1, 5].

A = [−3, 2]f  (x ) = x2.f : � → �

−1 � D.
f  (−1) �  f  (D ),D = [1, 2],f  (x ) = x2a � D.

f  (a) �  f  (D)

a � D, f  (a) �  f (D),
a �  f −1(E ). f  (a) � E,

 f  (a) � E.a �  f −1(E ),
f  (a) �  f  (D).a � D,

a � A.E ⊆ B,D ⊆ A,f : A → B,
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Proof.

(a) Suppose Then for some Since 
and Also, and so Thus,

(c)

and 
and 

The proofs of parts (b) and (d) are left as exercises. �

Finally, we note that if then every subset of A has a correspon-
ding image set that is a subset of . This correspondence is a function from 

to called the induced function, Note that the same
letter, f, is used for the function and the induced function. The appropriate interpre-
tation is usually clear from the context.

Likewise, every subset has a unique inverse image that is a 
subset of A. This correspondence is another induced function,  

Exercises 4.5

1. Let and 
� (a) Find the image of each of the 8 subsets of A.

(b) Find the inverse image of each of the 8 subsets of B.

2. Let Find
� (a) (b)
� (c) (d)

(e) (f)

3. Let Find
(a) (b)
(c) (d)
(e) (f)

4. Let be given by Find

(a) � (b)
� (c) (d)

(e) (f)

5. Let be given by Find
(a) where 
(b)

6. Let be given by Give an example off  (x ) =
{

2x if x ≥ 1

2 − 2x if x < 1
. f : � → �

f −1({5, 6, 7, 8, 9, 10}).
B = {3, 4}.A = {1, 2, 3},f  (A × B)

f  (m, n) = 2m3n. f : � × � → �

f  A  f −1 A C−10
3

, 10.1 D B Bf (  f −1(�)).

f −1([0, 1)).f −1((3, 4]).
f  ([1, 5]).f  ((0, 2)).

f  (x) = x + 1
x

. f : � − {0} → �

f  (  f −1( f ([3, 4])).f  ((1, 4]).
f −1([2, 5]).f −1(�).
f  (�).f  (A) where A = {−1, 0, 1, 2, 3}.

 f  (x ) = 1 − 2x.

f −1([−1, 5] ∪ [17, 26]).f −1([5, 10]).
f −1([−2, 3]).f −1([−1, 1]).
f  ([−1, 0] ∪ [2, 4]).f  ([1, 3]).

 f  (x) = x2 + 1.

h = {(1, 4), (2, 4), (3, 5)}.B = {4, 5, 6},A = {1, 2, 3},

f −1: �(B ) → �(A ).
f−1(Y )Y ⊆ B

f : �(A ) → �(B ).�(B )�(A )
Bf  (X )

Xf : A → B,

iff  a � f −1(E ) ∩ f −1(F ).
a �  f −1(F )iff  a � f −1(E )

f  (a) � Fiff   f  (a) � E
iff   f  (a) � E ∩ F

a � f −1(E ∩ F )
b �  f  (C ) ∩  f  (D ).

b �  f  (D).b =  f  (a),a � Db �  f  (C ).b =  f  (a),
a � Ca � C ∩ D.b =  f  (a)b �  f  (C ∩ D).

4.5 Images of Sets 223
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(a) and such that and 
(b) subsets A and C of such that 
(c) a subset D of such that 
(d) a subset E of such that 

7. Prove parts (b) and (d) of Theorem 4.5.1.

8. Let and let and be families of subsets 
of A and B, respectively. Prove that

� (a)

(b)

(c)

(d)

� 9. Give an example of a function and a family of sub-

sets of such that 

10. Let and Prove that
� (a)

(b)
(c)

� (d)
(e)
(f)

11. Let and let and Prove that
(a) � (b)
(c)

� 12. Let Prove that if f is one-to-one, then 
for all Is the converse true? Explain.

13. Let Prove that if and f is one-to-one, then 

14. Let Prove that if and f is a bijection, then 

15. Let 
� (a) What condition on f will ensure that the induced function 

is one-to-one?
(b) What condition on f will ensure that the induced function 

is onto 

16. Let and Prove that 

17. Let Let T be the relation on A defined by 
By Exercise 18 (a) of Section 4.1, T is an equivalence relation on A. Describe
the partition of A associated with T.

x T y  iff  f  (x) =  f  (y). f : A → B.

f  (  f −1(K )) = K ∩ Rng(  f ).K ⊆ B. f : A → B

�(B)?
f : �(A) → �(B)

f : �(A) → �(B)
f : A → B.

f −1(Y ) = X.  iff  f  (X ) = Y
Y ⊆ B,X ⊆ A,f : A → B.

f  (A ) − f  (X ).
f  (A − X ) =X ⊆ Af : A → B.

X, Y ⊆ A.
f  (X ) ∩  f  (Y ) =  f  (X ∩ Y )f : A → B.

f −1(U ) − f −1(V ) = f −1(U − V ).
f  (X ) − f  (Y ) ⊆  f  (X − Y ).X ⊆ f −1(U ).  iff  f  (X ) ⊆ U

U, V ⊆ B.X, Y ⊆ A f : A → B

D = f −1(  f  (D ))  iff   f  (A − D ) ⊆ B − f  (D ).
D ⊆ f −1(  f  (D )).

E ⊆ Rng(  f ).  iff  E = f  (  f −1(E ))
f −1(B − E ) ⊆ A − f −1(E ).
A − f −1(E ) ⊆ f −1(B − E ).
f  (  f −1(E )) ⊆ E.

E ⊆ B.D ⊆ A, f : A → B,

 f Q ⋂
a�Δ

DaR =� ⋂
a�Δ

 f (Da).�

{Da: a � Δ}f : � → �,

f −1Q ⋃
b�≠

EbR = ⋃
b�≠

 f −1(Eb).

f −1Q ⋂
b�≠

EbR = ⋂
b�≠

 f −1(Eb).

f Q ⋃
a�Δ

DaR = ⋃
a�Δ

 f  (Da).

f Q ⋂
a�Δ

DaR ⊆ ⋂
a�Δ

 f  (Da).

{Eb: b � ≠}{Da: a � Δ}f : A → B,

E =� f  (  f −1(E )).�

D =�  f −1(  f  (D)).�

f  (A ∩ C ) =�  f  (A) ∩  f  (C ).�

a � D.f  (a ) �  f  (D)D ⊆ �a � �

224 CHAPTER 4 Functions
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Proofs to Grade 18. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. If and then 
“Proof.” If then by definition of 
Therefore Thus �

(b) Claim. If and then 
“Proof.” Suppose Then Therefore we conclude
that  which proves the set inclusion. �

(c) Claim. If and is a family of subsets of A, then

“Proof.” Suppose Then for all Thusa.y � f  (Da )y �
⋂
a�Δ

 f  (Da ).

⋂
a�Δ

f  (Da ) ⊆ f Q ⋂
a�Δ

DaR .
{Da: a � Δ}f : A → B

z � f −1(  f  (X )),
f  (z ) �  f  (X ).z � X.

X ⊆  f−1(  f  (X )).X ⊆ A,f : A → B
 f −1(  f  (X )) ⊆ X.x � X.

f  (x) �  f  (X ).f−1,x � f−1( f (X )),
 f −1( f  (X )) ⊆ X.X ⊆ A,f : A → B

4.6 Sequences 225

there exists such that for all Then andx �
⋂
a�Δ

Daa.f  (x ) = y,x � Da

so  Therefore, �

4.6 Sequences

In calculus sequences play a central role in the representation of functions using
infinite series. Sequences are also important because of their usefulness in charac-
terizing a number of important properties of the real numbers. This section, which
is devoted to sequences of real numbers and the fundamentals of convergent and
divergent sequences, is a prerequisite for Section 7.4.

As defined in Section 4.1, a sequence is a function with domain If x is a
sequence and the image of n, usually written xn instead of is called the
nth term of the sequence x.

Examples. The sequence x of odd positive integers has nth term The
first few terms of x are 1, 3, 5, 7, . . . . The sequence y, where has range

since its terms are alternately �1 and 1.

The sequence x whose nth term is illustrates the convergence

property of sequences. The first few terms of x are as

shown in Figure 4.6.1. The 99th term is and the 1000th term is Evidently1
1001

.− 

1
100

−1
2
, 1

3
, −1

4
, 1

5
, −1

6
 , Á

xn = (−1)n

n + 1

{−1, 1}
yn = (−1)n,

xn = 2n − 1.

x (n ),n � �,
�.

⋂
a�Δ

 f  (Da ) ⊆  f Q ⋂
a�Δ

DaR.y �  f Q ⋂
a�Δ

DaR.f  (x ) = y,

−1 0 1

1
2

− 1
4

−

1
6

−

1
8

− 1
7

1
5

1
3

(−1)n

n + 1
xn = 

Figure 4.6.1
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226 CHAPTER 4 Functions

xn is near 0 when n is large, and the farther out we go in the sequence, the closer the
nth term is to 0. We say that the limit of this sequence is 0, and make this notion pre-
cise in the following definition.

In the definition of we usually think of as being a small positive
number, so the expression means that the distance between and 
is small. What the definition guarantees is that no matter how small may be, all
terms beyond a certain point in the sequence are within distance of L. The point
where we can be sure this happens is the Nth term. When we work with a particu-
lar sequence, we need to be aware that if we were to make smaller, we would
probably need to go farther out in the sequence (choose a larger number for N ) to
be sure the terms are close enough to L.

In symbols, we may write the definition of as

Based on this form, a proof of the statement will usually have this
structure:

Proof. Let be a real number greater than 0.
Choose ____ (Specify some value for N, typically in terms of .)
Let and suppose that 

Therefore 

We conclude that �

The intermediate steps are often discovered through some preliminary scratch
work, working backwards from and continuing until we find a rela-
tionship between n and that will suggest a choice for 

Example. Earlier we claimed that the sequence x with nth term con-xn = (−1)n

n + 1

N.ε

|xn − L | < ε

lim
n→∞xn = L

|xn − L | < ε.

Á

n > N.n � �

εN =
ε

lim
n→∞xn = L

(∀ε > 0)(EN � �)(∀n � �)(n > N ⇒ |xn − L |< ε).

lim
n→∞xn = L

ε

ε

ε

Lxn|xn − L | < ε

εxn → L,

DEFINITIONS For a sequence x of real numbers and a real number 
we say x has limit L (or x converges to L) for every there exists
a natural number such that if then 
When x converges to the real number we write or 

If no such number exists we say x diverges or does not exist.lim
n→∞xnL

xn → L.lim
n→∞xn = LL,

|xn − L | < ε.n > N,N
ε > 0  iff  

L,

verges and Before proving this result, we first use the inequalitylim
n→∞ 

(−1)n

n + 1
= 0.
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to derive a relationship between and For any since

we need

This last inequality tells us how large n must be (and hence tells us a value for N )
to ensure that Here is the proof:

Proof. Let be a positive real number. Let N be any integer greater than 1
ε

− 1.ε

|xn − 0 |< ε.

n >
1
ε

 −1.

n + 1 >
1
ε

 ,

1

n + 1
< ε,

|xn − 0 | = |xn | = | (−1)n

n + 1 | =  
1

n + 1
,

ε > 0,ε.xn|xn − 0 | < ε

4.6 Sequences 227

Suppose Then Since |xn − 0 |=n >
1
ε

− 1, so n + 1 >
1
ε
 and 

1

n + 1
< ε.n > N.

Therefore, �

The next theorem says that once we know that a sequence converges to a limit
we know it cannot converge to any other number.

Theorem 4.6.1 If a sequence converges, then its limit is unique.

Proof. Suppose and and Let The idea〈ε = 1
3
|L − M | .L =� M.xn → Mxn → L

x

L,

lim
n→∞ 

(−1)n

n + 1
= 0.| (−1)n

n + 1 | = 1

n + 1
, |xn − 0 | < ε.

of the proof is to suppose there are two different limits and select � so small that the
terms cannot simultaneously be within � of each limit. See Figure 4.6.2.

Since and there are natural numbers and such that 
implies and implies Let N be the larger of 
Suppose and Then and so

 = 2

3
|L − M | .

 < ε + ε

 = |xn − L | + |xn − M |
 ≤ |L − xn | + |xn − M |

|L − M | = | (L − xn) + (xn − M ) ƒ

n > N2,n > N1n > N.n � �

N1, N2.|xn − M | < ε.n > N2|xn − L | < ε

n > N1N2N1xn → M,xn → L
〉

x)(

|L − M|
|L − M|

ε

L

… )(
M

…

ε

ε = 1
3

Figure 4.6.2
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Thus the assumption leads to Since 

this is impossible. We conclude that the limit of x is unique. �

With some practice, you will be able to discern limits of some sequences.
Sometimes it helps to calculate several terms to see the trend. For example, for

|L − M | > 0,|L − M | <
2
3
|L − M | .L =� M

228 CHAPTER 4 Functions

the sequence x, where you will be correct in guessing that 

by calculating several values such as and
Be careful with estimating limits, because appearances can be

deceiving.
It should be clear that the terms of a constant sequence c given by for

some real number K, are very close, in fact equal, to the number K. The proof that
c converges to K is Exercise 4(a).

Sequences involving rational expressions can often be quickly evaluated. For

example, let For large values of n, the term is rather

small compared to Likewise, overpowers for large values of n.
Thus, for large values of n, the sequence behaves much like the sequence

We claim (correctly) that 

Here is another example of a proof that a sequence converges. We need two
preliminary steps in which we first estimate the limit and then find a relationship
between n and 

Example. The sequence x given by converges.

Scratchwork. We make a guess that x converges to 3. Next we must show that
the limit is 3 by demonstrating that, for every there is a natural 

number N such that implies Since 

we require an integer N such that implies 

or, equivalently, We know that so by selectingn2 + 1 > n,n2 + 1 >
3
ε
.

3

n2 + 1
< ε

n > N† −3

n2 + 1
† = 3

n2 + 1
,

† 3n2

n2 + 1
− 3 † =† 3n2

n2 + 1
− 3 † < ε.n > N

ε > 0,

xn = 3n2

n2 + 1

ε.

lim
n→∞xn = −2

3
.wn = 12n4

−18n4
= −2

3
.

xn

70n2−18n412n4.

5n + 1xn = 12n4 + 5n + 1

70n2 − 18n4
.

cn = K

x60 = 0.999954.
x20 = 0.995833,x5 = 0.993346,

lim
n→∞xn = 1xn =

sin A1nB
1
n

,

N to be any natural number greater than we have that implies

n2 + 1 > N >
3
ε
.

n > N3
ε
,
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This scratchwork leads to the formal proof that follows.

Proof. Let Let N be a natural number greater than Suppose Thenn > N.3
ε
.ε > 0.

for all Suppose and Then
so This is a contradiction. We con-

clude that x diverges. �

The next theorem is useful for determining and verifying limits without
directly using to the definition. Sometimes referred to as the Sandwich or Squeeze
Theorem, it states that if a sequence b has its nth term “sandwiched” below by 
and above by and both a and c converge to a number L, then b
must also converge to L.

Theorem 4.6.2 Suppose a, b, and c are sequences of real numbers such that for all
If and then 

Proof. Suppose and Let There are natural numbers 
and such that implies and implies |cn − L | < ε.n > N2|an − L | < εn > N1N2

N1ε > 0.cn → L.an → L

bn → L.cn → L,an → Ln � �.
an ≤ bn ≤ cn

cn for all n � �,
an

|xn − L | = |2n − L | ≥ 1 = ε.2n > |L | + 1,
n >  1

2
|L | + 1.n > Nn > N.|  xn − L | < 1N � �,

and since Therefore, if then 
3

n2 + 1
< ε.n > N,n2 + 1 >

3
ε
.n2 + 1 > n,n >

3
ε
,

Thus Therefore, �

The sequence given by is an alternating sequence whose terms
are You would expect that diverges because if the
limit existed it would have to be close to both and 1. To prove that diverges,
we prove a denial of the definition of convergence. For this purpose we choose 
to be 1, because no number can be less than 1 away from both and 1.

Example. Prove that the sequence y given by diverges.

Proof. Suppose that is a real number. Let We will show that for all
there exists such that and Let 

If let n be any odd integer greater than then and
If let n be any even integer greater than

N; then and In both cases we have
shown that there is an such that and Since for all real
numbers L, y does not converge to L, the sequence y diverges. �

Example. Prove that the sequence x given by diverges.

Proof. Assume that for some real number L. Let Then for someε = 1.lim
n→∞xn = L

xn = 2n

|yn − L | ≥ 1.n > Nn � �

|yn − L | = |1 − L | = 1 − L ≥ 1 = ε.yn = 1
L ≤ 0,|yn − L | = |−1 − L | = 1 + L > ε.

yn = −1N;L > 0,
N � �.|yn − L | ≥ 1.〉n > Nn � �N � �,

〈ε = 1.L

yn = (−1)n

−1
ε

y−1
y−1, 1, −1, 1, Á .

yn = (−1)ny

lim
n→∞ 

3n2

n2 + 1
= 3.† 3n2

n2 + 1
− 3 † < ε.
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Because both and we conclude that 

Exercises 4.6

1. List the first five terms of each sequence:

(a) (b)

(c) (d)

(e)

2. Determine whether each sequence in Exercise 1 converges. If the sequence
converges, identify or estimate the limit.

3. For each sequence estimate or determine that it does not exist.

� (a) (b)

� (c) (d)

� (e) (f)

� (g) (h)

� (i) (j)

(k) (l)

(m) (n)

4. (a) Let and let c be the constant sequence given by Prove
that c converges.

(b) Describe all possible sequences x of natural numbers that converge with
limit 2.

cn = K.K � �,

 
1
nxn = (n) xn = n!

nn

xn = 2n + 3n

5nxn = ((−1)n + 1) Q1 + 1
nR

n

xn = (−1.1)nxn = (−0.9)n

xn = Q1 + 1
nR

−n
xn = Q1 + 1

nR
2n

xn = 6n3 + 5n2 + 3n + 8

10n3 + 7n2 + 5n − 8
xn = 8n2 + 4n + 1

11n3 − n + 5

xn = 6n3 + 5n2 + 3n + 8

10n2 + 7n + 5
xn = 4n2 + 7n + 12

11 − n + 5n2

xn = 10
n

xn = 10n

lim
n→∞xnx,

en = n!

2n

dn = 1 − 2−ncn = 1

n!

bn = sin Qnπ

2
Ran = n + 1

2n + 3

sin n
n

→ 0.
1
n

→ 0,−1
n

→ 0n � �.

230 CHAPTER 4 Functions

Since sine is a function with range for all −1
n

≤ sin n
n

≤ 1
n

,[−1, 1],xn =  sin n
n

.

Let N be the larger of Since 
Therefore, for Thus 
for all  so  �

Example. To illustrate Theorem 4.6.2, consider the sequence whose nth term is

bn → L.n > N,
|bn − L | < ε−ε < an − L ≤ bn − L ≤ cn − L < ε.n > N,

an − L ≤ bn − L ≤ cn − L.an ≤ bn ≤ cn,N2.N1,
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4.6 Sequences 231

5. For each sequence x, prove that x converges or diverges.

� (a) (b)

� (c) (d)

(e) � (f)

(g) (h)

(i) (j)

(k) (l)

6. Prove that if and and then
� (a) (b)

(c) (d)
(e) � (f)

� 7. (a) Prove that if and then there is a number N such that if 

then 

(b) Prove that if for all n, and if then

8. A sequence is a subsequence of if and only if there is an increasing
function such that For example, is the
sequence whose terms are just the even-numbered term of the sequence 

(a) Let Describe the subsequences and 

(b) Prove that if a sequence x converges to L then for every real there
exists a subsequence y of x such that for all 

(c) Prove that if converges to L and is a subsequence of x, then y con-
verges to L.

(d) Prove that if x contains two convergent subsequences y and z, 
and and then x diverges.

9. A sequence x may be defined inductively by specifying a value for the first term
and then specifying xn for in terms of earlier values in the sequence.
(a) Let and, for Find the first six terms of x and

determine whether x converges.
(b) Let and, for Find the first six terms of x

and determine whether x converges.
(c) Find the first ten terms of the Fibonnaci sequence f, where 

and, for  fn =  fn−1 +  fn−2.n > 2,
f2 = 1,f1 = 1,

xn = 1 − xn−1.n > 1,x1 = 1

xn = 1
2
 xn−1.n > 1,x1 = 10

n > 1

M =� L,zn → L,
yn → M

ynxn

n � �.|yn − L | < ε

ε > 0,

x2n−1.x2nxn = (−1)n + 1
n

.

xn.
yn = x2nyn = xf  (n).f : � → �

xnyn

yn

xn
→ M

L
.

yn → M,L =� 0,xn =� 0xn → L,

|xn | >
|L |
2

.n ≥ N,

L =� 0,xn → L
|xn | → |L | .xnyn → LM.
rxn → rL.−xn → −L.
xn − yn → L − M.xn + yn → L + M.

r � �,yn → Mxn → L

xn = Qn
2
Rnxn = n!

nn

xn = sin Qnπ

2
Rxn = 5,000

n!

xn = 6

2n
xn = 7(1 − n2)

n2 + 2

xn =
√

n + 1 −
√

nxn = cos n
n

xn = (−1) n n

2n + 1
xn = n2

xn = n + 1
n

xn = 2n
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232 CHAPTER 4 Functions

(d) If it exists, estimate the limit of the sequence x, where 

(e) If it exists, estimate the limit of the sequence x, where

Proofs to Grade 10. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. If two sequences x and y both diverge, then diverges.

“Proof.” Suppose Since x diverges, there exists

such that for all there exists such thatn > NN � �ε1 > 0

lim
n→∞ (xn + yn) = L.

x + y

xn =
{

1 if n = 1

2
√

xn−1 if n ≥ 2
.

xn = d 3       if n = 1
2

xn−1
    if n ≥ 2

.

Since y diverges, there exists such that, for ε2 > 0|xn − L
2 | ≥ ε1.

all there exists such that Let

Then for all there exists such that

Therefore, �

� (b) Claim. If the sequence x converges and the sequence y diverges, then
diverges.

“Proof.” Suppose for some real number K. Since 
for some number L, that is,

This is a contradiction. Thus diverges. �xn + ynyn → K − L.
(xn + yn) − xn → K − L;xn → L

xn + yn → K
x + y

lim
n→∞ (xn + yn) =� L.

 = ε.

 ≥ 1
2
 ε + 1

2
 ε

 ≥ ε1 + ε2

 ≥ 2 xn − L

2
2 + 2 yn − L

2
2

| (xn + yn) − L |  = 2 axn − L

2
b + ayn − L

2
b 2n > NN � �,ε = 1

2
 min{ε1, ε2}.

|yn − L
2 | ≥ ε2.n > NN � �,
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233

How many elements are in the following set?

After a short pause, you said “eight.” You probably looked at and thought “1,”
then looked at 28 and thought “2,” and so on up through and thought “8.” What
you have done is match up the set A and the known set of eight elements {1, 2, 3, 4,
5, 6, 7, 8} to conclude that A has eight elements. Counting the number of elements
in a set is essentially setting up a one-to-one correspondence between the set and a
known (standard) set of elements. Here is another example.

A shepherd has many dozens of sheep in his flock, but he cannot count beyond
ten. Each day he takes all his sheep out to graze, and each night he brings them back
into the fold. How can he be sure all his sheep have returned? The answer is that
he can count them with a one-to-one correspondence. He needs two containers, one
empty and one containing many pebbles, one pebble for each sheep. When the
sheep return in the evening, he transfers pebbles from one container to the other,
one at a time for each returning sheep. Whenever there are pebbles left over, he
knows that there are lost sheep. The solution to the shepherd’s problem illustrates
the point that even though we may not have counted the sheep, we know that the 
set of missing sheep and the set of leftover pebbles have the same number of 
elements—because there is a one-to-one correspondence between them.

In this chapter we will make precise the idea informally introduced in Chapter 2
about the number of elements in a set. We will discuss finite and infinite sets and
discover that there are different sizes of infinite sets.

5.1 Equivalent Sets; Finite Sets

To determine whether two sets have the same number of elements, we see whether it
is possible to match the elements of the sets in a one-to-one fashion. This idea may

a

π

A =
{

π, 28, 
√

2, 
1

5
, −3, �, X, a

}
.

C H A P T E R  5

Cardinality
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be conveniently described in terms of a one-to-one correspondence (a bijection)
from one set to another.

234 CHAPTER 5 Cardinality

DEFINITION Two sets A and B are equivalent there exists a one-
to-one function from A onto B. A and B are also said to be in one-to-one
correspondence, and we write 

If A and B are not equivalent, we write A ≈� B.
A ≈ B.

 iff 

Example. The sets and are equivalent. The function
given by and is one of six possible bijec-

tions that verify this.

Example. The sets and are not equivalent. There are
nine different functions from C to D. An examination of all nine will show that
none of them is onto D. Since there is no one-to-one correspondence from C to D,
the sets are not equivalent.

Example. The set E of even integers is equivalent to D, the set of odd integers.
To prove this, we let be given by The function is one-
to-one, because implies which yields Also, f 
is onto D because if z is any odd integer, then is even and

Example. For with and the open intervals and
are equivalent.

Proof. There are many bijections from to We choose the simplest: a
linear function. Let be given by

See Figure 5.1.1. Exercise 3 asks you to prove that f is a bijection. �

f  (x) = d − c

b − a
 (x − a) + c.

f : (a, b) → (c, d )〉
(c, d ).(a, b)〈

(c, d )
(a, b)c < d,a < ba, b, c, d � �,

f  (w) = w + 1 = (z − 1) + 1 = z.
w = z − 1

x = y.x + 1 = y + 1,f  (x) = f  (y)
f (x) = x + 1.f : E → D

D = {q, r, s}C = {x, y}

f  (ϕ) = mf  (8) = p,f  (5) = r,f : A → B
B = {r, p, m}A = {5, 8, ϕ}

c

b

y =  f  (x)

a

d

x

y

Figure 5.1.1
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This last example shows that any two open intervals are equivalent, even when
the intervals have different lengths. It also says, for example, that the open interval

is equivalent to the open interval even though is a longer interval
and is a proper subset of

Example. Let be the set of all functions from to is the set of all
binary sequences. We will show the power set of 

Proof. The key to this proof is to think of as the set of all characteristic func-
tions with domain We associate each function with the appropriate subset
of To show we define as follows:

Note that under the function H, every function in has an image in
To show H is one-to-one, let We must show that

Since and are different functions with the same domain 
there exists such that Without loss of generality, assume

and The case where and is similar.
Then and Thus,

To show that H is onto let Then and the char-
acteristic function is an element of Furthermore, 

Therefore, H is onto 
Because H is a bijection, �

Theorem 5.1.1 Equivalence of sets is an equivalence relation on the class of all sets.

Proof. We must show that the relation is reflexive on the class of all sets, and is
symmetric and transitive. (See Exercise 1.) �

The next lemma will be particularly useful for showing equivalences of sets.

Lemma 5.1.2 Suppose A, B, C, and D are sets with and 

(a) If A and B are disjoint and C and D are disjoint, then 
(b)

Proof. Assume and Then there exist one-to-one correspondences
and 

(a) By Theorem 4.3.5, is a one-to-one correspondence.
Therefore 

(b) Let be given by We leave it as
Exercise 4 to show that f is a one-to-one correspondence. Therefore

�A × B ≈ C × D.

f (a, b) = (h (a), g (b)).f : A × B → C × D

A ∪ B ≈ C ∪ D.
h ∪ g: A ∪ B → C ∪ D

g : B → D.h : A → C
B ≈ D.A ≈ C

A × B ≈ C × D.
A ∪ B ≈ C ∪ D.

B ≈ D.A ≈ C

≈

� ≈ � (�).
� (�).{x � � : xA(x) = 1} = A.

H (xA) =�.xA: � → {0, 1}
A ⊆ �A � � (�).� (�),

H (g1) =� H (g2).
n � {x � �: g2(x) = 1} = H(g2).n � {x � �: g1(x) = 1} = H(g1)

〉g2(n) = 1g1(n) = 0〈g2(n) = 0.g1(n) = 1
g1(n) =� g2(n).n � �

�,g2g1H(g1) =� H(g2).〉
〈g1, g2 � � and g1 =� g2.

� (�)〉.�〈

for g � �, H(g) = {x � � : g (x) = 1}.

H: � → � (�)� ≈ � (� ),〉�.
�.

�〈

�.� ≈ � (� ),
�{0, 1}.��

(1, 9).(5, 6)
(1, 9)(1, 9),(5, 6)

5.1 Equivalent Sets; Finite Sets 235
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Examples. The set {a, b} is equivalent to {1, 2} and the set {3, 4, x} is equivalent to
{5, 6, x}. To apply Lemma 5.1.2(a), we note that {a, b} and {3, 4, x} are disjoint and
that {1, 2} and {5, 6, x} are disjoint. Therefore, 

By Lemma 5.1.2(b) the product of {a, b} and {3, 4, x} is equivalent to the
product of {1, 2} and {5, 6, x}:

{(a, 3), (a, 4), (a, x), (b, 3), (b, 4), (b, x)} L  {(1, 5), (1, 6), (1, x), (2, 5), (2, 6), (2, x)}.

{a, b, 3, 4, x} ≈ {1, 2, 5, 6, x}.

236 CHAPTER 5 Cardinality

DEFINITIONS For each natural number k, let 
A set S is finite or for some 
A set S is infinite S is not a finite set. iff 

k � �.S ≈ �kS = � iff 
�k = {1, 2, 3, Á , k}.

DEFINITIONS Let S be a finite set. If for some natural number
k, S has cardinal number k (or cardinality k) and we write 

If we say S has cardinal number 0 (or cardinality 0) and 
write � = 0.

S = �
S = k.

S ≈ �k

You should think of the set as the standard finite set with k elements against
which the sizes of other sets may be compared. For example, is the
standard set with 4 elements. The set is finite because 

The function where and is a
bijection.

Sets such as and are examples of infinite sets. These and 

other infinite sets will be discussed in the next section.

{
1
2
, 1

3
, 1

4
, Á

}
�, �

 f  (99) = 4,f  ( t )=1,  f A12B = 2,  f  (c) =3, f : S → �4,

S ≈ �4.S = {t, 1
2
,  c,  99}

�4 = {1, 2, 3, 4}
�k

The set has cardinality 4, and we write because S is

equivalent to The set has cardinality 8. The

set B {8, 7, 3, 7, 2, 7, 8} is finite and since 
Because the identity function is a one-to-one correspondence,INk : �k → �k

B = {8, 7, 3, 2} ≈ �4.B = 4=
A = {π, 28, 

√
2 , 1

5
, −3, �, X, a}�4.

S = 4,S = {t, 1
2
, c, 99}

and 
Our definition of for a finite set A agrees with our intuitive notion that is

the number of elements in A. We use the same symbol for the cardinality of a
finite set A as we used in Section 2.6 for the number of elements in A.

Because the definition of finite has two parts, proofs that a set is finite usually
have two cases—the empty set case and the case in which the set is equivalent to 

for some 

Theorem 5.1.3 If A is finite and then B is finite.

Proof. Suppose A is finite and If then (see Exercise 5). If
for some natural number k, then by transitivity of In either 

case, B is finite. �
L .B ≈ �kA ≈ �k

B = �A = �,B ≈ A.

B ≈ A,

k � �.�k

A
AA

Nk = k.�k ≈ �k
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Our next goal is to show that every subset of a finite set is finite. The proof uses
the results of the following two lemmas.

Lemma 5.1.4 If S is a finite set with cardinality k and x is any object not in S, then is finite
and has cardinality 

Proof. If then S has cardinality 0. Then is finite 
because it is equivalent to In this case has cardinality 

If then for some natural number k. Also, 
Therefore, by Theorem 5.1.2(a), Thus, is
finite and has cardinality �

Lemma 5.1.5 For every every subset of is finite.

Proof. Let k be a natural number. We prove by induction that every subset
of is finite.

(i) If and then or In both cases, A is finite.
(ii) Suppose all subsets of are finite for some number k. Let Then

is a subset of and, by the induction hypothesis, is finite. If
then A is finite. Otherwise, 

which is finite by Lemma 5.1.4. In both cases, A is finite. 
(iii) By the PMI, every subset of is finite for every �

Theorem 5.1.6 Every subset of a finite set is finite.

Proof. Assume S is a finite and If then T is finite. Thus we may
assume and hence Since for some there is a one-to-
one function f from S onto Then the restriction of of f to T is a one-to-one
function from T onto Therefore, T is equivalent to (see 
Figure 5.1.2). But is a subset of the finite set and is finite by Lemma
5.1.5. Therefore, since T is equivalent to a finite set, T is finite. �

�kRng (  f ƒ T)
Rng (  f ƒ T)Rng (  f ƒ T).

f ƒ T�k.
k � �,S ≈ �kS =� �.T =� �

T = �,T ⊆ S.

k � �.�k

{k + 1},A = (A − {k + 1}) ∪A = A − {k + 1}
�kA − {k + 1}

A ⊆ �k+1.�k

A = �1.A = �A ⊆ �k,k = 1

〉�k

〈

�kk � �,

k + 1.
S ∪ {x}S ∪ {x} ≈ �k ∪ {k + 1} = �k+1.

{x} ≈ {k + 1}.S ≈ �kS =� �,
0 + 1 = 1.S ∪ {x}�1.

S ∪ {x} = {x}S = �,

k + 1.
S ∪ {x}

5.1 Equivalent Sets; Finite Sets 237

1–1, onto

f

T

S

1–1, onto

k

 f   T
Rng( f   T)

Figure 5.1.2
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238 CHAPTER 5 Cardinality

At this point you may think that Lemmas 5.1.4 and 5.1.5 and Theorem 5.1.6
accomplish nothing more than a proof of the obvious result that a subset of a
finite set is finite. However, the real value of these results lies in the reasoning and
in the use of functions to establish facts about cardinalities of finite sets. This
experience will be helpful when we deal with infinite sets, because there our intu-
ition may fail us.

The next main result is that the union of a finite number of finite sets is finite.
We first prove the case for two disjoint sets. Notice that the proof is a rigorous de-
velopment of the Sum Rule (Theorem 2.6.1) which says that if A has m elements, B
has n elements, and A and B are disjoint, then has elements.

Theorem 5.1.7 (a) If A and B are finite disjoint sets, then is finite and

(b) If A and B are finite sets, then is finite and 

(c) If are finite sets, then is finite.

Proof.

(a) Suppose A and B are finite sets and If then 
if then In either case is finite, and since 

Now suppose that and Let and and sup-
pose that and are one-to-one correspondences. Let

Then given by 
is a one-to-one correspondence, and thus See Figure 5.1.3.
Therefore, by transitivity. Finally, by Lemma 5.1.2,

which proves that is finite and thatA ∪ BA ∪ B ≈ �m ∪ H = �m+n,
B ≈ H

�n ≈ H.
h (x) = m + xh: �n → HH = {m + 1, m + 2, Á , m + n}.

g: B → �nf : A → �m

B ≈ �n,A ≈ �mB =� �.A =� �
A ∪ B = A + B.

� = 0,A ∪ BA ∪ B = A.B = �,
A ∪ B = B;A = �,A ∩ B = �.

⋃n

i=1
 AiA1, A2, Á , An

A ∪ B = A + B − A ∩ B.A ∪ B

 A ∪ B = A + B.A ∪ B

m + nA ∪ B

g

A

B

1
2
3

n

f

h H

m � 1
m � 2
m � 3

m � n

�n

�m

�m�n

1
2
3

m

Figure 5.1.3

A ∪ B = m + n.
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5.1 Equivalent Sets; Finite Sets 239

(b) Assume that A and B are finite sets. Since is finite.
Therefore, by part (a), is finite. The proof that

is Exercise 7.
(c) The proof of this part uses mathematical induction. See Exercise 8. �

Lemma 5.1.4 shows that adding one element to a finite set increases its cardinal-
ity by one. It is also true that removing one element from a finite set reduces the car-
dinality by one. The proof of Lemma 5.1.8 is left as Exercise 13.

Lemma 5.1.8 Let with For all 

There is a property of finite sets popularly known as the Pigeon-
hole Principle. In its informal version it says: “If a flock of n pigeons comes to
roost in a house with r pigeonholes and then at least one hole contains more
than one pigeon.” If we think of the set of pigeons as and the set of pigeonholes
as then the Pigeonhole Principle says any assignment of pigeons to pigeonholes
function from to is not one-to-one.

Theorem 5.1.9 The Pigeonhole Principle
Let n, and If then f is not one-to-one.

Proof. The proof proceeds by induction on the number n. Since and r is a
natural number, we begin with 

(i) If then In this case f is a constant function with and
Thus, f is not one-to-one.

(ii) Suppose the Pigeonhole Principle holds for some integer n; that is, sup-
pose for all there is no one-to-one function from to Let

The proof now proceeds by contradiction. Suppose there is a
one-to-one function The restriction of h to is
one-to-one. The range of this function does not contain We may
assume that because otherwise h would be a constant function, which
is not one-to-one. Now by Lemma 5.1.8, there is a one-to-one function

Let Then is one-
to-one because the composite of one-to-one functions is one-to-one. This is
a contradiction to the hypothesis of induction.

(iii) By the PMI, for every if there is no one-to-one function from
to �

The Pigeonhole Principle is surprisingly powerful. See the discussion and
references in Martin Gardner’s The Last Recreations (Springer-Verlag, 1997) and the
examples in Exercise 21. It also provides the following useful result about finite sets.

Corollary 5.1.10 If A is finite, then A is not equivalent to any of its proper subsets.

Proof. We will show that is not equivalent to any of its proper subsets and
leave the general case as Exercise 14.

�k

�r.�n+1

r < nn � �

f : �n → �rf = g ◦ (h ƒ �n).g: �r − {h (n + 1)} → �r−1.

r > 1,
h (n + 1).

�nh ƒ �nh: �n+1 → �r.
〉〈r < n + 1.

�r.�nr < n,

f  (2) = 1.
 f  (1) = 1r = 1.n = 2,

n = 2.
n > r

n > r, f : �n → �r.r � �

�r)�n(
�r,

�n

n > r,

�r − {x} ≈ �r−1.x � �r,r > 1.r � �

A ∪ B = A + B − A ∩ B

A ∪ B = A ∪ (B − A)
B − A ⊆ B, B − A
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If the only proper subset of is and {1} is not equivalent
to Thus, we may assume that Suppose A is a proper subset of and

. Then there is a one-to-one function that is onto A.

Case 1. Suppose Then . In this case the function f maps to
and f is one-to-one. This contradicts the Pigeonhole Principle.

Case 2. Suppose Since A is a proper subset of the set is nonempty.
Choose an element Let Then 
because the function is a one-to-one correspondence. Thus

is a proper subset of and This is the situation of Case
1 with and  and again yields a contradiction. �

Corollary 5.1.10 tells us that our definition of cardinality for a finite set A cor-
responds to our informal understanding that is the number of elements in A: The
cardinality of a finite set is unique. That is, if and then See
Exercise 15.

Exercises 5.1

1. Prove Theorem 5.1.1. That is, show that the relation is reflexive, symmetric,
and transitive on the class of all sets.

2. Which of the following sets are finite?
� (a) the set of all grains of sand on Earth

(b) the set of all positive integer powers of 2
� (c) the set of all five-letter words in English

(d) the set of rational numbers
� (e) the set of rationals in (0, 1) with denominator for some 
� (f)

(g) the set of all stars within 100 light years of Earth.
(h)
(i)
( j)
(k)
(l)
(m)
(n)
(o)
(p) the set of all complex numbers such that 

3. Complete the proof that any two open intervals and are equivalent

by showing that maps one-to-one and onto 

4. Complete the proof of Lemma 5.1.2(b) by showing that if and
are one-to-one correspondences, then given

by is a one-to-one correspondence.f  (a, b) = (h (a), g (b))
f : A × B → C × Dg: B → D

h: A → C

(c, d ).f  (x) = Qd − c

b − a
R(x − a) + c

(c, d )(a, b)

a2 + b2 = 1a + bi
{x � �: x (10 − x) > 0}
{x � �: x is a solution to 4x8 − 5x6 + 12x4 − 18x3 + x2 − x = 0}
{x � �: x2 + x is prime}
{x � �: x is composite}
{x � �: x is a prime}
(1, 4) − (2, 3)
{1, 3, 5} × {2, 4, 6, 8}
{x � �: x2 + 1 = 0}

{x � �: x2 + 4x + 5 < 0}
k � �2k

L

n = m.A ≈ �m,A ≈ �n

A

A′�k

k � A′.�k,A′A′ ≈ �k,
IA−{k} ∪ {(k, y)}

A ≈ A′A′ = (A − {k}) ∪ {y}.y � �k − A.
�k − A�k,k � A.

�k−1,
�kA ⊆ �k−1k � A.

f : �k → AA ≈ �k

�kk > 1.�.
��1 = {1}k = 1,
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5. Show that if then (See also Exercise 13, Section 4.1.)

6. Let A and B be sets. Prove that
� (a) if A is finite, then is finite.

(b) if A is infinite and then B is infinite.

� 7. Using the methods of this section, prove that if A and B are finite sets, then 
This fact is a restatement of Theorem 2.6.1.

8. Prove part (c) of Theorem 5.1.7.

� 9. (a) Show that for every set A and every object x.
(b) Use Theorem 5.1.7(c) to prove that if A and B are finite, is finite.

� 10. Define to be the set of all functions from A to B. Show that if A and B are
finite, then is finite.

11. If possible, give an example of each of the following:
(a) an infinite subset of a finite set.
(b) a collection of finite sets whose union is finite.

� (c) a finite collection of finite sets whose union is infinite.
(d) finite sets A and B such that 

12. Prove that if A is finite and B is infinite, then is infinite.

� 13. Prove that if and then (Lemma 5.1.8).

14. Complete the proof of Corollary 5.1.10 by showing that if A is finite and B is a
proper subset of A, then 

� 15. Let A be a finite set. Prove that if and then 

16. Prove or disprove:
(a) If C is an infinite set and then at least one of the sets A or B

is infinite.
(b) Suppose A is a set and p is an object not in A. If then A is

infinite.

17. Prove by induction on n that if and then f is not onto 

18. Let A and B be finite sets with Suppose 
� (a) If f is one-to-one, show that f is onto B.
� (b) If f is onto B, prove that f is one-to-one.

� 19. Prove that if the domain of a function is finite, then the range is finite.

� 20. Let A and B be finite sets with and let f be a function from
A to B. Prove that if then f is not one-to-one.

21. Give a proof using the Pigeonhole Principle:
(a) The Italian village of Solomeo, near Perugia, has a population of

400. Prove that there are at least two village residents with the same
birthday.

� (b) Let such that S contains exactly 10 elements. Prove that S has two
disjoint subsets with identical sums. For example, if S contains 4, 12,
18, 27, 36, 50, 61, 62, 70, and 98, then the elements of the sets {4, 12,
27, 36} and {18, 61} both add up to 79.

S ⊆ �99

m > n,
A = m and B = n,

f : A → B.A ≈ B.

�n. f : �r → �n,r < n

A ≈ A ∪ {p},

C = A ∪ B,

n = m.A ≈ �m,A ≈ �n

B ≈� A.

�r − {x} ≈ �r−1x � �r,r > 1

B − A

A ∪ B =� A + B.

{Ai : i � �}

BA
BA

A × B
A ≈ A × {x},

A ∪ B = A + B − A ∩ B.

A ⊆ B,
A ∩ B

A = �.A ≈ �,
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Proofs to Grade 22. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(a) Claim. If A and B are finite, then is finite.

“Proof.” If A and B are finite, then there exist such 
that Let and Then

which shows that Thus
is finite. �

� (b) Claim. If S is a finite, nonempty set, then is finite.
“Proof.” Suppose S is finite and nonempty. Then for some
integer k.

Case 1. Then so has k elements and is
finite.

Case 2. Then Thus 
is finite. �

(c) Claim. If is finite, then A is finite.
“Proof.” Choose any b* Then {b*}. But 

{b*} * Since is finite, {b*}
is finite. Since A is equivalent to a finite set, A is finite. �

(d) Claim. The set is finite.
“Proof.” For every n in the set is finite, because By 

Theorem 5.1.7, we know is finite. Since , we see that 
⋃∞

n=1
�n = �

⋃∞
n=1

�n

�n ≈ �n.�n�,
�

A ×A × B): a � A} ⊆ A × B.= {(a, bA ×
A ≈ A ×� B.

A × B

S ∪ {x}
S ∪ {x} ≈ �k ∪ {x} ≈ �k ∪ �1 ≈ �k+1.x � S.

S ∪ {x}S ∪ {x} = S,x � S.

S ≈ �k

S ∪ {x}
A ∪ B

A ∪ B ≈ �m+n.A ∪ B −→1−1 

onto 
�m+n,f ∪ h:

h : B −→1−1 

onto 
�n.f : A −→1−1 

onto 
�mA ≈ �m and B ≈ �n.

m, n � �

A ∪ B

242 CHAPTER 5 Cardinality

is finite. �

5.2 Infinite Sets

In this section we will verify the not-at-all-surprising result that some familiar sets,
such as the sets of natural numbers, integers, and real numbers, are infinite. The re-
sult that many people find surprising is that there are different sizes of infinite
sets. We will describe two infinite cardinal numbers and find that we can use them
to “count” all of the elements of certain infinite sets.

Recall that an infinite set is defined as a nonempty set that cannot be put into a
one-to-one correspondence with any of the sets To prove that a set is infinite using
this definition, we assume that the set is finite and that such a correspondence exists
for some natural number k. We then find a contradiction. Another approach to prov-
ing that a set A is infinite is to make use of the contrapositive of Corollary 5.1.10:

If A is equivalent to one of its proper subsets, then A is infinite.

We can interpret this statement as a test for whether a set could be finite. To use this test
we look for a suitable proper subset of A and a one-to-one correspondence between A
and the subset. If we find such a set and correspondence, we conclude that A is not finite.

�k.

�
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To demonstrate the use of these methods, we give two different proofs that 
is infinite. Notice that the first proof resembles Euclid’s proof that there are infi-
nitely many primes (see Section 1.5).

Theorem 5.2.1 The set � of natural numbers is infinite.

First Proof. Suppose is finite. Since there exists a natural number k
such that Therefore, there exists a one-to-one function f from onto 
We will show that f is not onto by constructing a number that is not an image.

Let Then for any Therefore
f is not onto a contradiction. Hence is an infinite set. �

Second Proof. Let be the set of even positive integers. The function 
defined by is a one-to-one correspondence from onto Thus, 
Since is a proper subset of we conclude that is infinite.       �

The set of natural numbers is our first example of a set with infinite cardinality.
The standard symbol for the cardinality of uses the letter aleph, which is the
first letter of the Hebrew alphabet.

ℵ ,�

��,E+
� ≈ E+.E+.� f (x) = 2x

f : � → E+E+

��,
i � �k.n =�   f (i)n = max{ f  (1),  f  (2), Á ,  f  (n)} + 1.

〉�〈
�.�k� ≈ �k.

� =� �,�

�
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DEFINITIONS Let S be a set. S is denumerable if and only if For
a denumerable set S, we say S has cardinal number (or cardinality

) and write S = ℵ0.ℵ0

ℵ0

S ≈ �.

Because is equivalent to itself, is denumerable and the cardinality of is 
The subscript 0, variously read “naught” or “null,” indicates that is the smallest
infinite cardinal number, just as the integer 0 is the smallest finite cardinal number. 
The set is our “standard” set for the cardinal number 

We showed earlier that the set of even positive integers is equivalent to 
Therefore, is denumerable. Even though is a proper subset of has the
same number of elements as Thus, although our intuition might tell us that
only half of the natural numbers are even, it would be misleading to say that has
twice as many elements as or even to say that has more elements than 

Results like this may be surprising if you rely only on your knowledge of
finite cardinal numbers to guide your insight into infinite cardinals. We have seen
that if A and B are finite disjoint sets, where A has m elements and B has n elements,
then has elements. The situation is more complicated when either
A or B is infinite. We must rely on one-to-one correspondences to determine
cardinality.

In Section 5.5 we will see that every infinite set is equivalent to one of its
proper subsets. Together with Corollary 5.1.10, this will characterize infinite sets:

A set is infinite it is equivalent to one of its proper subsets.

The next theorem will show that the set of all integers is denumerable. Our
proof constructs a bijection between and .��

 iff 

m + nA ∪ B

E+.�E+,
�

�.(ℵ0)
E+�,E+E+

�.E+
ℵ0.�

ℵ0

ℵ0.���
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Theorem 5.2.2 The set is denumerable.

Proof. Define the function by

We see that 
and so on.

To show that f is one-to-one, assume for some We first
observe that if one of x or y is even and the other is odd, then only one of or

is positive, so Therefore, x and y must have the same parity. If
x and y are both even, implies and therefore, If x andx = y.x

2
 =  y

2
,f  (x) = f  (y)

f  (x ) =� f  (y).f  (y)
f  (x )

x, y � �.f  (x ) = f  (  y)
f  (7) = −3,

f  (6) = 3,f  (5) = −2,f  (4) = 2,f  (3) = −1,f  (2) = 1,f  (1) = 0,

f  (x) = μ
x

2
if x is even

1 − x

2
if x is odd

.

f : � → �

�

244 CHAPTER 5 Cardinality

y are both odd, then and again, x = y.
1−x

2
 =  

1−y

2
,

To show that f maps onto suppose If then 2w is even and

If then is an odd natural number and

In both cases, Thus, f maps onto 

Therefore is equivalent to �

Example. Let P be the set of reciprocals of positive integer powers of 2. By writing
the set P as

we see that there is a natural one-to-one correspondence between and P. Since 

the function given by is a bijection, P is denumerable.

Example. Suppose we want to prove that the set is
denumerable. Then we need a bijection from to K. Although there are many such
functions, we’d like to construct one that can easily be seen to be one-to-one and onto
K. Let g be the piecewise function from to K given by

See Figure 5.2.1, which illustrates how we constructed this function. Then g is a
bijection. Thus and K is denumerable.� ≈ K

g(n) = e
p if n = 1

q if n = 2

r if n = 3

n − 3 if 4 ≤ n ≤ 7

n − 2 if n ≥ 8

.

�

�

K = {p,  q,  r} ∪ {n � �: n =� 5}

h (n) = 1

2nh: � → P

�

P =
{

1

2k
 : k � �

}
,

�.�

�.w � Rng (  f ).f  (1−2w) = 1−(1−2w)

2
= 2w

2
= w.

1 − 2ww ≤ 0,f  (2w) = 2w

2
= w.

w > 0,w � �.�,

62025_05_ch05_p233-274.qxd  4/19/10  3:46 PM  Page 244

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Theorem 5.2.3 (a) The set is denumerable.
(b) If A and B are denumerable sets, then is denumerable.

Proof.

(a) We need to show that there is a bijection The function F
in Section 4.4 given by is one such function.
Therefore, is denumerable.

(b) Since and by Theorem 5.1.2(a). By part (a),
Therefore, Hence, is denumerable.      �A × BA × B ≈ �.� × � ≈ �.

A × B ≈ � × �B ≈ �,A ≈ �

� × �

F(m,  n) = 2m−1(2n − 1)
F : � × � → �.〉〈

A × B
� × �

5.2 Infinite Sets 245

Figure 5.2.1

DEFINITIONS A set S is countable if and only if S is finite or
denumerable. S is uncountable if and only if it is not countable.

Sets that are finite or denumerable are called countable because their elements
can be “counted” using some or all of the natural numbers. “Counting” elements in a
nonempty countable set S means setting up a one-to-one correspondence between S
and (when S is finite) or between S and the entire set (when S is denumerable).

Figure 5.2.2 shows the relationship between finite, infinite, denumerable, count-
able, and uncountable sets. We see that every finite set is countable and every
uncountable set is infinite. Since denumerable sets are those sets that are both 
infinite and countable, denumerable sets are sometimes referred to as countably
infinite sets.

��k

Finite
Sets

Denumerable
Sets 

Uncountable
Sets

Countable Sets Infinite Sets

Figure 5.2.2

Examples. Some sets that are both infinite and countable (that is, denumerable) 
are and the set of even positive integers. Some countable finite sets include 

and There
are infinite sets that are uncountable, such as and (0, 1), as we will now see.�

{x � �: x5 + 12x3 − 21x2 + 3x + 11 = 0}.{11, 7, 77, 3, 15, 79}�k, �,
�, �,

1 2      3    4      5    6   7    8     9     …  n  …
↓↓↓↓↓↓↓↓↓↓

K: p     q  r 1    2  3     4 6     7  …  n−2  …

�:
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Before showing that the open interval (0, 1) is uncountable, we need to review
decimal expressions for real numbers. In its decimal form, any real number in (0, 1)
may be written as where each is an integer, In this
form, which is abbreviated to to indicate that the 3 is 
repeated. The number is said to be in normalized form there is 
no k such that for all For example, and are in
normalized form, but is not. Every real number can be expressed uniquely in nor-
malized form. Both and represent the same real number but only
is normalized. The importance of normalizing decimals is that two decimal numbers in
normalized form are equal they have identical digits in each decimal position.

Theorem 5.2.4 The open interval (0, 1) is uncountable.

Proof. We must show that (0, 1) is neither finite nor denumerable. The interval 

(0, 1) includes the subset which is infinite. Thus, by Theorem 5.1.6, 

(0, 1) is infinite.

{ 1

2k
: k � �

}
,

〉〈

 iff 

0.501
2
,0.500.49

0.49

2
5

= 0.400.82142857an = 9.n > k,
 iff x = 0.a1a2a3 Á

0.5837
12

= 0.583333 Á ,
0 ≤ ai ≤ 9.ai0.a1a2a3a4 Á ,
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We now assume that (0, 1) is denumerable and reach a contradiction. Sup-
pose (0, 1) is denumerable. Then there is a function that is one-to-
one and onto (0, 1). The contradiction arises when we construct a number in (0, 1)
that is not in Rng (f). . Write the images of f, for each in normalized form:

Now let b be the number where

Then because of the way it has been constructed. However, for each
natural number n, b differs from in the nth decimal place. Thus, for
any which means Thus, f is not onto (0, 1). This contradicts
our assumption that f is onto (0, 1). Therefore, (0, 1) is not denumerable. �

The interval (0, 1) is our first example of an uncountable set. We add it to our 
list of standard sets for defining cardinalities, which now consists of:

�, �k for every k � �, �, and (0, 1).

b � Rng (  f ).n � �,
b =�  f (n)f (n)

b � (0, 1)

bi =
{

5 if aii =� 5

3 if aii = 5
. 〈The choices of  3 and 5 are  arbitrary.〉

b = 0.b1 b2b3b4b5 Á ,

o

f  (n) = 0.an1an2an3an4an5 Á

o

f  (4) = 0.a41a42a43a44a45 Á

f  (3) = 0.a31a32a33a34a35 Á

f  (2) = 0.a21a22a23a24a25 Á

f  (1) = 0.a11a12a13a14a15 Á

n � �,〉
〈

f : � → (0, 1)
〉〈
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5.2 Infinite Sets 247

The cardinal number c is the only infinite cardinal other than that will be
identified by name. Implicit in this statement is that there are other infinite cardi-
nals—an issue that will be addressed in Section 5.4.

There are many sets with cardinality c. In Section 5.1 we showed that any two
open intervals are equivalent. Therefore every open interval (a, b) for real numbers
a and b with is equivalent to Consequently:

We see next that the set of all real numbers also has cardinality c.

Theorem 5.2.5 The set is uncountable and has cardinal number c.

Proof. Define by See Figure 5.2.3. The func-
tion f is a contraction and translation of one branch of the tangent function and is
one-to-one and onto Thus �(0, 1) ≈ �.�.

f  (x) = tan Aπx − π

2 
B.f : (0, 1) → �

�

Every  open interval (a, b) has cardinality c.

(0, 1).a < b,

ℵ0

The proof of Theorem 5.2.5 used a trigonometric function for the one-to-one
correspondence from onto Exercise 10 asks you to use a different function
to show that 

Example. Let C be the circle of radius with center and the point 
removed, as shown in Figure 5.2.4 on the next page. For any point p in C, the line
determined by and p will intersect the x-axis in exactly one point. We define a
function as follows: For each p in C let be the x-coordinate of the point
of intersection of the line determined by and p. We see that different points p1(0, 1)

f  (p)f : C → �

(0, 1)

(0, 1)A0, 1
2B1

2

� ≈ (0, 1).
�.(0, 1)

DEFINITION Let S be a set. S has cardinal number c S is equi-
valent to (0, 1). We write (which stands for continuum).S = c

 iff 

x

y

1
2

Figure 5.2.3
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and will generate nonparallel lines and hence different values for and 
Thus f is one-to-one. Any point along the x-axis will determine a line through

that will intersect C in exactly one point q. For this point q,
Therefore, f is onto Hence, f is a bijection and the set C is equivalent to 

Example. The set also has cardinal number c. The function
given by

is a one-to-one correspondence between and A. See Figure 5.2.5. We note that
is a proper subset of A, and A is a proper subset of , but all three sets have

the same infinite cardinality.
�(0, 1)

(0, 1)

f  (x ) = μ
4x if  0 < x <

1

2

2x + 4 if  

1

2
≤ x < 1

f : (0, 1) → A,
A = (0, 2) ∪ [5, 6)

�.�.
f (q) = m.(0, 1)

m � �

f (p2).f (p1)p2

248 CHAPTER 5 Cardinality

x
f (p)

p

C

(0, 1)

1
2

Figure 5.2.4

7

x

y

21
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Figure 5.2.5

62025_05_ch05_p233-274.qxd  4/19/10  3:46 PM  Page 248

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Exercises 5.2

1. Prove that if A is an infinite set and then B is an infinite set.

2. Prove that each of these sets is infinite.
(a)
(b)
(c) (0, 0.001)
(d)

3. Prove that the following sets are denumerable.
� (a) the odd positive integers

(b) the positive integer multiples of 3
(c) the integer multiples of 3
(d)

� (e)
(f)
(g)
(h)

4. Prove that the following sets have cardinality c.
� (a)
� (b) for any real number a

(c) for any real number b
� (d)

(e)
(f)
(g)

5. State whether each of the following is true or false.
(a) If a set A is countable, then A is infinite.
(b) If a set A is denumerable, then A is countable.
(c) If a set A is finite, then A is denumerable.
(d) If a set A is uncountable, then A is not denumerable.
(e) If a set A is uncountable, then A is not finite.
(f) If a set A is not denumerable, then A is uncountable.

6. � (a) Give an example of a bijection g from to the set of positive even
integers such that 

(b) Give an example of a bijection h from to such that 
and 

7. Which sets have cardinal number c?
� (a)

(b)
� (c)

(d)
� (e)

(f)
(g) {(x, y) � � × �: x, y � �}

{(p, q) � � × �: q =
√

1 − p2 and q > 0}

{(p, q) � � × �: p + q = 1}
{2x: x � �}

{
1
n
 : n � �

}(5, ∞)
� − [0, 1)

ℵ0?

h (3) = 2.h (2) = 12,
h (1) = 16,E+�

g (1) = 20.
E+�

� − {0}
(0, 1] ∪ (2, 3] ∪ (4, 5)
(3, 6) ∪ [10, 20)
[1, 2) ∪ (5, 6)
(−∞, b),
(a, ∞),
(1, ∞)

{x � �: x = 1(mod 5)}
{(x, y) � � × �: xy = 1}
� − {5, 6}
{x: x � � and  x < −12}
{n: n � �  and  n > 6}
3�,
3�,
D+,

(0, ∞)

� − �15

A = {1, 1
2
, 1

3
, 1

4
, Á }

A ≈ B,
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8. Give an example of denumerable sets A and B, neither of which is a subset of
the other, such that
(a) is denumerable.
(b) is finite.
(c) is denumerable.
(d) is finite and nonempty.

9. It can be shown that the sets [0, 1] and have cardinality c. Use these
facts to show that there are sets A and B such that and 

is
(a) empty. (b) finite and nonempty.
(c) denumerable. (d) uncountable.

10. Give another proof of Theorem 5.2.5 by showing that 

is a one-to-one correspondence from (0, 1) onto 

11. It can be shown that has cardinality c. Use this fact to prove that the set
of complex numbers has cardinality c.

Proofs to Grade 12. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

� (a) Claim. Let W be the set of all natural numbers with tens digit 3 and let
be the set of odd natural numbers. Then W and are equivalent.

“Proof.” W contains 30, 130, 230, and many other natural
numbers, so W is an infinite subset of Therefore W is denumerable.

is also denumerable, by Exercise 3(a). Therefore, �
(b) Claim. If A is infinite and then is infinite.

“Proof.” Let A be infinite. Then Let be a one-to-
one correspondence. Then defined by

is one-to-one and onto Thus so is
infinite. �

� (c) Claim. If is infinite, then A and B are infinite.
“Proof.” Assume that A and B are finite. Then by Theorem 5.1.7,

is finite. Therefore if is infinite, A and B are infinite.       �
� (d) Claim. If a set A is infinite, then A is equivalent to a proper subset of A.

“Proof.” Let Choose Then B is a
proper subset of A. The function defined by is
clearly one-to-one and onto B. Thus �

(e) Claim. The set is denumerable.
“Proof.” Define a function F on the integers by setting

F is one-to-one because if then
so Every element t of T has the form 

for some integer k, and so F maps onto T. Therefore T is
equivalent to which is denumerable. ��,

t = F (k − 3),
6k + 2u = v.6u + 20 = 6v + 20,

F (u) = F (v)F (z ) = 6z + 20.

T = {n � �: n = 2 (mod 6)}
A ≈ B.

f (xk) = xk+1f : A → B
B = {x2, x3, Á}.A = {x1, x2, Á}.

A ∪ BA ∪ B

A ∪ B

A ∪ {x}� ≈ A ∪ {x},A ∪ {x}.

g ( t ) =
{

x if t = 1

f  ( t − 1) if t > 1

g: � → A ∪ {x},
f : � → AA ≈ �.

A ∪ {x}x � A,
W ≈ D+.D+

�.
330, Á

D+D+

�

� × �

�.
2x − 1

x(x − 1)

f (x) =

A ∩ B
A = B = c

(0, 1) ∪ �

A − B
A − B
A ∩ B
A ∩ B
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(f) Claim. The set is infinite.
“Proof.” The function given by is a one-to-one corre-
spondence between and so is equivalent to a proper subset
of Therefore, by Corollary 5.1.10, is infinite.                                     �

(g) Claim. The set is infinite.
“Proof.” is a subset of and is infinite. Then 5 is infinite,
because every subset of an infinite set is infinite. �

(h) Claim. If A and B are denumerable, then is denumerable.
“Proof.” Assume A and B are denumerable. Then there exist bijections
h and g such that and Then is
a bijection, so is denumerable.                                                    �

5.3 Countable Sets

The first two sections of this chapter have presented several examples of countable
sets—all of the finite sets in Section 5.1 and several denumerable sets such as 
and in Section 5.2. This section presents the essential facts needed by anyone
who works with countable sets. 

Because countable sets are those that are finite or denumerable, proofs of results
about countable sets will often consider two cases.

Since there are natural numbers and c real numbers, and 
we may suspect that the cardinality of is or c, or possibly some infinite 
cardinal number between them. We know that there are infinitely many ratio-
nals between any two rational numbers, so you might also suspect that is 
not denumerable. This is not the case. Georg Cantor* first showed that 
(the positive rationals) is indeed denumerable through a clever rearrangement
of 

Every element in may be expressed as for some Thus the elements
of this set can be presented as in Figure 5.3.1 on the next page, where the nth row con-
tains all the positive fractions with denominator n.

To show that is denumerable, Cantor listed the elements of in the order
indicated by the arrows in Figure 5.3.1. First are all fractions in which the sum of 
the numerator and denominator is 2 then those whose sum is 3 

then those whose sum is 4 and so on. Some rational numbers appear 

multiple times: For example, and are repetitions of the fraction Disregard all 

fractions that are not in lowest terms: The remaining fractions have

no repetitions and are circled in Figure 5.3.1.

2
2
, 4

2
, 3

3
, 2

4
, 6

2
, Á .

1
1
.3

3
2
2

A31, 2
2
, and 1

3B,
A21 

and 1
2B,Aonly 1

1B,
�+�+

p, q � �.p
q�+

�+.

�+
�

ℵ0�

� ⊆ � ⊆ �,ℵ0

� × �

�, �,

A ∪ B
h ∪ g: (A ∪ B) → �g: B → �.h: A → �

A ∪ B

���5�

5� = {5n: n � �}
��.

�� − {1},�

f (n) = n + 1
�
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* Georg Cantor (1845–1918) was a German mathematician who created set theory, primarily in papers
that appeared in 1895 and 1897. This work can be seen as a revolution in mathematics, because he made
it possible to think of actual infinite quantities, rather than the infinite as unattainable. He was the first to
use one-to-one correspondences to describe set size, the first to show the rational numbers are counta-
ble, and the first to show that the reals are not countable. Several of his contemporaries did not accept
some parts of his work.
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Starting at the top left corner of the array, traverse the array from upper right to
lower left along each diagonal, assigning the natural numbers to the circled frac-
tions, starting with then the diagonal and so forth. This pattern defines 2

1
, 1

2
,1

1
,
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2
1
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1
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1
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1
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1

7
1

1
2

2
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3
2

4
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5
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6
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7
2

1
3

2
3

3
3

4
3

5
3

6
3

7
3

1
4

2
4

3
4

4
4

5
4

6
4

7
4

1
5

2
5

3
5

4
5

5
5

6
5

7
5

Figure 5.3.1

* Many different one-to-one correspondences are possible. For another interesting example, see
N. Clakin and H. S. Wilf’s article “Recounting the Rationals” in the American Mathematical Monthly,
April 2000, pp. 360–363.

� = {

�+ = 

1,

1
1

, 2
1

, 1
2

, 3
1

, 1
3

, 4
1

, 3
2

, 2
3

, 1
4

, 5
1

, 1
5

, 6
1

, 5
2

, 4
3

,

2, 3,

f :

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, }

Figure 5.3.2

Theorem 5.3.1 The set of positive rational numbers is denumerable.

The two principal results of this section are that (1) every subset of a
countable set is countable and (2) the union of countably many countable sets
is countable. These two theorems are two of the most useful facts about
cardinalities.

�+

a one-to-one correspondence f from to shown in Figure 5.3.2, where

etc. This correspondence can be

used to establish the following theorem.* We omit the details of the proof.

f  (1) = 1
1
,  f  (2) = 2

1
,  f  (3) = 1

2
,  f  (4) = 3

1
,  f  (5) = 1

3
,

�+�
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Theorem 5.3.2 Every subset of a countable set is countable.

Proof. Let A be a countable set. Assume If B is finite, then B is countable.
Otherwise B is infinite, so A is infinite. Since A is infinite and countable, A is denu-
merable. Let f be a bijection from A to The restriction of a one-to-one function
is one-to-one, so is a bijection from B to Therefore B ≈ C.C = Rng (  f ƒ B). f |B

�.

B ⊆ A.

5.3 Countable Sets 253

We now define a function g: by induction. We also make use of the
Well-Ordering Principle.

Let g(1) be the smallest integer in C. The set is nonempty because
C is infinite. For each define to be the smallest element in the non-
empty set 

If and then is an element of the set 
but is not. Therefore Thus g is an injection. Also, if and there are
k natural numbers less than t in C, then Therefore g is onto C. Thus g is a
bijection from to C.

Therefore, B and so B is denumerable. �

We have seen that the set is denumerable and therefore countable. Thus
the subsets and are countable sets.

Corollary 5.3.3 A set A is countable A is equivalent to some subset of 

Proof. If A is countable, then A is either finite or denumerable. Thus or
for some or In each case, A is equivalent to some subset 

of 
If A is equivalent to some subset of then A is equivalent to a countable set,

since all subsets of (countable) are countable. Therefore, A is countable.         �

We have seen (Theorem 5.1.7) that adding one or any finite number of ele-
ments to a finite set yields a finite set with larger cardinality. In the next three theo-
rems, we consider adding elements to a denumerable set and find an important
distinction between finite and denumerable sets: Adding finitely many or denumer-
ably many elements does not change the cardinality of a denumerable set.

Theorem 5.3.4 If A is denumerable, then is denumerable.

Proof. If then which is denumerable. Suppose that 
Since there is a one-to-one function that is onto A. Define

by

It is straightforward to verify that g is a one-to-one correspondence between and
which proves that is denumerable. �A ∪ {x}A ∪ {x},

�

g (n) =
{x if n = 1

f (n − 1) if n > 1
.

g: � → A ∪ {x}
f : � → A� ≈ A,

x � A.A ∪ {x} = A,x � A,

A ∪ {x}

�

�,
�.

A ≈ �.k � �,A ≈ �k

A = �,

�. iff 

{
5
6 

, 6
5 

, 3
7

}
� ∩ (0, 1),

{
1
n
: n � �

}
,

 �+

� ≈ C ≈
�

g (k + 1) = t.
t � Cg (r) =� g (s).g (s)

{g (1), g (2), Á , g (s − 1)}g (r)r < s,r, s � �

C − {g (1), g (2), Á , g (n)}.
g (n + 1)n ≥ 1,

C − {g (1)}
〉

〈� → C
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Rooms in the Infinite Hotel can also be found for any finite number k of addi-
tional people by asking each guest to move to room (Theorem 5.3.5). In the
event of a fire alarm at the Grand Infinity Hotel across the street, the Infinite Hotel
could even accommodate denumerably many additional guests by sending the cur-
rent guest in room n to room 2n and assigning new guests to the odd numbered
rooms (Theorem 5.3.6). Later we shall see that the clerk could find rooms if a
denumerable number of additional people arrive a finite number of times (Corollary
5.3.9(c)) or even a denumerable number of times (Corollary 5.3.9(d)).

n + k

Theorem 5.3.4 may be loosely restated as Its proof is illustrated by
the story of the Infinite Hotel,* attributed to the mathematician David Hilbert.† The
Infinite Hotel has rooms numbered and is full to capacity with one
person in each room. You approach the desk clerk and ask for a room. When the clerk
explains that each room is already occupied, you say, “There is room for me! For each
n, let the person in room n move to room Then I will move into room 1, and
everyone will have a room as before.” There are people and they fit exactly
into the rooms. See Figure 5.3.3.ℵ0

ℵ0 + 1
n + 1.

1, 2, 3, 4, Á ,ℵ0

ℵ0 + 1 = ℵ0.

254 CHAPTER 5 Cardinality

* The Infinite Hotel is one of the topics discussed in Aha! Gotcha: Paradoxes to Puzzle and Delight by
Martin Gardner (Freeman, New York, 1981).
† David Hilbert (1862–1943) was a German mathematician who spent most of his career at the
University of Göttingen. He is considered the most influential and creative mathematician of his time
and was a staunch supporter of Cantor and his set theory. At the International Congress of
Mathematicians in Paris in 1900 he proposed 23 open problems (the first one being the continuum
hypothesis—see Section 5.5), which set the stage for much research in the twentieth century. Some of
the 23 problems remain unsolved.

Lobby

1

2

3

4

5

6

7

Figure 5.3.3
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Theorem 5.3.5 If A is denumerable and B is finite, then is denumerable.

Proof. See Exercise 3. �

Theorem 5.3.6 If A and B are disjoint denumerable sets, then is denumerable.

Proof. Let and Define via

The effect of h is to map the odd natural numbers to elements of A and the even natu-
ral numbers to B. It is left as Exercise 4 to show that h is a one-to-one correspondence
from onto Therefore, �

We may apply the three previous theorems to produce many new examples of
denumerable sets. We know from previous examples and exercises that the sets 
(the positive even integers) and 3 (the integer multiples of 3) are denumerable.
Therefore the sets and are denumerable.

For a more interesting example, we use the fact that is denumerable. By
Theorem 5.3.4, is denumerable. Clearly the set of negative rational
numbers is denumerable, so by Theorem 5.3.6, is denumerable.
This gives us the following result.

Theorem 5.3.7 The set of all rational numbers is denumerable.

The second major theorem of this section is presented here because of its
importance in dealing with countable sets. Because the proof requires the use of a
new property of sets (the Axiom of Choice) that will be introduced in Section 5.5,
the proof will appear in that section.

Theorem 5.3.8 Let be a countable collection of countable sets. Then is countable.

We have already seen some theorems that are in fact special cases of Theorem
5.3.8: The union of finitely many finite sets is finite, and the union of a denumerable
set with a finite set or of two disjoint denumerable sets is denumerable. Some other
statements that are also immediate consequences of Theorem 5.3.8 are gathered
together in the following corollary. Their placement here does not mean that each of
these results requires the Axiom of Choice for a proof. In fact the first three of the four
parts can be proved by methods we have already used. (See Exercises 6, 7, and 8.) If
we do not refer to Theorem 5.3.8, a proof of part (d) requires the use of the Axiom of
Choice.

⋃
A��

A�

�

(�+ ∪ {0}) ∪ �−
�−�+ ∪ {0}
�+

E+ ∪ 3�E+ ∪ {5}, 3� ∪ {1, 2, 4, 5}
�

E+

� ≈ A ∪ B.A ∪ B.�

〉
〈

h (n) = e f  an + 1

2
b if n is odd

g an

2
b if n is even

.

h: � → A ∪ Bg: � −→1−1 

onto 
B.f : � −→1−1 

onto 
A 

A ∪ B

A ∪ B
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Corollary 5.3.9 (a) If is a finite pairwise disjoint family of denumerable sets, then is
countable.

(b) If A and B are countable sets, then is countable.
(c) If is a finite collection of countable sets, then is countable.

(d) If is a denumerable family of countable sets, then is countable.

Theorem 5.3.8 provides another means to prove that the set of positive 
rationals is denumerable. may be written as where 

For each is denumerable. By Theorem 5.3.8, is countable. Since 
is infinite and countable, is denumerable.

Example. For each the set is a finite set and therefore countable. Their

union, is of course countable.

Example. For each let The countable union of these
countable sets is which is countable. 

We will give one more example of a denumerable set, significant for anyone with
an interest in the theory of computation. A computer program is written in a given pro-
gramming language and consists of a finite sequence of symbols. These symbols are
selected from a finite set called an “alphabet” (typically all 26 upper and lowercase
letters, the 10 digits, a blank space, certain punctuation marks, arithmetic operations,
etc.). Recall, for example, that most calculators are not pre-programmed with loga-
rithm functions other than logarithms for base 10 and base e. Here is a calculator pro-
gram consisting of 80 characters to find for any base a, where and 

PROGRAM:LOGBASEA (16 symbols)
ClrHome (7 symbols)
Input “LOG BASE?”, A (20 symbols)
Input “LOG OF?”, B (18 symbols)
ln(B) ln(A) C (13 symbols)
Disp C (6 symbols)

For each let be the set of all programs with precisely n symbols. In most
programming languages the first few are empty sets. Our logarithm program above
is an element of 

Because there are only a finite number of symbols in our alphabet, there can be
only a finite number of programs of length n. Therefore is finite (and therefore
countable) for all Also, since any computer program is finite in length,
every program is an element of for some n. Thus, the set of all possible programs 

is 

By Theorem 5.3.8, this countable union of countable sets is countable. Hence
only a countable number of programs could ever be written in a given language. 

⋃
n��

 Pn.

Pn

n � �.
Pn

P80.
Pi

Pnn � �,

→/

a =� 1:a > 0loga x

� − {0},

⋃
n��

BnBn = {−n, n}.n � �,

⋃
k��

�k = �,

�kk � �,

�+
�+�+n � �, An

An = {a
n 

: a � �
}

.
⋃

n��

An,�+
�+

⋃
A��

A�

⋃
A��

A�
A ∪ B

⋃
A��

A�
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However, we saw in Section 5.1 that the set of all functions from to is
equivalent to and we shall see in the next section that is uncountable.
For a given programming language and its finite alphabet, this means that there are
many functions from to for which there can be no computer programs to
compute them. Put a different way, there are not enough solutions (programs) for all
the possible problems (functions).

Exercises 5.3

1. What is the 28th term in the sequence of positive rationals produced by the
counting process described in the discussion of Theorem 5.3.1?

2. Use a counting process similar to that described in the discussion of Theorem

5.3.1 to show that is denumerable.

3. Prove Theorem 5.3.5 by induction on the number of elements in the finite set B.

4. Complete the proof of Theorem 5.3.6 by showing that the function h as defined
is one-to-one and onto 

5. The Infinite Hotel is undergoing some remodeling, and consequently some of
the rooms will be taken out of service. Show that, in a sense, this does not
matter as long as only a “few” rooms are removed. That is,
(a) prove that if A is denumerable and then is denumerable.
(b) prove that if A is denumerable and B is a finite subset of A, then 

is denumerable.

� 6. Without referring to Theorem 5.3.8, prove part (a) of Corollary 5.3.9: If 
is a finite pairwise disjoint family of denumerable sets, 

then is countable.

� 7. Without referring to Theorem 5.3.8, prove part (b) of Corollary 5.3.9: If A and
B are countable sets, then is countable.

� 8. Without referring to Theorem 5.3.8, prove part (c) of Corollary 5.3.9. If 
is a finite collection of countable sets, then is

countable.

9. Use the theorems of this section to prove that
(a) an infinite subset of a denumerable set is denumerable.
(b) if A is a countable subset of an uncountable set B, then is

uncountable.
(c) is denumerable.

(d) is denumerable.

(e) is denumerable.

(f) is denumerable.
⋃

n��
 

{
n

2k: k � �

}
⋃

n��

(� ∩ (n, n + 1))

⋃20

n=1
(� ∩ (n, n + 1))

� ∩ (1, 2)

B − A

⋃
A��

A{Ai : i = 1, 2, 3, . . . n}
� =

A ∪ B

⋃
A��

A

{Ai : i = 1, 2, 3, . . . n}
� =

A − B
A − {x}x � A,

A ∪ B.

{
2x

3y
 : x, y � �

}

{0, 1}�

� (�)� (�),
{0, 1}�
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10. Prove or disprove:
(a) If and B is denumerable, then A is denumerable.
(b) If and A is denumerable, then B is denumerable.
(c) is denumerable, where J is the set of all linear functions with

slope 1 and rational y-intercept, and K is the set of all linear functions
with slope 2 and integer y-intercept.

(d) is denumerable.
(e) If A and B are denumerable, then is denumerable.

� 11. Prove that if is a denumerable family of pairwise disjoint distinct
finite sets, then is denumerable.

12. Give an example, if possible, of a family of sets such that

(a) each set is finite and is denumerable.

(b) each set is finite and is finite.

(c) each set is finite, the family is pairwise disjoint, 

whenever and is finite.

13. (a) Let S be the set of all sequences of 0’s and 1’s. For example,
and are in S. Using a proof

similar to that for Theorem 5.2.4, show that S is uncountable.
� (b) For each let be the set of all sequences in S with exactly n 1’s.

Prove that is denumerable for all 

(c) Let Use a counting process similar to that described in the

discussion of Theorem 5.3.1 to show that T is denumerable.

14. Let A be a denumerable set. Prove that
(a) the set of all 1-element subsets of A is

denumerable.
(b) the set of all 2-element subsets of A is 

denumerable.
(c) for every is denumerable.
(d) the set of all finite subsets of A is denumer-

able. (Hint: Use Theorem 5.3.8.)

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. If A is denumerable, then is denumerable.
“Proof.” Assume A is denumerable.

Case 1. If then which is denumerable by
hypothesis.

Case 2. Assume Since A is denumerable, there exists
Define g by setting Then

so Therefore, is 

denumerable. �

A − {x}� ≈ A − {x}.g: � −→1−1  

onto  
(A − {x}),

g (n) =  f  (n + 1).f : � −→1−1  

onto  
A.
x � A.

A − {x} = A,x � A,

A − {x}

{B: B ⊆ A  and  B  is finite}
k � �, {B: B ⊆ A  and  B = k}

{B: B ⊆ A  and  B = 2}

{B: B ⊆ A  and  B = 1}

T =
⋃∞
k=1

 Tk.

n � �.Tn

Tnn � �,

011111 Á1001101001 Á ,1010101 Á ,

⋃∞
n=1

 Aii =� j,

Ai =� Aj{Ai : i � �}Ai

⋃∞
n=1

 AiAi

⋃∞
n=1

 AiAi

A1, A2, A3, Á

⋃
i��

 Bi

{Bi : i � �}

A − B
� − �

J ∪ K
A ⊆ B
A ⊆ B
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(b) Claim. If A and B are denumerable, then is denumerable.
“Proof.” Assume A and B are denumerable, but that is not
denumerable. Then is finite. Since A and B are denumerable, they
are not empty, so we can choose and Then, 
and Since is finite, the subsets and

are finite. Therefore, A and B are finite. This contradicts the
statement that A and B are denumerable. We conclude that is
denumerable. �

(c) Claim. The set of positive rationals is denumerable.
“Proof.” Consider the positive rationals in the array in Figure 5.3.1.
Order this set by listing all the rationals in the first row, then the second
row, and so forth. Omitting fractions that are not in lowest terms, we
have an ordering of in which every positive rational appears. There-
fore, is denumerable. �

(d) Claim. If A and B are infinite, then 
“Proof.” Suppose A and B are infinite sets. Let 
and Define as shown:

Then, since we never run out of elements in either set, f is one-to-one
and onto B, so �

(e) Claim. is uncountable.

“Proof.” is uncountable and is a subset of R. Every subset of
an uncountable set is uncountable, so is uncountable.              �

5.4 The Ordering of Cardinal Numbers

When Georg Cantor developed set theory, he described a cardinal number of a set
M as “the general concept which, with the aid of our intelligence, results from M
when we abstract from the nature of its various elements and from the order of their
being given.” This definition was criticized as being less precise and more mystical
than a definition in mathematics ought to be. Other definitions were given, and
eventually the concept of cardinal number was made precise.

One way to define cardinal numbers is by choosing one fixed set from each
equivalence class of sets under the relation and then calling this set the cardinal
number of each set in the class. Under such a procedure we would think of the num-
ber 0 as being the empty set and the number 1 as being the set whose only element
is the number 0. That is, and so on. The two
infinite cardinal numbers given so far have been described by specifying a standard
set, either or as the standard example for that particular cardinal.

We will not be concerned with further details of formulating a precise defi-
nition of a cardinal number. For our purposes, the essential point is that the

(0, 1),�

3 = {0, 1, 2};2 = {0, 1};1 = {0};

L ,

� − �

� − ��

� − �

A ≈ B.

{b1, b2, b3, b4, Á}.
↓↓↓↓

{a1, a2, a3, a4, Á}

f : A → BB = {b1, b2, b3, Á }.
A = {a1, a2, a3, Á }

A ≈ B.
�+

�+

�+

A × B
{a} × B

A × {b}A × BB ≈ {a} × B.
A ≈ A × {b}b � B.a � A

A × B
A × B

A × B
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cardinal number of a set S is an object associated with all sets equivalent to S
and no other set. The double overbar on is suggestive of the double abstraction
referred to by Cantor.

Intuitively, you should still think of the cardinality of a set S as the “number”
of elements in S, or the “size” of the set S. So that we can compare the sizes of two
sets, we make the following definitions:

S
S

260 CHAPTER 5 Cardinality

DEFINITIONS Let A and B be sets. Then

if and only if otherwise 
if and only if there exists a one-to-one function 
if and only if and A =� B.A ≤ BA < B

f : A → B.A ≤ B
A =� B.A ≈ B;A = B

We read as “the cardinality of A is strictly less than the cardinality of B”
while is read “less than or equal to.” In addition, we use and to
denote the denials of and respectively.

A proof of will usually involve constructing a one-to-one function from
A to B, while a proof of will have a proof of together with a proof,
often by contradiction, that Once we have developed some properties 
of cardinal inequalities, those facts can be used to prove statements of the form

without resorting to the construction of functions.
Since are cardinal numbers, the natural numbers may be viewed as

a subset of the collection of all cardinal numbers. In this sense the properties of
and that we will prove for cardinal numbers in the next theorem may be viewed as
extensions of those same properties of and that hold for Proofs of parts (a),
(b), (d), and (f) are left as Exercise 6.

Theorem 5.4.1 For sets A, B, and C,

(a) (Reflexivity)
(b) If and then (Transitivity of )
(c) If and then (Transitivity of )
(d) or 
(e) If then 
(f) there is a subset W of B such that 

Proof.

(c) Suppose and Then there exist functions and 
Since the composite is one-to-one, we conclude

(e) Let We note that the inclusion map given by is
one-to-one, and therefore  �A ≤ B.

i (a ) = a,i : A → B,A ⊆ B.
A ≤ C.

g ◦  f : A → Cg: B −→1−1  C.
f : A −→1−1  BB ≤ C.A ≤ B

W = A. iff A ≤ B
A ≤ B.A ⊆ B,

A = B.A < B iff A ≤ B
≤A ≤ C.B ≤ C,A ≤ B
=A = C.B = C,A = B

A ≤ A.

�.<≤
<

 ≤
1, 2, 3, Á

A ≤ B

A =� B.
A ≤ BA < B

A ≤ B
A ≤ B,A < B

A ≤� BA <� B≤
A < B
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Examples. We can show that every finite cardinal is less than as follows. For
every finite cardinal number k, Thus by Theorem 5.4.1(e), Since

is not equivalent to Therefore, 
A similar argument shows that First, follows from and,

second, because is not equivalent to 

We can easily show that for natural numbers m and n, if (in the usual
sense), then by the definition of for cardinals. We use the inclusion map
from to show that We know that by the
Pigeonhole Principle (Theorem 5.1.9). 

Theorem 5.4.2 Cantor’s Theorem
For every set A, 

Proof. To show we must show that (i) and (ii) 
Part (i) follows from the fact that defined by is 
one-to-one.

To prove (ii), suppose that is, assume Then there exists 
Let Since and since 

is onto for some Now either or If 
then a contradiction. Similarly, implies which 
implies again a contradiction. We conclude that is not equivalent to

and hence �

Cantor’s Theorem has some interesting consequences. First, there are infi-
nitely many infinite cardinal numbers. We know one, which corresponds 
to By Cantor’s Theorem, Since is a set, its power set

has a strictly greater cardinality than that of In this fashion 
we may generate a denumerable set of cardinal numbers, each greater than its
predecessor:

Exactly where c, continuum, fits within this string of inequalities will be taken up
later in this section. It is also an immediate consequence of Cantor’s Theorem that
there can be no largest cardinal number (see Exercise 7).

In Section 5.1 we showed that the set of all functions from to is
equivalent to Since we know there are uncountably many
functions from to {0, 1}. Since a function from to is a sequence of
0’s and 1’s, Cantor’s Theorem provides another proof for Exercise 13(a) of
Section 5.3.

{0, 1}��

� < � (�),� (�).
{0, 1}��

ℵ0 < � (�) < � (� (�)) < � (� (� (�))) < Á

� (�).� (� (�))
� (�)ℵ0 < � (�).�.

ℵ0,

A < � (A).� (A)
Az � B,

z � g (z),z � Bz � g (z) = B,
z � B,z � B.z � Bz � A.B = g (z )� (A),g

B � � (A),B ⊆ A,B = {y � A: y � g (y)}.g: A −→1−1  

onto  
� (A).

A ≈ � (A).A = � (A);

F (x ) = {x}F : A → � (A)
A =� � (A).A ≤ � (A),A < � (A),

A < � (A).

�m =� �nm = �m ≤ �n = n.�m to �n

<m < n
m < n

�.�ℵ0 =�  c
� ⊆ �ℵ0 ≤  cℵ0 <  c.

k < ℵ0.�, k =� ℵ0.�k

k ≤ ℵ0.�k ⊆ �.
ℵ0
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It appears to be obvious that if B has at least as many elements as 
and A has at least as many elements as then A and B are equivalent

The proof, however, is not obvious. The situation may be represented as 
in Figure 5.4.1. From and there are functions and 

The problem is to construct which is both one-to-one and
onto B. Cantor solved this problem in 1895, but his result was not immediately
accepted because his proof used the Axiom of Choice (Section 5.5). Proofs not
depending on the Axiom of Choice were given by Ernst Schröder* in 1896 and two
years later by Felix Bernstein.*

H : A → B,G : B −→1−1  A.
F : A −→1−1  BB ≤ A,A ≤ B

(A = B).
B (B ≤ A),

A (A ≤ B),

262 CHAPTER 5 Cardinality

D = Rng (F )

C = Rng (G)

A B

F

G

Figure 5.4.1

Theorem 5.4.3 Cantor–Schröder–Bernstein Theorem
If and then 

Proof. We may assume that A and B are disjoint, for otherwise we could replace
A and B with the equivalent disjoint sets and respectively. Let 

with and let with If 
we already have so assume 

Define a string to be a function such that

implies and
implies 

We think of a string as a sequence of elements of with first term in 
and such that thereafter the terms are alternately in C and in D. Each element of

is the first term of some string. See Figure 5.4.2.B − D

B − D,A ∪ B

f  (n + 1) = F (  f  (n)).f  (n) � A
f  (n + 1) = G (  f  (n)),f  (n) � B

f  (1) � B − D,

f : � → A ∪ B
B − D =� �.A ≈ B,

B = DC = Rng (G ).G : B −→1−1  AD = Rng (F )F : A −→1−1  B
B × {1},A × {0}

A = B.B ≤ A,A ≤ B

* Ernst Schröder (1841–1902) was a German mathematician known mostly for his work in logic and its
applications to other areas of mathematics. He advanced the methodical use of quantifiers. The design
of Schröder’s proof of Theorem 5.4.3 was correct but his proof contained an error. Felix Bernstein
(1878–1956), while he was still a student under Cantor, corrected the error. Bernstein made contribu-
tions in many fields, including applied mathematics, statistics and especially genetics.
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Let We note that and
that for some string f and natural number n. Let 
be given by

See Figure 5.4.3. We will show that H is a one-to-one correspondence from A onto B.

H (x) =
{F (x) if x � W

G−1
 (x) if x � W 

.

H: A → Bx =  f  (2n)  iff  x � W
W ⊆ Rng (G)W = {x � A: x is a term of some string}.

5.4 The Ordering of Cardinal Numbers 263

f (6)

f (4)

f (2)

f (3)

f (1)

G

B − D

D = Rng (F )

C = Rng (G)

A B

G

F

F

G

f (5)

W

String  f :  f  (1),  f  (2),  f  (3),  f  (4),  f  (5),  f  (6), Á

Figure 5.4.2

H

W
B − D

D = Rng (F )

C = Rng (G)

A B

F

G−1

Figure 5.4.3

Suppose x, and We will first show that x and y must both
be in W or both in For a proof by contradiction, assume this is not the case.A − W.

H (x) = H (y).y � A
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Without loss of generality, we may assume that and Otherwise,
we could rename the elements x and y. Then from we have

so Since for some string f and 
some natural number n. Therefore, because

and G is one-to-one If then which
implies a contradiction to the definition of string f. Thus 
But then since This implies that x is a term in
the string f, a contradiction to Therefore, we know that x and y are 
either both in W or both in 

If are both in W, then implies that 
Therefore, since is one-to-one. Likewise, if x and y are both in 
then and because F is one-to-one. In either case, we conclude 

and H is one-to-one.
Next we show that H is onto B. Let We must show that for

some There are two cases:

Case 1. If let Then 
Case 2. If then If then

Therefore, b is the first element of some string and is the second ele-
ment of that string, a contradiction to Since 
there exists such that Furthermore, If
then x is a term in some string and therefore and are the
next two terms of the same string. But this is a contradiction, since

and we have assumed that is not on any string.
From we conclude 

In both cases, so H is onto B.                                                                    �

The Cantor–Schröder–Bernstein Theorem may be used to prove equivalence
between sets in cases where it would be difficult to explicitly exhibit a one-to-one
correspondence.

Example. We will show that First, note that so 
Likewise, since we have But we 

know and thus Therefore, we may write
We conclude by the Cantor–Schröder–Bernstein

Theorem and thus 

Example. We can use the Cantor–Schröder–Bernstein Theorem to show that
(See Exercise 15.) This means that there are just as many points on the

real line as there are in the entire Cartesian plane.

Example. The Cantor–Schröder–Bernstein Theorem can be used to determine the
relationship of c, the cardinal number of the open interval to the increasing
sequence of cardinal numbers

� < � (�) < � (� (�)) < � (� (� (�))) < Á .

(0, 1),

� × � ≈ �.

(0, 1) ≈ [0, 1].
(0, 1) = [0, 1][0, 1] ≤ (0, 1).

(0, 1) = (−1, 2).(0, 1) ≈ (−1, 2)
[0, 1] ⊆ (−1, 2).[0, 1] ⊆ (−1, 2),(0, 1) ≤ [0, 1].

(0, 1) ⊆ [0, 1],(0, 1) ≈ [0, 1].

H (x) = b,

H (x) = F (x) = b.x � A − W
〉G (b)G (F (x)) = G (b)

G (F (x))F (x)
x � W,〈x � W.F (x) = b.x � A

b � Rng (F ),G (b) � W.〉
G (b)

b � B − D.b � Rng (F ),〈b � Rng (F ).G (b) � W,
H (x) = H (G (b)) = G−1(G (b)) = b.x = G (b).G (b) � W,

x � A.
b = H (x)b � B.

x = y
x = yF (x) = F (y)

A − W,G−1x = y
G−1(x) = G−1(y).H (x ) = H (y)x and y

A − W.
x � A − W.

f  (2n − 1) = F (x).f  (2n − 2) = x,
n ≥ 2.f  (1) � Rng (F ),

f  (1) = F (x),n = 1,〉.f (2n) = y = G (F (x))
G (  f (2n − 1)) =〈f  (2n − 1) = F (x)

y = f  (2n)y � W,y = G (F (x )).F (x) = G−1(y),
H (x) = H (y)〉

〈y � W.x � A − W
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We will show that 

Proof. First, recall that any real number in the interval may be expressed in a
base 2 (binary) expansion where each is either 0 or 1. If we exclude
sequences that terminate with infinitely many 1’s, such as (which
has the same value as then the representation is unique. Thus we
may define a function such that for each 

The uniqueness of binary representations ensures that the function is defined and is
one-to-one. Since f is one-to-one, 

Next, define by where

For any set is a real number in with decimal expansion consist-
ing of 2’s and 5’s. Any pair of digits not including 9 will do. The function g is one-
to-one but certainly not onto (0, 1). Therefore, 

By the Cantor–Schröder–Bernstein Theorem, Therefore
�

We can now identify the first two terms of the sequence 
as being and c.

The Cantor–Schröder–Bernstein Theorem is another result in the extension of
the familiar ordering properties of to properties for all cardinal numbers. It, in
turn, leads to others. In the following, parts (a) and (c) are proved; (b) and (d) are
given as Exercise 13.

Corollary 5.4.4 For sets A, B, and C,

(a) if then 
(b) if and then 
(c) if and then 
(d) if and then 

Proof.

(a) Suppose Then and Combining this with the hypothe-
sis that we conclude by the Cantor–Schröder–Bernstein Theorem
that which is a contradiction. Therefore, 

(c) Suppose and Then so by Theorem 5.4.1(c), 
Suppose Then which implies But and 

implies Combining this with we conclude by the
Cantor–Schröder–Bernstein Theorem that Since this contradicts

we have �

It is tempting to extend our results even further to include the converse of Corol-
lary 5.4.4(a): “If then (As far as we know now, for two given setsA ≤ B.”B <� A,

A < C.A < B,
A = B.

A ≤ B,B ≤ A.C ≤ A
B ≤ CC ≤ A.A = C,A <� C.

A ≤ C.A ≤ B;B ≤ C.A < B
B <� A.A = B,

A ≤ B,
B ≤ A.A =� BB < A.

A < C.B < C,A < B
A < C.B ≤ C,A < B
A < C.B < C,A ≤ B

B <� A.A ≤ B,

�

ℵ0� (� (�)) < � (� (� (�))) < Á

� < � (�) <

� (�) = c.
� (�) = (0, 1).

� (�) ≤ (0, 1).
〉〈

(0, 1)g (A)A ⊆ �,

an =
{

2 if n � A

5 if n � A
.

g (A) = 0.a1a2a3a4 Á ,g: �(�) → (0, 1)
(0, 1) ≤ � (�).

f  (x) = {n � �: bn = 1 in the binary representation of x}.

x � (0, 1),f : (0, 1) → � (�)
0.01100000 Á ),

0.0101111111Á

bi0.b1b2b3b4 Á ,
(0, 1)

� (�) = c.
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A and B, both and may be false.) The Cantor–Schröder–Bernstein
Theorem turned out to be more difficult to prove than one would have guessed from
its simple statement, but the situation regarding the converse of Corollary 5.4.4(a) 
is even more remarkable. This is discussed in Section 5.5, where “If then 

is rephrased as “Either or or

Exercises 5.4

1. Prove that for any natural number n, 

� 2. Prove that 

3. Prove that if and then 

4. Prove that if and then 

5. State whether each of the following is true or false. For each false statement,
give a counter example.
(a) implies that 

� (b)
(c) implies 
(d) implies 
(e) If is nonempty, then 

6. Prove the remaining parts of Theorem 5.4.1.

7. Prove that there is no largest cardinal number.

8. Arrange the following cardinal numbers in order:

� (a)

(b)

(c)
9. Apply the proof of the Cantor–Schröder–Bernstein Theorem to this situation: 

where and 

where Note that and are in Let 

f be the string that begins at and let g be the string that begins at 
(a) Find 
(b) Find 
(c) Define H as in the proof of the Cantor–Schröder–Bernstein Theorem

and find and 

10. Suppose there exist three functions and 
Prove Do not assume that the functions map onto

their codomains.

11. If possible, give an example of
(a) functions f and g such that but neither f nor

g is an onto map.
� (b) a function f : � −→1−1  

�.

g: � −→1−1  
�,f : � −→1−1  

�,

A ≈ B ≈ C.h: C −→1−1  
A.

g: B −→1−1  C,f : A −→1−1 B,

H (20).H (13),H (8),H (2),

g (4).g (3),g (2),g (1),
f  (4).f  (3),f  (2),f  (1),

1
4
.1

3
,

B − Rng (F ).1
4

1
3

G (x) = 1
x

+ 5.G : B → A

F (x) =  
1

x + 6
 ,F: A → BB =

{
1
2

 , 1
3

 , 1
4

 , Á

}
,A = {2, 3, 4, 5, Á},

� ∪ {π},  � − {π},  � ({0, 1}),  [0, 2],  (0, ∞ ), �,  � − �,  � (�)

� − �

{0, 5},  [0, 5],  {0, 3, 5},  � − {3},  � ({0, 5}),  � ( (0, 5)),  (0, 5) − {3},

(0, 1),  [0, 1],  {0, 1},  {0},  � (�),  �, �,  � − �,  � (� (�)),  �

A < A ∪ B.B − A
A ≤ B.A = B
� (A) ≤ � (B).A ≤ B

A ∩ B ≤ B.
A ⊆ B.A ≤ B

C ≤ B.A = C,A ≤ B

A ≤ C.B = C,A ≤ B

� (�) < � (�).

n < c.

B < A.”A = B,A < B,A ≤ B”
B <� A,

B ≤ AA ≤ B
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(c) a function 
(d) a function 

12. Prove that if there is a function that is one-to-one, then A is
countable.

13. Prove parts (b) and (d) of Corollary 5.4.4.

14. Use a cardinality argument to prove that there is no universal set of all sets.

15. Use the Cantor–Schröder–Bernstein Theorem to prove the following.
(a) The set of all integers whose digits are 6, 7, or 8 is denumerable.
(b)
(c) If and there exists an open interval such that 

then 

16. Consider the family is a function from [0, 1] to [0, 1]}.
� (a) Prove that there is no bijection from [0, 1] to 
� (b) Show that is uncountable by showing that has a subset equivalent

to [0, 1].
(c) What is the relationship between and 

Proofs to Grade Assign a grade of A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.
17. (a) Claim. If and then 

“Proof.” Assume and Then there exists a function f
such that Since Therefore,  �

� (b) Claim. If and then 
“Proof.” Suppose Then B is a proper subset of C. Thus

This implies But and,
since B and are disjoint, By hypothesis,

Thus a contradiction. �
(c) Claim. If and then 

“Proof.” Assume and 
Case 1. Then by substitution in 
Case 2. Then by transitivity, �

� (d) Claim. If and then there exists a function 
“Proof.” Assume Then there exists a function 
Since g is one-to-one, every b in B has exactly one pre-image in A. Thus
the set is the pre-image of b under g} is a function. This
function is onto A, because for each a in A, and so 
Thus 

5.5 Comparability of Cardinal Numbers and the Axiom of Choice

One of the most useful ordering properties of is the trichotomy property: if m
and n are any two natural numbers, then or The analog for
cardinal numbers is stated in the Comparability Theorem.

m < n.m = n,m > n,
�

f : B −→onto  A.
f  (g (a)) = a.g (a) � B,

 f = {(b, y): y

g: A −→1−1  B.A ≤ B.
f : B −→onto  A.A ≤ B,A =� �

A < C.A < B.
B < C,  A < C.A = B.

B < C.A ≤ B
A < C.B < C,A ≤ B

 (C − B) = 0,B = C.
C = B + (C − B).C − B

C = B ∪ (C − B)C − B > 0.C − B =� �.
B =� C.

B = C.B = C,B ⊆ C
C ≤ B.A = C,  f : C −→1−1  B. f : A −→1−1  B.

A = C.A ≤ B
C ≤ B.A = C,A ≤ B

�?[0, 1]

��
�.

� = { f : f 

A = c.

(a, b) ⊆ A,(a, b)A ⊆ �

� × � ≈ �.

f : A → �

f : � −→1−1  
�.

f : � (�) −→1−1  
�.
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Theorem 5.5.1 The Comparability Theorem
If A and B are any two sets, then or 

Surprisingly, it is impossible to prove the Comparability Theorem from the
axioms and other theorems of Zermelo–Fraenkel set theory (see Section 2.1). In a
formal study of set theory one can build up, starting with a few axioms specifying
that certain collections are sets, to the study of the natural, rational, real, and com-
plex numbers, polynomial, transcendental, and differentiable functions, and all the
rest of mathematics. Still, comparability cannot be proved. On the other hand, it is
impossible to prove in Zermelo–Fraenkel set theory that comparability is false.
Theorem 5.5.1 is undecidable in our set theory; no proof of it and no proof of its
negation could ever be constructed in our theory.

At this point we could choose either to assume that Theorem 5.5.1 is true (or as-
sume true some other statement from which comparability can be proved) or else
assume the truth of some statement from which we can show comparability is false.
Of course, we have revealed the fact that we want comparability to be true by la-
beling the statement as a theorem. It has become standard practice by most mathe-
maticians to assume the Comparability Theorem is true by assuming the truth of the
following statement:

The Axiom of Choice

If is any collection of nonempty sets, then there exists a function F (called a
choice function) from A such that for every 

The Axiom of Choice at first appears to have little significance: From a collec-
tion of nonempty sets, we can choose an element from each set. If the collection is
finite, then this axiom is not needed to prove the existence of a choice function. It
is only for infinite collections of sets that the result is not obvious and for which the
Axiom of Choice is independent of other axioms of set theory.

Many examples and uses of the Axiom of Choice require more advanced
knowledge of mathematics. The first example we present is not mathematical in content
but it has become part of mathematical folklore.

A shoe store’s stockroom has an infinite number of pairs of shoes and an
infinite number of pairs of socks. A customer asks to see one shoe from each pair.
When the clerk has an explicit rule for making a choice, he does not need to
invoke the Axiom of Choice to know there is a choice function. His rule may be
to choose the left shoe from each pair. If the socks in each of the infinitely many
pairs are indistinguishable, and a customer asks to see one sock from each pair,
then the clerk has no rule for making a choice. Without the Axiom of Choice we
can’t say there is a function that chooses one sock from each pair. 

Example. Let If we are to select one element from
each set A in then we will need to use the Axiom of Choice. However, if we
let and A is finite then we do not need the Axiom of
Choice to select one element from each set in Our choice rule might be: For each 

choose the greatest element in B. Since B is finite, such an element exists
for each B � �.
B � �,

�.
},� = {A: A ⊆ �, A =� �,

�,
� = {A: A ⊆ � and A =� �}.

F (A) � A.A � �,� to
⋃

A��

�

B < A.A = B,A < B,

268 CHAPTER 5 Cardinality
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Now that we have the Axiom of Choice available to use, we could prove the
Comparability Theorem. However, we choose instead* to give a proof of Theorem
5.3.8, which was postponed in Section 5.3. We need one more preliminary result
before we give that proof.

Lemma 5.5.2 Let be a denumerable family of sets. For each let 

Then is a denumerable family of pairwise disjoint sets

such that 

Proof. Let and j and k be natural numbers. If and then 
Thus and are disjoint. Thus {Bi: is pairwise disjoint.

By definition of the If for some then there is a

smallest natural number k such that and so Thus 

Therefore �

Theorem 5.3.8 Let be a countable collection of countable sets. Then is countable.
(restated)

Proof. Let be a countable collection of countable sets. We may assume that 
is denumerable, because if there were only k sets in we

could extend by defining By Lemma 5.5.2 we may also
assume that the sets in are pairwise disjoint. From the fact that each set is count-
able, we know that is equivalent to a subset of either to for some 
or to itself. Thus for each there is a bijection from to a subset of 

We now define a function g from to Let Then 

for exactly one natural number m. Let be the mth prime number. Define
See the example below. We claim that g is one-to-one: Suppose

for some where and Then 

so by the Fundamental Theorem of Arithmetic, and 
Since is one-to-one, 

Since is equivalent to a subset of Since every subset of 

is countable, is countable. �

As an example of how the function g in the proof above works, suppose
and Since 11 is the fifth prime, 

We compute and Elements of the set would
be mapped to distinct powers of 13, and so forth. If happens to be denumerable,
then every power of 13 will be in Rng (g).

A6

A6g (t ) = 112.g (s) = 113,g (r) = 111,
p5 = 11. f5 = {(r, 1), (s, 3), (t, 2)}.A5 = {r, s, t}

⋃
A��

A�

�.
⋃

A��
Ag:

⋃
A��

A −→1−1  
�,

a = b. fi

fi (a) = fi (b).i = j(pj) fj (b)

(pi) fi (a) =b � Aj.a � Aia, b �
⋃

A��
A,g (a) = g (b)

〉〈g (x) = (pm) fm(x).
pm

x � Amx �
⋃

A��
A.�.

⋃
A��

A
�.Am  fm Am,�

n � �, to �,�n�:Am

Am�
Ak+1 = Ak+2 = Á = �.�

�� = {A1, A2, Á Am, Á}
�

⋃
A��

A�

⋃
n��

An =
⋃

n��

Bn.

⋃
n��

An ⊆
⋃

n��

Bn.x � Bk.x � Ak

i � �x � Ai

⋃
n��

Bn ⊆
⋃

n��

An.Bi,

i � �}BkBj

x � Bk.x � Bj,j < kx � A

⋃
i��

 Ai =
⋃
i��

 Bi.

{Bi : i � �}Ai − a⋃i−1

k=1
 Akb .

Bi =i � �,{Ai : i � �}
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* For a proof of the Comparability Theorem, see Paul R. Halmos, Naive Set Theory (Undergraduate
Texts in Mathematics), Springer-Verlag, 1998.
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Where was the Axiom of Choice used in the proof of Theorem 5.3.8? For
each is countable, and there are generally many bijections from to
a subset of In our proof, we select one such bijection and call it We do this
infinitely many times, once for each Our collection consisted of sets of
bijections, and we needed one bijection from each set of bijections. There is no
way to select the without the Axiom of Choice.

Many other important theorems, in many areas of mathematics, cannot be
proved without the use of the Axiom of Choice. In fact, several crucial results
are equivalent to it.* Some of the consequences of the axiom are not as natural as
the Comparability Theorem, however, and some of them are extremely difficult to
believe. One of these is that the real numbers can be rearranged in such a way that
every nonempty subset of R has a smallest element—in other words, that the reals
can be well ordered. Another, called the Banach–Tarski paradox, states that a ball
can be cut into a finite number of pieces that can be rearranged to form two balls the
same size as the original ball. Actually, this “paradox” is hardly more surprising
than the result in Section 5.4 that although that theorem can be proved
without the Axiom of Choice.

The Axiom of Choice has been objected to because of such consequences, and
also because of a lack of precision in the statement of the axiom, which does not
provide any hint of a rule for constructing the choice function F. Because of these
objections, it is common practice to call attention to the fact that the Axiom of
Choice has been used in a proof, so that anyone who is interested can attempt to find
an alternate proof that does not use the axiom.

We conclude this chapter with three more results whose proofs rely on
the Axiom of Choice. The first theorem says that if there is a function from a
set A onto a set B, then A must have at least as many elements as B. The proof
uses the Axiom of Choice to choose, for every an such that

Theorem 5.5.3 If there exists a function from a set A onto a set B, then 

Proof. If then Therefore, in this case Suppose 
and suppose is onto B. To show that we must construct a function

that is one-to-one. Let Since f is onto B, b is in 
Therefore the set is nonempty. See Figure 5.5.1. Thus

is a nonempty collection of nonempty sets. 
By the Axiom of Choice, there is a function such that 

for every Since f is a function with domain A, Therefore g 
is a function from to 

Define by for every We will show that h is
one-to-one. Let r and s be elements of B and suppose that Thenh(r) = h(s).

b � B.h (b) = g (Cb)h: B → A
A.〉�

⋃
b�B

Cb = A.〈b � B.

g(Cb) � Cbg: � →
⋃

b�B
Cb

� = {Cb: b � B}
Cb = {a � A:  f  (a) = b}

Rng ( f ).b � B.〉h: B → A
B ≤ A,〈f : A → B

B =� �,B ≤ A.B ⊆ A.B = �,

B ≤ A.

f  (a) = b.
a � Ab � B,

� × � ≈ �,

fm

m � �.
 fm.�.

AmAmm � �,
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* Paul Howard and Jean E. Rubin, Consequences of the Axiom of Choice, American Mathematical Society,
Mathematical Surveys and Monographs, v. 59, 1998.
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Call this object x. By definition of g, and Then
and But f is a function, so Therefore h is one-to-one.

We conclude that �

Theorem 5.5.4 Every infinite set A has a denumerable subset.

Proof. Suppose A is infinite. We inductively define a denumerable subset of A. First,
since A is infinite, Choose Then is infinite, hence non-
empty. Choose Note that and Continuing in this fash-
ion, suppose have been defined. Then so select any

from this set. By the Axiom of Choice, is defined for all The have
been constructed so that each and for Thus is a
subset of A, and the function f given by is a one-to-one correspondence
from to B. Thus B is denumerable. �

Theorem 5.5.4 can be used to prove that every infinite set is equivalent to one
of its proper subsets. (See Exercise 8.) This result characterizes infinite sets because, as
we saw in Section 5.1, no finite set is equivalent to any of its proper subsets.

Theorem 5.5.4 also confirms that is the smallest infinite cardinal number.
For any set A with infinite cardinality, there is a denumerable subset B of A. There-
fore, 

Corollary 5.5.5 A nonempty set A is countable there exists a function 

Proof. Exercise 9. �

We have seen that 
The fact that and c are the first two cardinal numbers in this sequence does not
necessarily mean that c is the next largest cardinal number after Cantor conjec-
tured that this is so: That is, no set X exists such that This conjecture,
called the continuum hypothesis, is one of the most famous problems in modern

ℵ0 < X < c.
ℵ0.

ℵ0

ℵ0 = � < c = � ( �) < �(� (�)) < � ( � (� ( �))) < Á .

f : � −→onto  
A. iff 

ℵ0 = B ≤ A.

ℵ0

�

f  (n) = an

B = {an: n � �}i =� j.ai =� ajan � A
ann � �.anak+1

A − {a1, Á , ak} =� �,a1, Á , ak

a2 � A.a2 =� a1a2 � A − {a1}.
A − {a1}a1 � A.A =� �.

B ≤ A.
r = s.f  (x ) = s.f  (x ) = r

x � Cs.x � Crg(Cr) = g(Cs).
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A
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B

b

Figure 5.5.1
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mathematics. The combined work of Kurt Go..del* in the 1930s and Paul
Cohen† in 1963 shows that the continuum hypothesis can neither be proved nor dis-
proved in Zermelo–Fraenkel set theory. Like the Axiom of Choice, the continuum
hypothesis is undecidable.

Exercises 5.5

1. Indicate whether the Axiom of Choice must be employed to select one ele-
ment from each set in the following collections.
(a) an infinite collection of sets, each set containing one odd and one even

integer
� (b) a finite collection of sets such that each set is uncountable

(c) an infinite collection of sets, each set containing exactly one integer
(d) a denumerable collection of uncountable sets
(e)
(f) and both A and are infinite}
(g) and both A and are infinite}

� (h) and A is denumerable}

2. (a) Prove this partial converse of Theorem 5.5.3 without using the Axiom of
Choice. Let A and B be sets with If then there exists

that is onto B.

(b) Use the Axiom of Choice to prove that if there exists then
there exists a function 

3. Let A and B be any two nonempty sets. Use the results of this section to prove
that there exists that has at least one of these properties:
(i) f is one-to-one or

(ii) f is onto B.

4. Prove that if then 

� 5. Suppose A is a denumerable set and B is an infinite subset of A. Prove 

6. Suppose and Prove that 

7. Let be a collection of distinct pairwise disjoint nonempty sets.
That is, if i and j are in and then and Prove that

includes a denumerable subset.

� 8. Let A be an infinite set. Prove that A is equivalent to a proper subset of A.

9. Prove Corollary 5.5.5: A nonempty set A is countable there is a function
that is onto A.f : � → A

 iff 

⋃
i��

 Ai

Ai ∩ Aj = �.Ai =� Aji =� j,�

{Ai: i � �}

A < C.B � A.B < C

A ≈ B.

Rng (  f ) ≤ A.f : A → B,

f : A → B

g: B −→1−1  A.
f : A −→onto  B

g: A → B
B ≤ AB =� �.

{A: A ⊆ �

� − A{A: A ⊆ �

� − A{A: A ⊆ �

{(a, ∞): a � �}

272 CHAPTER 5 Cardinality

* Kurt Gödel (1906–1978) was an Austrian–American logician best known for his Incompleteness
Theorem, which says (roughly) that in any logical system rich enough to include the theory of the natu-
ral numbers, there will always be true statements that are unprovable.
† Paul Cohen (1934–2007), an American logician, created a method of proof that he used to show that
neither the Axiom of Choice nor the continuum hypothesis can be proved in the set theory based on the
Zermelo–Fraenkel axioms.
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Proofs to Grade 10. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. There is a denumerable set B of irrational numbers such that
any two elements of the set differ by an integer.
“Proof.” Define the sequence s by setting the nth term to be

Then s is a function with domain Let B be the range of
this function. By Theorem 5.3.3, Since B is infinite, B is denu-
merable. The difference between any two elements and of
B is an integer. �

(b) Claim. Every infinite set A has a denumerable subset.
“Proof.” Suppose no subset of A is denumerable. Then all subsets of
A must be finite. In particular Thus A is finite, contradicting the
assumption. �

� (c) Claim. Every infinite set A has a denumerable subset B.
“Proof.” If A is denumerable, let and we are done. Otherwise,
A is uncountable. Choose If is denumerable, let 

Otherwise, choose If is denu-
merable, let Continuing in this manner, using the
Axiom of Choice, we obtain a subset such that

is denumerable. �
(d) Claim. Every infinite set has two disjoint denumerable subsets.

“Proof.” Let A be an infinite set. By Theorem 5.5.4, A has a denumer-
able subset B. Then is infinite, because A is infinite, and is
disjoint from B. By Theorem 5.5.4, has a denumerable subset C.
Then B and C are disjoint denumerable subsets of A. �

(e) Claim. If and then there exists a function 
“Proof.” Assume Then there exists a function 
Then is a function that maps onto A. Let a* be some fixed
element of A and define * Then

�
(f) Claim. Every infinite set has two disjoint denumerable subsets.

“Proof.” Let A be an infinite set. By Theorem 5.5.4, A has a denumer-
able subset B. Since B is denumerable, there is a function 

Let and Then
and are disjoint

denumerable subsets of A. �
(g) Claim. Every subset of a countable set is countable.

“Proof.” Let A be a countable set and let If B is finite, then B
is countable by definition. If B is infinite, since A is infinite.
Thus A is denumerable. By Theorem 5.5.4, B has a denumerable subset
C. Thus which implies and 
Therefore Thus B is denumerable and hence countable. �A = B = ℵ0.

C ≤ B ≤ A = ℵ0.ℵ0 = CC ⊆ B ⊆ A,

B ⊆ A,
B ⊆ A.

D = { f  (1),  f  (3),  f  (5), Á}C = { f  (2),  f  (4),  f  (6), Á}
D = { f  (2n − 1): n � �}.C = { f  (2n): n � �}

f : � −→1−1  

onto  
B.

f : B −→onto  A.
): b � B − Rng (g)}.f = g−1 ∪ {(b, a

Rng (g)g−1
g: A −→1−1  B.A ≤ B.
f : B −→onto  A.A ≤ B,A =� �

A − B
A − B

B = A − C
C = {x1, x2, Á}

B = A − {x1, x2}.
A − {x1, x2}x2 � A − {x1}.A − {x1}.

B =A − {x1}x1 � A.
B = A,

A ⊆ A.

m − n,
π + nπ + m

B ≤ �.
�.sn = π + n.
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275

The broad meaning of algebra refers to systems of computation and the study of
properties of such systems. In this chapter we make precise the idea of an algebraic
system and introduce several different types of systems. The goal is to make avail-
able additional opportunities to sharpen your proof writing skills while providing a
first experience with some of the topics in this important field.

6.1 Algebraic Structures

We start with the notion of a computation. For example, the natural number system
includes the operation of addition, which provides a structure to compute sums. We
write the familiar which means: Given 5 and 3, the result is 8. Thus,
addition of natural numbers is a function that acts on a pair of elements of to pro-
duce another element of �.

�

5 + 3 = 8,

C H A P T E R  6

Concepts of Algebra

DEFINITION Let A be a nonempty set. A binary operation on A is a
function from to A.A × A

We will usually denote an operation by one of the symbols or 
If is an operation on A and is in the domain of we usually write
in place of the standard function notation for the image of 

This notation is familiar from the operations of addition and multiplication
on the real numbers, where we write and instead
of and respectively. For some operations we omit the
operation symbol completely and write as is done with 
multiplication.

The images and xy are called products, regardless of whether
the operations have anything to do with multiplication. Similarly, is referredx + y

x * y,x ◦ y,

xy = z,
· (8, 3) = 24,+(5, 3) = 8

8 · 3 = 245 + 3 = 8

(x, y).◦ (x, y)x ◦ y
◦,(x, y)◦

*.+, · , ◦ ,
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to as the sum of x and y, even when the operation does not involve adding
numbers.

In addition to the usual arithmetic operations on sets of numbers, you are already
familiar with many other binary operations. Matrix multiplication, for example, is
a binary operation on the set of all matrices. For a set A, the operations of
union and intersection are binary operations on the power set of A.

There are operations other than binary operations. Ternary operations map 
to A, and unary operations map A to A. “Inverse,” for example, is a

unary operation on that assigns to each integer x its additive inverse In this
chapter, when we say “operation” we mean a binary operation.

−x.�

A × A × A

� (A),∩∪
2 × 2

+
276 CHAPTER 6 Concepts of Algebra

DEFINITION An algebraic system or algebraic structure is a non-
empty set A with a collection of one or more operations on A and a (possibly
empty) collection of relations on A.

DEFINITION Let be an algebraic system. Let B be a subset of A.
We say B is closed under the operation for all x, x * y � B.y � B,  iff  *

(A, *)

The system of real numbers together with operations of addition and multi-
plication and the relation “less than” make up a familiar algebraic system. The
rational numbers with the operation of multiplication make up a different algebraic
system, as does the set of natural numbers with addition and “less than.”

Except for the last section of this chapter, algebraic system will refer to a struc-
ture with one binary operation and no relations. The notation for the algebraic sys-
tem A with  operation is (A, *).*

�

For an algebraic system the set A is of course closed under (because
the operation is a function that maps to A). For any proper subset B of A that is
closed under we use the same operation symbol, to denote the restriction of the
operation to The three statements “B is closed under ” “ is an operation
on B,” and is an algebraic system” are all equivalent.

The algebraic system of real numbers with the usual  multiplication has
many subsets that are closed under multiplication. The set of rational numbers is
closed under multiplication because the product of any two rational numbers is
rational. The set of even integers, the open interval (0, 1), and the set are
all subsets of that are closed under multiplication. When we consider the alge-
braic system consisting of the real numbers with the addition operation instead of
multiplication, we find that and the set of even integers are closed under but
the set is not. The interval (0, 1) is not closed under addition because

is not in (0, 1).
If A is a finite set, the order of the algebraic system is the number of

elements in A. When A is infinite, we simply say has infinite order.(A, *)
(A, *)

0.59 + 0.43
{−1, 1}

+,�

�

{−1, 1}

�

(�, · )
“(B, *)

**,B × B.
*,*,

*
*(A, *)
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A convenient way to display information about a binary operation, at least for
a system of small finite order, is by means of its operation table, or Cayley† table.
An operation table for a system of order n is an array of products such
that appears in row x and column y. Table 1 represents a system with

in which, for example, As an example of computation in
this system of order 3, notice that 

Table 1

1 2 3

1 3 2 1
2 3 1 3
3 2 3 3

Cayley tables are impractical for algebraic systems of large order and impossi-
ble to construct for infinite algebraic systems. In these cases, the operation must be
described by a rule or algorithm.

We add more structure to an algebraic system by imposing additional proper-
ties on the operation.

*

(3 * 2) * (1 * 3) = 3 * 1 = 2.
2 * 1 = 3.A = {1, 2, 3}

(A, *)x * y
n × n(A, *)

6.1 Algebraic Structures 277

† Arthur Cayley (1821–1895) was the leader of the British school of pure mathematics in the 19th cen-
tury. To earn a living, Cayley was a lawyer the first 14 years of his adult life, specializing in property law.
During that time he wrote nearly 300 mathematical papers. His work included many contributions to the
algebra of matrices, non-Euclidean geometry, and n-dimensional geometry.

You are familiar with the fact that the system with the usual multiplica-
tion of integers, is commutative and associative. In this system, 1 is the identity ele-
ment, and only the elements 1 and have inverses. For the system consisting of
the real numbers with addition, the operation is commutative and associative, 0 is
the identity, and every element has an inverse (its negative).

When the group operation is defined by a Cayley table, it is easy to see whether
the operation is commutative—the table is symmetric about its main diagonal, from
the upper left to the lower right. A Cayley table will have an identity element e
if the row labeled e is identical to the row header and the column labeled e is identi-
cal to the column header. Elements x and y will be inverses e is the entry in both
row x, column y and row y, column x.

The operation of Table 1 is not commutative because the table is not symmet-
ric about the main diagonal. We see, for example, but Because3 * 1 = 2.1 * 3 = 1

*

  iff  

−1

(�, · ),

DEFINITIONS Let be an algebraic system. Then

(i) is commutative on A for all x, 
(ii) is associative on A for all x, y, 

(iii) an element e of A is an identity element for for all ,

(iv) if A has an identity element e, and a and b are in A, then b is an inverse
of a In this case a would also be an inverse of b.a * b = b * a = e.  iff  

x * e = e * x = x.
x � A  iff  *

(x * y) * z = x * (y * z).z � A,  iff  *

x * y = y * x.y � A,  iff  *

(A, *)
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no row duplicates the row header there is no identity element for Table 1. As a
result, the question of inverses does not arise.

Three different operations on are shown in Tables 2, 3, and 4.
The operation of Table 3 is commutative (note the symmetry about the main diag-
onal), but the operations of Tables 2 and 4 are not.

The element 2 is an identity for of Table 3 and in this system every element
has an inverse: 3 is an inverse of 1, 2 is an inverse of 2, and 1 is an inverse of 3.
Table 2 has no identity element. In Table 4, where 3 is the identity element, only
1 and 3 have inverses.

It is not easy to tell by looking at a table whether an operation is associative.
For a system of order n, verification of associativity may require checking prod-
ucts of three elements, each grouped two ways. The operation in Table 1 is not asso-
ciative because The operations in Tables 2 and 3 are
associative, but (Table 4) is not associative on A. You should find elements a, b,
and c, not necessarily distinct, for which 

The associative property is a great convenience in computing products. First, it
means that so long as factors appear in the same order, we need no parentheses. For
both and we can write xyz. This can be extended inductively to products of
four or more factors: and so forth. Second, for an
associative operation, we can define powers. Without associativity, might be dif-
ferent from but with associativity they are equal, and both can be denoted by 

Theorem 6.1.1 Let be an algebraic structure.

(a) has at most one identity element.
(b) Suppose is associative with identity e. If has an inverse, then a has

only one inverse.

Proof.
(a) We need to show that if e and f are both identities for then Sup-

pose that e and f are both identities for Then since e is an identity, the prod-
uct Likewise, since f is an identity, Therefore, 

(b) See Exercise 9. �

Other important algebraic structures are based on the equivalence relation 
of congruence modulo m on the set of integers. We saw in Section 3.2 that for each
natural number m there are exactly m equivalence classes, which are denoted by

It seems natural to define operations of addition and multipli-
cation on the set of equivalence classes as follows:�m

0, 1, 2, 3, Á , m − 1.

≡m

e =  f.e  f = e.e  f =  f.
◦.

e =  f.〉◦,〈

a � A◦
(A, ◦)

(A, ◦)

x3.x (xx ),
(xx )x

(xy )(zw ) = (x (yz ))w = (xy (zw )),
(xy )zx (yz )

(a + b) + c =� a + (b + c).
+
(1 * 1) * 2 =� 1 * (1 * 2).

n3

·

A = {1, 2, 3}

278 CHAPTER 6 Concepts of Algebra

Table 2

1 2 3

1 1 2 3
2 1 2 3
3 1 2 3

◦
Table 3

1 2 3

1 3 1 2
2 1 2 3
3 2 3 1

·
Table 4

1 2 3

1 3 3 1
2 1 1 2
3 1 2 3

+
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6.1 Algebraic Structures 279

DEFINITION For and in 

a +m b = a + b    and    a ·m b = a · b.

�m,ba

That is, the sum of two equivalence classes is the class of the sum, and the product
of two equivalence classes is the class of the product.

Before we can say that and are algebraic systems, we need
to make certain that and defined in this way are truly operations on that
is, to verify that both are functions from to Take for example with

and Then is But there are other ways to represent
each of these classes. Because is the same as and is the same as 
must be Fortunately, this answer is the same result as our first
computation. In order for and to be binary operations, we need to know that

and whenever and 

Theorem 6.1.2 Let a, b, c, and d be integers. If (mod m) and (mod m), then

(i) (mod m).
(ii) (mod m).

Proof. See Exercise 12. �

Examples. is an algebraic system with 12 elements, 
We have

is associative and commutative. is the identity in and every
element has an inverse: The inverse of is For example, the inverse of is 
because 

For we have

is associative and commutative. is the identity in and
some elements have an inverse. We note that is its own inverse because

The element however, has no inverse in (�12, ·12).3,7 ·12 7 = 49 = 1.
7

(�12, ·12)1(�12, ·12)

3 ·12 8 = 0.

4 ·12 5 = 8, because 4 · 5 = 20 and 20 = 8, and

3 ·12 2 = 3 · 2 = 6,

(�12, ·12)
−2 = 10.

102−a.a
(�12, +12)0(�12, +12)

9 +12  8 = 5, because 9 + 8 = 17 and 17 = 5.

3 +12  4 = 3 + 4 = 7, and

0, 1, 2, 3, . . . , 11.(�12, +12)

a · b = c · d
a + b = c + d

b = da = c

b = d.a = ca · b = c · da + b = c + d
·m+m

19 = 4,31 + (−12).
a + b3,−12131

1 + 3 = 4.a + bb = 3.a = 1
�5,�m.�m × �m

�m,·m+m

(�m, ·m)(�m, +m)
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Theorem 6.1.3 For every natural number m,

(a) is an algebraic system that is associative and commutative with
identity element Every element has an inverse.

(b) is an algebraic system that is associative and commutative. If 
the system has identity element .

Proof. See Exercise 13. �

The notation for computations in is usually simplified by writing a instead
of for the elements of and omitting the subscript from the operation symbols

and Operation tables are given below for and 

(�6, ·)(�6, +)(�2, +)

(�6, ·).(�6, +),(�2, +),·m.+m

�ma
�m

1
m > 1,(�m, ·m)

0.
(�m, +m)

280 CHAPTER 6 Concepts of Algebra

In the divisors of 0 are 2, 3, 4, 6, 8, 9, and 10. In and there are no
divisors of 0. The only divisor of 0 in is 2.

Solving equations requires special care when has divisors of zero. For
example, in a simple linear equation such as has two solutions, 
and because Other equations such as 
have no solutions in 

Exercises 6.1

1. Which of the following are algebraic structures? (The operation symbols have
their usual meanings.)

� (a) (b) (c)
(d) � (e) (f) (�, �)(�, −)(�, �)

(�, −)(�, �)(�, −)

�12.
6x = 22 · 11 = 22 = 10(mod 12).x = 11,
x = 52x = 10�12

�m

�4

�3,�2�12,

DEFINITION In if is an element such that for
some we say that a is a divisor of 0.b =� 0,

a · b = 0a =� 0�m,

0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

·0 1

0 0 1
1 1 0

+

Multiplication in can produce a result that we never find with multiplication
of integers, or any real numbers. For real numbers a and b, if then or

In the table above for we see that Another way to say this is
that 3 and 4 divide 0.

3 · 4 = 0.�6,b = 0.
a = 0ab = 0,

�m
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(g) (h) (i)
( j) (k) (l)

� 2. Which of the operations in Exercise 1 are commutative?

� 3. Which of the operations in Exercise 1 are associative?

� 4. Consider the set with operation given by the Cayley table at
the right.
(a) Name the identity element of this system.
(b) Is the operation associative on A?
(c) Is the operation commutative on A?
(d) For each element of A that has an inverse,

name the inverse.
(e) Is closed under ?
(f) Is closed under ?
(g) Name all subsets of A that are closed under 
(h) True or False? For all x, 

5. Repeat Exercise 4 with the operation given by the
table on the right.

6. The Cayley tables for operations are listed below.

a b a b c a b a b c

a a b a c a c a a a a a c b
b b a b a b c b a a b c b a

c b c b c b a c

(a) Which of the operations are commutative?
(b) Which of the operations are associative?
(c) Which systems have an identity? What is the identity element?
(d) For those systems that have an identity, which elements have inverses?

7. Let 
(a) Let be matrix multiplication. Under what conditions on m and n is 

an algebraic system?
(b) Let be matrix addition. Under what conditions on m and n is 

an algebraic system?

� 8. Let be an associative operation on nonempty set A with identity e. Suppose
a, b, c, and d are elements of A, b is the inverse of a, and d is the inverse of c.
Prove that db is the inverse of ac.

9. Let be an algebraic structure, and e the identity for 
� (a) Prove that if is associative, and x and y are inverses of a, then 

(b) Give an example of a nonassociative structure in which inverses are not
unique.

x = y.◦
◦.a � A,(A, ◦)

·
(�, +)

+

(�, ·)·
m, n � � and � = 5A: A is an m × n matrix with real number entries6.

×+*◦

◦, *, +, and ×

*

x ◦ x = y ◦ y.y � A,
◦.

◦B2 = {a, c}
◦B1 = {a, b, c}

◦
◦

◦A = {a, b, c, d}

({0, 1}, +)({0, 1}, ·)(� (A) − {�}, −)
(� (A), ∪)(� (A), ∩)(� − {0}, �)

6.1 Algebraic Structures 281

a b c d

a a b c d
b b a d c
c c d a b
d d c b a

◦

a b c d

a c d a b
b d a b c
c a b c d
d b c d a

*
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10. Suppose is an algebraic system and is associative on A.
(a) Prove that if , , , are in A, then

� (b) Use complete induction to prove that any product of n factors 
in that order is equal to the left-associated product

Thus the product of n factors is always the
same, no matter how they are grouped by parentheses, as long as the
order of the factors is not changed.

11. Let be an algebra structure. An element is a left identity for
for every 

(a) Give an example of a structure of order 3 with exactly two left identities.
(b) Define a right identity for 
(c) Prove that if has a right identity r and left identity l, then and

that is an identity for 

� 12. Prove Theorem 6.1.2.

13. Prove Theorem 6.1.3.

14. Construct the operation table for each of the following:
(a) (b)
(c) (d)

15. Find all the divisors of zero
� (a) in 

(b) in 
� (c) in 

(d) in 

Proofs to Grade 16. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(a) Claim. Let be an algebraic structure. If e is an identity for and

if x and y are both inverses of a, then 
“Proof.” Since x and y are inverses of a, Thus

By cancellation, �
� (b) Claim. If every element of a structure has an inverse, then is

commutative.
“Proof.” Let x and y be in A. The element y has an inverse, which we
will call Then so y is the inverse of Now and
multiplying both sides of the equation by the inverse of we have

Therefore, is commutative. �

(c) Claim. If a and b are zero divisors in then ab is a zero 
divisor.
“Proof.” If a and b are zero divisors, then Thus 

and ab is a zero divisor. �0 · 0 = 0
(ab)(ab) =ab = 0.

(�m, ·),
◦y ◦ x = x ◦ y.

y ′,
x = xy ′.y ◦ y ′ = e,y ′.

◦(A, ◦)
x = y.x ◦ a = y ◦ a.

x ◦ a = e and y ◦ a = e.
x = y.

◦,(A, ◦)

�11.

�7.

�12.

�8.

(�5, ·)(�8, ·)
(�5, +)(�8, +)

◦.r = l
r = l,(A, ◦)

(A, ◦).

a � A.l ◦ a = a◦
  iff  

l � A(A, ◦)

( Á ((a1 * a2) * a3) Á ) * an.
a2, a3, Á , an

a1,

(a1 * a2) * (a3 * a4) = a1 * ((a2 * a3) * a4).

a4a3a2a1

*(A, *)

282 CHAPTER 6 Concepts of Algebra
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� (d) Claim. If a and b are zero divisors in and then ab is a
zero divisor.
“Proof.” Since a is a zero divisor, for some in 
Likewise, for some in Therefore, 

Thus ab is a zero divisor. �

6.2 Groups

In this section, we focus on one particularly important algebraic structure, the
group. It was the work of Evariste Galois* on polynomial equations that led to
the study of groups as an aid to solving equations. The concept of a group has
influenced and enriched many other areas of mathematics. In geometry, for
example, the ideas of Euclidean and non-Euclidean geometries are unified by
the notion of a group. Group theory has applications outside of mathematics,
too, in fields such as nuclear physics and crystallography.

The properties of associativity, the existence of an identity, and the existence of
an inverse for each element are just the properties needed to define a group. Our
approach to defining a group is axiomatic, in the sense that we shall list the desired
properties (axioms) of a structure, and any system satisfying these properties is
called a group.

(ax)(by) = 0 · 0 = 0.
(ab)(xy) =�m.y =� 0by = 0

�m.x =� 0ax = 0

ab =� 0,(�m, ·)

6.2 Groups 283

* Evariste Galois (1811–1832) was a French mathematician who discovered elegant necessary and sufficient
conditions for a polynomial equation to be solvable by radicals. He introduced the concept of a finite field,
and was the first to use the word “group,” in reference to a group of permutations. He died at age 20 as the
result of a duel, but his work led to the development of an area of algebra that is known as Galois Theory.

The systems and are all groups with identity 0. The
algebraic system is not a group because 0 has no multiplicative inverse. The
system , where denotes the positive real numbers, is a group with identity
1. The system is the smallest group.

The system is not a group because it fails to satisfy group axioms
(ii) and (iii). There is no identity and, therefore, it makes no sense to discuss
inverses. The algebraic structure is not a group because although
multiplication is associative and the number 1 is an identity, only the elements
1 and have multiplicative inverses in �.−1

(� − {0}, ·)

(�, +)
({0}, +)

�+(�+, ·)
(�, ·)

(�, +)(�, +),(�, +),

DEFINITION is a group is an algebraic system such
that

(i) the operation is associative on G.
(ii) there is an identity element e in G for .

(iii) every has an inverse in G.x−1x � G
◦

◦

(G, ◦)  iff  (G, ◦)
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When we refer to “the group G” without specifying the operation, we call the result
of the group operation on x and y the product of x and y, and write the product as xy.

Example. Let with operation given by the Cayley table shown
below. Then G is a group of order 5.

e a b c d

e e a b c d
a a b c d e
b b c d e a
c c d e a b
d d e a b c

Proof. To show that G is a group of order 5, we first note that G has five elements
and is therefore nonempty. The table defines an operation on G because the product
of every pair of elements of G is specified by the table.

The verification that G satisfies may be done by considering all
possible assignments of values to x, y, and z. This work can be shortened

considerably by noting that the equation is clearly true when any of x, y, or z is the
identity. As for the remaining 64 cases, we see that, for example, 
because both expressions have value b, and because both expres-
sions have value a.

We see that e is the identity for G because (examine the first row of the
table) and (examine the first column) for all 

Finally, every element of G has an inverse. The inverse of a is d because 
and These equations also prove that a is the inverse of d. The elements b and
c are inverses because and e is its own inverse because 

Therefore G is a group. �

In Section 6.1 we defined the operation on the set and proved that 
is an algebraic system that is associative and has identity element 0. Every

element of has an additive inverse. Thus we may restate Theorem 6.1.3(a) as
follows:

Theorem 6.2.1 For every natural number m, is a group of order m.

The algebra for multiplication in is more complicated. For is
the group By Theorem 6.1.3(b), for every the system is asso-
ciative and has identity 1. However, 0 has no multiplicative inverse because there is no
x in such that Therefore is not a group when 

If we remove the element 0, then may not be an algebraic sys-
tem, because the set may not be closed under the operation . For example, the
product is not in the set When m is prime, has
not only the closure and associative properties, but 1 is the identity element, and
every element has an inverse.

(�m − {0}, ·)�12 − {0}.3 ·  4 = 0
·

(�m − {0}, · )
m > 1.(�m, ·)x · 0 = 1.�m

(�m, ·)m > 1,({0}, · ).
m = 1, (�1, ·)�m

(�m, +)

�m

(�m, +)
�m+

ee = e.bc = cb = e,
da = e.

ad = e
x � G.xe = x

ex = e

(ca)b = c(ab)
(bd ) a = b (da)

53 = 125
(xy)z = x (yz)

G = {e, a, b, c, d}

284 CHAPTER 6 Concepts of Algebra
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Theorem 6.2.2 The system is a group m is prime.

Proof. See Exercise 18. �

You may have noticed that the commutative property is not included among
the group axioms. All of the groups considered so far in this section, including 

and have operations that are commutative,
but not all groups have commutative operations. Commutative groups are called
abelian groups, and are so named in honor of Niels Abel.*

(�m, +)(� − {0}, · ),(�, +),(�, +),

  iff  (�m − {0}, · )

6.2 Groups 285

* Niels Abel (1802–1829) was a Norwegian mathematician who made fundamental contributions to the
theory of functions and proved that no general solution involving radicals exists for 5th degree polyno-
mial equations. Tuberculosis ended his brilliant career at age 26.

DEFINITION A group G is abelian the group operation is 
commutative.

  iff  

The abelian property is independent of the group axioms; that is, it cannot be
proved from those axioms. It could have been considered as another axiom for
defining a group. Because there are many important algebraic structures that are
groups but do not satisfy the commutative property, mathematicians choose to not
include commutativity in the definition of a group.

Our work with one-to-one correspondences revealed algebraic properties that
we can now use to form groups whose elements are functions. In this way we
encounter our first examples of nonabelian groups.

A permutation on a nonempty set A was defined in Section 4.4 as a function 
that is both one-to-one and onto A. If the elements of A are listed in order,

the effect of the permutation is rearranging (or permuting) the elements of A.
We use a simplified notation (see Section 4.4) to describe a permutation f on

the set by listing the images of in order within
brackets, as follows:

For example, the permutation on the set
is written as The identity permutation on A is

because it maps 1 to 1, 2 to 2, and so on. The permutation
is the function given by 

and 
From Theorem 4.4.5 (b) we know that the composite of two permutations on a set

A is again a permutation of A. Therefore, the set of all permutations on A, with compo-
sition as the operation, is an algebraic structure. We know by Theorem 4.2.1 that com-
position is associative. Theorem 4.4.5 goes on to say that is an identity (parts (a) andIA

h(5) = 2.
h(1) = 5, h(2) = 4, h(3) = 3, h(4) = 1,h = [5 4 3 1 2]

IA = [1  2  3  4  5]
g = [3 1 4 5 2].A = {1, 2, 3, 4, 5}

g = {(1, 3), (2, 1), (3, 4), (4, 5), (5, 2)}

[   f  (1) f  (2) f  (3) Á f  (k)].

1, 2, 3, Á , k�k = {1, 2, 3, Á , k}

f : A → A
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(d) of the theorem) and every permutation has an inverse (parts (c) and (e)). Combin-
ing these results, we have established:

Theorem 6.2.3 Let A be a nonempty set. The set of all permutations on A with the operation of
function composition is a group, called the group of permutations of A.

The group of permutations on the set is given a special name.{1, 2, 3, Á , n}

286 CHAPTER 6 Concepts of Algebra

There are exactly arrangements of the elements of a set A with n elements,
so the order of is 

Example. For the set there are six permutations in 
and Remember

that we compute products as function composites. For example, 
because

Likewise, The complete Cayley table
for is 

g h
[1 2 3] [1 3 2] [3 2 1] [2 1 3] [2 3 1] [3 1 2]

[1 2 3] [1 3 2] [3 2 1] [2 1 3] [2 3 1] [3 1 2][1 2 3]

[1 3 2] [1 2 3] [2 3 1] [3 1 2] [3 2 1] [2 1 3][1 3 2]

[3 2 1] [3 1 2] [1 2 3] [2 3 1] [2 1 3] [1 3 2][3 2 1]

[2 1 3] [2 3 1] [3 1 2] [1 2 3] [1 3 2] [3 2 1][2 1 3]
g

[2 3 1] [2 1 3] [1 3 2] [3 2 1] [3 1 2] [1 2 3][2 3 1]
h

[3 1 2] [3 2 1] [2 1 3] [1 3 2] [1 2 3] [2 3 1][3 1 2]

It is important to note that the two products and are dif-
ferent. Since the group is
not abelian.

Groups whose elements are some (but not necessarily all) permutations of a set
are called permutation groups. The reason for the importance of permutation groups

S3[2  1  3][3  1  2] = [3  2  1] =� [1  3  2] = [3  1  2][2  1  3],
[3  1  2][2  1  3][2  1  3][3  1  2]

f3

f2

f1

IA

f3f2f1IA

S3

[3 1 2][2 3 1] = h ◦ g = [1 2 3] = IA.

(  f2 ◦  f1)(3) =  f2 (  f1(3)) = f2 (2) = 2.
(  f2 ◦  f1)(2) =  f2 (  f1(2)) =  f2 (3) = 1, and
(  f2 ◦  f1)(1) =  f2 (  f1(1)) = f2 (1) = 3,

f2 ◦  f1 = h = [3 1 2]
[3 2 1][1 3 2] =

h = [3 1 2].g = [2  3  1],f3 = [2  1  3],f2 = [3  2  1],f1 = [1  3  2],
S3: IA = [1  2  3],�3 = {1, 2, 3},

n!Sn

n!

DEFINITION Let n be a natural number.  The group of all permutations
of is called the symmetric group on n symbols and
is designated by Sn.

�n = {1, 2, 3, Á , n}
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is that, for every group of elements of any kind (numbers, sets, functions, there
is a corresponding permutation group with the same number of elements and the
same structure. This fact is known as Cayley’s Theorem, and appears in Section 6.4.

The next results are consequences of the group axioms and facilitate calcula-
tions involving elements of a group. Notice that proving a statement like is
not like proving, say, a trigonometric identity. The statement is read “x is
the inverse of y,” and is proved by showing that x plays the role of an inverse for y,
i.e., that the product of x and y is the identity.

Theorem 6.2.4 Let G be a group with identity e. For all a, b, and c in G,

(a)
(b)
(c) If then (Right Cancellation Law).
(d) If then (Left Cancellation Law).

Proof.

(a) Because is the inverse of a, Therefore, a acts as the 
inverse of so 

(b) We know is the unique element x of G such that 
We see that meets this criterion by computing

Similarly, , so is the inverse of ab.
(c) Suppose in the group G. Then is in G and 

Using the associative, inverse, and identity properties, we see that

Therefore .
(d) Exercise 10. �

Theorem 6.2.5 Let G be a finite group with identity e. For every ,

(a) The function where for each is a permutation
of G.

(b) The function where for each is a permutation
of G.

Proof.

(a) To show that is one-to-one, let x, and suppose Then
so by the Left Cancellation Law, 

To show that is onto G, let . We need to find x in G so that
Choose Then 

(b) The proof of part (b) is similar and is Exercise 11. �
la(x) = la(a−1b) = a(a−1b) = (a a−1)b = eb = b.x = a−1b.

la(x) = b.〉〈b � Gla

x = y.ax = ay,
la(x) = la (y).y � Gla

x � G,ra(x) = xara: G → G,

x � G,la(x) = axla: G → G,

a � G

a = b

(bc)c−1 = b(c c−1) = be = b.
(ac)c−1 = a(c c−1) = ae = a and

(ac)c−1 = (bc)c−1.c−1ac = bc
b−1a−1(b−1a−1)(ab) = e

(ab)(b−1a−1) = a(bb−1)a−1 = a(e)a−1 = aa−1 = e.

b−1a−1
(ab)x = x(ab) = e.(ab)−1

(a−1)−1 = a.a−1,〈unique〉
 a−1a = aa−1 = e.a−1

a = bca = cb,
a = bac = bc,

(ab)−1 = b−1a−1.
(a−1)−1 = a.

x = y−1
x = y−1

Á ),
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Lambda is the function that performs left multiplication by a, while rho
is the function that performs right multiplication by a. For a finite group G,

Theorem 6.2.4 says that for any row (specified by in the Cayley table, the
row is a permutation of the list of elements in G in the order presented by the
table’s row heading. The same is true for every element column in the table.
Therefore,

If G is a finite group, then every element of G occurs exactly once in every
row and exactly once every column of the Cayley table.

The converse of this statement is false. It is possible to have each element
occur exactly once in every row and once in every column of an operation table for
a structure that is not a group. See Exercise 5.

If G is a group, it is convenient to have notation for powers of elements of G.
Let and We define 

and 

Thus is defined inductively for all Define for by

For all integers m and n, these familiar laws of exponents hold in a group:

When the group operation is we use different words for the concepts we
have termed “product,” ab, and 

The operation is called addition, and is the sum of a and b;
the additive inverse of a is called the negative of a;

is an abbreviation for the difference of a and b;
is 2a, is 3a, and for (n times) is na, the

nth multiple of a; and
is 

Example. Prove that for every natural number t, the set of all integer multiples
of t is an additive group. 

Proof.

(i) If then and for some integers and The set 
is closed under addition because the sum 

(ii) Addition is associative in and therefore in 
(iii) The additive identity element in is 0.
(iv) The additive inverse (negative) of an element in is �(−k)t.t�x = kt

t�
t�.�

x + y = (k1 + k2)t � t�.
t�k2.k1y = k2tx = k1tx, y � t�,

t�

−(na).(−n)a

a + a + Á + an � �,a + 2aa + a
a + (−b),a − b

−a,
a + b

a−n:a−1, a2, an
+,

(an)−1 = a−n, for n > 0.
(am)n = amn, and
aman = am+n

an = (a−1)−n.

n < 0ann ≥ 0.an

an+1 = ana.a0 = e

n � �.a � G

a � G )
(ra)

(la)
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Examples. In the group the third multiples of the elements 20 and 
are and The negative of the element 

We close this section with some important observations about the axiomatic
approach used to define a group. First, a small set of axioms is advantageous,
although challenging to  produce, because a small set means that fewer properties
need to be checked to be sure a given structure satisfies the axioms. The definition
of a group uses just three axioms.

Second, it may be best to leave a desired property out of the axioms if it can be
deduced from the remaining axioms. Theorem 6.1.1 tells us that the identity and
inverses of elements in a group are unique. In the definition of a group, we could
have said “there is a unique identity element e in G for Verifying this property
requires showing the existence and uniqueness of the identity rather than only the
existence. We stated the definition of a group as we did to make it easier to verify
that a structure is a group.

Finally, the fact that axioms may be altered by adding or deleting specific
axioms does not mean that the axioms are chosen at random, or that all of the axioms
are equally worthy of study. The group axioms are chosen because the structures
they describe are so important to mathematics and its applications. Treating an addi-
tional property, such as commutativity, as a property that holds for many but not all
groups, allows us to keep the basic axioms for a group minimal.

Exercises 6.2

1. Show that each of the following algebraic structures is a group.
(a) where is multiplication of integers.

(b) where and is complex

number multiplication.
� (c) where is complex number multiplication.
� (d) where X is a nonempty set and is the symmetric difference

operation 

� 2. Given that is a group of order 4 with identity e and
construct the operation table for G.

3. Given that is a group of order 4 with identity e and
construct the operation table for G.

� 4. Which of the groups of Exercise 1 are abelian?

5. Give an example of an algebraic system that is not a group such that in
the operation table for every element of G appears exactly once in every row
and once in every column. This can be done with as few as three elements in G.

6. Construct the operation table for each of the following groups.
(a) (b)
(c) (d) (�7 − {0}, ·)(�5 − {0}, ·)

(�7, +)(�6, +)

◦,
(G, ◦)

u2 = v2 = w2 = e,
G = {e, u, v, w}

u2 = v, v2 = e,
G = {e, u, v, w}

A Δ B = (A − B) ∪ (B − A).
Δ(� (X ), Δ)

·({1, −1, i, −i}, ·)

·b =  
−1 − i

√
3

2
,a = −1 + i

√
3

2
,({1, a, b}, ·)

·({1,−1}, ·)

◦.”

is (−(6)) · 5 = −30.
(6) · 5 3(−35) = −105.3(20) = 60

−35(5�, +),
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7. Construct the operation table for the symmetric group on 2 elements. Is 
abelian?

8. (a) What is the order of the symmetric group on 4 elements?
� (b) Compute these products in 

and [2 1 4 3][1 3 2 4].
(c) Compute these products in 

and [1 4 3 2][1 4 3 2].
(d) Show that is not abelian.

9. Let G be a group, and for all 
(a) Prove that 

(b) State and prove a result similar to part (a) for n elements of G, for all 

10. Prove part (d) of Theorem 6.2.4. That is, prove that if G is a group, a, b, and c
are elements of G, and then 

11. Prove part (b) of Theorem 6.2.5.

� 12. Let G be a group. Prove that if for all then G is abelian.

� 13. Give an example of an algebraic structure of order 4 that has both right and
left cancellation but that is not a group.

14. Let G be a group. Prove that
(a) G is abelian for all 

(b) G is abelian for all and 

15. Show that the structure with operation defined by 
is an abelian group. You should first show that is a

structure.

16. � (a) In the group G of Exercise 2, find x such that x such that
x such that and x such that 

� (b) Let be a group and Show that there exist unique ele-
ments x and y in G such that and 

17. Show that with operation # defined by is a group.
Find x such that 

18. (a) Prove that if m is composite, then the set is not closed under
multiplication.

(b) Let p be a prime natural number. Prove that is an associa-
tive algebraic system with identity 1. Hint: Use Euclid’s Lemma.

(c) Prove that if p is prime, then every element of ( has an
inverse. Hint: Suppose Then x and p are relatively prime,
so there exist integers r and s such that 

(d) Conclude that with multiplication is a group m is prime.

� 19. Let p be a prime natural number. Show that in 

20. Find all solutions in for the following equations.
� (a) (b)

(c) (d) x2 = 9x2 = 0
3x = 05x = 0

(�20, ·)
(�p − {0}, ·).

(p − 1)−1 = p − 1

  iff  �m − {0}
rx + sp = 1.

x � �p − {0}.
�p − {0}, ·)

(�p − {0}, ·)

�m − {0}

50 # x = 100.
a # b = a + b + 1,(�, #),

y * a = b.a * x = b
a, b � G.(G, *)

v ◦ x = w.v ◦ x = v;v ◦ x = u;
v ◦ x = e;

(� − {1}, ◦)a + b − ab,
a ◦ b =◦(� − {1}, ◦),

a, b � G.n � �  iff  anbn = (ab)n

a, b � G.  iff  a2b2 = (ab)2

g � G,g2 = e

a = b.ca = cb,

n � �.

(a1a2a3)−1 = a3
−1a2

−1a1
−1.

n � �.ai � G

S4

S4: [3 1 2 4][3 2 1 4], [4 3 2 1][3 1 2 4],

S4: [1 2 4 3][4 2 1 3], [4 3 2 1][4 3 2 1],
S4,

S2S2,
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21. In find all solutions for the following equations.
(a) (b) � (c)
(d) � (e) (f)

22. Galois discovered a connection between certain groups and the solutions to
polynomial equations. Refer to the finite sets in Exercises 1(a), (b) and (c).
Each of these sets forms a group (although these groups do not represent the
general case of Galois’ work). Find a polynomial equation, and verify that
your equation has integer coefficients, such that 

� (a) the equation has degree 2 and is the solution set.
(b) the equation has degree 3 and is the solution set.
(c) the equation has degree 4 and is the solution set.

Proofs to Grade 23. Assign a grade of A (correct), C (partially correct), or F (failure) to each.  Jus-
tify assignments of grades other than A.
(a) Claim. If G is a group with identity e, then G is abelian.

“Proof.” Let a and b be elements of G. Then

Therefore and G is abelian. �

� (b) Claim. If G is a group with elements x, y, and z, and if then

“Proof.” If then implies that so If 
then the inverse of z exists, and implies and 
Hence in all cases, if then �

� (c) Claim. The set of positive rationals with the operation of multi-
plication is a group.
“Proof.” The product of two positive rationals is a positive rational,
so  is closed under multiplication. Since for every

1 is the identity. The inverse of the positive rational is the a
b

r � �,
1 · r = r = r · 1�+

�+
x = y.xz = yz,

x = y.xz
z

 =  yz
z

xz = yz
z =� e,x = y.xe = ye,xz = yzz = e,

x = y.
xz = yz,

ab = ba

 = ba.
 = e(ba)
 = (aa−1)(ba)
 = a((a−1b)a)
 = a((b−1a)−1a)
 = a(a(b−1a)−1)
 = (aa)(b−1a)−1
 = (aa)a−1b
 = (aa)(bb−1)a−1b
 = a(ab)(b−1a−1)b
 = a(ab)(ab)−1b

ab = aeb

{1, −1, i, −i}
{1, a, b}
{1, −1}

2x + 3 = 12x = 32x = 4
3 + x = 1x + 7 = 34 + x = 6

(�8, +),
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positive rational The rationals are associative under multiplication
because the reals are associative under multiplication. �

b
a
.
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(d) Claim. If m is prime, then has no divisors of zero.
“Proof.” Suppose a is a divisor of zero in Then 
and there exists in such that Then so

This contradicts the assumption that m is prime. �
(e) Claim. If m is prime, then has no divisors of zero.

“Proof.” Suppose a is a divisor of zero in Then 
and there exists in such that Then so
m divides ab. Since m is prime, m divides a or m divides b. But since a
and b are elements of  both are less than m. This is impossible. �

(f) Claim. For every natural number m, is a group.
“Proof.” We know that is associative with identity element 1.
Therefore, is associative with identity element 1. It
remains to show every element has an inverse. For 
Therefore, and Therefore, every
element of has an inverse. �

(g) Claim. If is a group, then m is prime.
“Proof.” Assume that is a group. Suppose m is not
prime. Let where r and s are integers greater than 1 and less than
m. Then Since r has an inverse t in

Then 
That is, This is impossible, because �

6.3 Subgroups

A substructure of an algebraic system consists of a subset of A together
with all the operations and relations in the original structure, provided that this
is an algebraic structure. This proviso is necessary, for it may happen that a sub-
set of A is not closed under an operation. For example, the subset of consist-
ing of the irrationals is not closed under multiplication. The idea of substructures
is a natural one, and we can’t fully understand a group until we understand its
subgroups. 

�

(A, *)

1 < s < m.s = 0 (mod m).
s = 1 · s = (t · r) · s = t · (r · s) = t · 0 = 0.�m − {0}, t · r = 1.

r · s = m = 0 (mod m).
m = rs,

(�m − {0}, · )
(�m − {0}, ·)

�m − {0}
x · 1/x = x(1/x) = 1.1/x � �m − {0}

x � �m − {0}, x =� 0.
(�m − {0}, ·)

(�, ·)
(�m − {0}, ·)

�m,

ab = 0 (mod m),ab = 0.�mb =� 0
a =� 0,(�m − {0}, ·).

(�m − {0}, ·)
ab = m.

ab = m (mod m),ab = 0.�mb =� 0
a =� 0,(�m − {0}, ·).

(�m − {0}, ·)
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DEFINITION Let be a group and H a subset of G. Then 
is a subgroup of G is a group.(H, ◦)  iff  

(H, ◦)(G, ◦)

It is understood that the operation on H agrees with the operation on G.
That is, the operation on H is the function restricted to 

Suppose H is a nonempty subset of G and is a group. What must we
do to prove that H is a subgroup of G? The first answer that comes to mind is to
prove that H is closed under and to verify all three of the group properties. As
a first step in shortening this process, we observe that it is not necessary to check
associativity: this property is “inherited” from the group. 

◦

(G, ◦)
H × H.◦

◦◦
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Theorem 6.3.1 Let G be a group and H be a nonempty subset of G. Then H is a subgroup of G if

(i) H is closed under 
(ii) the identity e of G is in H,

(iii) every has an inverse in H.

Proof. Suppose H is a nonempty subset of the group G that satisfies conditions (i),
(ii), and (iii). Let x, y, and z be in H. Then x, y, and z are in G, so by associativity for
G, Thus H is a subgroup of G. �

The set E of even numbers is a subgroup of because E is nonempty, E
is closed under addition, the identity and the negative of an even integer is
even. We note that E is the set of all multiples of 2. In general, for every integer t
the set of all multiplies of t is a subgroup of 

Two subsets of that are closed under can be seen in the following tables.
It is easy to check that both and are subgroups of 

0 1 2 3 4 5 0 1 2 3 4 5

0 0 1 2 3 4 5 0 0 1 2 3 4 5
1 1 2 3 4 5 0 1 1 2 3 4 5 0
2 2 3 4 5 0 1 2 2 3 4 5 0 1
3 3 4 5 0 1 2 3 3 4 5 0 1 2
4 4 5 0 1 2 3 4 4 5 0 1 2 3
5 5 0 1 2 3 4 5 5 0 1 2 3 4

0 3 0 2 4

0 0 3 0 0 2 4
3 3 0 2 2 4 0

4 4 0 2

For every group with identity is a group called the identity
subgroup, or trivial subgroup of G. Also, every group is a subgroup of itself. All
subgroups of G other than G are called proper subgroups.

The symmetric group with 6 elements has six subgroups, two of which are
the trivial subgroup and itself. Let Then J con-
tains the identity element of By computing

we see that the inverse of is and J is closed under composition, so J
satisfies the conditions of Theorem 6.3.1. Therefore, J is a subgroup of Similar
computations show that and are also
subgroups of The only subgroup of of order three is 
[3 1 2]}.

M = {[1 2 3], [2 3 1],S3S3.
L = {[1 2 3], [1 3 2]}K = {[1 2 3], [3 2 1]}

S3.
[2 1 3][2 1 3]

[1 2 3][1 2 3] = [1 2 3]
[1 2 3][2 1 3] = [2 1 3]
[2 1 3][1 2 3] = [2 1 3]
[2 1 3][2 1 3] = [1 2 3]

S3.[1 2 3]
J = {[1 2 3], [2 1 3]}.S3{[1 2 3]}

S3

e, ({e}, ◦)(G, ◦)

+(K, +)+(H, +)

+(�6, +)+(�6, +)

(�6, +).
K = {0, 2, 4}H = {0, 3}

+�6

(�, +).t�

0 � E
(�, +)

(xy)z = x (yz).

x−1x � H

◦,
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Important questions to be answered are whether the identity element in a sub-
group can be different from the identity element of the original group, and whether
the inverse of an element in H could be different from its inverse in G. The answers
are “no” and “no.”

Lemma 6.3.2 Let H be a subgroup of G. Then

(a) The identity of H is the identity e of G.
(b) If the inverse of x in H is its inverse in G.

Proof.

(a) If i is the identity element of H, then But in G, so and,
by cancellation, 

(b) See Exercise 3. �

The next theorem makes it easier to prove that a subset of a group is a subgroup.
It is given in “iff” form for completeness, but the important result is that only two
properties must be checked to show that H is a subgroup of G. The first is that H is non-
empty. This is usually done by showing that the identity e of G is in H. The other is to
show that whenever a and b are in H. This is usually less work than show-
ing both that H is closed under the group operation and that implies 

Theorem 6.3.3 Let G be a group. A subset H of G is a group H is nonempty and for all 

Proof. First, suppose H is a subgroup of G. Then H is a group, so by Lemma 6.3.2 (a)
H contains the identity e. Therefore Also, if a and b are in H, then (by
the inverse property) and (by the closure property).

Now suppose and for all We show that H is a sub-
group by showing that H satisfies the conditions of Theorem 6.3.1. It is best to pro-
ceed in the order that follows.

(i) so there is some Then 
(ii) Suppose Then e and x are in H, so by hypothesis, 

(iii) Let x and y be in H. Then by (ii), Then x and are in H, so by
hypothesis, �

If a is a member of G, then by the closure property, all powers of a are in G.
The next theorem shows that the set is a sub-
group of G.

Theorem 6.3.4 If G is a group and then the set of all powers of a is an abelian subgroup of G.

Proof. Since is a power of a, the set of all powers of a is nonempty. Suppose x
and y are powers of a. Then and for some integers m and n. Thus 

is a power of a. Therefore, by Theorem 6.3.3, 
is a subgroup of G. The subgroup is abelian because �aman = amn = anm = anam.

{an: n � �}am(an)−1 = ama−n = am−n
xy−1 =y = anx = am

a1 = a

a � G,

{ Á , a−2, a−1, a0 =  e, a, a2, Á }

x (y−1)−1 = xy � H.
y−1y−1 � H.

ex−1 = x−1 � H.x � H.
aa−1 = e � H.a � H.H =� �,

〉

〈a, b � H, ab−1 � H.H =� �
ab−1 � H

b−1 � HH =� �.

ab−1 � H.
a, b � H,  iff  

b−1 � H.b � H
ab−1 � H

i = e.
ii = ieie = i,ii = i.

x � H,
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Examples. For the group the element 2 generates the infinite cyclic

subgroup Thus 2 has

infinite order. We note that is the same subgroup as (2).
The element generates the cyclic subgroup Since this subgroup

has 2 elements, we say has order 2.

Examples. The group has 6 elements: 1, 2, 3, 4, 5, 6. The cyclic
subgroup generated by 1 is {1}, so the order of 1 is 1.

The cyclic subgroup since and
again. The order of 2 is 3.

Computing modulo 7, we have 
and so the nonnegative powers of 3 are, in order, 1, 3, 2, 6,

4, 5, and then 1 again. The element 3 has order 6 because (3) has 6 elements. We can
also show that 4 has order 3; 5 has order 6; and 6 has order 2.

36 = 729 = 1,243 = 5,
32 = 9 = 2, 33 = 27 = 6, 34 = 81 = 4, 35 =

23 = 8 = 1
20 = 1, 21 = 2, 22 = 4,(2) = {1, 2, 4}

(�7 − {0}, · )

 −1
{−1, 1}.−1

A12B
(2) = {2n: n � �} =

{
Á , −1

8
, −1

4
, −1

2
, 1, 2, 3, 4, 8, Á

}
.

(� − {0}, ·),
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DEFINITIONS Let G be a group and Then is
called the cyclic subgroup generated by a.

The order of the element a is the order of (number of elements in)
the group (a). If (a) is an infinite set, we say a has infinite order.

(a) = {an: n � �}a � G.

DEFINITIONS Let G be a group. If there is an element such that
then we say G is a cyclic group. Any element a of G such that

is called a generator for G.(a) = G
(a) = G,

a � G

In the example above, so the element 3 is a genera-
tor. Since 5 has order 6, and 5 is another generator. The elements 3
and 5 are the only generators of 

When the group operation is addition, the cyclic subgroup generated by the
element a is the set of all multiples of a. For example, is cyclic with gener-
ators 1 and For every group is cyclic with generators 1 and 

See Exercise 16.
The cyclic group has only two generators, 1 and 3. This is because the

multiples of 1 and 3 are:

and

The element 2 does not generate it has order 2 and generates the subgroup
{0, 2}.

�4;

4 · 3 = 1 + 3 = 0.4 · 1 = 3 + 1 = 0
3 · 3 = 2 + 3 = 13 · 1 = 2 + 1 = 3
2 · 3 = 3 + 3 = 22 · 1 = 1 + 1 = 2
1 · 3 = 31 · 1 = 1

(�4, +)
m − 1.

(�m, +)m > 1,−1.
(�, +)

�7 − {0}.
(5) = �7 − {0}

�7 − {0} = (3),�7 − {0}
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Example. The group is not cyclic because none of its elements generates the
entire group. For example, for the element [312]

All other powers of [3 1 2] are equal to one of these three elements, so the cyclic
subgroup generated by [3 1 2] is {[1 2 3], [3 1 2], [2 3 1]}. Similar calculations
show that none of the other elements of generate (Exercises 9(a) and 10(a)).
Of course, the fact that is not abelian is sufficient to conclude that is not cyclic,
because every cyclic group is abelian.

Theorem 6.3.5 Let G be a group and a be an element of G with order r. Then r is the smallest pos-
itive integer such that the identity, and 

Proof. Since the order of a is finite, the powers of a are not all distinct. Let 
with Then with Therefore, the set of pos-

itive integers p such that is nonempty. Let k be the smallest such integer. 
This k exists by the Well-Ordering Principle. We prove that by showing that

the elements of (a) are exactly 
First, we show that the elements are distinct. If with

then and contradicting the definition of k.
Second, we show that every element of (a) is one of Consider

for By the Division Algorithm, with Thus
so that with 

We have shown that the elements for are all distinct and that
every power of a is equal to one of these. Since (a) has exactly r elements, 
and �

If has infinite order, then all the powers of a are distinct and

Exercises 6.3

1. By looking for subsets closed under the group operation, then checking the
group axioms, find all subgroups of

� (a) (b)
(c) (�5, +).

(�7 − {0}, ·).(�8, +).

(a) = {Á , a−2, a−1, a0 = e, a1, a2, Á}.

a � G

ar = e.
r = k

0 ≤ s < kas
0 ≤ s < k.at = asamkas = (ak)mas = emas = eas = as,at = amk+s =

0 ≤ s < k.t = mk + st � �.at
e, a1, a2, Á , ak−1.

0 < t − s < k,at−s = e0 ≤ s < t < k,
as = ate, a1, a2, Á , ak−1

a0 = e, a1, a2, Á , ak−1.
k = r〉〈

ap = e
n − m > 0.an−m = e0 ≤ m < n.am = an

(a) = {e, a, a2, Á , ar−1}.ar = e,

S3S3

S3S3

 [3 1 2]6 = [3 1 2]3 = [1 2 3], and so forth.
 [3 1 2 ]5 = [3 1 2]2 = [2 3 1]
 [3 1 2]4 = [3 1 2]1 = [3 1 2]
 [3 1 2]3 = [1 2 3], the identity
 [3 1 2]2 = [2 3 1]
 [3 1 2]1 = [3 1 2]

S3

296 CHAPTER 6 Concepts of Algebra
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2. In the group 
(a) find two different subgroups that have 3 elements.
(b) find two different subgroups that have 4 elements.
(c) Is there a subgroup of that contains 

[2 3 1 4] but not [3 1 2 4]? Explain.
(d) find the smallest subgroup that contains [4 2 1 3] and [3 2 4 1]. (Hint:

Use Theorem 6.3.1.)

3. Prove that if G is a group and H is a subgroup of G, then the inverse of an ele-
ment is the same as its inverse in G (Theorem 6.3.2).

4. Prove that if H and K are subgroups of a group G, then is a subgroup
of G.

5. Prove that if is a family of subgroups of a group G, then 
is a subgroup of G.

6. Give an example of a group G and subgroups H and K of G such that 
is not a subgroup of G.

7. Let G be a group and H be a subgroup of G.
� (a) If G is abelian, must H be abelian? Explain.

(b) If H is abelian, must G be abelian? Explain.

8. Let G be a group. If H is a subgroup of G and K is a subgroup of H, prove that
K is a subgroup of G.

9. Find the order of each element of the group
(a) (b)

� (c) (d)

10. List all generators of each cyclic group in Exercise 9.

� 11. Let G be a group with identity e and let Prove that the set
called the centralizer of a in G, is a subgroup of G.

12. Let G be a group and let Prove that C,
the center of G, is a subgroup of G.

13. Prove that if G is a group and then the center of G is a subgroup of the
centralizer of a in G.

� 14. Let G be a group and let H be a subgroup of G. Let a be a fixed element of G.
Prove that is a subgroup of G.K = {a−1ha: h � H}

a � G,

C = {x � G: for all y � G, xy = yx}.

Ca = {x � G: xa = ax},
a � G.

(�11 − {0}, ·).(�8, +).
(�7, +).S3.

H ∪ K

⋂
a�Δ

Ha{Ha: a � Δ}

H ∩ K

x � H

S4[2 3 1 4][3 1 2 4] = [1 2 3 4].

S4,

6.3 Subgroups 297

� (d) with 
and the table for shown at the 
right.

*

J = {a, b, c, d, e, f}(J, *), * a b c d e f

a a b c d e f
b b a f e d c
c c e a f b d
d d f e a c b
e e c d b f a
f f d b c a e
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15. Let be the group of nonzero complex numbers with complex

number multiplication. Let 

(a) Find 
(b) Find a generator of other than 

16. Prove that for every natural number m greater than 1, the group is
cyclic with generators 1 and 

� 17. Prove that every subgroup of a cyclic group is cyclic.

18. Let be a cyclic group of order 30.
(a) What is the order of  (b) List all elements of order 2.

� (c) List all elements of order 3. (d) List all elements of order 10.

Proofs to Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

� (a) Claim. If H and K are subgroups of a group G, then is a sub-
group of G.
“Proof.” Let Then and Since H and
K are subgroups, and  Therefore, �

(b) Claim. If H is a subgroup of a group G and then 
is a subgroup of G.

“Proof.” First, the identity Thus, Therefore,
Second, let Then and for some

Then we have 
Therefore, xH is a subgroup of G. �

6.4 Operation Preserving Maps

One of the most important concepts in algebra involves mappings between systems.
In particular, we are interested in those functions from one algebraic system 
to another that preserves structure; that is, functions that align the structure of
A with that of B. For example, we will see that under an operation preserving map
the identity element for A corresponds to the identity for B, and if x has an inverse
in A, then the image of x has an inverse in B.

(B, *)
(A, ◦)

x(hk−1 x−1) � xH.
ab−1 = (xh)(xk)−1 = (xh)(k−1)(x−1) =h, k � H.

b = xk,a = xha, b � xH.xH =� �.
x = xe � xH.e � H.

{xh: h � H}
xH =x � H,

ab−1 � H ∩ K.ab−1 � K.ab−1 � H
a, b � K.a, b � Ha, b � H ∩ K.

H ∩ K

a6?
G = (a)

m − 1.
(�m, +)

a.(a)
(a).

a = 1 + i
√

3

2
.

(� − {0}, ·)

298 CHAPTER 6 Concepts of Algebra

DEFINITION Let and be algebraic systems and f be a
function from A to B. Then f is operation preserving (OP) for all

f  (x ◦ y) = f (x) * f (  y).

x, y � A,
  iff  

(B, *)(A, ◦)

Because and are elements in B, the definition of operation
preserving is a statement about equality of elements in B. Calculating each of

and requires two steps: performing an operation and applying
the function. If f is an OP map, the equation means that thef  (x ◦ y) = f  (x ) * f  (   y)

f  (x ) * f  (   y)f  (x ◦  y)

f  (x ) * f  (   y)f  (x ◦ y)
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result is the same whether the operation is performed first or the images 
and are determined first. Another way to say a mapping is operation preserv-
ing is “the image of the product is the product of the images.”

You have already encountered OP mappings in previous courses. For example,
the familiar equation tells us that the logarithm function
from to is operation preserving.

Examples. Let be the set of all polynomials with real coefficients with the 
operation of polynomial addition. Let D be the differentiation mapping

where for each the first derivative
of the polynomial f. The function D is an OP map because we know that

If we change the operation on to polynomial multiplication, then
is not operation preserving because the derivative of a prod-

uct is not always equal to the product of the derivatives.

Example. Let the operation on be defined by setting 
and let be the usual multiplication on Then the function

given by is operation preserving.

Proof. Let and be elements of Then

Also

Therefore, f is operation preserving. �

The next three theorems explain in more detail what we mean by saying that an
OP map preserves the structure of 

Theorem 6.4.1 Let f be an OP map from to Then is an algebraic structure.

Proof. What we must show is that is closed under the operation *; that
is, if then

First, note that because A is nonempty, is nonempty. Assume that
Then there exist elements x and y of A such that and

Then so is the image of which
is in A. Therefore, � u * v � Rng (  f ).

x ◦ y,u * vu * v = f (x) * f (  y) = f (x ◦ y),f (  y) = v.
f (x) = uu, v � Rng (  f ).

Rng (  f )
u * v � Rng (  f ).〉u, v � Rng (  f ),

Rng (  f )〈

(Rng (  f ), *)(B, *).(A, ◦)

(A, ◦).f : (A, ◦) → (B, *)

f  (x, y) ·  f  (u, v) = (2x · 3y) · (2u · 3v) = 2x+u · 3y+v.

f  ( (x, y) ◦ (u, v)) =  f  (x + u, y + v) = 2x+u · 3y+v.

� × �.(u, v)(x, y)

f (a, b) = 2a3bf : (� × �, ◦) → (�, · )
�.·(a +  c, b + d )

(a, b) ◦ (c, d ) =� × �◦

D: (�[x], ·) →  (�[x], ·)
�[x]

D (  f + g) =  
d

dx
 (  f + g) =  

df

dx
 +  

dg

dx
 = D (  f  ) + D (g).

f � �[x], D(  f  ) = df
dx

,D: (�[x], +) → (�[x], +),

(�[x], +)

(�, +)((0, ∞), · )
log (x · y) =  log x + log y

f  (   y)
f  (x )x ◦ y

6.4 Operation Preserving Maps 299
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Theorem 6.4.2 Let f be an OP map from onto If is commutative on A, then is 
commutative on B.

Proof. Assume that f is OP, f is onto B, and is commutative on A. Let u and v be
elements of B. Then there are x and y in A such that and Then

Therefore �

The properties of associativity, existence of identities, and existence of
inverses are all preserved by an OP mapping.

Theorem 6.4.3 Let f be an OP map from onto 

(a) If is associative on A, then is associative on B.
(b) If e is the identity for A, then is the identity for B.
(c) If is the inverse for x in A, then is the inverse for in B.

Proof. See Exercise 9. �

Example. For each natural number m, the canonical map is an important operation
preserving map from onto We define by setting

the equivalence class determined by x. The canonical map is operation
preserving because, by Theorem 6.1.2(a),

The canonical map H is a surjection because for every and 

We note that operation preserving mappings need not be limited to an algebraic
structure with a single operation. Since

the canonical map H also preserves multiplication. Thus, is
OP for both multiplication and addition.

Special terminology is used for operation preserving mappings where the alge-
braic structures involved are groups.

H : (�, +, ·) → (�m, +, ·)

H(ab) = ab = a · b = H(a) · H(b),

H(k) = k.
k � �k � �m,

for all a, b � �, H(a + b) = a + b = a + b = H(a) + H(b).

H (x ) = x,
H  : � → �m(�m, +).(�, +)

f  (x )f  (x−1)x−1
f (e)
*◦
(B, *).(A, ◦)

u * v = v * u.

= v * u.
= f  (y) * f  (x)
= f  (y ◦ x)
= f  (x ◦ y)

u * v = f  (x) * f  (y)

v = f  (y).u = f  (x )
◦

*◦(B, *).(A, ◦)

300 CHAPTER 6 Concepts of Algebra

DEFINITIONS Let and be groups. An OP mapping
is called a homomorphism from to The

range of h is called the homomorphic image of under h.(G, ◦)
(H, *).(G, ◦)h  : (G, ◦) → (H, *)

(H, *)(G, ◦)
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The function where is the set of all integer multiples of
5 and is an example of a homomorphism. To verify this, we note that for
all The homomorphism f
maps onto because for each for some integer k and therefore,

Thus is the homomorphic image of under f.

Example. Let and Define 
by and See Figure 6.4.1.
It can be verified by checking all cases that is a homomor-
phism onto (�3, +).

T : (�6, +) → (�3, +)
T(2) = T(5) = [2].T(1) = T(4)= [1],T(0) = T(3) = [0],

T : �6 → �3�3 = {[0], [1], [2]}.�6 = {0, 1, 2, 3, 4, 5}

(�, +)(5�, +)f  (k) = 5k = w.
w � 5�, w = 5k5�,

x, y � �,  f (x + y) = 5(x + y) = 5x + 5y =  f (x) + f ( y).
 f (x) = 5x,

5�f : (�, +) → 5�, +)

6.4 Operation Preserving Maps 301

Theorem 6.4.4 Let and be groups. If is a homomorphism, then
is a subgroup of Furthermore, if the operation is commuta-

tive, then * is a commutative operation on In other words,

(a) the homomorphic image of a group is a group, and
(b) the homomorphic image of an abelian group is an abelian group.

Proof. This theorem is a restatement of previous results using our new terminology.
The image of a group under a homomorphism is an algebraic system (Theorem 6.4.1);
the image is associative, has an identity element, and every element has an inverse
(Theorem 6.4.3); and, if a group is abelian, then its image is abelian (Theorem 6.4.2).  �

Example. Let be any group with identity e. The mapping given
by for all is a homomorphism, called the trivial homomorphism.
We can verify this by observing that for both and

Therefore, In this case the homo-
morphic image of is 

Example. The function given by is a homomorphism
since for all [x] and [y] in 

 = T([x]) + T([y]).
 = 2x + 2y

 = 2x + 2y

 = 2(x + y)

T ([x] + [y]) = T ([x + y])

�3,
T ([x]) = 2xT: �3 → �6

({e}, ◦).(G, ◦)
F (x ◦ y) = F (x) ◦ F (y).F (x) ◦ F (y) = e ◦ e = e.

F (x ◦ y) = ex, y � G,
x � GF (x) = e

F: G → G(G, ◦)

(Rng (  f ).
·(K, *).(Rng (  f ), *)

f : (G, ·) → (K, *)(K, *)(G, ·)

�6 �3

0�

1�

2�

3�

4�

5�

[0]

[1]

T

[2]

Figure 6.4.1
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However, so T is not onto We note that is a
subgroup of in agreement with Theorem 6.4.4.�6,

({0, 2, 4}, + )�6.Rng (T ) = {0, 2, 4},

302 CHAPTER 6 Concepts of Algebra

The word isomorphic comes from the Greek words isos (equal) and morphe
(form), literally meaning “equal form” because two isomorphic groups will differ
only in the names or nature of their elements. All their algebraic properties are
identical. Inverses and composites of isomorphisms are also isomorphisms. Thus,
the relation of being isomorphic is an equivalence relation on the class of all
groups. (See Exercise 19.)

The three groups and of order 2 are iso-
morphic, where A is a nonempty set and is the symmetric difference opera-
tion defined by The Cayley tables for the three
groups are

0 1 1 �1 Ø A

0 0 1 1 1 �1 Ø Ø A
1 1 0 �1 �1 1 A A Ø

In fact, any two groups of order two are isomorphic (see Exercise 10(a)).

Example. Let and be multiplication. Then is a group iso-
morphic to The one-to-one correspondence where is
OP because 

Example. The groups and are isomorphic. We define an
isomorphism as follows, keeping in mind that ele-
ments of are equivalence classes mod 4, while elements of are equivalence
classes mod 5:

The Cayley tables for the groups are shown next. The elements of are
listed in the order determined by their preimages. This makes it easier to see that the
two groups have the same structure.

�5 − {0}

h  (3) = 3.
h   (2) = 4, and
h  (1) = 2,
h  (0) = 1,

�5�4

h : (�4, +) → (�5 − {0}, ·)
(�5 − {0}, ·),(�4, +)

 f (x + y) = 2x+y = 2x
  2y = f (x )  f ( y).

f (x) = 2x,f : � → K,(�, +).
(K, ·)·K = {2x

 : x � �}

Δ·+

X Δ Y = (X − Y ) ∪ (Y − X).
Δ

({�, A}, Δ)(�2, +), ({1, −1}, ·),

DEFINITIONS Let and be groups. A homomorphism
that is one-to-one and onto H is called an isomor-

phism. If h is an isomorphism, we say and are isomorphic.(H, *)(G, ◦)
h: (G, ◦) → (H, *)

(H, *)(G, ◦)
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1 2 4 3

1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

We claimed in Section 6.2 that for every group there is a permutation group with
the same structure. This result, due to Arthur Cayley, is proved in the next theorem.

Theorem 6.4.5 Cayley’s Theorem
Every group G is isomorphic to a permutation group.

Proof. We choose the set G itself to be the set of objects to be permuted. By The-
orem 6.2.5(a) for every a in G the function where for each 

is a permutation of G. Let By Theorem 6.2.3, the set of
all permutations of the elements of G is a group with the operation of function com-
position. We claim that is the image of a one-to-one homomorphism from G to

and conclude that G is isomorphic to the permutation group 
Let be given by Let We will prove that f is a

homomorphism by showing that Let Then,

Thus for all Therefore, f is a homomorphism.
To show that f is one-to-one, suppose that Then Therefore,

for every In particular, if is the identity for so 
By definition, every permutation in is for some Therefore, f maps

onto 
We have shown that is the homomorphic image of G, so by Theorem 6.4.4,

is a group. Since f is one-to-one, f is an isomorphism. Therefore G and are
isomorphic groups. �

Example. Let be the group of four complex numbers, where
is the usual multiplication of complex numbers. The corresponding group of per-
mutations, as described above, consists of the four left translations by the elements of
G. For example, is the mapping that multiplies each element of G on the left by i:

li(−i) = i · (−i) = 1.
li(i) = i · i = −1, and
li(−1) = i · (−1) = −i,
li(1) = i · 1 = i,

li

�
·{1, −1, i, −i}(G, ·)

��
�

�.
a � G.la�

a = b.G, ae = be,ex � G.ax = bx
la = lb.f (a) = f (b).

a, b � G.f (ab) = f (a) ◦ f (b)

= (  f  (a) ◦ f (b))(x).
 = (la ◦ lb)(x)
 = la(lb(x))
 = a(bx)
 = (ab)x

f (ab)(x) = lab(x)

x � G.f (ab) = f (a) ◦ f (b).〉
a, b � G. 〈f (a) = la.f : G → �

�.�,
�

�� = {la 

: a � G}.x � G,
la(x) = axla: G → G,

(�5 − {0}, ·)(�4, +)

21033
10322
03211
32100

·3210+

6.4 Operation Preserving Maps 303
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Thus, The other three permutations are 
and The tables for G and show that they

have the same structure.

1 �1 i �i �1 ��1 �i

1 1 �1 i �i �1 �1 ��1 �i

�1 �1 1 �i i ��1 ��1 �1 �i

i i �i �1 1 �i �i ��1 �1

�i �i i 1 �1 �i �1 ��1

Finally, we note that G (and therefore is isomorphic to (See Exer-
cise 17.) This fact suggests the possibility that all groups of order 4 are isomorphic
to See Exercise 10(c) for a counterexample to this conjecture.

Exercises 6.4

1. Define SQRT: by SQRT
(a) Is SQRT: operation preserving?
(b) Is SQRT: operation preserving?

2. Define SQR: by SQR
(a) Is SQR: operation preserving?
(b) Is SQR: operation preserving?

3. Define on by setting 
(a) Show that is an algebraic system.
(b) Show that the function h from the system to given by

is a one-to-one function from the set of complex
numbers that is onto and is operation preserving.

� 4. Let be the set of all real-valued integrable functions defined on the interval
[a, b]. Then is an algebraic structure, where is the addition of +(�, +)

�

� × �

h(a + bi) = (a, b)
(� × �, ⊗)(�, ·)

(� × �, ⊗)
(a, b) ⊗ (c, d) = (ac − bd, ad + bc).� × �⊗

(�, ·) → (�, ·)
(�, +) → (�, +)

(x) = x2.� → �

(�+, · ) → (�+, · )
(�+, +) → (�+, +)

(x) =
√

x.�+ → �+

(�4, +).

(�4, +).�)

l−il−i

l−i

l−i

l−i

l−i◦·
(�, ◦)(G, ·)

�l−i = [−i i 1−1].l−1 = [−1 1 −i  i],
l1 = [1 −1 i −i],li = [i −i −1 1].

304 CHAPTER 6 Concepts of Algebra

functions. Define by Use your 

knowledge of calculus to verify that I is an OP map.

5. Let f: and be OP maps.
(a) Prove that is an OP map.
(b) Prove that if is a function, then is an OP map.

6. Let be the set of all matrices with real entries. Define Det: by

Det ca b

c d
d = ad − bc.

� → �2 × 2�

f −1f −1
g ◦ f

g: (B, *) → (C, ×)(A, ·) → (B, *)

I (  f ) = 1
b

a  f (x) dx.I: (�, +) → (�, +)
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(a) Prove that Det: is operation preserving, where 
denotes with matrix multiplication.

(b) Prove that Det: is not operation preserving, where
denotes with matrix addition.

7. Let Conj: be the conjugate mapping for complex numbers given by
Conj 
(a) Prove that Conj: is operation preserving, where

denotes the complex numbers with addition.
(b) Prove that Conj: is operation preserving, where 

denotes the complex numbers with multiplication.

8. Let f be a function from set A to set B. Let f and be the induced functions
on as defined in Section 4.5.

� (a) Prove that the induced function is an OP
map.

(b) Prove that the induced function is an OP
map.

(c) Prove that the induced function is an OP
map.

9. Prove Theorem 6.4.3.

10. � (a) Show that any two groups of order 2 are isomorphic.
(b) Show that any two groups of order 3 are isomorphic.

� (c) Prove that there exist two groups of order 4 that are not isomorphic.

11. Let and be the sets of integer multiples of 3 and 6, respectively. Let f
be the function from to given by 
(a) Prove that f is a homomorphism.
(b) What group is the homomorphic image of under f ?

12. Let and be the groups in Exercise 12 and let g be the func-
tion from to given by Is g a homomorphism? Explain.

13. Let be the group with the operation table shown here.

a b c

a a b c
b b c a
c c a b

Verify that the mapping defined by
and is a homomorphism.

14. Let and 
� (a) Prove that the function given by is well

defined and is a homomorphism from to 
� (b) Find and give the operation table for the subgroup of

15. Let and Define 
by f (xq) = [4x].

f  : �15 → �12{[0], [1], Á , [11]} = �12.{0, 1, Á ,14} = �15

�24.
Rng (  f )Rng (  f )

(�24, +).(�18, +)
f (x) = [4x]f : �18 → �24

{[0], [1], Á , [23]} = �24.{0, 1, Á ,17} = �18

g(2) = g(5) = cg(1) = g(4) = b,g(0) = g(3) = a,
g: (�6, +) → ({a, b, c}, ◦)

◦
({a, b, c}, ◦)

g(x) = x + 3.6�3�

(6�, +)(3�, +)

(3�, +)

f  (x ) = 4x.(6�, +)(3�, +)
6�3�

f −1: (�(B), ∪) → (� (A), ∪)

f −1: (�(B), ∩) → (� (A), ∩)

f : (�(A), ∪) → (� (B), ∪)
� (A)

f −1

(�, ·)(�, ·) → (�, ·)
(�, +)

(�, +) → (�, +)
(a + bi) = a − bi.

� → �

�(�, +)
(�, +) → (�, +)

�
(�, ·)(�, ·) → (�, ·)
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(a) Prove that f is a well-defined function and a homomorphism from
to 

(b) Find and give the operation table for this subgroup of 

16. Let and be groups, i be the identity element for H, and
be a homomorphism. The kernel of f is 

is all the elements of G that map to the identity in
H. Show that is a subgroup of G.

17. Show that and are isomorphic.

18. Is isomorphic to Explain.

19. Prove that the relation of isomorphism is an equivalence relation. That is,
prove that
(a) if is a group, then is isomorphic to 
(b) if is isomorphic to then is isomorphic to 
(c) if is isomorphic to and is isomorphic to 

then is isomorphic to 

20. Use the method of proof of Cayley’s Theorem to find a group of permutations
isomorphic to
(a)
(b)
(c)

Proofs to Grade 21. Assign a grade of A (correct), C (partially correct), or F (failure). Justify
assignments of grades other than A.
(a) Claim. Let be the operation on defined by setting

and let – be the usual subtraction on 
Then the function f given by is an OP map from

to .

“Proof.” (4, 2) and (3, 1) are in Then 
whereas 

so f is operation preserving. �
(b) Claim. Let and be OP maps.

Then the composite is an OP map.
“Proof.”

�

6.5 Rings and Fields

Thus far we have considered algebraic structures with exactly one binary operation,
and in this setting we have explored the derivation of structural properties (such as
uniqueness of the identity element and cancellation) and the concepts of substruc-
ture and isomorphism. We have considered systems such as and as
distinct algebraic systems, ignoring any interaction between the two operations. In
this section we extend our study of algebraic structures by investigating systems

(�, ·)(�, +)

(g ◦  f  (a))(g ◦  f  (b)).
g ◦  f (ab) = g (  f  (ab)) = g (  f  (a) f  (b)) = g (  f  (a)) g (  f  (b)) =

g ◦  f : (G, *) → (K, ⊗)
g: (H, ·) → (K, ⊗)f : (G, *) → (H, ·)

f (4, 2) − f (3, 1) = −2 − 0 = −2,f (7, 3) = 7 − 3 · 3 = −2,
f ((4, 2) ◦ (3, 1)) =� × �.

(�, - )(� × �, ◦)
f (a, b) = a − 3b

�.(a, b) ◦ (c, d ) = (a + c, b + d )
� × �◦

(�, +).
(�5, +).
(�3, +).

(K, ⊗).(G, ·)
(K, ⊗),(H, *)(H, *)(G, ·)

(G, ·).(H, *)(H, *),(G, ·)
(G, ·).(G, ·)(G, ·)

(�6, +)?S3

({1, −1, i, −i}, ·)(�4, +)

ker (  f   )
ker (  f   ){x � G: f (x) = i}.

ker (  f   ) =h: (G, ◦) → (H, *)
(H, *)(G, ◦)

�12.Rng (  f   )
(�12, +).(�15, +)
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with two binary operations (addition and multiplication). We will identify those
algebraic properties of that distinguish them from the natural numbers
and from one another.

The two common properties of all these systems that describe the interaction
between addition and multiplication are the distributive laws. Thus we begin by
making the distributive laws part of the definition for the algebraic structure called a
ring.

�, �, and �

6.5 Rings and Fields 307

The definition of a ring says a great deal about addition but does not
require that multiplication satisfy any of the properties for a group operation
except associativity, nor that the multiplication operation be commutative. As
we did for groups, we often write ab instead of and we write for

Examples. The real number system with addition and multiplication is a
ring. The systems and of integers and rational numbers also form
rings. If E is the set of even integers, then is a ring.

The number system is not a ring because is not
a group—only the element 0 has an additive inverse.

Example. Let �2 be the set of all 2 by 2 matrices with real number entries.
Then is a ring because matrix addition is associative and commuta-
tive, matrix multiplication is associative, and multiplication distributes over

(�2, +, ·)

(� ∪ {0}, +)(� ∪ {0}, +, ·)
(E, +, ·)

(�, +, ·)(�, +, ·)
(�, +, ·)

a + (−b).
a − ba · b,

DEFINITION A ring is a set R together with two binary 
operations and that satisfy the following axioms:

(1) is an abelian group. Thus for all 
(a) there is an identity element such that 
(b) for every there is an additive inverse such that

(c)
(d)

(2) The operation is associative. Thus for all 

(3) The multiplication operation is distributive over addition. Thus for all

.(a + b) · c =  (a · c) + (b · c)

a · (b + c) =  (a · b) + (a · c) and

a, b, c � R,

a · (b · c) = (a · b) · c.

a, b, c � R,·
a + b = b + a.
a + (b + c) = (a + b) + c.
a + (−a) = (−a) + a = 0.

−a � Ra � R,
a + 0 = 0 + a = a.0 � R

a, b, c � R,(R, +)

·+
(R, +, ·)
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addition. The additive identity is the zero matrix and the additive inverse

of is the matrix Multiplication in this ring is not 

commutative.

Example. Let be the set of all functions from to Then is
a ring. (See Exercise 5.)

Theorem 6.5.1 For every is a ring.

Proof. We know by Theorem 6.1.3(a) that for every natural number m, is
an abelian group, and the operation is associative on by Theorem 6.1.3(b). 
We need only verify the distributive axioms to show that is a ring. 
Let a, b, c be integers. Then

The proof of the other distributive axiom is an exercise. Therefore, is a
ring. �

We next consider properties that are shared by every ring As a first
step, we note that since is an abelian group, properties that hold for every
abelian group certainly hold for 

Theorem 6.5.2 Let be a ring, and Then

(a) the additive identity (zero) of R is unique.
(b) additive inverses (negatives) of elements of R are unique.
(c) left and right cancellation hold in R. That is,

(d) and 
(e) for all integers m and n, and

m(na) = (mn)a.
(m + n)a = ma + na,m(a + b) = ma + mb,

−(a + b) = (−a) + (−b).−(−a) = a

if b + a =  c + a, then b = c.
if a + b =  a + c, then b = c, and

a, b, c � R.(R, +, ·)

(R, +).
(R, +)

(R, +, ·).

(�m, +, ·)

= a · b + a · c            〈by definition of multiplication in �m〉.
= ab + ac        〈by definition of addition in �m〉
= (ab + ac)         〈by distributivity of + and · in �〉
= a(b + c)       〈by definition of multiplication in �m〉

a · (b + c ) = a · (b + c)       〈by definition of addition in �m〉

(�m, +, ·)
�m·

(�m, +)

(�m, +, ·)m � �,

(� (�), +, ·)�.�� (�)

− ca b

c d
d = c−a −b

−c −d
d .ca b

c d
d

c0 0

0 0
d
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Proof. All the above are restatements of properties of abelian groups developed in
Sections 6.2 and 6.3. �

The operations in property (e) of Theorem 6.5.2 must be interpreted carefully.
Addition in the expression involves the ring addition
operation for both sides of the equation. The terms ma, mb and do not rep-
resent multiplication of ring elements, but instead are expressions for multiples of a, b,
and The expression however, involves two different (m + n)a = ma + na,a + b.

m(a + b)+
m(a + b) = ma + mb

6.5 Rings and Fields 309

addition operations. The term adds two integers, but the sign in the term
means the (ring) addition of two ring elements. Likewise, in the equation

mn refers to multiplication of integers, whereas m(na) and (mn)a rep-
resent the ring sums (m times) and (mn times),
respectively.

The distributive axioms allow us to derive properties that relate multiplication
to the zero and negatives in a ring.

Theorem 6.5.3 Let be a ring with zero element 0. Then, for all 

(a)
(b)
(c)
(d) and 

Proof.

(a) Let We use the fact that 0 is the additive identity in two different 
ways. Then By the left
cancellation property, The proof that is an exercise.

(b) Let To show that we must show that
plays the role of the inverse of Then 

Since is a negative of and nega-
tives are unique, The proof that is
an exercise.

(c) Let Then and b are in R, so by part (b), 
By Theorem 6.5.2(d), so

(d) Let Then 
The proof that 

is an exercise. �

In Section 6.4 we discussed operation preserving maps and defined a group
homomorphism as a function that preserves the operation. A ring homomorphism
must be operation preserving for both addition and multiplication.

b · c(a − b) · c = a · c −a · b + [−(a · c)] = a · b − a · c.
a · (b − c) = a · [b + (−c)] = a · b + a · (−c) =a, b, c � R.

(−a) · (−b) = a · b.
−[−(a · b)] = a · b,−[(−a) · b] = −[−(a · b)].

(−a) · (−b) =-aa, b � R.

(−a) · b = −(a · b)a · (−b) = −(a · b).
(a · b)a · (−b)a · (−b + b) = a · 0 = 0.

a · (−b) + (a · b) =a · b.〉
a · (−b)a · (−b) = −(a · b),〈a, b � R.

a · 0 = 00 = 0 · a.
(0 · a) + 0 = 0 · a = (0 + 0) · a = (0 · a) + (0 · a).〉

〈a � R.

(a − b) · c = a · c − b · c.a · (b − c) = a · b − a · c
(−a) · (−b) = a · b.
a · (−b) = (−a) · b = −(a · b).
0 · a = a · 0 = 0.

a, b, c � R,(R, +, ·)

a + a + Á + ana + na + Á + na
m(na) = (mn)a,
ma + mb

+m + n
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Example. Let be the canonical function given by
We have seen in Section 6.4 that and

are both operation preserving. Therefore h is a ring
homomorphism.

Example. The function  defined by is a ring homomorphism.

Proof. Let Then 
Also, We used the fact that

�

The ring of integers has several properties beyond those required to
be a ring. For example, the element 1 is a multiplicative identity, also called the
unity element. Multiplication in the integers is commutative. The integers also have
the property that for any two integers a and b, whenever either or

That is, in the ring of integers there are no divisors of zero. These properties
are collected in the next definitions.
b = 0.

a = 0ab = 0,

(�, +, ·)

3 = 9 (mod 6).〉
〈g (xy) = 3xy = 9xy = 3x · 3y = g (x) · g  ( y).

g  (x + y) = 3(x + y) = 3x + 3y = g (x) + g  ( y).x, y � �6.

g (x) = 3xg : �6 → �6

h: (Z, ·) → (Zm, ·)
h : (�, +) → (�m, +)h  (x) = x.

h : (�, +, · ) → (�m, +, ·)

310 CHAPTER 6 Concepts of Algebra

DEFINITIONS Let and be rings. A function
is a ring homomorphism for all 

If h is one-to-one and onto S, then h is a ring isomorphism.

h  (a · b) = h  (a) ⊗ h  (b).

h  (a + b) = h (a) ⊕ h  (b) and

a, b, � R,  iff  h : R → S
(S, ⊕, ⊗)(R, +, ·)

DEFINITIONS Let be a ring.

is a ring with unity there is an element such that for
all 

is a commutative ring for all 
is an integral domain R is a commutative ring with unity

element and R has no divisors of zero.1, 1 =� 0,
  iff  (R, +, ·)

a, b, � R, a · b = b · a.  iff  (R, +, ·)
a · 1 = 1 · a = a.a � R,

1 � R  iff  (R, +, ·)
(R, +, ·)

Examples. All three of and are integral domains. For
every natural number m, the system is a commutative ring with unity. The
next theorem reveals which of the modular arithmetic rings are integral domains.

Theorem 6.5.4 For the ring has no zero divisiors m is a prime.

Proof. See Exercise 13. �

Examples. The ring of even integers is a commutative ring with no divisors of zero,
but it is not an integral domain because it has no unity element. The ring of 2 by 2

  iff  (�m, +, ·)m � �,

(�m, +, ·)
(�, +, ·)(�, +, ·),(�, +, ·),
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matrices is a ring with unity because the identity matrix is the 

multiplicative identity, but it is not an integral domain because matrix multiplication

is not commutative and the ring has zero divisors. The matrices and

are zero divisors because 

The ring of functions from to is a commutative ring with unity
but is also not an integral domain. The constant function , with range {1}, is the
multiplicative identity. To construct a pair of zero divisors in the ring we let

and and be the characteristic functions of the sets
A and B, respectively. Then because for
all 

In an integral domain we can apply cancellation laws to simplify products with
a nonzero common factor.

Theorem 6.5.5 Let be an integral domain, and with If then
and if then 

Proof. Assume and Then so by Theorem
6.5.4(d), Since there are no divisors of zero in R and 

Therefore, The proof that implies is an
exercise. �

Let be an integral domain. One might hope that would be an
abelian group, since is associative and commutative and 1 is the multiplicative
identity. On second thought this is impossible, because 0 cannot have a multiplica-
tive inverse. (See Exercise 12.) It is possible, however, that the nonzero elements of
R all have inverses. An integral domain with this property is called a field.

·
(R, ·)(R, +, ·)

b = cb · a = c · ab = c.b − c = 0.
a =� 0,a · (b − c) = 0.

a · b − a · c = 0,a · b = a · c.a =� 0

b = c.b · a = c · a,b = c,
a · b = a · c,a =� 0.a, b, c � R(R, +, ·)

x � �.
xA · xB(x) = xA(x) · xB(x) = 0xA · xB = 0

xBxAB = (−∞, 0),A = [0, ∞),
� (�),

C1

��(�(�), +, ·)

AB = c0 0

0 0
d .B = c 1 1

−2 −2
d

A = c2 1

6 3
d

I = c1 0

0 1
d

6.5 Rings and Fields 311

DEFINITION The ring is a field is an integral
domain and is an abelian group.(R − {0}, ·)

(R, +, ·)  iff  (R, +, ·)

Examples. The rings of rational numbers and real numbers are fields. The ring
of integers is not a field, because no element of (other than 1 and has a
multiplicative inverse in Sets with only finitely many elements can 
also be fields: the ring is a field if and only if m is prime. (See
Exercise 15.)

A field can also be described as an algebraic structure such that:

(i) is an abelian group with identity 0.
(ii) is an abelian group with identity 1.(R − {0}, ·)

(R, +)

(R, +, ·)

(�m, +, ·)
�.

−1)�
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(iii) For all 
(iv)

The proof of this fact is an exercise. All that is required is to verify that the second
distributive axiom holds and that R has no divisors of zero.

Rings, rings with unity, commutative rings, integral domains, and fields are all
objects of important study in mathematics. In Chapter 7 we will consider properties
that distinguish the field from all other fields.

Exercises 6.5

1. Which of the following is a ring with the usual operations of addition and
multiplication? For each structure that is not a ring, list the ring axioms that
are not satisfied.
(a)

� (b) the closed interval 
(c) where 
(d) where 

2. Let be the set is called adjoin 
Define addition and multiplication on in the usual way. That is,

Prove that is a ring.

3. Complete the proof that for every is a ring (Theorem 6.5.1)
by showing that for all integers a, b, and c.

� 4. Define addition and multiplication on the set as follows. 
For and 

Prove that is a ring.

5. Let be the set of all functions from to and define addition 
and multiplication operations on as follows. For and

and Prove that
is a ring.

6. Let be a ring and Prove that is the unique solution
to the equation 

7. Prove the remaining parts of Theorem 6.5.3: for all 
(a)
(b)
(c) (a − b) · c = (a · c) − (b · c).

(−a) · b = − (a · b).
a · 0 = 0.

a, b, c � �,

x + a = b.
b + (−a)a, b � R.(R, +, ·)

(� (�), +, ·)
(  f · g)(x) = f  (x) · g (x).(  f + g)(x) = f  (x) + g (x)x � �,

f, g � � (�)� (�)
��� (�)

(� × �, ⊕, ⊗)(ac, bd ).
(a, b) ⊗ (c, d) =(a, b) ⊕ (c, d ) = (a + c, b + d )a, b, c, d � �,

� × �⊗⊕
(b + c)a = ba + ca (mod m)

(�m, +, ·)m � �,

(� [
√

2], +, ·)

= ac + 2bd + (ad + bc)
√

2.

 (a + b
√

2) ·  (c + d
√

2) = ac + ad
√

2 + bc
√

2 + bd(
√

2)2

 (a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2  and

� [
√

2]
√

2.”
“��[

√
2]{a + b

√
2 : a, b � �}.�[

√
2]

i2 = −1{bi : b � �},
i2 = −1{a + bi: a, b � �},

[−1, 1]
�

�

0 =� 1.
a · (b + c) = (a · b) + (a · c).a, b, c � R,
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8. We define a subring of a ring in the same way we defined a subgroup of a
group: is a subring of if and only if is a ring, 
and is a ring with the same operations. For example, the ring of even
integers is a subring of the ring of integers, and both are subrings of the ring
of rational numbers.
(a) Prove that the ring is a subring of any ring (called

the trivial subring).
(b) (Subring Test) Prove that if is a ring, T is a nonempty subset of

R, and T is closed under subtraction and multiplication, then is
a subring.

9. Let Apply the Subring Test (Exercise 8(b)) to show that
is a subring of 

10. (a) Show that the function defined by is not a ring
homomorphism.

(b) Show that the function defined by is not a ring
homomorphism.

(c) Let be the set of all polynomials p(x) in the variable x with integer
coefficients. Show that the function defined by 

is a ring homomorphism.

11. Suppose P is a set of ordered pairs of integers, and that is a ring,
where

Suppose is given by Prove that f
is a ring homomorphism.

12. Let be an integral domain. Prove that 0 has no multiplicative inverse.

13. Let 
� (a) Prove that m is prime has no zero divisors. (Theorem

6.5.4).
(b) Deduce that is a field m is prime.

14. Complete the proof of Theorem 6.5.5. That is, prove that if is an
integral domain, and then implies 

15. Let be an algebraic structure such that
(i) is an abelian group with identity 0.

(ii) is an abelian group with identity 1.
(iii) For all 
(iv)

Prove that is a field by showing that
(a) for all 
(b) R has no divisors of zero.

(a + b) · c = (a · c) + (b · c).a, b, c � R,
(R, +, ·)

0 =� 1.
a · (b + c) = (a · b) + (a · c).a, b, c � R,

(R − {0}, ·)
(R, +)

(R, +, ·)
b = c.b · a = c · aa =� 0,a, b, c � R

(R, +, ·)
  iff  (�m, +, ·)

(�m, +, ·)  iff  

m � �.

(R, +, ·)

f  (p/q) = (p, q).f : (�, +, ·) → (P, ⊕, ⊗)

(a, b) ⊕ (c, d ) = (ad + bc, bd )  and (a, b) ⊗ (c, d) = (ac, bd).

(P, ⊕, ⊗)

p (0)
g (p(x)) =g : �[x] → �

�[x]

h  (x) = 2xh : �6 → �6

h  (x) = 3xh : � → �

(�, +, ·).(3�, +, ·)
3� = {3k: k � �}.

(T, +, ·)
(R, +, ·)

(R, +, ·)({0}, +, ·)

(S, +, ·)
S ⊆ R,(R, +, ·)(R, +, ·)(S, +, ·)
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Proofs to Grade 16. Assign a grade of A (correct), C (partially correct), or F (failure). Justify
assignments of grades other than A.
(a) Claim. If is a ring, then the equation

has a unique solution.
“Proof.” Suppose p and q are two solutions to Then 
and Therefore, Therefore, �

(b) Claim. If is a finite integral domain, then is a field.
“Proof.” Suppose R has n elements. Let Then the powers
of are not all distinct. Therefore, for
integers t, r, where we may assume that Then and
therefore, Thus, Therefore, x has an inverse.
Hence, R is a field. �

e = x · xr−t−1.e = xr−t.
x−tx t = x−txrt < r.

xt = xrx: e = x0, x, x2, x3, Á , xn
n + 1x � R.

(R, +, ·)(R, +, ·)
p = q.ap = aq.aq = b.

ap = bax = b.
ax = b

a, b � R and a =� 0,(R, +, ·)
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In this chapter we give an introduction to the analyst’s point of view of the real
numbers. We consider the reals as a field (a set of numbers with operations of
addition and multiplication) that is ordered (so that all the real numbers may
be thought of as forming a line) and complete (so that there are no missing num-
bers anywhere along the line). We examine in depth just what we mean when we
say that there are no missing numbers along the real line; each section of this
chapter addresses the concept of completeness from a different perspective.

In Section 7.1 we begin with the idea that there are enough real numbers so that
there is always a “best” bound for every bounded set. Section 7.2 considers “open,”
“closed,” and “compact” subsets of the reals and establishes an important relation-
ship among these concepts: the Heine–Borel Theorem, whose proof is based on the
completeness of the reals. The Bolzano–Weierstrass Theorem of Section 7.3 says
that in sets meeting certain conditions, there will always be some element or ele-
ments of the set for which there are infinitely many other nearby elements. This fact
is proved using the Heine–Borel Theorem. The Bounded Monotone Sequence
Theorem of Section 7.4 is derived from the Bolzano–Weierstrass Theorem. It says
that if a sequence is increasing (or decreasing) and bounded, then there are enough
real numbers so that the limit of the sequence exists. Finally, Section 7.5 shows how
the Bounded Monotone Sequence Theorem implies that the real number system is
complete.

The sequence of deductions outlined here is circular—we start by assuming
completeness of the reals in Section 7.1 and eventually (in Section 7.5) return to the
fact that the real numbers are complete. While we will not have proved complete-
ness, we will have seen different ways of understanding completeness and we will
have proved that completeness is equivalent to each of the three theorems named.
For the purposes of this text, that is sufficient. A separate proof that the reals are
complete involves a more careful definition of the real numbers. More will be said
about this at the conclusion of Section 7.5.

C H A P T E R  7

Concepts of Analysis
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7.1 Completeness of the Real Numbers

This section assumes a general knowledge of the properties of the rational and real
number systems commonly obtained in a calculus class. You should think of the set

as the set of all decimal numbers along the number line, and the set of ratio-
nals as the subset of consisting of the repeating or terminating decimals.

Both and have algebraic properties of addition and multiplication (listed
at the end of this section for reference) that make them fields.

Algebraic structures are studied in Chapter 6 but it is not necessary for you to
have studied the material on fields before reading this chapter. 

Both and also have ordering properties for the relation “less than” that
make them ordered fields. For convenience, the ordering concepts of bounded sets,
supremum and infimum from Section 3.4 are repeated at the end of this section, but
again it is not necessary to have studied that section. You will need to have studied
Section 4.6 on sequences before starting Section 7.4.

It follows from the properties of an ordered field that

Between any two distinct elements there is a third element.

That is, if then there is a third element c such that We reason as
follows: if then

(Here we have used 2 for the element and as the symbol for the multiplicative

inverse of 2—see field property 2(b).) Therefore, is an element of
the field that is between the elements a and b. We can repeat this strategy to pro-
duce a different element between a and c, and another element between c and b.
In fact, by similar reasoning we can produce infinitely many elements between
any two elements of an ordered field. The important observation about any
ordered field is that

There are never any empty spaces between elements.

Another way to think of this property is that—unlike the integers, where every
integer is followed by the next (successor) integer—nowhere on the number line is
there a number that is followed by “the next rational number” or “the next real
number.” In particular, there is no positive real number that is the “next” number
after 0 because in between 0 and any given positive real number, there are always
infinitely many real numbers.

The property of having no empty spaces between numbers is a property that
holds for both the rational number system and the real number system, because

c = 1
2
 (a + b)

1
2

1 + 1

  a <
1
2
 (a + b) < b.

  2a < a + b < 2b

 (1 + 1) a < a + b < (1 + 1) b
  a + a < a + b < b + b

a < b,
a < c < b.a < b,

��

��

�

��
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both are ordered fields. Our focus throughout this chapter will be on a different
property—a property of the reals that is not shared by the rational numbers.

Although the rational number system has no empty spaces between numbers,
it is missing some numbers that in some sense ought to be there. For example, every
rational number in the set is less than There are many
rational numbers that are larger than any number in B: the rational number 1.5 is
larger than every element of B; the rational number 1.42 is larger than every ele-
ment of B, and so is 1.415, and 1.4143, and 1.41422, and 1.414214. We could con-
tinue this list by finding smaller and smaller rational numbers each of which is
larger than every element of B. Ideally, we’d like to find the smallest rational num-
ber that is larger than every element of B. We will soon prove that there is no such
rational number. Because the field of rational numbers is missing numbers like
these, we say that is not complete.

The goals of this section are to gain a clear understanding of what it means for
an ordered field to be complete and to prove that the field of rationals is not com-
plete. We begin with the idea of bounds for a set.

�

√
2.B = {x � �: x2 < 2}

7.1 Completeness of the Real Numbers 317

DEFINITIONS Let A be a subset of an ordered field F. Then
is an upper bound for A for every If A has an

upper bound, we say A is bounded above.
is a lower bound for A for every If A has a

lower bound, we say A is bounded below.
If A has an upper bound and a lower bound, we say A is bounded.

a � A.  iff  l ≤ al � F

a � A.  iff  a ≤ uu � F

In the half-open interval has 3 as an upper bound. In fact, 
and 206 are also upper bounds for Both and 0 are lower bounds for

We note that some bounds for sets are elements of the set while other
bounds are not.

Any finite nonempty subset of is both bounded
above and below:

is an upper bound for A and
is a lower bound for A.

In the subset is bounded below but not above, while the sets and are
neither bounded above nor bounded below.

In the set of negative integer powers of 2 is bounded

above by and below by 0. The set has many upper bounds: 
and so on. However, A has no lower bounds. The set

is bounded above by 3 and below by 
The best (smallest) possible upper bound for a set A is called the supremum

of A.

−3.B = {x � �: x2 < 2}
8, 1.6, 1.59,

A = {x � �: x3 < 4}1
2

{
1
2
, 1

4
, 1

8
, 1

16
, 1

32
, Á

}
�,

����,

l = min {xi : xi � A}
u = max {xi : xi � A}

�A = {x1, x2, x3, Á , xn}

[0, 3).
−0.5[0, 3).

π, 18,[0, 3)�,
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While a set A may have many upper bounds, when exists it is unique.
Likewise, inf ( A) is unique if it exists. See Exercise 8.

Examples. In the ordered field 

and 

but does not exist because is not bounded above.
For and 

For and 

In the ordered field 
For and 

For B is bounded, but as we shall see, and
do not exist in the field 

The following theorem provides a characterization of the supremum of a set.
Its interpretation, which depends on taking the view that may be a very small
positive number, is that every element of A is strictly less than every number that
is larger than and every number that is smaller than is exceeded
by some element of A. Thus every number larger than sup (A) is an upper bound
for A, and every number smaller than sup (A) is not an upper bound for A.

Theorem 7.1.1 Let A be a subset of an ordered field F. Then 

(i) for all if then 
(ii) for all there exists such that 

Proof. First, suppose Let be given. Then for all
which establishes property (i).

To verify property (ii), suppose and there is no such that 
Then is an upper bound for A less than the least upper bound of A, a contradiction.

Suppose now that s is a number that satisfies conditions (i) and (ii). To show that
we must first show that s is an upper bound for A. Suppose there iss = sup (A),

s − ε

y > s − ε.y � Aε > 0
x � A,

x ≤ s < s + εε > 0s = sup (A).

y > s − ε.y � Aε > 0,
x < s + ε.x � A,ε > 0,

  iff  s = sup (A)

sup (A)sup (A),

ε

�.sup (B)
inf (B)B = {x � �: x2 < 2},

sup (A) = 1
2
.inf ( A) = 0A = {2−k: k � �},

�,

sup  (B) =
√

2.inf  (B) = −
√

2B = {x � �: x2 < 2},

sup (A) =  1
2
.inf (A) = 0A = {2−k: k � �},

�sup  (�)inf (�) = 1,

sup ([0, 3)) = 3.inf ([0, 3)) = 0

�,

sup(A)

318 CHAPTER 7 Concepts of Analysis

DEFINITIONS Let A be a subset of an ordered field F. Then is a
least upper bound for A (or supremum for A)

(i) s is an upper bound for A and
(ii) for every upper bound x for A.

is a greatest lower bound for A (or infimum for A)

(i) i is a lower bound for A and
(ii) for every lower bound x for A.

We write sup( A) to denote a supremum of A. An infimum of A is denoted
inf ( A).

x ≤ i

  iff  i � F

s ≤ x

  iff  

s � F
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such that See Figure 7.1.1(a). If we let then 

which violates condition (i). The idea here is that is only half the distance from s to
the larger number y, so must still be less than y. To verify this algebraically,

we have so We conclude

that for all so s is an upper bound for A.

To show s is the least of all upper bounds, suppose that there is another upper
bound t such that We will show that t cannot be an upper bound. If we let

then by condition (ii), there is a number such that See
Figure 7.1.1(b). Thus This contradicts the assumption
that t is an upper bound for A. Therefore s is indeed the least upper bound for A. �

Figure 7.1.1

For example, in the field the supremum of the set is 4. Even if we take
to a very small positive number, say every element of is less

than Furthermore, is not quite big enough to be
the supremum, because 3.99995 is an element of and is greater than 

We said earlier that the ordered field is missing some numbers. To be pre-
cise, there are subsets of that have upper bounds in but for which there is no
least upper bound in —the suprema for these sets are missing from As an
example, we prove that the is one such subset. The
proof uses a version of the Archimedean Principle (see Theorem 2.4.2) for the real
numbers, which states that for every positive real number r there is a natural num-
ber K that is so large that 

Example. The set is bounded above in the field but has no
supremum in 

Proof. There are many rational numbers, such as and 1.44, that are upper bounds
for B, so B is bounded above in 

Now suppose there is a rational number s such that We will first
show that both and are false.

If then is positive. Choose a natural number K such that 
Then and is rational because both s and are

rational Thus is an element of B, which contradicts s being an upper bound

for B.

s + 1
K

〉.
1
K

〈s + 1
K

s +  1
K

 <
√

21
K

 <
√

2 − s.

√
2 − ss <

√
2,

s >
√

2s <
√

2
s =  sup (B).

�.

3
2

�.
�B = {x � �: x2 < 2}

1
K

< r.

subset B = {x � �: x2 < 2}
�.�

�,�

�

4 − ε.(2, 4)
4 − ε = 3.99994 + ε = 4.0001.

(2, 4)ε = 0.0001,ε

(2, 4)�,

(b) Could t be an upper bound for A? 

(a) Could y be an element of A? 

A s s + ε y 

   . .        . 

.  .  .   
A         t = s − ε z s

z > s − ε = s − (s − t) = t.
z > s − ε.z H Aε = s − t,

〉〈t < s.

y H A,y ≤ s

y >
s + y

2
= 2s + y − s

2
= s + y − s

2
= s + ε.〉2y > s + y,

s + ε

ε〈
y > s + ε,ε = y − s

2
,y > s.y H A
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If then is positive. Choose a natural number M such that 

Then and is rational. Then for all x in B, 

so is an upper bound for B that is less than s. This 
contradicts the assumption that s is the least upper bound for B in 

Because both and are false, we conclude that But
this is impossible, because s is a rational number. Therefore sup (B) does not exist
in the ordered field �

Remember that the field has no gaps—between any two rational num-
bers there is always another rational number. Nevertheless, this example shows that

has “pinholes” (points missing from ) where the suprema (and infima) of some
bounded subsets of “ought to be” but are not. (Exercise 18 shows that has
many missing points.) We have identified a property that we can use to distinguish
the real number system from �.

��

��

(�, +)

�.

s =
√

2.s >
√

2s <
√

2
�.

s − 1
M

x <
√

2 < s − 1
M

< s,

s − 1
M

s − 1
M

>
√

21
M

< s −
√

2.

s −
√

2s >
√

2,
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DEFINITION An ordered field F is complete every nonempty subset
of F that has an upper bound in F has a supremum that is an element of F.

  iff  

The fact that the bounded set has no supremum in 
means that the field is not complete. Note, however, that when B is considered a
subset of it does have a least upper bound in In fact, every set
of real numbers that is bounded above has a supremum in 

Theorem 7.1.2 The field is a complete ordered field.

We state this fact without proof. A proof requires considerable preliminary
study of the nature of the real number system and is beyond the goals of this text.
Section 7.5 includes a brief description of how the real numbers may be built up
from the rationals to achieve this result.

For everything that has been said about upper bounds and suprema there is a
corresponding statement about lower bounds and infima. In particular, the defini-
tion of completeness could have been stated in terms of lower bounds and infima.
That is, an ordered field F is complete every nonempty subset of F that has a
lower bound in F has an infimum in F. See Exercise 19.

As promised early in this section, we present here for your reference the formal
definitions of “field” and “ordered”. First are the algebraic properties.

  iff  

(�, +, ·)
�.

�: sup (B) =
√

2.�,
�

�B = {x � �: x2 < 2}

DEFINITION A field is a set F with two operations and 
such that

(1) is an operation on F such that for all 

(a)
(b) there is an additive identity 0 such that 
(c) for every there is an additive inverse such 

that 
(d) x + y = y + x.

x + (−x) = (−x) + x = 0.
−x � Fx � F,

x + 0 = 0 + x = x.
(x + y) + z = x + ( y + z ).

x, y, z � F,+

·+(F, +, ·)
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If you are familiar with the terminology of Chapter 6, part (1) of the defini-
tion says that is an abelian group, part (2) says that is an
abelian group, and part (3) is one of the distributive laws. Each of the rationals,
the reals, and the complex numbers with the familiar operations of addition and
multiplication is a field. Another result from Chapter 6 is that if p is a prime, then
the modular arithmetic structure is a field with p elements.

The definition of an ordered field is:
(�p, +, ·)

(F − {0}, ·)(F, +)

7.1 Completeness of the Real Numbers 321

(2) is an operation on F so that for all 
(a)
(b) there is a multiplicative identity 1 such that 
(c) for every there exists a multiplicative inverse

such that 
(d)

(3) For all in F, 
(4) 0 =� 1.

x · (y + z) = x · y + x · z.x, y, z
x · y = y · x.

x · x−1 = x−1 · x = 1.x−1 � F − {0}
x � F − {0},

x · 1 = 1 · x = x.
(x · y) · z = x · (y · z).

x, y, z � F,·

DEFINITION A field is ordered there is a relation on
F such that for all  

(1) (irreflexivity).
(2) if and then (transitivity).
(3) either or (trichotomy).
(4) if then 
(5) if and then x · z < y · z.0 < z,x < y

x + z < y + z.x < y,
y < xx < y, x = y,

x < zy < z,x < y
x <� x

x, y, z � F,
<  iff  (F, +, ·)

Taken together, these properties ensure that the field elements are linearly
arranged, and that the ordering is compatible with the operations of addition and
multiplication.

All the order properties of and can be derived from these definitions. For
example, we can show that and whenever We can
also prove that if and then See Exercise 20.

Not all fields are ordered. The fields and where p is a prime
are not ordered.

Exercises 7.1

1. Find four upper bounds (if any exist) for each of the following sets.
(a)

� (b)

(c)
{

x � �: x + 1
x

< 5
}

{
1

3x: x � �

}{x � �: x2 < 10}

(�p, +, ·)(�, +, ·)
x · z > y · z.z < 0,x < y

x < y.−y < −x0 < 1, −1 < 0,
��
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(d)
(e) and 

(f)
(g)

� 2. Find a lower bound in (if one exists) for each of the sets in Exercise 1.

3. Find the supremum and infimum, if they exist, of each of the following
sets.

� (a) (b)

� (c) (d)

� (e) (f)

� (g) (h)

(i) (j)

4. Let A and B be subsets of Prove that
� (a) if A is bounded above and then B is bounded above.

(b) if A is bounded below and then B is bounded below.
(c) if A and B are bounded above, then is bounded above.
(d) if A and B are bounded below, then is bounded below.

5. Let x be an upper bound for Prove that
(a) if then y is an upper bound for A.
(b) if then 

6. Let Prove that
� (a) if A is bounded above, then is not bounded above.

(b) if A is bounded below, then is not bounded below.

7. Give an example of a set for which both A and are unbounded above
and below.

8. Let Prove that 
� (a) if exists, then it is unique. That is, if x and y are both least upper

bounds for A, then 
(b) if inf ( A) exists, then it is unique.

9. Let Prove that 
(a) if and both exist, then 
(b) if and both exist, then 

10. Formulate and prove a characterization of greatest lower bounds similar to
that in Theorem 7.1.1 for least upper bounds.

11. If possible, give an example of
(a) a set such that and 
(b) a set such that and 4 � A.sup (A) = 4A ⊆ �

4 � A.sup (A) = 4A ⊆ �

inf (A) ≥ inf (B).inf (B)inf (A)
sup (A) ≤ sup (B).sup (B)sup (A)

A ⊆ B ⊆ �.

x = y.
sup (A)

A ⊆ �.

AcA ⊆ �

Ac
Ac

A ⊆ �.

x = sup(A).x � A,
x < y,

A ⊆ �.

A ∪ B
A ∪ B

B ⊆ A,
B ⊆ A,

�.

{x: | x | > 2}

{ x

2y: x, y � �

} [−1, 1] − {0}[−1, 1] ∪ {5}

{x � �: x2 < 10}
{ n

n + 2
: n � �

}
{

(−1)na1 + 1
n
b : n � �

}
{2x: x � �}

{
n + 1

n
: n � �

}{
1
n

: n � �

}
�

{x � �: x − 10 < log x}

{2−x: x � �}

x − x2 ≤ −2}{x � �: x < 0

{x � �: 7x2 + 14x + 2 < 23}

322 CHAPTER 7 Concepts of Analysis

62025_07_ch07_p315-352.qxd  4/23/10  2:15 AM  Page 322

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



(c) a set such that and 
(d) a set such that and 

12. Give an example of a set of rational numbers that has a rational lower bound
but no rational greatest lower bound.

13. Let Prove that
� (a) if exists, then 

(b) if exists, then 

14. Let A and B be subsets of 
� (a) Prove that if and exist, then exists and

(b) State and prove a similar result for 

15. (a) Give an example of sets A and B of real numbers such that 
and 

(b) For sets A and B such that state and prove a relationship
between and 

16. (a) Give an example of sets A and B of real numbers such that 
and 

(b) For sets A and B such that state and prove a relationship
between and 

17. Use the completeness property of to prove the Archimedean Principle for
the real numbers: For every positive real number r there is an integer K such
that Hint: Suppose the assertion is false for some real number r.
Verify that the set is nonempty and bounded above by 1.
Let t be the supremum of W. Observe that so is not an upper
bound for W. Then, by Theorem 7.1.1, there is a natural number m such that

It follows that contradicting the fact that t is an
upper bound for W.

18. This exercise shows that every irrational number is “missing” from Let x
be an irrational number. Find a subset A of such that A is bounded above in

and does not exist in but when A is considered a subset of 

� 19. Prove that an ordered field F is complete every nonempty subset of F that
has a lower bound in F has an infimum in F.

20. Let F be an ordered field and Prove that
(a) exactly one of or is true.
(b) if then 
(c)
(d)
(e) if then 
(f) if and then 
(g)
(h)
(i) (−1) · x = −x.

0 · x = 0.
(−1) · (−1) = 1.

x · z > y · z.z < 0,x < y
−y < −x.x < y,

−1 < 0.
0 < 1.

−x > 0.x < 0,
y < xx = y,x < y,

x, y, z � F.

  iff  

sup (A) = x.
�,�,sup (A)�

�

�.

t < (m + 1)r,t − r < mr.

t − rt − r < t,
W = {nr: n � �}

1
K

< r.

�

inf (A ∩ B).inf (B),inf (A),
A ∩ B =� �,

inf (A ∩ B) > inf (B).inf (A ∩ B) > inf (A),
A ∩ B =� �,

sup (A ∩ B).sup (B),sup (A),
A ∩ B =� �,
sup (A ∩ B) < sup (B).sup (A ∩ B) < sup (A),

A ∩ B =� �,

inf (A ∪ B).
sup (A ∪ B) =  max {sup (A), sup (B)}.

sup (A ∪ B)sup (B)sup (A)
�.

inf (A) = sup {l: l is a lower bound of A}.inf (A)
sup (A) = inf {u: u is an upper bound of A}.sup (A)

A ⊆ �.

4 � A.sup (A) > 4A ⊆ �

4 � A.sup (A) = 4A ⊆ �
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Proofs to Grade 21. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. Let If and then there is such
that 
“Proof.” Let Then so By construction of y,

�

(b) Claim. Let If A is bounded above, then is bounded below.
“Proof.” If A is bounded above, then exists (because is
complete). Since (see the figure), exists.
Thus is bounded below. �

(c) Claim. If and and both exist, then

“Proof.” Assume and We choose 

Then and 

By part (ii) of Theorem 7.1.1, there is such that 
Then and This is impossible. Therefore,

�

(d) Claim. If f: and A is a bounded subset of then is
bounded.
“Proof.” Let m be an upper bound for A. Then for all 
Therefore, for all Thus is an upper bound for

�
(e) Claim. Let be an ordered field and If then

“Proof.” Suppose Then by property (4) of ordered fields
so  Thus  �

7.2 The Heine–Borel Theorem

In this section we begin by introducing some concepts used to describe sets of real
numbers and then use the completeness of to establish our first major result, the
Heine–Borel Theorem. We state these results in terms of the real numbers, but the
results apply more generally to any complete ordered field. 

�

x > 0.0 < x.0 = −x + x < 0 + x = x,
−x < 0.

x > 0.
−x < 0,x � F.(F, +, ·)

Rng (A).
f  (m)a � A.f  (a) ≤ f  (m)

a � A.a ≤ m

Rng (A)�,� → �

sup (A) ≤ sup (B).
y > sup (B).y � B

y > sup (A) − ε.y � A

sup (B) < sup (A) − ε < sup (A).ε > 01
2
 (sup (A) − sup (B)).

ε =sup (A) > sup (B).A ⊆ B
sup (A) ≤ sup (B).

sup (B)sup (A)A ⊆ B ⊆ �,

Ac
]

A

sup (A) = inf (Ac)

Ac
inf (Ac)sup (A) = inf (Ac)

�sup (A)
AcA ⊆ �.

y < i + ε.
y � A.i < yy = i + ε

2
.

y < i + ε.
y � Aε > 0,i = inf (A)A ⊆ �.

324 CHAPTER 7 Concepts of Analysis

DEFINITION Let a and be real numbers with The 
-neighborhood of a is the set 

�(a, d)={x � �: |x − a |<d}.

D

d > 0.d
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7.2 The Heine–Borel Theorem 325

DEFINITION For a set a point x is an interior point of A
there exists such that �(x, d) ⊆ A.d > 0

  iff  A ⊆ �,

If x is an interior point of A, then not only is x contained in A, but all elements
of some neighborhood around x are also contained in A.

The -neighborhood of a consists of all points x whose distance from a
is less than Since is equivalent to is
the open interval For example, and

Both the 1-neighborhood of 0.7 and the 0.2 neighbor-
hood of 0.7 are shown in Figure 7.2.1. Your intuition is best served by thinking
of as a small positive number and as a small open interval of radius 
centered about a.

Figure 7.2.1

Many concepts in mathematics may be expressed using neighborhood ter-
minology. Recall that a function is continuous at a point a in its
domain

This means that whenever x is close to a, then must be close to In terms
of neighborhoods, the definition is:

This version of the definition has the advantage of specifying “closeness” in
terms of sets (neighborhoods) instead of distances. Because there are systems
other than the real numbers for which the concept of neighborhood may be intro-
duced, the neighborhood version of the definition is a way to define continuity for
those systems.

for all ε > 0, there exists d > 0 such that if x � �(a, d), then f  (x ) � �(  f  (a), ε).

f  (a).f  (x )

for all ε > 0, there exists d > 0 such that if |x − a | < d, then |  f  (x ) − f  (a) | < ε.

  iff  

f : � → �

𝒩
𝒩

𝒩(0.7, 1) = (−0.3, 1.7) and 𝒩(0.7, 0.2) = (0.5, 0.9).

−2 −1 0

(0.7, 1)

(0.7, 0.2)

10.7 2

d�(a, d)d

(0.99, 1.01).�(1, 0.01) =
�(3, 0.4) = (2.6, 3.4)(a − d, a + d).

�(a, d)a − d < x < a + d,|x − a |< dd.
d
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For the interval is an interior point since Also,
4.9998 is an interior point because See Figure 7.2.2. In
fact, every point in (2, 5) is an interior point of [2, 5). The point 2 is not interior 
to [2, 5), since every -neighborhood of 2 contains points that are less than 2 and
hence not in [2, 5).

Figure 7.2.2

𝒩 𝒩

𝒩

d

�(4.9998, 0.0001) ⊆ [2, 5).
�(3, 0.5) ⊆ [2, 5).[2, 5), 3

326 CHAPTER 7 Concepts of Analysis

DEFINITIONS The set is open every point of A is an interior
point of A. The set A is closed its complement is open.Ac

  iff  

  iff  A ⊆ �

The interval (2, 5) is open because every point in (2, 5) is an interior point of
(2, 5). Thus its complement, is a closed set. On the other hand, 
2 is not an interior point of [2, 5). Therefore, [2, 5) is not open.

The interval [2, 5) is not closed either, since its complement 
contains 5, but 5 is not an interior point of 

In ordinary conversation, with references to objects like doors and eyes, the con-
cepts of open and closed are opposites, but the interval [2, 5) is an example of a sub-
set of that is neither open nor closed.

Examples. The set is open since for every The empty set 
is also open since the statement “for all x, if x is an interior point of ” is
true because the antecedent is false. Since and are complements, they are also
closed sets. It can be shown that there are no other subsets of the reals that are both
open and closed.

A set is open if about each element in the set there is a -neighborhood that lies
entirely within the set. This means no point of the set can be on the “boundary” or
outer edges of the set (see Exercise 11). The next two theorems will help you rec-
ognize open sets.

d

��

�x � �,
�x � �, �(x, 1) ⊆ �.�

�

(−∞, 2) ∪ [5, ∞).(−∞, 2) ∪ [5, ∞)
[2, 5)c =

(−∞, 2] ∪ [5, ∞),
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7.2 The Heine–Borel Theorem 327

Theorem 7.2.1 Every open interval of real numbers is an open set.

Proof. Let (a, b) be an open interval and let To show (a, b) is open, we
show that x is an interior point of (a, b). That is, we show for some

We choose This minimum is the largest possible
we can use. See Figure 7.2.3. Then To show that let 

Then and so
�y � (a, b).

a = x − (x − a) ≤ x − d< y < x + d ≤ x + (b − x) = b;y � �(x, d).
�(x, d) ⊆ (a, b),d > 0.〉d

〈d = min {x − a, b − x}.d > 0.〉
�(x, d) ⊆ (a, b)

〈x � (a, b).

𝒩(x,   )

a x b
( )

( )

x − a b − x

𝒩(x,   ) in the case   = min{x − a, b − x} = x − a

Figure 7.2.3

Theorem 7.2.2 Let be a nonempty collection of open subsets of Then

(a) is an open set.

(b) If is finite, then is an open set.

Proof. Let be a nonempty collection of open sets.

(a) Suppose . We must show that x is an interior point of Since

x is in the union over the collection, there exists such that
Since B is in the collection B is open. Thus x is an interior point 

of B. Therefore there exists such that Since
Therefore x is an interior point of 

(b) Suppose is finite and Then for all and so for

each open set there corresponds such that 
Let Note that the minimum of a finite set of
positive numbers must be positive. Then and

for all Thus Therefore x is an interior point� (x, d) ⊆
⋂

A��
A.A � �.

� (x, d) ⊆ �(x, dA) ⊆ Ad > 0〉
〈d = min {dA: A � �}.

� (x, dA) ⊆ A.dA > 0A � �

A � �,x � Ax �
⋂

A��
A.�

⋃
A��

A.B ⊆
⋃

A��
A, � (x, d) ⊆

⋃
A��

A.
�(x, d) ⊆ B.d > 0

�,x � B.
B � �

⋃
A��

A.〉〈x �
⋃

A��
A

�

⋂
A��

A�

⋃
A��

A

�.�

of �

For the proof of part (b) we chose and relied on the fact
that it is always possible to find the minimum of a finite set of real numbers.
However, if the set is infinite, we can not be sure of finding a

minimum. The set for example, does not have a minimum element.

The statement of Theorem 7.2.2 (b) is false if we omit the word “finite.”

{
1
n
: n � �

}
,

{dA: A � �}

d = min {dA: A � �}

⋂
A��

A.
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Example. The family is an infinite collection of open

intervals. The intersection is

which we have seen is not an open set.

Theorems 7.2.1 and 7.2.2 can be used to produce many examples of open sub-
sets of For example, the following are open sets:

Corresponding to Theorem 7.2.1, it can be shown that every closed interval of
real numbers is a closed set. See Exercise 7(b). The analog of Theorem 7.2.2 for
closed sets is Exercise 8.

Every finite subset of is closed because the complement of a finite set is the
union of two open rays and a number of open intervals. Finite sets are good exam-
ples of sets that are both closed and bounded. We shall see that infinite closed and
bounded sets have other properties in common with finite sets. For example, if A is
a finite set, then the infimum and supremum of A exist and are elements of A. The
next theorem shows this is true for all closed and bounded sets.

Theorem 7.2.3 If A is a nonempty closed and bounded subset of then and

Proof. Suppose A is a nonempty closed and bounded set. Let and
suppose Then which is open since A is closed. Thus for 
some positive This implies is an upper bound for A, since the interval

is a subset of No element of A is greater than s, or equal to s, or
between and s. This contradicts Theorem 7.1.1. Therefore, The proof
that is similar.                    �

Examples. Let 

Each of these sets is closed and bounded, so by Theorem 7.2.3 each contains its supre-
mum and infimum: and are elements of 
and are elements of B; and and are elements
of C.

sup (C ) = 1
2

inf (C ) = 0sup (B) = 12
A; inf (B) = −2sup (A) = 5inf (A) = 2

 C = {2−n: n � �} ∪ {0}.
 B = [−2,  2] ∪ [4, 10] ∪ {12} and
A = [2, 5],

inf (A) � A
s � A.〉s − d

〈Ac.(s − d, s + d)
s − dd.

�(s, d) ⊆ Acs � Ac,s � A.
s = sup (A)

inf (A) � A.
sup (A) � A�,

�

� − {2} = (−∞, 2) ∪ (2, ∞).

(−5, 0) ∪ (2, ∞)

 (−∞, 2) =
⋃

A��
A, where � = {(x, 2): x < 2}

 (2, ∞) =
⋃

A��
A, where � = {(2,  x): x > 2}

(5, 7) ∪ (−3, 4) ∪ (10, 20)

�.

⋂
n��

a2 − 1

n
, 5b = [2, 5),

� =
{ A 2 − 1

n
, 5B: n � �

}328 CHAPTER 7 Concepts of Analysis
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Example. Let for each The collection 

is a cover for that has no subcover other than itself (Figure 7.2.4).�{An: n � �}

� =n � �.An = an − 1
n

, n + 1
n
b

The bounded set does not contain its supremum; it does not satisfy the
conditions of Theorem 7.2.3 because it is not closed. The closed set does not
have a supremum; it does not satisfy the conditions of Theorem 7.2.3 because it is
not bounded.

To understand how the completeness property of is related to properties
of closed and bounded sets, we need the concept of a cover for a set. A cover for
a set A is a collection of open sets whose union includes A.

�

[2, ∞)
[0, 1)

7.2 The Heine–Borel Theorem 329

DEFINITIONS Let A be a set of real numbers. A collection of open 
subsets of is a cover for A

If and is also a cover for A, we say is a subcover of �.��� ⊆ �

A ⊆
⋃

C��
C.  iff  �

�

Example. For the set the collection of open intervals

is a cover for A because consists of open sets and The A ⊆
⋃

C��
C = (−1, 11).�

� = {(−1, 2), (1, 4), (2, 5), (3, 6), (4, 7), (5, 9), (6, 10), (7, 11)}

A = {2, 4, 5, 6, 8, 9},

of for A.�

)
0 1
( ) (

)(

2 3 4 5 6

A2 A3

)(

A4

)(

A5

)(

A6A1

Figure 7.2.4

collection

is a subset of and is also cover of A since Thus is a subcover�
⋃

C��
C = (1, 10).�

� = {(1, 4), (3, 6), (4, 7), (6, 10)}

Example. Since the collection is a

cover for The collection where is the set of even
natural numbers, is a subcover of for We note that there are many subcovers
of for but there is no finite subset of that is a cover for �.��,�

�.�
2�� = {(−∞, n): n � 2�},�.

� = {(−∞, n): n � �}
⋃∞

n=1
(−∞, n) = �,
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A cover of a set A may be imagined by thinking of the covering sets of as
providing shade for the set A. In Figure 7.2.5 we have the sun directly over the set
A. The covering sets are drawn slightly above A. For this analogy,
think of the sun’s rays as parallel beams of light. As the sun shines straight down, 
is a cover for A A is within the region shaded by the sets in —that 
is, A ⊆

⋃
C��

C.  iff  

�  iff  

�
Ca, Cb, Cd, Á

��

330 CHAPTER 7 Concepts of Analysis

DEFINITION A subset A of is compact for every cover for A,
there is a finite subcover of for A.�

�  iff  �

α

β
δ

Figure 7.2.5

Let be a nonempty finite set of real numbers and let
be a cover for A. We may not need all the sets in to make a 

cover for A, so we look for a subcover. For each there is in 
such that Then the collection is a finite subset
of whose union includes A. In other words, given any cover for the finite set A,
we can always construct a finite subcover for A. Sets of real numbers that have this
property are called compact sets.

�
� = {Oai: i = 1, 2, 3, Á n}xi � Oai.

Δaii = 1, 2, 3, Á , n
�� = {Oa: a � Δ}

A = {x1, x2, x3, Á xn}
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By the discussion above, every nonempty finite set is compact. Next is an infi-
nite set that is compact.

Example. The set is compact.

Proof. Let be any cover for A. One of the covering sets, call it *,
contains the element 1. Since * is open, there is a -neighborhood *.
See Figure 7.2.6. We will show that all but a finite number of elements of A are in

and therefore in *. Choose N such that If then and 

so This implies which means Therefore,

if then and *.

Now choose such that 

and Then * The first N ele-

ments of A are in and everything else is in * We have succeeded
in finding a finite subcover of sets for the cover Therefore, A
is compact. �

{Oa: a � Δ}.N + 1
.〉OaOa1, Á , OaN,

〈∪ Oa1 ∪ Oa2 ∪ Oa3 ∪ Á ∪ OaN.A ⊆ Oa
N + 1

N
� OaN.

2 � Oa1, 
3
2

� Oa2, 
4
3

� Oa3, Á ,Oa1, Oa2, Oa3, Á , OaN

n + 1
n

� Oa
n + 1

n
� �(1, d)n > N,

n + 1
n

< 1 + d.n + 1 < n + nd,1 < nd.

1
d

< nn > N,N >
1
d
.〉Oa�(1, d)

〈
�(1, d) ⊆ OadOa

Oa{Oa: a � Δ}

A =
{

n + 1

n
: n � �

}
∪ {1}

7.2 The Heine–Borel Theorem 331

Figure 7.2.6

)(

O�2

O�1

O�4

O�*

�

O�3

1
…

6
5

5
4

4
3

3
2

2

We have seen that is a cover for with no finite sub-
cover. Thus is not compact. Neither is the open interval (0, 1) compact because the
collection is a cover for (0, 1) that has no finite subcover.

You may have noticed that all of our examples of compact sets have been
closed and bounded sets and the two non-compact examples are either not closed
or not bounded. This is no coincidence. The next theorem is a beautiful charac-
terization of compact sets based on the work of Edward Heine* and Emile

� =
{ A 1x , 1B : x � (1, ∞)

}�

�� = {(−∞, n): n � �}

* Edward Heine (1821–1881) was a German mathematician at the University of Halle (the same univer-
sity where Georg Cantor spent his entire career) who made several contributions to analysis, especially
to the descriptions and solutions of equations involving infinite series. As a senior professor, Heine gave
the young Cantor a problem in analysis whose solution and generalization demonstrated the need to
define the term “set” precisely.
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Borel.* The proof uses the following lemma. Watch for the places where the
proof of the Heine–Borel Theorem depends on the completeness of 

Lemma 7.2.4 Let A be a closed set and If for all then 

Proof. Exercise 12. �

Theorem 7.2.5 The Heine–Borel Theorem
A subset A of is compact A is closed and bounded.

Proof.

(i) Suppose A is compact. We first show that A is bounded. We note that

Therefore, is a cover for A. By � = {(−n, n): n � �}A ⊆ � =
⋃

n��

(−n, n).

  iff  �

x � A.d > 0,A ∩ �(x, d) =� �x � �.

�.

332 CHAPTER 7 Concepts of Analysis

* Emile Borel (1871–1956) was a French mathematician and politician who contributed substantially to
probability and game theory and the creation of the branch of mathematics called measure theory. He
stated and proved the Heine–Borel Theorem for countable sets. He served many years in French politics
and was a member of the French resistance in World War II.

compactness, has a finite subcover If n � {n1, n2, Á , nk}}.{(−n, n):�

)(
)(

)(

)(

)(

   x4
)(

x4 x1

A

x5 x3 x2 y � Ac

   x1

   x2

   x5

   x3

Figure 7.2.7

we choose then 

Therefore, A is bounded above by N and below by −N.

A ⊆
⋃k

i=1
(−ni, ni) = (−N, N ).N = max {n1, n2, Á , nk},

We next show that A is closed by proving is open. Suppose 
We must show y is an interior point of For each and thus

is a positive number. The collection is a
family of open sets that covers A. Hence by the compactness of A,

for some By choosing we 
have and See Figure 7.2.7. If then
for some i. Thus if then and

Thus is open. Hence A is
closed.

Ac|z − y | < 2dxi = |xi −y | .〉|xi −y | ≤ |xi − z | +
|z − y | < d ≤ dxiz � � (y, d ),

|z − xi | < dxiz � A,〈� (y, d ) ⊆ Ac.d > 0
d =  min {dx1, dx2, Á , dxk},x1, x2, Á , xk � A.

A ⊆ � (x1, dx1) ∪ � (x2, dx2 ) ∪ Á ∪ �(xk, dxk )

{� (x, dx): x � A}dx = 1
2 

| x − y |
x � A, x =� yAc.〉〈

y � Ac.Ac
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7.2 The Heine–Borel Theorem 333

(ii) Conversely, suppose A is a closed and bounded set and is a cover for A. 
For each let Also, let is
included in a union of finitely many sets from }.

Since A is bounded, inf ( A) exists by the completeness of Thus if
and it follows that Therefore 

and so D is nonempty.
We claim D has no upper bound. The following proof of this fact involves

showing that if D is bounded above, then sup (D) is in A, and then using the
nature of D to build a contradiction. Suppose D is bounded above. Then

exists by the completeness of Let and choose 
such that applying Theorem 7.1.1 If 

then But t is in 

D, so is in D. This is a contradiction to Therefore, for 
all we have By Lemma 7.2.4, is in the closed
set A.

Let * be an element of such that *. Since * is open, there
exists such that *. Choose such that 

Since there are open sets in such 
that Now let Then *
and *. Thus a contradiction, since

and We conclude that D has no upper bound.
Finally, since D has no upper bound, choose such that 

exists because is complete Thus and since A
is included in a union of finitely many sets from Therefore, A is compact. �

Exercises 7.2

1. Find x and such that
(a) � (b)
(c)

2. For and describe
(a) � (b)
(c)

� 3. Write the definition of in terms of neighborhoods.

4. Find the set of interior points for each of these subsets of 
(a) (b)
(c) (d)

� (e) (f)

(g) (h)

� (i)
⋃
n��

(n + 0.1, n + 0.2)

� −
{

1
3k

: k � �
}

� − �

{
1
3k

: k � �
}

∪ {0}
{

1
3k

: k � �
} � − ��

(−1, 1](−1, 1)
�.

lim
x→a

 f  (x ) = L

� (x1, d1) ∩ � (x2, d2).
� (x1, d1) ∩ � (x2, d1).� (x1, d1) ∩ � (x1, d2).

d2 > 0,x1, x2 � �, d1 > 0

� (x, d) = (6.023, 6.024).
� (x, d) = (3.8, 3.85).� (x, d) = (7, 12).

d � �

�.
x � D,Ax = A〉.�〈sup (A)

x > sup (A)x � D
x0 = sup (D).x2 > x0

x2 � D,Ax2 ⊆ C1 ∪ C2 ∪ Á ∪ Cn ∪ C
x2 � Cx2 = x0 + ε

2
.Ax1 ⊆ C1 ∪ C2 ∪ Á ∪ Cn.

�C1, C2, Á , Cnx1 � D,x0 − ε < x1 ≤ x0.
x1 � D� (x0, ε) ⊆ Cε > 0

Cx0 � C�C

x0A ∩ � (x0, d ) =� �.d > 0,
x0 = sup (D).x0 + d

2

At = {a � A: a ≤ t} =
{

a � A:  a ≤ x0 + d
2

}
= Ax0+(d/2).

A ∩ �(x0, d) = �,〉.〈x0 − d < t ≤ x0

t � Dd > 0�〉.〈x0 = sup (D)
〉

〈

(−∞, inf (A)) ⊆ Dx � D.x < inf (A), Ax = �
�〉.〈

�
D = {x � �: Axa ≤ x}.Ax = {a � A:x � �,
�
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334 CHAPTER 7 Concepts of Analysis

5. Classify each of the following subsets of as open, closed, or neither open
nor closed.
(a) � (b)
(c) (d)

� (e) (f)
(g) (h)

� (i) ( j)

6. Let Prove that every open ray, either or is an open
set.

7. Let Prove that
(a) every closed ray, either or is a closed set.
(b) every closed interval is a closed set.

8. Let be a nonempty collection of closed subsets of 

(a) Prove that is a closed set.

(b) If is a finite collection, prove that is a closed set.

(c) Show by example that part (b) is false if we do not assume that is
finite.

9. Let A and B be subsets of and Prove that
(a) if A is open, then is open.
(b) if A is open and B is closed, then is open.
(c) if A is open and B is closed, then is closed.

10. Let A be a subset of Prove that the set of all interior points of A is an open
set.

11. A point x is a boundary point of the set A for all 
and 
(a) Find all boundary points of and 
(b) Prove that x is a boundary point of A x is not an interior point of A

and not an interior point of 
(c) Prove that A is open A contains none of its boundary points.
(d) Prove that A is closed A contains all of its boundary points.

12. Prove Lemma 7.2.4.

13. Which of the following subsets of are compact?
� (a) (b)

(c) � (d) where A is finite set

(e) (f)

� (g) (h) [0, 1] ∩ �(−3, 5]

{0} ∪
{

1
n: n � �

}
{1, 2, 3, 4, 9, 12, 18}

� − A,[π, 
√

10]
[0, 10] ∪ [20, 30]�

�

  iff  

  iff  

Ac.
  iff  

�.[3, 5] ∪ {6},(0, 1),(2, 5],
� (x, d) ∩ Ac =� �.

� (x, d) ∩ A =� �d > 0,  iff  

�.

B − A
A − B

A − {x}
x � �.�

�

⋃
A��

A�

⋂
A��

A

�.�

[a, b]
(−∞, a],[a, ∞)

a, b � �.

(−∞, a),(a, ∞)a � �.

{x: 0 < |x − 5 | ≤ 7}{x: |x − 5 | ≤ 7}
{x: |x − 5 | =� 7}{x: |x − 5 | > 7}
{x: |x − 5 | = 7}� − �

�(5, 8) ∪ {9}
�(a, d) − {a} for a � � and d > 0(−∞, −3)

�
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14. Give an example of
(a) a bounded subset of and a cover of that set that has no finite sub-

cover.
(b) a closed subset of and a cover of that set that has no finite sub-

cover.
(c) Sets A, B, C, and D of real numbers such that A is open,

B is closed, C is neither open nor closed, and D is compact.

15. Let A and B be compact subsets of 
� (a) Use the definition of compact to prove that is compact.

(b) Apply the Heine–Borel Theorem to prove that is compact.
(c) Apply the Heine–Borel Theorem to prove that is compact.

16. Let and let 

(a) Prove that is a cover for S.
(b) Is there a finite subcover of for S?
(c) What does the Heine–Borel Theorem say about S?

17. Use the Heine–Borel Theorem to prove that if is a collection of
compact sets, then is compact.

18. Give an example of a collection of compact sets such that
is not compact.

Proofs to Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(a) Claim. Let The open ray is an open set.

“Proof.” Let Let If then
Therefore, and so Thus 

This proves x is an interior point of Since every point of 
is an interior point, is open. �

(b) Claim. If A and B are compact, then is compact.
“Proof.” If A and B are compact, then for any cover for A,
there exists a finite subcover and for any open cover

for B, there exists a finite subcover Thus
and Therefore,

a union of a
finite number of open sets. Thus is compact. �

� (c) Claim. If A is compact, and B is closed, then B is compact.
“Proof.” Let be a cover for B. If is a cover
for A, then there is a finite subcover of that  covers A and
hence covers B. If is not a cover for A, add one more open
set O* to the collection to obtain a cover for A. This cover for
A has a finite subcover of A that is a cover for B. In either case B is cov-
ered by a finite number of open sets. Therefore B is compact. �

= � − B
{Oa: a � Δ}

{Oa: a � Δ}
{Oa: a � Δ}{Oa: a � Δ}

B ⊆ A,
A ∪ B

Ub2 ∪ Á ∪ Ubm,A ∪ B ⊆ Oa1 ∪ Oa2 ∪ Á ∪ Oan ∪ Ub1 ∪
Ub2 ∪ Á ∪ Ubm.B ⊆ Ub1 ∪A ⊆ Oa1 ∪ Oa2 ∪ Á ∪ Oan

Ub1, Ub2, Á , Ubm.{Ub: b � ≠}
Oan,Oa1, Oa2, Á ,

{Oa: a � Δ}
A ∪ B

 (a, ∞)
(a, ∞)(a, ∞).

� (x, d) ⊆ ( a, ∞).y � (a, ∞).y > ay > x − d.
y � � (x, d),d = a − x.x � (a, ∞).

(a, ∞)a � �.

⋃
a�Δ

Aa
{Aa: a � Δ}

⋂
a�Δ

Aa
{Aa: a � Δ}

�
�

� =
{Qn + 2

2n  , 2(1/n)R : n � �

}
.S = (0, 1]

A ∪ B
A ∩ B

A ∪ B
�.

A ⊆ B ⊆ C ⊆ D,

�

�
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(d) Claim. If A is compact, and B is closed, then B is compact.
“Proof.” B is closed by assumption. Since A is compact, A is bounded.
Since B is also bounded. Thus B is closed and bounded.
Therefore, B is compact. �

(e) Claim. The set is compact.
“Proof.” The set is a cover for Then

is a finite subcover of for so is compact.

7.3 The Bolzano–Weierstrass Theorem

In the previous section we used the completeness of to prove the Heine–Borel
Theorem. In this section we use the Heine–Borel Theorem to prove another classi-
cal result of analysis, the Bolzano–Weierstrass* Theorem.

Let’s begin with a closed interval [a, b] and imagine that we must build a sub-
set A of [a, b] by selecting elements for A, one at a time, from [a, b]. Since

will necessarily be a bounded set. If A is finite, we could choose ele-
ments that are spread out across the interval. In other words, if A is finite, there need
not be any point in the interval where the elements of A pile up or “accumulate.”
What the Bolzano–Weierstrass Theorem says is that if a set A is infinite and
bounded, there must be at least one point in [a, b] around which an infinite number
of elements of A will be congregated. Before we get to that result, we give an exam-
ple and define carefully what it means for elements of a set to accumulate around a
point.

Example. For the bounded infinite set each element A =
{

1, −1
2
, 1

3
, − 1

4
, 1

5
, Á

}
,

A ⊆ [a, b], A

�

(5, ∞)(5, ∞),��
(5, ∞).� = {(4, 12), (10, ∞)}

(5, ∞)

B ⊆ A,

B ⊆ A,

336 CHAPTER 7 Concepts of Analysis

* Bernard Bolzano (1781–1848) was a Bohemian mathematician, philosopher, and logician. He pio-
neered several modern mathematics concepts (such as the rigorous definition of limit) but because of his
strong antimilitary beliefs most of his work appeared in obscure publications. The Bolzano–Weierstrass
Theorem was for several years called simply the Weierstrass Theorem until Bolzano’s independent proof
was discovered many years after his death.

Karl Weierstrass (1815–1897) was a German mathematician and the foremost leader in the 1800s
in developing highly rigorous definitions and theorems that characterize much of modern mathematics.
He was the first to develop rigorous proofs for the Intermediate Value Theorem, the Heine–Borel
Theorem and several theorems whose titles now bear his name.

1−1 0
……

−1
4−1

2 −1
6 −1

8
1
7

1
5

1
3

Figure 7.3.1

of A is contained in the interval Figure 7.3.1 shows that the number 0 is a[−1, 1].
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point around which the elements of A gather. We say 0 is an accumulation point for
the set A.

7.3 The Bolzano–Weierstrass Theorem 337

DEFINITION Let A be a set of real numbers. The number x is an accu-
mulation point for A for all contains at least one point
of A distinct from x.

� (x, d)d > 0,  iff  

tion of an accumulation point for the set we start by

choosing some -neighborhood about 0. By the Archimedean Principle, 
there exists an odd natural number k such that Then Therefore 

and since k is odd, Thus every neighborhood of 0 contains a
point of A that is distinct from 0.

Example. Let Prove that the set of accumulation points for A is [3, 7].

Proof. We consider cases: elements of (3, 7), the endpoints, other numbers. 

(i) Let Suppose The set (3, 7) is open so there exists 
such that Let be the smaller of and Then

and is a point in that is in A and distinct
from x. Thus if x is in is an accumulation point for A.

(ii) Let and If then 5 is a point of that is in and
distinct from 3. If then is a point of that is in 

and distinct from 3. Thus 3 is an accumulation point for A.
(iii) Let By an argument very similar to part (ii), 7 is also an accumulation

point for A. (See Exercise 1.)
(iv) Let and Then and A are disjoint, so x is not an

accumulation point for A.
(v) Let Using reasoning similar to that in part (iv), x is not an accumula-

tion point for A.

We conclude that the set of all accumulation points for is �

Example. Let The number 9 is not an accumulation point for
B because, for example, contains no points of B other than 9. The 
accumulation points of B are all the elements of [2, 6].

� (9, 0.5)
B = (2, 6) ∪ {9}.

[3, 7].[3, 7)

x > 7.

� (x, d)d = 3 − x.x < 3

x = 7.
[3, 7)

� (x, d)3 +  d
2

d < 4,
[3, 7)� (x, d)d ≥ 4,d > 0.x = 3

(3, 7), x
� (x, g)x + g

2
� (x, g) ⊆ (3, 7)

b.dg� (x, b) ⊆ (3, 7).
b > 0d > 0.x � (3, 7).

A = [3, 7).

1
k

� A.1
k

� �
 
(0, d)

1
k

< d.k >
1
d
.

� (0, d)d

A =
{

1, −1
2
, 1

3
, −1

4
, 1

5
, Á

}
,

The definition says that for x to be an accumulation point for set A, it must be
that for every To verify that 0 satisfies the defini-(� (x, d) − {x}) ∩ A =� �.d > 0,
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We see from our examples that an accumulation point of a set is not necessar-
ily an element of the set, and, conversely, an element of a set is not necessarily an
accumulation point of the set.

We also see that for x to be an accumulation point of the set A, much more is
required than just that there is an element of A distinct from x that is within of x.
The next theorem shows that there must be infinitely many points of A that are
within of x.

Theorem 7.3.1 A number x is an accumulation point for a set A for all contains
an infinite number of points of A.

Proof. If every neighborhood of x contains an infinite number of points of A, then
each neighborhood certainly contains at least one point of A distinct from x.
Therefore, x is an accumulation point.

Now suppose that x is an accumulation point for A. Suppose that 
is finite for some Let Our
choice of is so small that will have no points of A other than perhaps x
itself. Then which contradicts the initial assumption that x is
an accumulation point for A. Therefore, every neighborhood of x must contain an
infinite number of points of A. �

From Theorem 7.3.1 it follows that no finite set can have any accumulation points.

Examples. There are rational numbers between any two distinct real numbers, so
it follows that for real number x and the interval contains infi-
nitely many rationals. Therefore, every real number is an accumulation point for �.

(x − d, x + d)d > 0,

� (x, d1) ∩ A = {x},〉
� (x, d1)d1

〈d1 = min { |x − y | : y � � (x, d) ∩ A, x =� y}.d > 0.
� (x, d) ∩ A

� (x, d)d > 0,  iff  

d

d

338 CHAPTER 7 Concepts of Analysis

Using similar reasoning, we can conclude that every real number is an accumula-
tion point for the set of irrationals.

DEFINITION Let A be a set of real numbers. The set of accumulation
points for A is called the derived set of A, and is denoted by A′.

Let be the set of successive deci-B = {1.4, 1.41, 1.414, 1.4142, 1.41421, Á}
mal approximations to Then Other examples of derived sets of
subsets of are:

The following theorem relates derived sets and closed sets.

�′ = �.

 �′ = �

((−1, 6) ∪ (6, 8))′ = [−1, 8]

((−1, 6] ∪ (7, 8))′ = [−1, 6] ∪ [7, 8]

(3, 5)′ = [3, 5)′ = (3, 5] ′ = [3, 5] ′ = [3, 5]

�

B ′ = {
√

2}.
√

2.

62025_07_ch07_p315-352.qxd  4/23/10  2:15 AM  Page 338

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Theorem 7.3.2 A set A is closed

Proof. Suppose A is closed and If then an open set. Thus
for some positive But then can contain no points of A.

Thus x is not an accumulation point of A and so a contradiction. We con-
clude that Therefore 

Now suppose To show that A is closed, we show is open. If is not
open, there is at least one that is not an interior point of Therefore, no 
-neighborhood of x is a subset of ; that is, each -neighborhood of x contains

a point of A. This point must be different from x, since Thus But
so This is a contradiction. We conclude that A is closed. �

At the beginning of this section we suggested that every bounded infinite set

of real numbers, such as must have at least one 
accumulation point in We are now in a position to prove this is so. The proof
uses the Heine–Borel Theorem.

Theorem 7.3.3 The Bolzano–Weierstrass Theorem
Every bounded infinite set of real numbers has an accumulation point in 

Proof. Suppose the set A is bounded and infinite but has no accumulation points.
Then Since A is closed by Theorem 7.3.2 . Then by the
Heine–Borel Theorem, A is compact.

Since A has no accumulation points, for each there exists such
that Thus if and then But this
means the family is an infinite collection of open sets that covers
A and has no subcover other than itself. Hence A has no finite subcover. This con-
tradicts the fact that A is compact. Therefore, A must have an accumulation point. �

Exercises 7.3

1. Prove that
(a) 7 is an accumulation point for [3, 7).

(b) 0 is an accumulation point for 

� (c) e is an accumulation point for 

2. Find an example of an infinite subset of that has
(a) no accumulation points.
(b) exactly one accumulation point.
(c) exactly two accumulation points.
(d) denumerably many accumulation points.
(e) an uncountable number of accumulation points.

�

{Q1 + 1
nR

n
 : n � �

}
.

{
1 + (−1)n

n
 : n � �

}
.

{� (x, dx): x � A}
� (x, dx).y �x =� y,y � A� (x, dx) ∩ A = {x}.

dx > 0x � A

〉〈A′ ⊆ A,A′ = �.

�.

�.
A =

{
1, −1

2
, 1

3
, −1

4
, 1

5 
, Á

}
,

x � A.A′ ⊆ A,
x � A′.x � Ac.

dAcd

Ac.x � Ac
AcAcA′ ⊆ A.

A′ ⊆ A.x � A.
x � A ′,

� (x, d)d.� (x, d) ⊆ Ac
x � Ac,x � A,x � A′.

A′ ⊆ A.  iff  

7.3 The Bolzano–Weierstrass Theorem 339
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3. Find the derived set of each of the following sets.

� (a) (b)

� (c) (d)

(e) (f)

� (g) (h)

(i) (j)

(k) (l)

� (m) (n)

� 4. Let Find 

� 5. Prove that if and then z is an accumulation point 
of A.

6. (a) Prove that if then 
(b) Is the converse of part (a) true? Explain.

7. Let A and B be subsets of 
(a) Prove that (The operation of finding the derived set

preserves unions.)
� (b) Prove that 

(c) Find a counterexample for 

8. Let A and B be sets of real numbers. Prove that
(a) if B is closed and then 
(b) is closed.

9. (a) Prove that if x is an interior point of the set A, then x is an accumulation
point for A.

(b) Is the converse of part (a) true? Explain.
(c) Prove that if is open, then every point of S is an accumulation

point of S.
(d) Is the converse of part (c) true? Explain.

10. Which of the following must have at least one accumulation point?
� (a) an infinite subset of (b) an infinite subset of 
� (c) an infinite subset of (d) an infinite subset of

(e) (f)

(g) an infinite subset of 

11. Let A be a set of real numbers. Prove that 

12. Let A and F be sets of real numbers and let F be finite. Prove that if x is an
accumulation point of A, then x is an accumlation point of A − F.

(A ′)c ⊆ (Ac) ′.
� ∩ [0, 1]

{p
q : p, q � �, p < q

}{ 1

2k
: k � �

} �[0, 100]
(-10, 10)�

S ⊆ �

A ∪ A′
A′ ⊆ B.A ⊆ B,

(A ∩ B)′ = A′ ∩ B ′.
(A ∩ B)′ ⊆ A′ ∩ B′.

(A ∪ B)′ = A′ ∪ B′.
�.

A′ ⊆ B′.A ⊆ B ⊆ �,

z � A,z = sup (A),A ⊆ �,

S′ ∩ (Sc)′.S = (0, 1].

{
x

2y: x, y � �

}{
k + 1

n
: k, n � �

}
{sin x

x
: x � (0, π)

}{
sin x: x � A−π

2 , π2 B }
{1 + n2(1 + (−1)n)

n
: n � �

}
� ∩ (0, 1)

�

{
1 + (−1)nn

n + 1
 : n � �

} (3, 7) ∪ {4, 6, 8}(0, 1]

{ 7

2n : n � �

}
{6n: n � �}

{2n: n � �}
{n + 1

2n
 : n � �

}
340 CHAPTER 7 Concepts of Analysis
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Proofs to Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.

� (a) Claim. For 
“Proof.”
(i) Since by exercise 6(a). Likewise,

Therefore, 
(ii) To show that let Then for all

contains a point of distinct from Restating
this, we have, for all that contains a point of A dis-
tinct from x or a point of B distinct from Thus for all 

contains a point of A distinct from x, or, for all 
contains a point of B distinct from x. But this means 

or Therefore, �

(b) Claim. For 
“Proof.”

�

� (c) Claim. For A, 
“Proof.”

�

(d) Claim. If A is closed, then 
“Proof.” Suppose A is closed. Then is open. Let Then x is an
interior point of Therefore, there exists so that 
Hence Thus x is not an accumulation point for A. 
Since we conclude �

(e) Claim. If A is a set with an accumulation point, and B is infi-
nite, then B has an accumulation point.
“Proof.” First, A is infinite because and B is infinite. Since A
has an accumulation point, by the Bolzano–Weierstrass Theorem A
must be bounded. Since this means B is bounded. Hence by the
Bolzano–Weierstrass Theorem again, B has an accumulation point. �

7.4 The Bounded Monotone Sequence Theorem

Recall that a sequence of real numbers is a function x from to and the notation
is used to represent the nth term of the sequence. We showed in Section 4.6 that

when a sequence converges (has a limit) then the limit is unique. For instance, the

first few terms of the sequence a given by are This sequence

converges to 0 and we write In this section we prove that thelim
n→ ∞  

1

n2
= 0

1, 1
4
, 1

9
, 1

16
, Á .an = 1

n2

xn

��

B ⊆ A,

B ⊆ A

B ⊆ A,

A′ ⊆ A.x � Ac implies x � A′,
�(x, d) ∩ A = �.

�(x, d) ⊆ Ac.d > 0Ac.
x � Ac.Ac

A′ ⊆ A.

 = A′ − B ′.
 ⊆ A′ ∩ (B ′)c 〈since (Bc)′ ⊆ (B ′)c〉
 ⊆ A′ ∩ (Bc)′ 〈Exercise 7(b)〉

(A − B)′ = (A ∩ Bc) ′  〈definition of A − B〉
(A − B)′ ⊆ A′ − B′.B ⊆ �,

 iff  x � ( Ac)′.
 iff  x is an accumulation point for Ac
 iff  x is not an accumulation point for A

x � ( A′)c  iff   x � A′
(Ac)′ = ( A′)c.A ⊆ �,

x � A′ ∪ B′.x � B ′.
x � A′�(x, d)
d > 0,�(x, d)
d > 0,x.

�(x, d)d > 0,
x.A ∪ Bd > 0, �(x, d)

x � (A ∪ B)′.(A ∪ B)′ ⊆ A′ ∪ B′,
A′ ∪ B ′ ⊆ (A ∪ B)′.B′ ⊆ (A ∪ B)′.

A′ ⊆ (A ∪ B)′A ⊆ A ∪ B,

(A ∪ B)′ = A′ ∪ B′.A, B ⊆ �,

7.4 The Bounded Monotone Sequence Theorem 341
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Bolzano–Weierstrass Theorem implies that certain kinds of sequences of real
numbers (bounded monotone sequences) must converge. We begin by defining
bounded sequences and monotone sequences.

342 CHAPTER 7 Concepts of Analysis

DEFINITIONS For a sequence x of real numbers, if there exists a real
number B such that for all we say x is bounded above (by B).

Similarly, if there exists a real number B such that for all
we say x is bounded below (by B).

The sequence x is bounded x is bounded above and bounded below.  iff  

n � �,
xn ≥ B

n � �,xn ≤ B

A sequence is bounded the terms of the sequence are never larger 
than some fixed number and never less than some other (smaller) fixed number.
This is equivalent to saying that the set is a bounded set—that is, the{xn: n � �}

  iff  

range of the function x is a bounded subset of Boundedness may also be
described by the absolute values of the terms of the sequences.

Theorem 7.4.1 A sequence x of real numbers is bounded there exists a real number B such that
for all 

Proof. Exercise 4. �

The sequence y given by is unbounded. Intuitively it seems that y must
diverge because its terms never approach any possible limit L. Our next theorem
confirms that every unbounded sequence diverges.

Theorem 7.4.2 If a sequence of real numbers converges, then it is bounded.

Proof. Suppose x is a sequence convergent to the real number L. For 
there is a natural number N such that if then Since

we have for all Thus for all 
All but the first N terms are bounded by We now find an

upper bound for those terms as well. Let B = max { |x1 | , |x2 | , Á , |xN | , |L | + 1}.〉
|L | + 1.〈|xn | < |L | + 1.

n > N,|xn | − |L | < 1.n > N,||xn | − |L || ≤ |xn − L | ,
|xn − L | < 1.n > N,

ε = 1,

yn = 2n

n � �.|xn | ≤ B
  iff  

�.

Then for all and x is bounded above. A similar argument proves that x
is bounded below. Therefore x is bounded. �

n � �,|xn | ≤ B

The proof shows that after the first few terms (that is, after N terms), the
remaining terms of the sequence must be close to the limit. Let x be the sequence

This sequence converges to 15 and therefore must be bounded. In this case the first
“few” (1000) terms jump around before the terms settle in close to 15. The
sequence is bounded above by and below by −2999.21000

xn = c (−2)n 1 ≤ n ≤ 1000

15n

n + 1
n > 1000

.
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The sequence y given by is increasing since implies 
The sequence whose terms are is decreasing since the value of gets
smaller as n gets larger. A constant sequence k, such that every term kn is the num-
ber c for some is both increasing and decreasing. The alternating sequence

is not monotone, because its terms are neither in increasing
order nor in decreasing order.

A proof that a given sequence x is increasing (or decreasing) is similar to the
proof that a real valued function is increasing (or decreasing) on an interval I. (See
Section 4.2.)

Example. Prove that the sequence x given by is increasing.

Proof. Suppose that m and n are natural numbers and Then

Therefore, Hence the sequence x is increasing. �

The next theorem relates all the concepts of this section: A sequence of real
numbers that is both bounded and monotone must converge. The proof makes use
of the Bolzano–Weierstrass Theorem.

Theorem 7.4.3 The Bounded Monotone Sequence Theorem
For every bounded monotone sequence x, there is a real number L such that

Proof. Assume x is a bounded and increasing sequence. (The proof in the case
where x is decreasing is similar.)

If is finite, then let For some 
and, since x is increasing, for all Therefore, lim

n→∞xn = L.n > N.xn = LxN = L
N � �,L = max {xn: n � �}.{xn: n � �}

lim
n→ ∞xn = L.

xn < xm.

n

n + 1
<

m

m + 1
    〈since n + 1 and m + 1 are positive〉.

n(m + 1) < m(n + 1),

mn + n < mn + m,

n < m.

xn = n

n + 1

1, −1, 1, −1, 1, Á

c � �,

e−nzn = e−n
2n ≤ 2m.n < myn = 2n

7.4 The Bounded Monotone Sequence Theorem 343

DEFINITIONS Let x be a sequence of real numbers. The sequence x is
increasing for all if then 

We say x is decreasing for all if then

The sequence x is monotone x is either increasing or decreasing.  iff  

xn ≥ xm.
n < mn, m � �,  iff  

xn ≤ xm.n < mn, m � �,  iff  

Suppose is infinite. Then by the Bolzano–Weierstrass Theorem,{xn 

: n � �}
the bounded infinite set must have at least one accumulation point. Let{xn 

: n � �}
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L be an accumulation point. We claim for all If there exists N such
that then for all Since L is an accumulation point ofn ≥ N.xn > LxN > L,

n � �.xn ≤ L

344 CHAPTER 7 Concepts of Analysis

and is finite, L is an accumulation point of 
by Exercise 12 of Section 7.3. Let Then contains no points� (L, d)d = |xN − L |.

{xn 

: n > N},{xn 

: n ≤ N}{xn 

: n � �},

of This is a contradiction. Thus for all n.
We claim that the sequence x converges to L. Let Since L is an ε > 0.

xn ≤ L{xn 

: n ≥ N}.

accumulation point of there exists such that 
Thus and so, for Therefore, for

Thus �

The Bounded Monotone Sequence Theorem can be used to prove the existence
of several important real numbers. For example, the constant e, the base of the nat-
ural logarithm function, can be defined as

To show that the sequence whose nth term is has a limit, we will

show that the sequence is bounded above and increasing.

By the Binomial Expansion Theorem (Theorem 2.6.9), for any n,

Thus the sequence is bounded above by 3.

We next show that x is an increasing sequence. We again use the Binomial
Theorem to compare and 

 = 1 + 1 + 1

2!
 
n(n − 1)

n2
+ 1

3!
 
n(n − 1)(n − 2)

n3
+ Á + 1

n!
 
n!

nn

 xn = a1 +  
1
n b

n

xn+1:xn

xn = Q1 + 1
nR

n

 = 3.
 < 1 + 2

 = 1 + 2n − 1

2n−1

 ≤ 1 + 1 + 1

2
+ 1

4
+ Á + 1

2n−1

 ≤ 1 + 1 + 1

2!
+ 1

3!
+ Á + 1

n!

 = 1 + 1 + 1

2!
 
n(n − 1)

n2
+ 1

3!
 
n(n − 1)(n − 2)

n3
+ Á + 1

n!
 
n!

nn

xn =   a1 + 1
n
b

n

= 1 + n

1!
 
1
n

+ n(n − 1)

2!
 
1

n2
+ n(n − 1)(n − 2)

3!
 
1

n3
+ Á + 1

nn

xn = Q1 + 1
nR

n

e = lim
n→∞

a1 + 1
n
bn

.

lim
n→∞xn = L.|xn − L | < ε.n > M,

L − ε < xM ≤ xn ≤ L < L + ε.n > M,L − ε < xM,
xM � � (L, ε).M � �{xn 

: n � �},
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and

We leave it as Exercise 7 to show that each term in the expansion of is less
than or equal to the corresponding term in the expansion of Additionally, the

binomial expansion of has one more positive term, than

the binomial expansion of xn. Thus for all
Because x is increasing, it is bounded below by its first term 

Thus x is bounded. By the Bounded Monotone Sequence Theorem, x

must converge. The limit of the sequence x is, by definition, the number e.

Exercises 7.4

1. For each sequence x, determine whether x is bounded, bounded above, or
bounded below.

� (a) (b)

� (c) (d)

� (e) (f)

� (g) (h)

� (i) (j)

(k) (l)

2. Give an example of
(a) a bounded sequence that is not convergent.
(b) an increasing sequence that is not convergent.
(c) a convergent sequence that is not monotone.
(d) a divergent sequence x such that the sequence whose nth term is 

converges.
(e) an increasing sequence that converges to 

� 3. Prove that if and y is a bounded sequence, then xn yn → 0.xn → 0

π

2
.

|xn |

xn = ((−1)n − 1)((−1)n + 1)
n

xn = (−1)n + 1
n

xn = (−1.1)nxn = (−0.9)n

xn = (−1)nnxn = n tan Q3nπ

4 R
xn = cos n

n
xn = 10

n!

xn =  log10 nxn = 10−n

xn = 10
n

xn = 10n

Q1 + 1

1
R11 = 2.

x1 =
n � �.xn ≤ xn+1

1

(n+1)!
 

(n + 1)!

(n + 1)n+1
,xn+1

xn+1.
xn

 + 1

n!
 
(n + 1)(n)(n − 1) ·  

Á · 3 · 2

(n + 1)n + 1

(n + 1)!
 

(n + 1)!

(n + 1)n+1
 .

 = 1 + 1 + 1

2!
 
(n + 1)n

(n + 1)2
+ 1

3!
 
(n + 1)(n)(n − 1)

(n + 1)3
 + Á

 xn+1 = a1 + 1

n + 1
b

n+1
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4. Prove Theorem 7.4.1.

5. For each sequence, determine whether the sequence is increasing, decreasing,
or neither. Prove your answer.

(a) (b)

(c) (d)

(e) � (f)

(g)

6. Give a proof of the Bounded Monotone Sequence Theorem for the case in
which the sequence x is bounded and decreasing.

7. Complete the proof that is an increasing sequence by showing 

that for all is less than or

equal to 

8. Let x be a bounded increasing sequence. Use the completeness property of the
reals and properties of suprema and limits to prove directly (without reference
to the Bolzano–Weierstrass Theorem) that x converges. (Hint: Consider the
supremum of the set of terms of x.)

9. Recall from Exercise 8 of Section 4.6 that the sequence is a subsequence
of if and only if there is an increasing function such that

Prove that if x is bounded, then every subsequence of x is bounded.

10. A sequence x of real numbers is a Cauchy* sequence for every 
there exists an integer M such that if then That is,
terms in the sequence are arbitrarily close together if the terms are chosen far
enough along the sequence.
(a) Prove that if x is a Cauchy sequence, then x is bounded. (It can also be

shown that every Cauchy sequence converges.)
(b) Prove that if x is a convergent sequence, then x is a Cauchy sequence.

11. Let x and y be positive real numbers with Let and

The numbers and are called the arithmetic and geometric

means, respectively. In general, for let and

(a) Use induction to show that for all an > an+1 > bn+1 > bn.n � �,
bn+1 =

√
anbn.

an+1 = an + bn

2
n > 1,

b1a1b1 =
√

xy.

a1 = x + y

2
x > y.

|xn − xm | < ε.m, n > M,
ε > 0,  iff  

yn = xf ( n).
f : � → �xn

yn

1

k!
 
(n + 1)(n)(n − 1) ·  

Á
 · [n − (k − 2)]

(n + 1)k
.

1

k!
 
n (n − 1)(n − 2) ·  

Á
 · [n − (k − 1)]

nk
k ≤ n,

xn = Q1 + 1
nR

n

xn =
√

n + 1

yn =  
n!

nnxn =  
2n − 5

n + 3

yn =  10
n!

xn = ( n − 2)( n − 5)2

yn = 2−nxn =  
n + 2

n
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* Augustin Louis Cauchy (1789–1857) was a creative French mathematician and pioneer in the efforts
to bring rigor to the infinitesimal calculus. He was the first to define complex numbers as a pair of real
numbers. Cauchy’s name is associated with concepts and results in many fields of mathematics, includ-
ing geometry, analysis, and mathematical physics.
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geometric mean.

Proofs to Grade 12. Assign a grade of A (correct), C (partially correct), or F (failure) to each. 
Justify assignments of grades other than A.
(a) Claim. Every bounded decreasing sequence converges.

“Proof.” Let x be a bounded decreasing sequence. Then 
defines a bounded increasing sequence. By the proof of Theorem 7.4.3,

for some L. Thus  �

(b) Claim. The sequence x, where converges.

“Proof.” Since for all natural numbers n, There-

fore, x is a bounded sequence. The derivative of is which 

is less than 0 for every natural number n greater than e. Therefore,
except for the first two terms, x is a decreasing sequence. Since x is
bounded and decreasing, x converges. �

7.5 Equivalents of Completeness

We began the chapter by stating without proof that the real numbers are a complete
ordered field. In subsequent sections we (1) used completeness to prove that a set
of real numbers is compact it is closed and bounded, then (2) used that property
to prove that every bounded infinite set of reals has an accumulation point, and then
(3) used that property to prove that every bounded monotone sequence of real num-
bers converges. In this section we use the bounded monotone sequence property to
prove that is complete. This result completes a cycle of implications about the
real numbers. See Figure 7.5.1.

When we finish this section, we will not have proved that the real numbers
have any of the four properties we have studied. Rather, we will have shown that
the completeness of is equivalent to each of the other properties, so that we have
a deeper understanding of the meaning and importance of completeness.

�

�

  iff  

1 − ln n

n2
,

 ln n
n

ln n
n

 ≤ 1. ln n … n

xn = ln n
n

,

lim
n→∞xn = −L.lim

n→∞  

yn = L

yn = −xn

7.5 Equivalents of Completeness 347

Bounded Monotone
Sequence Theorem

Completeness
of �    

Bolzano–Weierstrass
Theorem

Heine–Borel
Theorem

Figure 7.5.1

(b) Let a and b be the sequences whose terms are an and bn, respectively.
Show that both sequences a and b converge.

(c) Show that This number is called the arithmetic-lim
n→∞an = lim

n→∞bn.
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348 CHAPTER 7 Concepts of Analysis

Before we get to the main theorem we need two lemmas about the convergence
of sequences. Their proofs are Exercises 1 and 2.

Lemma 7.5.1 If x and y are two sequences such that and
then 

Lemma 7.5.2 If x is a sequence with and t is a real number such that then 

there exists such that for all 

Theorem 7.5.3 Suppose has the property that every bounded monotone sequence must converge.
Then is complete.

Proof. Let A be a nonempty subset of that is bounded above by a real number
b. To prove completeness, we must show exists and is a real number. Since

we may choose If a is an upper bound for A, then see 
Exercise 5(b) of Section 7.1 and we are done. Assume that a is not an upper bound
for A. If is an upper bound for A, let and if not, let

and In either case is not an upper
bound, and is an upper bound for A.

Now if is an upper bound for A, let and 
otherwise, let and In either case the result is that

is not an upper bound for A, while and 
is an upper bound for A.

Continuing in this manner, we inductively define an increasing sequence 
x such that no is an upper bound for A, and a decreasing sequence y such 
that every is an upper bound for A. By the hypothesis, since y is bounded
below, y converges to a point In addition so 

Therefore by Lemma 7.5.1,

We claim that s is an upper bound for A. If for some then 
for some N because This contradicts the fact that is an upperyNlim

n→∞yn = s 〉.〈
z > yNz � A,z > s

lim
n→∞xn = s.lim

n→∞ (yn − xn) = lim
n→∞(b − a)/2n = 0.

yn − xn = (b − a)/2n,s � �.
yn

xn

y2y2 ≤ y1,x2 ≥ x1, x2y2 − x2 = (b − a)/4,
y2 = y1.x2 = (x1 + y1)/2

y2 = (x1 + y1)/2;x2 = x1(x1 + y1)/2
y1

y1 − x1 = (b − a)/2, x1y1 = b.x1 = (a + b)/2
y1 = (a + b)/2;x1 = a(a + b)/2

〉
a = sup (A) 〈a � A.A =� �,

sup (A)
�

�

�

n ≥ N.xn > tN � �

t < s, lim
n→∞xn = s

 lim
n→∞xn = s.

lim
n→∞(xn − yn) = 0, lim

n→∞ 
yn = s

bound for A.
Finally, if t is a real number and then for some by Lemma

7.5.2. Since is not an upper bound for A, t is not an upper bound.
Thus s is a real number that is an upper bound for A, and no number less than

s is an upper bound; that is, Therefore, is complete.                    �

We saw in Section 7.1 that is an ordered field that is not complete.
Thus, all the properties described by the main theorems of this chapter must fail for
the rational numbers. We give examples:

Example. The set is a closed and bounded subset of 
A is not compact because is a cover for A with no
finite subcover. This example shows that the Heine–Borel Theorem fails 
for �.

{(−x, x): x � A and x =� 0}
�.A = {x � �: x2 ≤ 2}

(�, +, ·)

�s = sup (A).

xN

N � �t < xNt < s,
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Example. The set of (rational) decimal 
approximations of is a bounded and infinite subset of with no accumulation
point in Thus the Bolzano–Weierstrass Theorem fails in 

Example. A counterexample to the Bounded Monotone Sequence Theorem in 
is the sequence whose terms are the successive decimal expansions of This
bounded and increasing sequence fails to converge to any rational number.

Why is completeness such a crucial property of the real number system? In

Section 7.4 we saw that the sequence whose nth term is is bounded

and increasing, so by the completeness of (via the Bounded Monotone Sequence
Theorem), the terms must approach a unique real number, which is the number e.
The fact that important constants such as e must exist in is a consequence of 
completeness.

Not only must the limit of a bounded monotone sequence of rational numbers
be in but the same is true for a bounded monotone sequence of irrational num-
bers, or of rationals and irrationals. The completeness property and its equivalents
assure us that every number that is a limit of a sequence of reals is in fact a real
number.

A proof that is a complete ordered field requires a much more rigorous defi-
nition of a real number than we gave in the Preface to the Student. Such a definition
requires construction of the reals from the rationals in such a fashion that the com-
pleteness property holds. What this means is that we must identify some set of
objects based on the rational numbers, tell how to add, multiply, and order these
objects, and then show that all the properties of a complete ordered field hold for
these objects.

One approach considers Cauchy sequences of rational numbers (see Exercise
10 of Section 7.4). Two Cauchy sequences and are equivalent the
sequence converges to zero. In this approach, is the set of equivalence 
classes of Cauchy sequences. For example, the real number is represented by
the equivalence class containing the rational sequence 

and all other Cauchy sequences equivalent to
this one. After carefully crafting the definitions of addition, multiplication, and the
order properties for equivalence classes of Cauchy sequences, one can show that
the resulting system is a complete ordered field. See Charles Chapman Pugh’s Real
Mathematical Analysis (Springer, 2002) for an explanation of how to define addi-
tion and multiplication and for why this system forms a complete ordered field.

A different approach to constructing the reals from the rationals sets up two- 
element partitions of called Dedekind* cuts as a method for defining irrational
numbers. For example, the pair where A1 = {x � �: x ≤ 0 or x2 < 2}{A1, A2},

�,

1.41421, 1.414213, 1.4142135, Á

1, 1.4, 1.41, 1.414, 1.4142,

√
2

�|xn − yn |
  iff  {yn}{xn}

�

�,

�

xn

�

xn = Q1 + 1
nR

n

√
2.

�

�.�.
�

√
2

B = {1.4, 1.41, 1.414, 1.4142, Á}
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* Richard Dedekind (1831–1916) was Gauss’ last graduate student at the University of Göttingen. A
strong supporter of Cantor, he was noted for his work with infinite sets and axiomatic definitions of num-
ber systems. He was the first to show that a set is infinite it is equivalent to one of its proper subsets
and among the first to point out the importance of groups in algebra.

  iff  
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and and is a cut that partitions into two sets: is 
all rational numbers less than and is all rational numbers greater than The
cut represents the real number Again, one must carefully define addi-
tion and multiplication of cuts and the ordering of the set of all cuts. It can be shown
that the set of Dedekind cuts forms a complete ordered field. See Walter Rudin’s
Principles of Mathematical Analysis, 3rd ed. (McGraw-Hill, New York, 1976).

With much work we could show that is essentially the only complete ordered
field. In Chapter 6 we discussed the concept of isomorphisms of algebraic structures:
one-to-one correspondences that preserve the algebraic structure. We could apply this
concept to ordered fields, and the end result would be that every complete ordered
field is isomorphic to the field of real numbers.

Equivalence classes of Cauchy sequences and Dedekind cuts give us vastly
different mental images of the real numbers, but the study of these approaches is the
means to explain why the real numbers possess the powerful properties described
in this chapter.

Exercises 7.5

1. Prove Lemma 7.5.1.

2. Prove Lemma 7.5.2.

3. Give an example of
� (a) a closed subset A of such that and A is not compact.

(b) a bounded infinite subset of that has no accumulation point 
in 

(c) a bounded increasing sequence x of rational numbers such that
and x has no limit in 

4. For the set of irrational numbers, give an example of
(a) a closed subset A of such that and A is not compact.
(b) a bounded infinite subset of that has no accumulation

point in 
(c) a bounded increasing sequence x of irrational numbers such that

and x has no limit in 

5. (a) Find where for all  is defined as follows:

(i) (ii)

(iii) (iv)

(b) (The Nested Interval Theorem) Show that if is a
sequence of closed intervals such that for all then⋂
n��

 An =� �.

n � �,An+1 ⊆ An

An = [an, bn]

An = Q0, 
1
nRAn = [n3, ∞)

An = c2 − 1

n2
, 4 + 1

n2
dAn = S−1

n
, 

1
n
T

Ann � �,
⋂

n��
 An

� − �.⊆ [3, 4]{xn: n � �}

� − �.
� − � ∩ [3, 4]

A ⊆ [3, 4]� − �

� − �

�.{xn 

: n � �}⊆ [7, 8]

�.
� ∩ [7, 8]

A ⊆ [7, 8]�

�

√
2.{A1, A2}

√
2.A2

√
2

A1�x2 > 2},A2 = {x � �: x > 0
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Proofs to Grade 6. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.

� (a) Claim. If every bounded monotone sequence in the reals is conver-
gent, then the reals are complete.
“Proof.” Suppose the reals are not complete. Then there is a bounded
infinite subset A of such that A has no supremum in Let 
Then is not an upper bound for A, or else would be the least upper
bound Thus there is an such that 
Likewise, and is not an upper bound, so there exists with

Continuing in this fashion, we build an increasing sequence
This sequence is bounded since it is a subset of A. There-

fore, exists. Since for all L is the supremum

of A. Therefore exists, which is a contradiction. Thus  is
complete. �

� (b) Claim. The Bolzano–Weierstrass Theorem implies the completeness
of 
“Proof.” Suppose that every bounded infinite subset of the reals has
an accumulation point. Let A be an infinite subset of with an upper
bound Then is a bounded set. If B is finite, then B has
a least upper bound, which is a least upper bound for A. If B is infinite,
then by the Bolzano–Weierstrass Theorem, B has an accumulation point

which, by construction, is the least upper bound of A. �a1

B = [0, a0] ∩ Aa0.
�

�.

�sup (A)

n � �,L > xnL = lim
n→∞ 

xn

x1, x2, x3, Á .
x2 < x3.

x3 � Ax2x2 � A
x1 < x2.x2 � A〈since x1 � A〉.

x1x1

x1 � A.�.�
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353

Answers to Selected Exercises

Exercises 1.1

1. (b) false
(g) true

2. (c) not a proposition; the symbol x acts as a variable
(f) a true proposition

3. (a)

(c)

(e)

(i)

P

T F F
F T F

P ∧ ∼P∼P

P Q R

T T T T T
F T T T F
T F T T T
F F T T F
T T F T T
F T F T F
T F F F F
F F F F F

P ∧ (Q ∨ R)Q ∨ R

P Q

T T F F
F T F F
T F T T
F F T F

P ∧ ∼Q∼Q

P Q

T T F T T
F T F F F
T F T F T
F F T F T

(P ∧ Q) ∨ ∼QP ∧ Q∼Q
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4. (a) false
(c) true
(f) false
(g) true

6. (a) equivalent
(c) equivalent
(e) not equivalent
(g) not equivalent

8. (a) Since P is equivalent to Q, P has the same truth table as Q. Therefore, Q
has the same truth table as P, so Q is equivalent to P.

9. (c) tautology

10. (a) contradiction
(c) tautology

11. (a) x is not positive.
(c)
(e) Roses are not red or violets are not blue.

13. (a) (i)

Exercises 1.2

1. (a) Antecedent: squares have three sides.
Consequent: triangles have four sides.

(d) Antecedent: f is differentiable.
Consequent: f is continuous.

(f) Antecedent: f is integrable.
Consequent: f is bounded.

(i) Antecedent: An athlete qualifies for the Olympic team.
Consequent: The athlete has a time of 3 minutes, 48 seconds or less.

2. (a) Converse: If triangles have four sides, then squares have three sides.
Contrapositive: If triangles do not have four sides, then squares do not
have three sides.

(d) Converse: If f is continuous, then f is differentiable.
Contrapositive: If f is not continuous, then f is not differentiable.

(f) Converse: If f is bounded, then f is integrable.
Contrapositive: If f is not bounded, then f is not integrable.

5 < 3

354 Answers to Selected Exercises

P Q

T T F
F T T
T F T
F F F

P © ∨  Q

P Q

T T T F T
F T F T T
T F F T T
F F F T T

(P ∧ Q) ∨ (∼P ∨ ∼Q)∼P ∨ ∼QP ∧ Q
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(j) Converse: A time of 3 minutes, 48 seconds or less is sufficient to qualify
for the Olympic team.
Contrapositive: If an athlete records a time that is not 3 minutes and 48
seconds or less, then that athlete does not qualify for the Olympic team.

5. (a) true
(c) true
(e) true

6. (a) true
(c) true

7. (b)

(c)

10. (a) has a relative minimum at x0 is differentiable at x0

(d)
(e) x0 is a critical point for 

11. (b) There are three nonequivalent ways to translate the sentence, using the
symbols D “The Dolphins make the playoffs” and B “The Bears win all
the rest of their games.”

The conditional meaning of unless (the first translation) is preferred, but
the speaker may have intended any of the three.

12. (b)

Since the fifth and ninth columns are the same, the propositions
and are equivalent.

13. (a) If 6 is an even integer, then 7 is an odd integer.
(c) not possible

16. (a) tautology
(d) neither

(P ∧ ∼R) ⇒ ∼QP ∧ Q ⇒ R

D ⇐⇒ B  or  (∼B)  ⇐⇒ (∼D)
B ⇒ D  or  (∼D) ⇒  (∼B)
D ⇒ B  or  (∼B) ⇒  (∼D)

f  ⇐⇒  f ′(x0) = 0 ∨  f ′(x0) does not exist.
x = 1 ∨ x = −1 ⇒ |x | = 1.

 f ′(x0) = 0.⇒ f∧ f
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P Q

T T F T T
F T F F T
T F T F F
F F T T T

(∼Q) ⇒ (Q ⇐⇒ P)Q ⇐⇒ P∼Q

P Q R

T T T T T F F F T
F T T F T F F F T
T F T F T F T F T
F F T F T F T F T
T T F T F T F T F
F T F F T T F F T
T F F F T T T T T
F F F F T T T F T

(P ∧ ∼R) ⇒ ∼QP ∧ ∼R∼Q∼RP ∧ Q ⇒ RP ∧ Q

P Q

T T F T T T
F T T T F T
T F F T F T
F F T F T T

(∼P ⇒ Q) ∨ (Q ⇐⇒ P)Q ⇐⇒ P∼P ⇒ Q∼P
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Exercises 1.3

1. (a) (x is precious is beautiful).
Or, (x is precious and x is not beautiful).

(b) Hint: This exercise is not the same as 1(a).
(h) or 
(j) or 
(l) (x is a positive integer and x is smaller than all other positive integers).

Or, (x is a positive integer and is a positive integer

(m) Or,
2. (a) (x is precious is beautiful). All precious stones are beautiful.

(h) There is an integer that is both less than or
equal to −4 and greater than or equal to 6.

(j) There is an integer that is greater than or equal to every
integer.

(l) (x is a positive integer is a positive integer)
For every positive integer there is a smaller positive integer. Or,

(x is a positive integer is a positive integer 
There is no smallest positive integer.

(m) Someone loves everyone.
5. The first interpretation may be translated as

6. (a) T, U, V, and W
7. (b) Hint: Every sentence of the form is equivalent to Use

this fact to rewrite and then simplify by using part (a).
8. (b) true

(e) false
(h) true

9. (b) Only one real number is both nonnegative and nonpositive.
(d) There is exactly one real number whose natural logarithm is 1.

10. (a) true
(d) false
(f) false
(i) false

11. (a) Hint: Begin by supposing that U is any universe and is an open 
sentence.

(b) Hint: You must name a specific universe and a specific open sentence
such that the converse is false.

(e)
13. (d) This statement is not a denial. It implies the negation of but

if then both the statement and are false.
14. For every backwards E, there exists an upside down A!

(E ! x) P (x)(∀x) ∼ P (x),
(E ! x) P (x),

(∀x)(∼ A(x)) ∨ (Ey)(Ez)(A(y) ∧ A(z) ∧ y =
 z)

A(x)

(∀x)(∼ A(x))
∼∼ P (x).P (x)

(∀x)[x is a person ⇒ (∀y)( y is a tax ⇒ x dislikes y)].

(Ex)( ∀y)(x loves y)

⇒ x ≤ y)).∧ (∀y)( y∼(Ex)

∧ x > y)).⇒ (Ey)( y(∀x)

(Ex)(∀y)(x ≥ y)

(Ex � �)(x ≤ −4 ∧  x < 6)
⇒ x(∀x)

∼(Ex)(∀y)(x loves y).(∀x)(∼(∀y)(x loves y)).
x ≤ y)).

⇒(∀y)( y(Ex)
(Ex)

(∀x)(Ey)(x < y)∼(Ex)(∀y)(x ≥ y)
(∀x � �)(x > −4 ∨  x < 6)(∀x)(x � � ⇒ x > −4 ∨  x < 6)

(Ex)
⇒ x∼ (∀x)
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Exercises 1.4

1. (a) Suppose is a cyclic group.

Thus, is abelian.
Therefore, if is a cyclic group, then is abelian.

4. (a) The crime took place in the library, not the kitchen. By fact (i), if the
crime did not take place in the kitchen, then Professor Plum is guilty.
Therefore, Professor Plum is guilty.

5. (h) Proof. Suppose x is even and y is odd. Then for some integer k,
and for some integer j. Therefore, 

which is odd. (We use the fact that is an integer.)
6. (d) Hint: The four cases to consider are: case 1, in which and case

2, in which and case 3, in which and and case
4, in which and In case 3 it is worthwhile to consider two sub-
cases: In subcase (i), so that in subcase (ii),

so that Now in subcase (i) we have
(from ) and (from ).

Thus, Subcase (ii) is similar. Case 4 is
the same as case 3 except for the names of the variables a and b.

7. (b) Proof. Let a be an integer. Assume that a is even. Then for some
integer k. Therefore, so is odd.

(d) Proof. Hint: Let a be an integer. Use the fact that a is either even or odd
to give a proof by cases. It is acceptable, but not necessary, to use the
definitions of even and odd in proving these cases: previous exercises
have laid the foundations we need. For the case when a is even, use
Exercise 7(c) and 5(i). For the case when a is odd, we may use Exercise
5 (e), and then use Exercise 5(i) again.

(g) Proof. Suppose a and b are positive integers and a divides b. Then for
some integer k, We must show that which is the same as

To show we could multiply both sides of by a,
using the fact that a is positive. To do that, we must first show
Since b and a are positive, k must also be positive. Since k is also an inte-
ger, Therefore, so 

(i) Proof. Suppose a and b are positive integers and Then a
divides 1 and b divides 1. By part (g) and But a and b are
positive integers, so and 

10. (a) Proof. Suppose Multiplying by the positive numbers
C and B we have and so AC is 
positive, so Therefore, so Thus,
the graph must be an ellipse.

11. (a) F. This proof, while it appears to have the essence of the correct reason-
ing, has too many gaps. The first “sentence” is incomplete and the steps

B2 − 4AC < 0.4AC > B2,4AC > AC.
AC > B2.BC > B2,AC > C2 > BC

A > C > B > 0.
b = 1.a = 1

b ≤ 1.a ≤ 1
ab = 1.

a ≤ b.a = a · 1 ≤ a · k = b,1 ≤ k.

1 ≤ k.〉
1 ≤ ka ≤ ka,a ≤ ka.

a ≤ b,〈b = ka.

a + 1a + 1 = 2k + 1,
a = 2k

|a + b | < a + (−b) = |a | + |b | .
0 < −ba < a + (−b)b < 0|a + b | = a + b < a

|a + b | = −(a + b).a + b < 0,
|a + b | = a + b;a + b ≥ 0,

b ≥ 0.a < 0
b < 0;a ≥ 0b < 0;a < 0

b ≥ 0;a ≥ 0
k + j2(k + j ) + 1,

x + y = 2k + (2j + 1) =y = 2j + 1
x = 2k

(G, *)(G, *)
(G, *)

o

(G, *)
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are not justified. The steps could be justified either by using the defini-
tions or by referring to previous examples and exercises.

(c) C. The order in which the steps are written makes it look as if the author

of this “proof” assumed that The proof could be fixed by

beginning with the (true) statement that and ending with

the conclusion that 

(d) F. This is not a proof of the statement. It is a proof of the converse of the
statement.

Exercises 1.5

1. (a) Suppose is not abelian.

Thus is not a cyclic group.
Therefore, if is a cyclic group, then is abelian.

(c) Suppose the set of natural numbers is finite.

Therefore statement Q.

Therefore statement 
This is a contradiction.
Therefore the set of natural numbers is not finite.

(e) (i) Suppose that the inverse of the function f from A to B is a function
from B to A.

Therefore f is one-to-one.

Therefore f is onto B.
Therefore f is one-to-one and onto B.

(ii) Suppose that f is one-to-one and onto B.

Therefore, the inverse of the function f from A to B is a function
from B to A.

3. (a) Proof. Suppose that the integer is not odd. Then is an even
integer. Thus, there exists an integer k such that Then

so x is not even. We have shown that if
is not odd, then x is not even. Therefore, if x is even, then is

odd.
(e) Hint: The contrapositive statement for “if is even, then either x and

y are odd or x and y are even” is “if it is not the case that either x and y are
odd or x and y are even then is not even.” This is equivalent to “if
either x is even and y is odd or x is odd and y is even, then is odd.”

4. (b) Proof. Suppose it is not true that Then either or 
If then and since x − 3 < x − 2〉.〈x − 3 ≤ 0x − 2 ≤ 0x ≤ 2,x ≥ 3.

x ≤ 22 < x < 3.
x + y

x + y

x + y

x + 1x + 1
x = 2k − 1 = 2(k − 1) + 1,

x + 1 = 2k.
x + 1x + 1

o

o

o

∼Q.
o

o

(G, *)(G, *)
(G, *)

o

(G, *)

x +  
1
x

 ≥ 2.

(x − 1)2 ≥ 0

x +  
1
x

 ≥ 2.
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Because the product of two nonpositive numbers is nonnegative,
In the other case, if then

and Therefore 
In either case We have shown that if or 
then Therefore, if then 

6. (b) Proof. Suppose a and b are positive integers. Suppose is odd and sup-
pose a and b are not both odd. Then either a is even or b is even. If a is
even, then for some integer k. Thus is even.
Likewise, if b is even, then for some integer m and, again,

is even. Either case leads to a contradiction to the
hypothesis that is odd. Therefore, if is odd then both a and b are
odd.

12. (b) A.

Exercises 1.6

1. (a) Choose and Then 
(c) Suppose m and n are integers and Then 2 divides and

2 divides so 2 divides their sum But 2 does not divide 7,
so this is impossible.

(f) Hint: See the statement of part (d). Can you prove that m and n are both
negative whenever the antecedent is true?

2. (b) Proof. Assume a divides and The proof involves writing
as a sum of multiples of a, using the fact that if a divides a num-

ber, it divides any multiple of that number (Exercise 7(h) of Section 1.4)
or, more generally, the fact that if a divides two numbers, it divides any
sum of multiples of the two numbers (Exercise 2(a)). Then a divides the
product By Exercise 2(a), a divides

Then also by Exercise 2(a), a
divides the sum 

4. (h) Hint: For a counterexample, choose Explain.
(i) Hint: For a proof, choose For a different proof, choose 

6. (c) Proof. Let n be a natural number. Then both and are natural
numbers. Let Then M is a natural number greater than 

(g) Proof. Let be a real number. Then is a positive real number and
so has a decimal expression as an integer part plus a decimal part. Let M
be the integer part of plus 1. Then M is an integer and To

prove for all natural numbers that let n be a natural 

number and Since we have Thus Therefore,

for every real number there is a natural number M such that for

all natural numbers 

(h) Hint: Because m is positive, the statement follows from 
7. (a) F. The false statement referred to is not the opposite (denial) of the

claim.

1
n

< ε.1
n

− 1
m

< ε

1
n

< ε.n > M,

ε > 0,

1
n

< ε.n >
1
ε
.M >

1
ε
,n > M.

1
n

< ε,n > M

M >
1
ε
.1

ε
,

1
ε

ε > 0
2n.M = 2n + 1.

2n + 12n
y = 1.y = x.

x = 1.
(bc − c) + (c − 1) = bc − 1.

(bc − b − c + 1) + (b − 1) = bc − c.
(b − 1)(c − 1) = bc − b − c + 1.

〉

bc − 1
〈c − 1.b − 1

2m + 4n.4n,
2m2m + 4n = 7.

2m + 7n = 1.n = 1.m = −3

abab
ab = a(2m) = 2(am)

b = 2m
ab = (2k)b = 2(kb)a = 2k

ab
2 < x < 3.x2 − 5x + 6 < 0x2 − 5x + 6 ≥ 0.

x ≥ 3,x ≤ 2x2 − 5x + 6 ≥ 0.
(x−2)(x−3) = x2 − 5x + 6 ≥ 0.x − 2 ≥ 0.x − 3 ≥ 0

x ≥ 3,(x − 2)(x − 3) = x2 − 5x + 6 ≥ 0.
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(b) C. The “proof” shows that there is a polynomial with the required prop-
erties, but must also show that there is no other polynomial with these
properties.

(d) A.
(i) Hint: The grade should be C. What error must be corrected?

Exercises 1.7

1. (a) Proof. We work both forwards and backwards: From the hypothesis
that is odd we can deduce that 3n is even, from which we can
deduce that n is even. We could reach the conclusion that is
divisible by 4 if we knew that 4 divides 2n (since 8 is divisible by 4). In
turn, the statement 2n is divisible by 4 may be derived from the statement
that n is divisible by 2. We combine these steps in the proper order to
create the proof.

Suppose n is an integer and is odd. Therefore 3n is even,
which implies that n is even. We are now using properties of even and odd
integers that we proved earlier, without referencing specific examples or
exercises. Since n is even, n is divisible by 2. Therefore 2n is divisible by
4. Finally since 8 is also divisible by is divisible by 4.            �

(b) Proof. Let a be a real number, The key to the proof is to use the
idea of “solution” and then work with the resulting equation.

Assume that a is a solution to 
Then a makes the equation true by the definition of a solution to an 

equation
Thus 
Then because 
Then (

Therefore a is a solution to  �
(c) Proof. Assume that Observe that in the proof above, each step

implies its predecessor. Thus we can modify the given proof to 
create an proof.

a is a solution to 

Because

Because

a is a solution to  �
(d) Proof. Suppose and Then 

Since x must be 5. Then and are positive, so
�

(e) Proof. Let x and y be real numbers. The statement has the form
so it might be proved by assuming P and and deduc-

ing R. In this case a proof by contrapositive works well. Assume that
neither x nor y is irrational. Then both x and y are rational, so they can be
written in the form and where p, q, r, and s are integers,y = r

s
,x = p

q

〉
∼QP ⇒ (Q ∨ R),

〈
(x − 4)/(x − 3) > 0.

x − 3x − 4x > 2,
(x − 5)(x + 3) = 0.x > 2.x2 = 2x + 15

x3 + 2x2 + x + 3 = 0.iff  

a2 + 1 =
 0.〉〈(a2+1)(a +2) =a3+2a2+a+3=0.iff  

a − 3 =
 0.〉〈a + 2 = 0.iff  

a2 − a − 6 = (a − 3)(a + 2) = 0.iff  

x2 − x − 6 = 0

  iff   

〈a =
 3.
x3 + 2x2 + x + 3 = 0.

a2 + 1)(a + 2) = a3 + 2a2 + a + 3 = 0.
a − 3 =
 0.a + 2 = 0,

a2 − a − 6 = (a − 3)(a + 2) = 0.
〉.

〈
x2 − x − 6 = 0.

〉
〈a =
 3.

4, 2n + 8
〉

〈
3n + 1

〉

2n + 8
3n + 1

〈
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and Therefore, Since 

and qs are integers and is a rational number. We have 
shown that if x and y are rational, then is rational. We conclude
that if is irrational, then either x or y is irrational. �

(f) Proof. If we let S be the set of all nonvertical lines in the xy-plane, we
can simplify the symbolic form of the theorem as follows:

and are perpendicular

Let and be nonvertical lines. Suppose and are perpendicu-
lar. We now use the fact that the slope of a nonvertical line is tan
where is the angle of inclination of the line. Let and be the
angles of inclinations of and respectively. See the figure. We may
assume that We can make this assumption because the two
lines are arbitrary; if simply interchange the labels of the lines.
Since and are perpendicular, Therefore,

We use trigonometric identities to rewrite Thus,
Since is the slope of and 

is the slope of the product of the slopes is �−1.L2,

tan (a2)L1tan (a1)tan (a1) · tan (a2) = −1.
 tan (a1).〉〈

tan (a1) = tan (a2 + π

2
 ) = −cot(a2) = − 

1

 tan (a2)
 .

a1 = a2 + π

2
.L2L1

〉a1 < a2

〈a1 > a2.
L2,L1

a2a1〉a

(a),〈
L2L1L2L1

(slope of L1) · (slope of L2) = −1).〉
⇒L2(L1(∀L1 � S )(∀L2 � S )

〈
x + y

x + y
x + yqs =
 0,

ps + rqx + y = p
q

+ r
s

= ps + rq
qs

.s =
 0.q =
 0,
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x

y

α2

α1

L1 L2

(g) Proof. This is a “non-existence” proof. We could restate the result as
“Every point inside the circle is not on the line” and begin a direct proof
by assuming that (x, y) is a point inside the circle. We would then have
to prove that (x, y) is not on the line. In this instance, a better approach
is to use a proof by contradiction. The statement has the form

Suppose there is a point (a, b) that is inside the circle and on the line.
Then and We now have two expressions
to use. Therefore,

This is a contradiction since Thus, no point inside the cir-
cle is on the line. �

(a − 1)2 ≥ 0.
(a − 1)2 < −1.

a2 − 2a + 1< −1
a2 − 2a + 5 < 3

2a2 − 4a + 10 < 6
 (a − 3)2 + (a + 1)2 < 6

〉
〈b = a + 1.(a − 3)2 + b2 < 6

∼(Ex)(Ey)((x,y) is inside the circle ∧ (x, y) is on the line).〉

〈
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(h) Proof. Proofs that verify equalities or inequalities containing absolute
value expressions usually involve cases, because of the two-part 
definition of The two cases are and The proof
in each case is discovered by working backwards from the desired con-
clusion. The key steps are to note that, in the first case, if then

and, in the second case, that if then
Let x be a real number greater than 1.
Case 1. Suppose Then Since 

Remember that x is positive.

Therefore, 

Case 2. Suppose Then By hypothesis,
Therefore,

Remember that x is positive.

Therefore, �

2. (e) Hint: Write as the product of 3 consecutive integers.
4. (b) Hint: Is it possible that for all irrational numbers x and y, is irra-

tional? Or could 
8. (a) Proof. Suppose is inside the circle. Then from the distance formula,

Therefore, and 
It follows that and so and

Thus and Therefore, and
so 

9. (d) The quotient is and remainder is 4.
14. (a) Hint: Use Theorem 1.7.3 and then Theorem 1.7.1.

(c) Hint: Assume that and a divides bc. Write 1 as a lin-
ear combination of a and b, and then multiply by c.

16. (a) Proof. Suppose p is prime and a is any natural number. The only divisors
of p are 1 and p, and divides p, so or p. (i) Assume

Then p divides a by definition of gcd. (ii) Suppose p
divides a. Then p is a common divisor of p and a. Since p is the largest divi-
sor of p it is the largest common divisor of p and a, so 

20. 42
21. (a) Hint: Use a two-part proof. For the part of the proof that assumes a

divides b, show both conditions (i) and (ii) for the lcm are satisfied by b.

gcd(p, a) = p.

gcd(p, a) = p.
gcd(p, a) = 1gcd(p, a)

d = gcd(a, b) = 1

−8−36 = (−8)5 + 4.
x2 + y2 < 41.y2 < 16,

x2 < 250 < y < 4.1 < x < 5−2 < y − 2 < 2.
−2 < x − 3 < 2|y − 2 | < 2,|x − 3 | < 2

|y − 2 |2 < 4.|x − 3 |2 < 4(x − 3)2 + (y − 2)2 < 4.
(x, y)
x + y = 0?

x + y
n3 − n

3 |x − 2 |
x

≤ 4.

〉〈3[−(x − 2)]
x

≤ 4.

3[−(x − 2)] ≤ 4x
6 − 3x ≤ 4x

6 ≤ 7x

6

7
≤ x

x ≥ 1.
|x − 2 | = −(x − 2).x − 2 < 0.

3 |x − 2 |
x

≤ 4.

〉〈3(x − 2)
x

≤ 4.

3x − 6 ≤ 4x
−6 ≤ x

x ≥ 2,|x − 2 | = x − 2.x − 2 ≥ 0.

6
7

≤ x.〉x ≥ 1,−6 ≤ x,
x ≥ 2,

x − 2 < 0.x − 2 ≥ 0|x | .

〈
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(c) Hint: Assume that Since b divides 
for some integer k. Use part (b) to show that Then use part
(c) of Exercise 14 to show that a divides k. Conclude that so

(f) Hint: By Exercise 14(d), Use part (c) to find an expression

for Then use part (e) to obtain another expression for

Equate the two expressions and simplify.

23. (b) A.

Exercises 2.1

1. (a) or and 

(c) or and 
3. (a) Suppose that X is a set. If then X is not an ordinary set, so 

On the other hand, if then X is an ordinary set, so Both
and lead to a contradiction. We conclude that the collection

of ordinary sets is not a set.
4. (a) true

(c) true
(e) false
(g) true
(i) false

5. (a) true
(c) true
(e) false
(g) false
(i) false
(k) true

6. (a)
(c)

8. Hint: To prove that if and then begin by assuming
that and To show that we recall that means

The first steps are: Let x be any object. Suppose 
Now use the fact that and 

9. Hint: To prove use the hypothesis and show by using
Theorem 2.1.1(c).

14. (a) {�}, {�}, �},{0, �}, {�, 
(c)

15. (a) false
(e) false
(g) true

{�, {b}, {a, b}}, {{a}, {b}, {a, b}}, X, �}.
{{a}, {a, b}}, {{b}, {a, b}}, {�, {a}, {b}}, {�, {a}, {a, b}},
{{�}, {{a}}, {{b}}, {{a, b}}, {�, {a}}, {�, {b}}, {�, {a, b}}, {{a}, {b}},

X, �}�},{0,{{0},

B ⊆ AA ⊆ BA = B,
B ⊆ C.A ⊆ B

x � A.(∀ x)(x � A ⇒ x � C ).
A ⊆ CA ⊆ C,B ⊆ C.A ⊆ B

A ⊆ C,B ⊆ C,A ⊆ B
C = {1, 2, 3, 5}B = {1, 4},A = {1, 2, 3},
C = {1, 2, 5}B = {1, 2, 4},A = {1, 2},

X � XX � X
X � X.X � X,

X � X.X � X
2 ≤ x ≤ 6}.{x: x � �{x � �: 2 ≤ x ≤ 6}

x < 6}.{x: x � �{x � �: x < 6}

lcm Aad, b
dB.

lcm Aad, b
dB.

gcd Aad, b
dB = 1.

m = kb = ab.
a = k,

k ≤ a.
m = kbm = lcm(a, b),gcd (a, b) = 1.
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16. (a) no proper subsets
(b)

17. (a) true
(c) true
(e) true
(g) true
(i) true
(k) true

19. (c) C. The “proof” asserts that but fails to justify this assertion with
a definite statement that or that This problem could be
corrected by inserting a second sentence “Suppose and a fourth
sentence “Then 

(e) F. The error repeatedly committed in this proof is to say means
and The correct meaning of is that for every x, if
then 

(h) C. The proof could be considered correct, but it lacks a statement of the
hypothesis, helpful explanations and connecting words. How much
explanation you include depends on the presumed level of the reader’s
knowledge. We prefer the use of words, not just symbols.

(i) F. The claim is false. (For example, let 
The statement “Since would be

correct if we knew that .

Exercises 2.2

1. (a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
(c) {1, 3, 5, 7, 9}
(e) {3, 9}
(g) {1, 5, 7}
(i) {1, 5, 7}

2. (b) (1, 8)
(d) [2, 4)
(h)

3. (a)
(d) {0}
(g)

4. A and B are disjoint.
6. (a) A Venn diagram is helpful.

{0, 2, 4, 6, 8, Á }
�− ∪
{0, −2, −4, −6, −8, −10, Á }
(−∞, 3) ∪ [8, ∞)

B 8 A
x � A Á ,”x � B,C = {1, 2, 5, 6, 7}.)

B = {1, 2, 4},A = {1, 2},

x � B.x � A,
A ⊆ Bx � B.x � A

A ⊆ B
x � B.”

x � A”
x � B.x � A

x � C,

�, {1}, {2}
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Since every element of C is either in A or B. In the diagram,
the shaded area must be empty. Since is not a subset of C, there
is some element x that is in but not in C. To ensure that C is non-
empty, we must place an element y in any one of the three available
regions of C. Our solution is For other
correct examples, we could place other elements anywhere in the
diagram (except in the shaded region).

9. (a) Hint: To prove that implies assume that 
and show that is false for every object x. To prove the con-
verse, assume and there is some object x in A.

(c) Proof.
(i) Assume Suppose Then so 

and Since implies Similarly, 
(ii) Assume and Suppose Then from 

we have and from we have Therefore,
We conclude that 

10. (c) Proof. Suppose and . Assume that C and D are not dis-
joint. Then there is an object But then and 
Since and and Therefore, so A
and B are not disjoint.

11. (a)
(c)
(e)

12. (a) Proof.

by Exercise 9(c) and 

and 

(d) Proof. Let A and B be any sets. Since is a subset of every set we
have Also and Therefore

This shows that 
13. (b)

15. (a) Proof.
and 
and and 
and and and 

and 

19. (a) F. One serious error is the assertion that which has no justification.
The author of this “proof” was misled by supposing which is an
acceptable step but not useful in proving After assuming
that the natural first step for proving that is
to suppose that x � A − C.

A − C ⊆ B − CA ⊆ B,
A − C ⊆ B − C.

x � A,
x � C,

(a, b) � (A × B ) ∩ (A × C ).iff  

(a, b) � A × C(a, b) � A × Biff  

b � Ca � Ab � Ba � Aiff  

b � Cb � Ba � Aiff  

b � B ∩ Ca � Aiff  

(a, b) � A × (B ∩ C )
 (q, {1, 2}), ({t}, {1, 2}), (π, {1, 2})}

B × A =  {(q, 1), ({t}, 1), (π, 1), (q, 2), ({t}, 2), (π, 2),

 ({1, 2}, q), ({1, 2}, {t}), ({1, 2}, π)}
A × B =  {(1, q), (1, {t}), (1, π), (2, q), (2, {t}), (2, π),

� (A − B) � � (A) − � (B).� � � (A) − � (B).
� � � (B).� � � (A)� � � (A − B).

�
S � � (A) ∩ � (B).iff  

S � � (B)S � � (A)iff  

S ⊆ BS ⊆ A〉〈iff  

iff  S ⊆ A ∩ B
S � � (A ∩ B)

C = {1}B = {1, 3},A = {1, 2},
C = {2, 3}B = {1, 3},A = {1, 2},
C = {2, 3, 4}B = {1, 3},A = {1, 2},

x � A ∩ B,x � B.x � AD ⊆ B,C ⊆ A
x � D.x � Cx � C ∩ D.

D ⊆ BC ⊆ A
C ⊆ A ∩ B.x � A ∩ B.

x � B.C ⊆ Bx � A
C ⊆ Ax � C.C ⊆ B.C ⊆ A
C ⊆ B.C ⊆ A.x � A,x � Cx � B.

x � Ax � A ∩ B,x � C.C ⊆ A ∩ B.

A − B = �
x � A − B

A ⊆ BA − B = �,A ⊆ B

C = {y}.B = {x, y},A = {x},

A ∩ B,
A ∩ B

C ⊆ A ∪ B,
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(b) Hint: The second sentence of this proof says “Suppose which
doesn’t make good sense when you think about it. (What should we
suppose about the set Consider that the author of this proof
may have meant to say “Suppose 

(d) C. The proof that is incomplete.
(e) F. The claim is false. The statement and is

false.
(i) F. Although a picture may help by suggesting ideas around which a cor-

rect proof can be made, a picture alone is rarely sufficient for a proof.
Thus a proof that consists only of Venn diagrams will usually have a
grade of F. This “proof” is made better because of the explanation that is
included, but the only way to give a complete proof is to show that

and 

Exercises 2.3

1. (a)

(c)

(e)

(g)

(i)

(p) The union is the triangular region bounded by The
intersection consists of the sides of the triangle that lie on the axes.

2. The family in Exercise 1(a) is not pairwise disjoint. The family in 1(b) is pair-
wise disjoint.

4. (a) Hint: For what real numbers is true?

(b) Hint: For what real numbers is true?

5. (a) Let Suppose Then for each Since 

Therefore 

6. (a) and 

and for some 

for some 

x �
⋃
a�Δ

(B ∩ Aa ).iff  

a � Δx � B ∩ Aaiff  

a � Δx � Aax � Biff  

x �
⋃
a�Δ

Aax � B  iff  x � B ∩ ⋃
a�Δ

Aa

⋂
a�Δ

A ⊆ Ab.x � Ab.b � Δ,

a � Δ.x � Aax �
⋂
a�Δ

Aa.b � Δ.

(∃A)(A � � ∧ x � A)

(∀A)(A � � ⇒ x � A)

y = x.x = 1,y = 0,

⋃
r��

 Ar = [0, ∞); 
⋂

r��

Ar = �

⋃
n��

An = (0, 1); 
⋂

n��

An = �

⋃
A��

 A = �; 
⋂

A��
A = {10}

⋃
n��

An = {5, 6, 10, 11, 12, 15, 16, 17, 18} ∪ {n ��: n ≥20};  
⋂

n��

An = �

⋃
A��

A = {1, 2, 3, 4, 5, 6, 7, 8}; 
⋂

A��
A = {4, 5}

B ⊆ A ∪ B.A ∪ B ⊆ B

x � �   iff  x � A”“x � A
A ∩ B = A

x � A − C.”
A − C?)

A − C,”
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7. (a)

8. (c) Hint: The statement is correct. 
9. (a) Suppose Then for some Since 

Thus for some Therefore, 

10. (a) Proof. Let For each Thus for each 

Therefore 

(b)

15. (c) Proof. Let Then there exists such that 

and Since and 

Alternate Proof: The set is a subset of

Therefore, by Exercise 9(a), 

17. (a) Let for each 

18. (a) C. This proof omits an explanation of why there is some in such that
The explanation is that by definition of an indexed

family, . If we allowed the claim would be false.
(b) C. No connection is made between the first and second sentences. The

connection that needs to be made is that if then for

some so because 

(e) F. The claim is false. 

Exercises 2.4

1. (b) not inductive
(d) not inductive
(f) not inductive

2. (b) true
(e) false

4. (e)

5. (c) may be defined as
(i)
(ii) if then 2x � A.x � A,

2 � A.
A = {n: n = 2k for some k � �}

(n + 2)(n + 1)

⋃∞
n=1

[n, n + 1) = [1, ∞).

Aa ⊆ B.x � Ba � Δ,

x � Aax �
⋃
a�Δ

Aa

Δ = �,Δ =
 �
Ab � {Aa : a � Δ}.

Δb

k � �.Ak = C−1
k
 , 1 +  1

kB
⋃m
i=k

Ai ⊆
⋃∞
i=1

Ai.Δ = {1, 2, 3, Á }.

≠ = {k, k + 1, k + 2, Á , m}

x �
⋃∞
i=1

Ai.x � Aj,j � �x � Aj.

k ≤ j ≤ mj � �x �
⋃m
i=k

Ai.

X =
⋂

A��
A.

x �
⋂

A��
A.x � A.

A � �,B ⊆ A.A � �,x � B.

x �
⋃
a�Δ

Aa.a � Δ.x � Aaa � Δ.

≠ ⊆ Δ,a � ≠.x � Aax �
⋃
a�≠

Aa.

 =
⋃
b�≠

a ⋃
a�Δ

(Aa ∩ Bb )b .

a ⋃
a�Δ

Aab ∩ a ⋃
b�≠

Bbb  =
⋃
b�≠

a a ⋃
a�Δ

Aab ∩ Bbb
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6. (a) Proof.

(i) The statement is true for because and

(ii) Assume that for some We must

show The equation’s left-hand 

side is 

and the equation’s right-hand side is

which also simplifies to 

Thus the statement is true for 
(iii) By the PMI, the statement is true for every 

7. (b) Proof.
(i) For which is divisible by 3.

(ii) Suppose for some that is divisible by 3. Then

Both 3 and are divisible by 3, so is divisible 
by 3.

(iii) By the PMI, is divisible by 3 for all 
(i) Proof.

(i) so the statement is true for 
(ii) Assume that for some Then

That is, 
(iii) By the PMI, for every 

8. (a) Proof.
(i) so the statement is true for 
(ii) Assume for some Then

< (n + 1)n! = (n + 1)!.
< (n + 1)n3
< n3 + n3 = 2n3
< n3 + 3n2 + n2 = n3 + 4n2
< n3 + 3n2 + 3n + n = n3 + 3n2 + 4n

(n + 1)3 = n3 + 3n2 + 3n + 1
n ≥ 6.n3 < n!

n = 6.63 = 216 < 720 = 6!,

n � �.3n+3 > (n + 3)3
3(n+1)+3 > ((n + 1) + 3)3.
 > n3 + 12n2 + 48n + 64 = (n + 4)3 = ((n + 1) + 3)3.
 = 3n3 + 27n2 + 81n + 81
 > 3(n + 3)3 = 3(n3 + 9n2 + 27n + 27)

3(n+1)+3 = 3n+4 = 3 · 3n+3
n � �.3n+3 > (n + 3)3

n = 1.33+1 = 34 = 81>64 = (1 + 3)3,

n � �.4n − 1

4k+1 − 14k − 1

 = 4(4k − 1) + 3.

 = 4(4k − 1) − 1 + 4

4k+1 − 1 = 4(4k) − 1

4k − 1k � �

n = 1, 41 − 1 = 3,

n � �.
n + 1.

3
2
n2 + 5

2
n + 1.1

2
(n + 1)(3n + 2),

3
2
n2 +  5

2
n + 1

∑n

i=1
(3i − 2) + [3(n + 1) − 2] =  n

2
 (3n − 1) + (3n + 1) =

∑n+1

i=1
(3i − 2) =  

n + 1

2
 (3(n + 1) − 1).

∑n

i=1
(3i − 2) =  n

2
 (3n − 1).n � �,

1
2
 (3(1) − 1) = 1.

∑1

i=1
(3i − 2) = 1n = 1
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(iii) By the PMI, for all 
(c) Hint: 
(g) Hint: For a convex polygon, any line segment drawn from an edge point

to another edge point lies inside the polygon. For the inductive
step, when you consider a polygon of sides, draw a line as shown
between two vertices. (Only part of the polygon is shown.)

n + 1

(n + 2)[(n + 1)!] > (n + 2)2n+3 > 2(2n+3).
n ≥ 6.n3 < n!

Answers to Selected Exercises 369

The new line segment separates the upper left triangle from a con-
vex polygon that has exactly n sides, so we can apply the hypothesis of
induction to the n-sided polygon. Then use the result to compute the sum
of the interior angles for the polygon of sides.

10. Hint: Use for the basis step. For the inductive step, assume the state-
ment is correct for any collection of n points with no three points collinear.
Consider a collection of points, but apply the hypothesis of induction
to only n of those points. Then calculate the total number of line segments
determined by all points.

11. Hint: For the induction step, visualize the starting position with 
disks. When you think about the moves you would make to transfer all

disks from one peg to another, try to break down the task into three
separate tasks, so you can use the assumption about how many moves are
required to move n disks. The first task is to move the top n disks from the
stack to another peg.

13. (a) F. The claim is obviously false, but this example of incorrect reasoning
is well known because it’s fun and the flaw is not easy to spot.

Let all horses in every set of n horses have the
same color}. It is true that It is also true, for that if 
then The “proof” fails in the case when because 
but In this case, when either horse is removed from the set, the
remaining horse has the same color (as itself), [because there is only one
horse left] but the two horses may have different colors. We conclude that
the set S is not inductive, and in fact 

(b) F. The basis step and the assumption that the statement is true for some
n are correct. Perhaps the author hopes that just saying the statement is
true for is good enough. For a correct proof, one must use the
statement about n to prove the statement about .

(e) F. The factorization of is wrong, and there is no reason to believe
or is prime.y + 1x + 1

xy + 1
n + 1

n + 1

S = {1}.

2 � S.
1 � Sn = 1n + 1 � S.

n � S,n ≥ 2,1 � S.
S = {n � �:

n + 1

n + 1
n + 1

n + 1

n = 3
n + 1
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Exercises 2.5

1. (a) Hint: Let and for some integers 
and Show that 23, 24, and 25 are in S. Then let be a nat-
ural number and assume that for all To
show that proceed as follows: If 24, or 25 we already
know m is in S. Otherwise so By the hypothesis of
induction, so for some integers s and t,
where and Then 

3. (c) Hint: Let there exists such that assume A
is nonempty, and use the WOP to reach a contradiction.

5. (a) Hint: The induction hypothesis is “Suppose is even and both 
and are odd for some natural number k.” From this use the defini-
tion of Fibonacci numbers to show that is even and both 

and are odd.
(d) Proof.

(i) In the case of the formula is which is
Thus the statement is true for .

(ii) Suppose for some k that Then

Therefore the statement is true for 
(iii) Thus, by the PMI, for all natu-

ral numbers n.
6. (d) Hint: Consider the cases and separately. For you will

find it useful to multiply the equation by and
by 

7. Hint: Modify the proof given for the case Slightly different argu-
ments are needed to show (i) that S is nonempty and (ii) that 

9. Hint: Suppose n is the smallest positive integer greater than 1 that is not
prime and such that n can be expressed in two different ways as a product of
primes (where we ignore the order in which the prime factors appear). Then
n may be written as: and Apply Euclid’s
Lemma to show that for some Then find a contradiction.

12. (b) Proof. Let S be a subset of such that and S is inductive. We
wish to show that Assume that and let By the
WOP, the nonempty set T has a least element. This least element is not
1, because If the least element is n, then and But
by the inductive property of S, implies that This is a
contradiction. Therefore, 

13. (b) F. The claim is false. The flaw in the “proof ” is the incorrect assumption
that is a natural number. In fact, 1 is the smallest natural number nm − 1

S = �.
n � S.n − 1 � S
n − 1 � S.n � T1 � S.

T = � − S.S =
 �S = �.
1 � S�

1 ≤ j ≤ m.p1 = qj

n = q1 q2 q3 Á qm.n = p1 p2 p3 Á pn

r < |a | = −a.
a > 0.

bn−2.b2 = b + 1
an−2a2 = a + 1

n > 2,n = 2n = 1

f1 +   f2 +   f3 + Á +   fn =   fn+2 − 1
n + 1.

 =   fk+3 − 1.
 = (  fk+2 +   fk+1) − 1
 = (  fk+2 − 1) +   fk+1

f1 +   f2 +   f3 + Á +   fk +   fk+1 = (  f1 +   f2 +   f3 + Á +   fk) +   fk+1

  f1 + f2 +   f3 + Á +    fk =   fk+2 − 1.
n = 11 = 2 − 1.
f1 =  f1+2 − 1,n = 1,

f3(k+1)+2f3(k+1)+1

f3(k+1)

f3k+2

f3k+1f3k

a2 = 2b2},a � �A = {b � �:

m = 3(s + 1) + 4t.t ≥ 2.s ≥ 3
m − 3 = 3s + 4tm − 3 � S,

m − 3 ≥ 23.m ≥ 26,
m = 23,m � S,

k � S.k � {23, 24, Á m − 1},
m > 22t ≥ 2}.

s ≥ 3n = 3s + 4tS = {n � �: n > 22
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such that 3 does not divide There is no contradiction about
a smaller natural number because there is no smaller natural number.

Exercises 2.6

2. (b) 16
3. Hint: Since there are 103 squares less than

or equal to 1,000,000; 102 cubes less than or equal to 1,000,000; and 10 natu-
ral numbers that are both squares and cubes (sixth powers) less than or equal to
1,000,000.

5. Hint: Complete this formula: 

10. Hint: The answer is not Consider the cases
where the bottom right is colored the same as or differently from the upper left
corner, and give two products that yield the correct sum.

21. (a) Hint: The algebra in the inductive step is:

(c) Proof. Choose one particular element x from a set A of n elements. The

number of subsets of A with r elements is The collection of

r-element subsets may be divided into two disjoint collections: those
subsets containing x and those subsets not containing x. We count the
number of subsets in each collection and add the results. First, there are

Qn
r
R.

 = (a + b)a∑n

r=0
an

r
barbn−rb .

 = ba∑n

r=0
an

r
barbn−rb + aa∑n

r=0
an

r
barbn−rb

 = ba∑n

r=0
an

r
barbn−rb + aa∑n−1

r=0
an

r
barbn−r + anb

 = babn +
∑n

r=1
an

r
barbn−rb + aa∑n

r=1
a n

r − 1
bar−1bn+r−1 + anb

 = bn+1 +
∑n

r=1
an

r
barbn+1−r +

∑n

r=1
a n

r − 1
barbn+1−r + an+1

 = bn+1 +
∑n

r=1
a an

r
b + a n

r − 1
b barbn+1−r + an+1

 = bn+1 +
∑n

r=1
an + 1

r
barbn+1−r + an+1

∑n+1

r=0
an + 1

r
barbn+1−r

20 · 19 · 19 · 18; it is 130,340.
  − A ∩ B ∩ C ∩ D.A + Á − A ∩ B − Á + A ∩ B ∩ C + Á

A ∪ B ∪ C ∪ D =

1,000,000 = (103)2 = (102)3 = 106,

n3 + 2n + 1.
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r-element subsets of A that do not contain x, since each is a sub-

set of Second, there are r-element subsets of A that doQn − 1

r − 1
RA − {x}.

Qn − 1

r
R

62025_08_Ans_p353-392.qxd  4/28/10  5:16 PM  Page 371

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



contain x, because each of these corresponds to the -element sub-
set of obtained by removing x from the subset. Thus the sum of
the number of subsets in the two collections is

23. (b) Hint: Consider two disjoint sets containing n and m elements.

Exercises 3.1

2. (a) domain range 
(c) domain [1, ∞), range [0, ∞)
(e) domain range 

3.
��,

��,

an − 1

r
b + an − 1

r − 1
b = an

r
b .

A − {x}
(r − 1)

372 Answers to Selected Exercises

1

(a)

x

y

1

(5, 2)

(c)

x

y

(e)

x

y

4. (a)
(c)

(e)

(g)

(i)
5. (b)

(d)
6. (a)

(d)
(g) R4 ◦ R5 = {(x, y) � � × �: y = 16x4 − 40x2 + 27}

R2 ◦ R3 = {(x, y) � � × �: y = −35x + 52}
R1 ◦ R1 = {(x, y): x = y} = R1

R ◦ R = {(1, 2), (2, 2), (5, 2)}
R ◦ T = {(3, 2), (4, 5)}
R−1

9 = {(x, y) � P × P: y is a child of x and x is male}

R−1
7 =

{
(x, y) � � × �: y >

x + 4

3

}
R−1

5 =
{

(x, y) � � × �: y = ± 
A

5 − x

4

}R−1
3 = {

(x, y) � � × �: y = 1
7
(x + 10)

}R−1
1 = R1
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(j)

(n)

(p) Hint:
15. (a) F. The statements “ ” and “ and ” are not equiva-

lent. It’s wise to avoid writing something like “Suppose ”
Think of an element of a product as an ordered pair, and write “Suppose

”
(b) C. The only correction required is that implies or

(d) A.

Exercises 3.2

1. (a) not reflexive, not symmetric, transitive
(e) reflexive, not symmetric, transitive
(l) not reflexive, symmetric, not transitive (Note: Sibling means “a brother

or sister.”)
2. (a) {(1, 1), (2, 2), (2, 3), (3, 1)}

c � D.
a � B(a, c) � B × D

(x, y) � A × B.

x � A × B.
x � Bx � Ax � A × B

R9 ◦ R9 is not {(x, y): y is a grandfather of x}.

R3 ◦ R8 =
{

(x, y) � � × �: y = 14x

x − 2
− 10

}R6 ◦ R6 = {(x, y) � � × �: y < x + 2}
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3

1

2

1

2 3

(d) {(1, 1), (2, 2), (3, 3), (1, 3), (2, 3), (3, 1), (3, 2)}

3. (a) Sketch the graph This relation is not reflexive on because it
does not contain (1, 1), not symmetric because it contains (1, 2) but not
(2, 1), and not transitive because it contains (1, 2) and (2, 4) but not (1, 4).

(d) Hint: Sketch the line and the unit circle. This relation is not tran-
sitive because it contains (1, 0) and but not (1, −1).(0, −1)

y = x

�y = 2x.

(f) This is the graph of the relation 

5. (d) Hint: To show that R is reflexive, let a be a natural number. All prime
factorizations of a have the same number of 2’s. Thus It must alsoa R a.

{(x, y): y ≤ x}.x

y
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be shown that R is symmetric and transitive. Three elements of are
and 

(g) Hint: First show P is reflexive on and symmetric. To show tran-
sitivity begin by supposing that and Then

and 
The equivalence class of (0, 0) is the line 

7. (a) transitive, but not reflexive and not symmetric
(c) reflexive, symmetric, and transitive

8. (a)

10. (b) Hint: See part (a).
(c) Hint: Assume Part 1: Suppose Then By symmetry

and by transitivity Thus This shows 
In part 2, we must show 

13. (b) Proof. Assume R is symmetric. Then 
Thus Now, suppose Then 

implies which implies Thus R is symmetric.
15. (a) Proof. Suppose Then or If

then Likewise, if then 
In either case, Thus, is symmetric.

18. Hint: One part of the proof is to show that R is symmetric. Suppose 
Then and so and Therefore, 

19. (f) F. The last sentence confuses with A correct proof requires
a more complete second sentence.

Exercises 3.3

2. (d) The elements of are natural numbers, not subsets of so is not a
partition of Note: is a partition of 

3. (b) There are 10 equivalence classes. The class contains 
and all the negatives of these

numbers. The class of 10 modulo R contains all integers that have 1 as
the tens digit, and so forth.

5. Hint: There are four subsets in the partition. One of them is the set

6. (b) or both and 
(d) (i) and or (ii) and 

(Recall that int(x) denotes the greatest integer function.)
8. (a) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), 

(5, 3), (5, 4), (5,5)}
11. No. Let R be the relation {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)} on

the set Then and 
The set is not a partition of A.� = {{1, 2, 3}, {1, 2}, {1, 3}}

R(3) = {1, 3}.R2 = {1, 2},R(1) = {1, 2, 3},A = {1, 2, 3}.

x, y � �.int(x) = int(y)x � �x = y  iff  x R y
y > 2.x > 2x = y  iff  x R y

{(1,−1), (−1, 1), (i, i), (−i, −i)}.

100, 101, Á 109, 200, 201, Á , 209, Á

0, 1, 2, Á , 9,0/R
�.{{1, 2, 3, 4}, {n � �: n > 5}}�.

��,�

R ◦ S.R ∩ S
y R x.x L yy L xy L x,x L y

x R y.
R ∪ R−1(y, x) � R ∪ R−1.

(y, x) � R.(x, y) � R−1,(y, x) � R−1.(x, y) � R,
(x, y) � R−1.(x, y) � R(x, y) � R ∪ R−1.

(y, x) � R.(x, y) � R−1,
(x, y) � RR = R−1.R = R−1.(x, y) � R−1.

  iff  (y, x) � R  iff  (x, y) � R
yq ⊆ xq.

xq ⊆ yq.z � yq.y ≡m  z.y ≡m  x
x ≡m z.z � xq.x ≡m y.

4 = {Á , −6, −1, 4, 9, 14, Á}
3 = {Á , −7, −2, 3, 8, 13, Á}
2 = {Á , −8, −3, 2, 7, 12, Á}
1 = {Á , −9, −4, 1, 6, 11, Á}
0 = {Á , −15, −10, −5, 0, 5, 10, Á}

y = x.
|z − w | = |u − v |.|x − y | = |z − w |

(z, w) P (u, v).(x, y) P (z, w)
� × �

300 = 2 · 2 · 3 · 5 · 5.28 = 2 · 2 · 7,4 = 2 · 2,
4/R
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14. (a) Yes of a partition of A when because 
If then and so 

is not a partition of A.
15. (d) A(or C). The proof is correct because the ideas are all there, and every state-

ment is true. You may give it a C if you feel the ideas are not well connected.

Exercises 3.4

1. (a) No, since (2, 4) and (4, 2) are in R.
(c) No, since (2, −2) and (−2, 2) are in R.
(f) No, since (1, 3) and (3, 1) are in R.

10. (a) {(a, a), (b, b), (c, c), (c, a), (c, b)}
11. (a) There are multiple correct answers for this question, depending on pref-

erences. One answer is:

EBc
1, Bc

2 FBc
1 = Bc

2 = �,B1 = B2 = AB1 = B2,{B2, B1}.
EBc

1, Bc
2 F=B1 =
 B2,EBc

1, Bc
2 F

Answers to Selected Exercises 375

t9
t8

t7
t3

t6
t2

t5
t1

t4

12. (a) Proof. Suppose For any we have
If then for all we have Therefore, 

which shows that On the other hand, if then for all 
we have and Thus, which shows that

Therefore, there is no C different from B and such
that Hence is an immediate predecessor of B.

13. (b) No. For example, consider a set of two squares where the squares are
side by side within the rectangle.

(c) A set containing two disjoint squares does not have a lower bound.
14. (a) Hint: Use parts of Theorem 2.2.1 and Exercise 9 of Section 2.2.

(b) Hint: Use parts of Theorem 2.3.1 and Exercise 10 of Section 2.3.
20. (b) F. This proof does not show that exists. All it shows is that if 

exists, then A correct proof would show that
by showing u has the two supremum properties (u is an

upper bound and u R v for all other upper bounds v.)

Exercises 3.5

2. (d) not possible
3. (c) not possible
9. Hint: Suppose the graph G has order and all vertices have different

degrees. Consider what these degrees must be. Can one vertex have degree
and another have degree 0?n − 1

n ≥ 2,

u = sup(B )
u = sup(B ).sup(B )

sup(B )

B − {x}B − {x} ⊆ C ⊆ B.
B − {x}C = B − {x}.

C ⊆ B − {x},y =
 x.y � B
y � Cx � C,C = B.

B ⊆ C,y � C.y � Bx � C,y � C.
y � B − {x},B − {x} ⊆ C ⊆ B.
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Exercises 4.1

1. (a) This is a function with domain and range {0, �, �, }. Other possi-∩∪,

376 Answers to Selected Exercises

ble codomains are {0, �, �, , $}, {0, �, �, , #, %} and
{�, �, , 0, 1, 2, 3}.

3. (a) A possible codomain 
is .

(d) A possible codomain is 

4. (a)
5. (a) If then For or is prime and

not 5
If then For or is prime and
not 5
If then For or is prime and
not 5
If then For or is prime and
not 5
For each there is a unique y in A such that 

8. (a) A.
9. (a) Let Then 

(c) Hint: Find a rule so that and 

10. (a)
11. (b) This rule is a function.

(e) Not a function. For example in we have The rule
assigns to these different images: [0], [3], [2], and [1] in 

15. (a) Dom(S)
16. (a) Proof. Let x, y, 

(i) By definition of absolute value, for all x, 
(ii)
(iii)
(iv) By the triangle property of absolute value, 

Thus 

17. (c) We choose 2 elements from A for first coordinates; each may 

then be assigned any element of B as its image.

Exercises 4.2

1. (a)
(c)
(e)

(i) Observe that ( f ◦ g)(x) =
{

 f  (2x) if x ≤ −1

 f  (−x) if x > −1
.

g ◦ f = �f ◦ g = {(k, r), (t, r), (s, l )},
(g ◦ f )(x) = 2 sin2x + 1(  f ◦ g)(x) =  sin (2x2 + 1),

(g ◦ f )(x) = −29 − 14x(  f ◦ g)(x) = 17 − 14x,

Qm
2
Rn2

d (x, y) + d (y, z) ≥ d (x, z).
ƒ x − y ƒ + ƒ y − z ƒ ≥ ƒ x − z ƒ .

d (x, y) = ƒ x − y ƒ = ƒ y − x ƒ = d ( y, x).
x = y.  iff  x − y = 0  iff  d (x, y) = ƒ x − y ƒ = 0

y � �.d (x, y) = ƒ x − y ƒ ≥ 0
z � �.

�4.0
0 = 3 = 6 = 9.�3

f  (3) = 3 = {Á , −9, −3, 3, 9, Á}.

x2 = 3 2
3
.x1 = 3 1

2

x is the sequence −1, −2, −3, −4, Á .xn = −n.

(x, y) � R.x � A,
y = 3. iff  

4, 8 + yy = 1, 2, 3,2x + y = 8 + y.x = 4
y = 1. iff  

4, 6 + yy = 1, 2, 3,2x + y = 6 + y.x = 3
y = 3. iff  

4, 4 + yy = 1, 2, 3,2x + y = 4 + y.x = 2
y = 1. iff  

4, 2 + yy = 1, 2, 3,2x + y = 2 + y.x = 1,
Rng(  f ) = � − {−1}.Dom(  f ) = � − {3},

�.Range = �.Domain = � −
{
π

2
+ kπ: k � �

}
.

�

Range = {y � �: y =
 0}.Domain = � − {−1}.
∩∪,

+,∩∪,∩∪,
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We must consider cases. If Since in this case
If There are two

sub-cases:

Therefore,

Similarly,

If There are two subcases:

If then so 
If then so 

If Since so Thus

Therefore, 

2. (a)
(c)

(e)

(i)

3. (a) Example 1: 
Example 2: 

5. (a)

(c)

(e)
9. (a)

13. Hint: Write as Then show and use
Theorem 4.2.5.

h ∪ g = h ∪ (g|C−E)A ∪ (C − E ).A ∪ C
{(x, y) � � × �: y = x2}
{(x, y) � � × �: y = 0  if  x < 0  and  y = x2 

 if  x ≥ 0}
f −1(x) = −3 + ln x

f −1(x) =  
1 − 2x

x − 1

f −1(x) =  
x − 2

5

g (x) = 3x.f  (x) = (x + 7)2,
g (x) = 3x + 7.f  (x) = x2,

Dom(g ◦  f ) = �, Rng(g ◦  f ) = (−∞, 1)
Dom(  f ◦ g) = �, Rng(  f ◦ g) = (−∞, 2)
Dom(g ◦  f ) = � = Rng(g ◦  f )
Dom(  f ◦ g) = {k, t, s}, Rng(  f ◦ g) = {r, l}
Dom(g ◦  f ) = �, Rng(g ◦  f ) = [1, 3]

Rng(  f ◦ g) = [−1, 1]Dom(  f ◦ g) = �,
Dom(  f ◦ g) = � = Rng(  f ◦ g) = Dom(g ◦  f ) = Rng(g ◦  f )

(g ◦ f )  (x) = c2x + 2 if  x ≤ −2

−x − 1 if −2 < x ≤ 0

−2x if x > 0

.

g (2x) = −2x.
2x > −1.2x > 0,x > 0,g (  f  (x)) = g (2x).x > 0,

g (x + 1) = −x − 1.x + 1 > −1,x > −2,
g (x + 1) = 2x + 2.x + 1 ≤ −1,x ≤ −2,

x ≤ 0, g (  f  (x)) = g (x + 1).

(g ◦ f  )(x) =
{

g (x + 1) if x ≤ 0

g (2x) if x > 0
.

(  f ◦ g )(x) = c2x + 1 if  x ≤ −1

−2x if −1 < x < 0

−x + 1 if  x ≥ 0

.

 If −1 < x < 0, then 1 > −x > 0, so f  (−x) = −2x.
 If x ≥ 0, then −x ≤ 0, so f  (−x) = −x + 1.

f  (g (x)) = f  (−x).x > −1,f  (2x) = 2x + 1.2x ≤ 0,
f  (g (x)) =  f  (2x).x ≤ −1,

Answers to Selected Exercises 377

62025_08_Ans_p353-392.qxd  4/28/10  5:16 PM  Page 377

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



378 Answers to Selected Exercises

14. (a) is a function.h ∪ g

x

y

16. (a) Proof. Let x, y Suppose. Then and 
There-fore, 

(d) Proof. Suppose x and y are in and Then 
so Thus or

Using the fact that x and y are in
we know and are positive. Dividing both sides of

the last inequality by and we conclude that

Thus 
Note: This proof was found by working backward from the conclusion.

17. (d) The function f given by

is a counterexample. Another counterexample is f given by 

18. (a) Proof. We show that is a function with a domain First
is by definition a relation. For all there is some 

such that because and there exists such 
that because Then so

It is clear from the definition of that
implies so Dom

Let Suppose and are in Then
Therefore, is a function.

20. (a) A. On line 3 the author of this proof chose not to mention that 
(because A is the domain of f ). The reader is expected to observe this to
verify that 

Exercises 4.3

1. (a) Onto Proof. Let Then for , and 
Thus Therefore, f maps onto �.w � Rng(  f ).1

2
 [2(w − 6)] + 6 = w.

f  (x) =x � �x = 2(w − 6),w � �.�.

(x, y) � IA.

x � A
f1 +  f2c = f1(x) +  f2(x) = d.

f1 +  f2.(x, d )(x, c)x � �.
( f1 +  f2) = �.x � �,x � Dom( f1 + f2)

f1 +  f2x � Dom( f1 + f2).
(x, u + v) �  f1 +  f2,f2: � → �.(x, v) �  f2

v � �f1: � → �(x, u) �  f1
u � �x � �f1 +  f2

�.f1 +  f2
(x + 1)(x − 1)2.

f  (x) =

f  (x) = c x + 1 if  x ≤ 0

1 − x if 0 < x < 1

x − 1 if  x ≥ 1

〉〈
f  (x) < f  (y).

x − 1

x + 3
<

y − 1

y + 3
 .

y + 3,x + 3
y + 3x + 3(−3, ∞),

(x − 1)(y + 3) < (y − 1)(x + 3).
xy + 3x − y − 3 < xy + 3y − x − 33x − y < 3y − x.

4x < 4y,x < y.(−3, ∞)
f  (x) < f  (y).

3x − 7 < 3y − 7.3x < 3yx < y.� �.
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(c) Not onto Since and f does 
not map onto 

(k) Proof. First, if then and so

Therefore Now let 

Choose Then so 

Dividing by , we have Thus and

This value for x was found by working backward from the desired
result Therefore, f maps onto 

2. (a) One-to-one. Proof. Suppose Then

Then so 

(c) One-to-one. Proof. Suppose Then
so 

(k) f is one-to-one. Proof. Suppose and Then

so Thus 

4. (a)
8. (a) Let be given by and be given by

Then f maps onto but is not onto 
(e) Let and The function f

must not be one-to-one. Let and 
Then g is one-to-one, but the composite 

is not.
9. (c) Proof. We verify that f maps onto as follows: because

For choose Then and

Therefore, f maps onto 

To show that f is one-to-one, suppose Then for 

and Therefore, 

so and We must also consider 

whether might be 1, for But if and

then so This is impossible. Therefore f is 
one-to-one.

−2 = 4.x − 2 = x + 4,

f  (x) = x − 2

x + 4
= 1,x =
 −4x =
 −4. f  (x)

x = z.6x = 6zxz − 2x + 4z − 8,

xz − 2z + 4x − 8 =x − 2

x + 4
= z − 2

z + 4
.z =
 −4,

x =
 −4f  (x) =  f  (z).

�.

f  (x) = c4w + 2

1 − w
− 2 d � c4w + 2

1 − w
+ 4 d = 6w

6
= w.

x =
 −4x = 4w + 2

1 − w
 .w =
 1,f (4) = 1.

1 � Rng(  f ),�

{(a, y), (b, y), (c, z)}
g ◦  f ={(1, x), (2, y), (3, z)}.

g =f = {(a, 2), (b, 2), (c, 3)}
C = {x, y, z}.B = {1, 2, 3},A = {a, b, c},

�.g ◦  f�g(x) = x2.
g: � → �f  (x) = 2xf : � → �

 f = {(1, 0), (2, 3), (3, 0), (4, 0)}B = {0, 3},

x = z.3x − xz − 6 + 2z = 3z − xz − 6 + 2x.
x−2

3−x
= z−2

3−z
,

f  (x) =  f  (z).x, z � [2, 3)
m = n.(m, m) = (n, n),

m, n � � and f (m) = f (n).

x = y.1
2
x = 1

2
y,1

2
x + 6 =  1

2
y + 6.

f  (x) =  f  (y) for some x, y � �.
[0, ∞)..〉

〈

=
3w + 2 − 2(w + 1)

3(w + 1) − (3w + 2)
= w.

f  (x) = c3w + 2

w + 1
− 2 d � c3 − 3w + 2

w + 1
d

x � [2, 3),2 ≤ x < 3.w + 1

2w + 2 ≤ 3w + 2 < 3w + 3.w ≥ 0,x =  
3w + 2

w + 1
.

w � [0, ∞).Rng(  f ) ⊆ [0, ∞).f  (x) =  
x − 2

3 − x
 ≥ 0.

3 − x > 0,x − 2 ≥ 0x � [2, 3),
� × �.

(5, 8) �  Rng(  f ),(5, 8) � � × �� × �.
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11. (a) Proof. f is not a surjection because [1] has no pre-image in This is
because if then But then 8 divides the odd number

which is impossible. To show f is an injection, suppose
Then so Therefore, 8 divides

so 4 divides and thus 
12. (b) Example 1: for all (the identity function).

Example 2: 

Example 3: 

The sequence of example 3 is 2, 1, 4, 3, 6, 5, 8, 7, . . .
13. (c) None.

(f) Since one element of B has two pre-images. This element of

B can be selected in n ways, and the two pre-images in ways.

We can assign each of the remaining elements of B as the image
of exactly one of the remaining elements of A in ! ways.

Thus there are functions from A onto B.

14. (a) F. To show that f is onto we must prove that The proof
shows only that 

(b) Hint: What additional information should be included in this proof? 
(d) A. Notice that a direct proof would have been a little easier to follow.

Exercises 4.4

3. (b) Let h be the inverse of g. Then

for 

Therefore To verfiy that this formula is correct, suppose

Then

=
2 A 4x

x + 2B
4 − 4x

x + 2

= h a 4x

x + 2
b

(h ◦ g)(x) =  h (g (x))

x > −2.

h (x) =  
2x

4 − x
.

x < 4.y =  
2x

4 − x
,iff  

y (x − 4) = −2xiff  

xy + 2x = 4yiff  

x = 4y

y + 2
iff  

(x, y) � h  iff (y, x) � g

Rng(  f ) ⊆ �.
� ⊆ Rng(  f ).�

n  Qn + 1

2
R(n − 1)! = n! Qn + 1

2
R

(n - 1)n − 1
n − 1

Qn + 1

2
R

m = n + 1,

x n =
{

n + 1  if n is odd

n − 1 if n is even
.

x n =
{

50 − n  if n < 50

n if n ≥ 50
.

n � �x n = n
xq = zq.x − z,2x − 2z,

2x = 2z (mod 8).[2x] = [2z],f  (xq ) =  f  ( zq ).
2x − 1,

[2x] = [1].f  (xq ) = [1],
�4.
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Since the composite is the identity function on the domain of g, we
conclude that 

9. (c) [2 5 4 6 1 7 3]
(e) [6 1 4 7 5 3 2]
(i) [5 3 7 4 1 2 6]

Exercises 4.5

1. (a)

2. (a) [2, 10]
(c) {0}

4. (b) [2, 5.2]

(c)

8. (a) Suppose Then for some Thus

for every Since we conclude that 
for every Therefore, This proves that

9. Hint: There must be at least two sets and in the family, and 

for all but no element a in such that The function f

cannot be one-to-one.
10. (a) Suppose Then there is such that 

Since But so Therefore,

(d) First, suppose Suppose Then 
Thus there is such that so There-
fore, 

Now assume We know by part (a) that
so to prove equality, we must show 

Suppose Then so for some Since
Thus and so

Therefore, 
11. (b) Proof. Suppose Then so there exists 

such that We note since Thus 
and therefore t =  f  (x) �  f  (X − Y ).x � X − Y

t =  f  (x) � f  (Y).x � Yf  (x) = t.
x � Xt �  f (X ),t �  f  (X ) −  f  (Y ).

E ⊆ f (  f −1(E )).b � f (  f −1(E )).
a �  f −1(E),b =  f  (a)a �  f −1(E).b = f  (a) � E,

a � A.b =  f  (a)b � Rng(  f ),b � E.
E ⊆  f  (  f −1(E )).f (  f −1(E )) ⊆ E,

E ⊆ Rng(  f ).
E ⊆ Rng(  f ).

b � Rng(  f ).b =  f  (a),a �  f −1(E )
b �  f  (  f −1(E )).b � E.E =  f  (  f −1(E )).

f  (  f −1(E )) ⊆ E.
b � E.f  (a) = b,f  (a) � E.a � f −1(E ),

f  (a) = b.a �  f −1(E )b �  f  (  f −1(E )).

f  (a) = b.
⋂
a�Δ

Daa � Δ,

b �  f  (Da)D2D1

f Q ⋂
a�Δ

DaR ⊆ ⋂
a�Δ

f  (Da).

b �
⋂
a�Δ

 f  (Da).a � Δ.
b �  f  (Da)b =  f  (a)a � Δ.a � Da

a �
⋂
a�Δ

Da.b =  f  (a)b � f Q ⋂
a�Δ

DaR.
c2 −

√
3, 

3 −
√

5

2
 b ∪ a3 +

√
5

2
 , 2 +

√
3 d

h ({1, 3}) = {4, 5}, h ({2, 3}) = {4, 5}, h (A) = {4, 5}.
h (�) = �, h ({1})={4}, h ({2})={4}, h ({3})={5}, h ({1, 2})={4},

h = g−1.

= x.

=
8x

x + 2
4(x + 2) − 4x

x + 2
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12. The converse is true. To prove f is one-to-one, suppose x, and 
Then and thus By hypothesis,

Thus 
15. (a) If f is one-to-one, then the induced function is one-to-one.
18. (a) F. The claim is not true. We cannot conclude from 

Exercises 4.6

3. (a) does not exist

(c)

(e) 0

(g) (Recall that )

(i) 0
5. (a) Hint: To show x diverges, suppose the limit is L and let .

(c) Hint: x diverges; use 
(f) Hint: for use and

6. (a) Proof. Let Then Since there exists 

such that if then Likewise, there exists 

such that implies Let 

and assume Therefore we have 

There-

fore, 
(f) Hint:

7. (a) Hint: Since by Exercise 6(f). Now apply the defini-

tion of with 

10. (b) A. The proof uses Exercise 6(b).

Exercises 5.1

2. (a) finite
(c) finite
(e) infinite
(f) finite

6. (a) Suppose A is finite. Since is a subset of A, is finite.
7. Hint: Write and and apply The-

orem 5.1.7(a).
9. (a) Hint: Define by for each Now

show that f is one-to-one and onto A ∪ {x}.
a � A.f  (a) = (a, x),f : A → A ∪ {x}

A = (A − B) ∪ (A ∩ B)A ∪ B = (A − B) ∪ B
A ∩ BA ∩ B

ε = |L |
2

.ƒ xn ƒ → ƒ L ƒ

xn → L, ƒ xn ƒ → ƒ L ƒ ,

ƒ xn ƒ − ƒ L ƒ ≤ ƒ xn − L ƒ .
xn + yn → L + M.

ƒ (xn − L) + (yn − M) ƒ ≤ ƒ xn − L ƒ + ƒ yn − M ƒ <
ε

2
+ ε

2
 = ε.

ƒ (xn + yn) − (L + M) ƒ =n > N3.

N3 = max {N1, N2},ƒ yn − M ƒ <
ε

2
.n > N2

N2 � �ƒ xn − L ƒ <
ε

2
.n > N1,

N1 � �xn → L,ε

2
> 0.ε > 0.

√
n + 1 −

√
n = A√n + 1 −

√
n B a

√
n + 1 +

√
n√

n + 1 +
√

n
b .

N > (2ε)−2ε > 0,xn → 0;
ε = 1.

ε = 1

lim
n→∞Q1 + 1

nR
n

= e.e2

4
5

f  (x) �  f  (X ).x � X

 f  (x) =
  f  (y).f  ({x} ∩ {y}) =    f  ({x}) ∩ f  ({y}) = { f  (x)} ∩ { f  (y)}.
f  ({x} ∩ {y}) = �.{x} ∩ {y} = �

x =
 y.y � A
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10. Hint: First show is finite.
11. (c) not possible
13. Obviously when If define a function on

by considering first the images of elements that are less than x and
then images of elements greater than x.

15. Hint: Use the argument that if then the finite set is equivalent to
one of its proper subsets.

18. (a) Hint: Suppose f is not onto B and consider the range of f.
(b) Hint: Suppose f is not one-to-one. Then A is not empty and since A and

B are finite and there is some such that and
Use these facts to construct a function F from onto that

is not one-to-one. Then for some x, y, Remov-
ing from F produces a function from a proper subset of onto

Now apply Exercise 17.
19. Hint: Use induction on the number of elements in the domain.
20. Proof. Suppose A and B are finite, and 

is one-to-one. Then there exists a one-to-one (and onto) function 
and a one-to-one (and onto) function See the diagram below.
Then is a one-to-one function from to by Theorem 4.3.4. 
But so the conclusion that is a one-to-one contradicts 
Theorem 5.1.9.

h ◦ f ◦ gm > n
�n�mh ◦ f ◦ g

h: B → �n.
g: �m → A

f : A → Bm > n,B = n,A = m,

�n.
�n(y, z)

f  (x) = f  (y) = z.z � �n,
�n�nB ≈ �n.

�n ≈ An � �A ≈ B,

�mn < m,

�r − {x}
x =
 r,x = r.�r − {x} ≈ �r−1

� (A × B)

Answers to Selected Exercises 383

f
A B

hg

h �  f  � g
n�m�

21. (b) Hint: The largest possible sum of 10 elements of is
Thus there are no more than 945 possible

sums. However, there are nonempty subsets of S.
Apply the Pigeonhole Principle, and delete any common elements from
two subsets that have the same sum to form disjoint subsets.

22. (b) C. In Case 2, it is not correct that In fact,

Exercises 5.2

3. (a) Proof. Let be given by for each We
show that f is one-to-one and maps onto First, to show f is one-to-
one, suppose Thus which implies 
Also, f maps onto since if d is an odd positive integer, then d has the
form for some But then 

(e) Hint: Consider with domain �.f  (x) = −(x + 12)
f  (r) = d.r � �.d = 2r − 1

D+
x = y.2x − 1 = 2y − 1,f  (x) =  f  (y).

D+.
n � �.f  (n) = 2n − 1f : � → D+

�k ∪ �1 = �k.
�k ∪ �1 ≈ �k+1.

210 − 1 = 1,023
90 + 91 + Á + 99 = 945.

�99
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4. (a) Hint: Let be given by 

(b) Hint: Let be given by 

(d) Hint: Let be given by

6. (a) Define by

7. (a) c
(c)
(e) c

12. (a) F. W is certainly an infinite subset of and is denumerable, but this
“proof” claims without justification that every infinite subset of is
denumerable. To show W is denumerable, we need to use another theo-
rem or a bijection between W and a denumerable set.

(c) F. The claim is false. Also “A and B are finite” is not a denial of “A and
B are infinite.”

(d) F. Writing an infinite set A as is the same as assuming A is
denumerable.

Exercises 5.3

6. Hint: Use a proof by induction on n, the number of sets in the family.
7. Hint: This theorem has been proved in the cases where A and B are finite (The-

orem 5.1.7(a)), where one set is denumerable and the other is finite (Theorem
5.3.4), and where A and B are denumerable and disjoint (Theorem 5.3.5). The
only remaining case is where A and B are denumerable and not disjoint. Write

as a union of disjoint sets. Now explain why is
countable, and then apply Theorems 5.3.4 and 5.3.5.

8. Hint: Give a proof by induction.
11. Hint: For each let Then there is a bijection 

Define by for 

13. (b) Hint: First prove that each set is infinite. Then for define
where is the kth prime and for

all Explain why is equivalent to and why is
countable.

15. (a) C. The proof is valid only when In the case when 
we need a new function g that is almost the same as f except that the

f  (1) =
 x,f  (1) = x.

Rng (  f )Rng (  f )Tni > k.
ai = 0pkf  (a) = 2a1 · 3a2 · 5a3 · Á pak

k ,
a � TnTn

x � Bm.h (x) = a∑m−1

i=1
kib + fm(x),h: 

⋃
i��

 Bi → �

fm: Bm → �km.Bm = km.m � �,

B − AA ∪ (B − A),A ∪ B

{x1, x2, Á}

�

D+�,

ℵ0

g (x) = L
20 if x = 1

 2 if x = 10

2x if x =
 1, x =
 10

.

g: � → E+

f  (x) = L
2 − 2x if  0 < x ≤ 1

2

2x + 4 if  
1

2
< x < 1

.

 f  (0, 1) → [1, 2) ∪ (5, 6)

f  (x) = (a − 1) + 1
x

. f  (0, 1) → (a, ∞)

f  (x) = 1
x

. f  (0, 1) → (1, ∞)
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image of 1 will be x. This involves removing the two ordered pairs
with second coordinates x and and replacing them with two other
ordered pairs. Let t be the unique element of such that 
and define f * Now let

f * for all 

Exercises 5.4

2. Hint: Recall that 
5. (b) true
8. (a)

11. (b) not possible
16. (a) Hint: Assume that there is a bijection. Associate each function f in 

with the corresponding real number a such that and write f
as Define by 

Then for some Compute to obtain a contradic-
tion. [Ref.: J. Robertson, “A Student Exercise on Cardinality,” Mathe-
matics and Computer Education 32 (1998), 17–18.]

(b) Hint: Consider the set of constant functions in 
17. (b) F. The claim is false. We have not defined or discussed properties of

operations such as addition for infinite cardinal numbers. Thus the equa-
tion applies only to finite sets.

(d) F. The “proof” assumes that every element of B is in the range of f.

Exercises 5.5

1. (b) The Axiom of Choice is not necessary since there are only a finite
number of sets in the collection.

(h) The Axiom of Choice is necessary. 
5. Proof. Let with B infinite and A denumerable. Since 

Since A is denumerable, Since B is infinite, B has a denumerable
subset D by Theorem 5.5.4. Thus By the Cantor–
Schröder–Bernstein Theorem, Thus 
Alternate Proof. The set B is an infinite subset of the countable set A, so B
is countable and denumerable. Since both A and B are equivalent to , A is
equivalent to B.

8. Hint: Let By Theorem 5.5.4, has a denumerable subset
Construct a one-to-one correspondence between A and A − {x}.{an: n � �}.

A − {x}x � A.

�

B ≈ A.B = A.
A = � = D ≤ B.

A = �.
B ≤ A.B ⊆ A,B ⊆ A

C = B + (C − B)

�.

g (b)b � [0, 1].g = fb

g (x) =
{

0 if  fx(x) =
 0

1 if  fx(x) = 0
.

g: [0, 1] → [0, 1]  fa.
0 ≤ a ≤ 1,

�

= � < �(�) < �(�(�)).

� < {0} < {0, 1} < � < (0, 1) = [0, 1] = � − �

�(�) = �.

n � �.(n + 1)g (n) =  

 = (  f − {(1,  f  (1)), (t, x)}) ∪ {(1, x), (t,  f  (1))}.
f (t) = x�

 f  (1)
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10. (a) A. Note that the range of every sequence is countable.
(c) F. The idea of this “proof ” is to take out countably many elements, one

at a time, until denumerably many elements are left. But if A is un-
countable and C is countable, then the set of leftover ele-
ments will always be uncountable. (See Exercise 9(b) of Section 5.3.)

Exercises 6.1

1. (a) yes
(e) no

2. (a) not commutative
(e) not an operation

3. (a) not associative
(e) not an operation

4. (a) a is the identity element
(b) Yes. This is tedious to verify because one must verify that 64 equations

of the form are all true. It helps to observe that
if (the identity) then Similarly, if

or the equation is easily seen to be true. This leaves 
only 27 cases to verify when none of x, y, or z is a. For example,

while so the equation
is true when and 

(c) Yes, because the table is symmetric about its main diagonal. To verify by
cases that the equation is true for every choice of x and y,
consider first that case that one of x or y is a, then the case that and
finally the other 3 cases.

(d) The inverses of a, b, c, d, are a, b, c, d, respectively.
(e) No. The product is not in so is not closed under
(f) Yes. 
(g) and 
(h) True. In fact, for all 

8. Hint: Compute 
9. (a) Hint: Compute and 

10. (b) Hint: Assume that for some natural number n, every product of t ele-
ments of A is equal to for
every Now consider a product of factors in
that order. This product has the form where is a product of
some k factors in that order and is a product of
the remaining factors in that order. First use the induc-
tion hypothesis to write and in left-associated form.

Now consider two cases. If then there are at least two factors 
and in the product Denote the product by c, which is an

element of A. Replace by c and use the hypothesis of induction to
write as a left-associated product.b1 * b2

a1 * a2

a1 * a2b1.a2a1

k > 1,
b2b1

ak+1, Á , an+1

b2(k ≤ n) a1, a2, Á , ak

b1b1 * b2,
a1, a2, Á , an+1n + 1t ≤ n.

( Á ((a1 * a2) * a3) Á ) * ata1, a2, Á , at

(x ◦ a) ◦ y.x ◦ (a ◦ y)
(ac)(db) and (db)(ac).

x ◦ x = a.x � A,
{a, b, c, d}.{a}, {a, b}, {a, c}, {a, d},

c ◦ c = a.c ◦ a = c,a ◦ c = c,a ◦ a = a,
◦.B1B1,b ◦ c = d

x = y,
x ◦ y = y ◦ x

z = b.y = c,x = b,
b ◦ (c ◦ b) = (b ◦ d ) = c,(b ◦ c) ◦ b = d ◦ b = c,

z = a,y = a
(x ◦ y) ◦ z = y ◦ z = x ◦ (y ◦ z).x = a

(x ◦ y) ◦ z = x ◦ (y ◦ z)

B = A − C
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If and has only one factor, then the product is 
which is already in left-associated form. Otherwise, has at least 2 fac-
tors, and we may denote by d the product of the first two factors and

of Replace by d in the product and apply the hypoth-
esis of induction. Finally, apply the associative property to 
to write the entire product in left-associated form.

12. Hint: Assume that (mod m) and (mod m). Then there exist inte-
gers x and y such that and To show that

mod m), compute the sum of mx and my. To show that
(mod m), simplify 

15. (a) 2, 4, and 6.
(c) There are no divisors of zero.

16. (b) F. The claim is false. One may premultiply (multiply on the left) or
postmultiply both sides of an equation by equal quantities. Multiplying
one side on the left and the other on the right does not always preserve
equality.

(d) F. The proof makes the assumption that which may be false. 

Exercises 6.2

1. (c)

xy =
 0,

bmx + cmy.a · b = c · d
a + b = c + d (

my = b − d.mx = a − c
b = da = c

a1 * (a2 * a3)
b1 * b2a2 * a3b2.a3

a2

b2

a1 * a2b1 * b2b2k = 1

Answers to Selected Exercises 387

1 i

1 1 i
1 i

i i 1
1 −1i−i−i

−1−i
−i−1−1

−i−1

−i−1· We see from the table that the set is
closed under 1 is the identity, and
each element has an inverse. Also, 
is associative.

·
·,

(d) Hint: is the identity.
2.

�
e u v w

e e u v w
u u v w e
v v w e u
w w e u v

4. (c) The group is abelian.
8. (b) [3 2 1 4], [1 2 3 4], [2 4 1 3].

12. Hint: For a, compute and two ways.

13. Hint: To have both cancellation properties, every element must occur in every
row and in every column of the table.

16. (a) v, w, e, and u
(b) Hint: Let For an element x such that try 

19. Since 
Therefore in and hence 

20. (a) 4, 8, 12, 16x = 0,
(p − 1)−1 = p − 1.�p,(p − 1)(p − 1) = 1

(p − 1)2 = 1 (mod p).(p − 1)(p − 1) = p2 − 2p + 1 = p (p − 2) + 1,
a−1 * b.a * x = b,a, b � G.

(ab)2a2b2b � G,
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21. (c)
(e) No solution

22. (a)
23. (b) F. A minor criticism is that no special case is needed for e. The fatal flaw

is the use of the undefined division notation.
(c) A. The proof is correct, but provides minimal explanation.

Exercises 6.3

1. (a) {0}, {0, 4}, {0, 2, 4, 6}
(d) Hint: There are six subgroups.

7. (a) Yes. Assume G is abelian and H is a subgroup of G. Suppose 
Then Therefore, 

9. (c) The order of 0 is 1. The elements 1, 3, 5, and 7 have order 8. The ele-
ments 2 and 6 have order 4. The order of 4 is 2.

11. Proof. The set is not empty because so Let 
Then and Multiplying both sides of the last equation by 
we have Thus 
or Therefore, 

This shows Therefore, is a subgroup of G, by 
Theorem 6.3.3.

14. Proof. The identity because H is a group, and thus Thus
K is not empty. Suppose Then and for
some Thus 

But H is a group, so Thus
Therefore, K is a subgroup of G.

17. Hint: Let H be a subgroup of (a). If H is the trivial subgroup it is clearly
cyclic. Otherwise show that there is a positive integer t such that is in H.
Now use the Well Ordering Principle to find the smallest such t and use the
Division Algorithm to show that this power of a is a generator for H.

18. (c)
19. (a) C. The proof omits the step of verifying that is nonempty

(because it contains the identity).

Exercises 6.4

4. Let Then 

8. (a) Let Then by Theorem 4.5.1(b).
Therefore, f is an OP mapping.

10. (a) Hint: Suppose and are two groups with
identity elements e and i. To define an isomorphism from G to H, first
determine the image of e.

(c) Hint: Use Theorem 6.4.3(c) to show that the algebraic system in
Exercise 2 of Section 6.2 is not isomorphic to (�4, +).

H = ({i, b}, *)G = ({e, a}, ◦)

f  (C ∪ D) = f  (C ) ∪ f  (D)C, D � � (A).
I (  f ) + I (g).

I (  f + g) = 1
b

a (  f + g)(x) dx = 1
b

a  f  (x) dx + 1
b

a  g (x) dx = f, g � F.

H ∩ G
a10, a20

at

bc−1 � K.
h1h2

−1 � H.a−1h1(aa−1)h2
−1a = a−1h1h2

−1a.
bc−1 = (a−1h1a)(a−1h2a)−1 = (a−1h1a)(a−1h2

−1a) =h1, h2 � H.
c = a−1h2ab = a−1h1ab, c � K.

a−1ea � K.e � H

Caxy−1 � Ca.(ax)y−1 = a(xy−1).
(xy−1)a = x (y−1a) = x(ay−1) = (xa)y−1 =ay−1 = y−1a.

(y−1y)(ay−1) = (y−1a)(yy−1),y−1
 (ya)y−1 = y−1(ay)y−1.

y−1,ya = ay.xa = ax
x, y � Ca.e � Ca.ea = a = ae,Ca

xy = yx.x, y � G.
x, y � H.

�8,

(x − 1)(x + 1) = x2 − 1 = 0

x = 6
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14. (a) Suppose in Then 18 divides Therefore, 6 
divides and so 24 divides Thus

in so f is well defined. Now let
Then 

(b) The table is:

[0] [4] [8] [12] [16] [20]

[0] [0] [4] [8] [12] [16] [20]
[4] [4] [8] [12] [16] [20] [0]
[8] [8] [12] [16] [20] [0] [4]
[12] [12] [16] [20] [0] [4] [8]
[16] [16] [20] [0] [4] [8] [12]
[20] [20] [0] [4] [8] [12] [16]

Exercises 6.5

1. (b) The interval is not a ring because it is not closed under addition.[−1, 1]

Rng (   f ) = {[0], [4], [8], [12], [16], [20]}.
= f  (xq) +24  f  (yq).

f  (xq 
 +18 yq) = [4(x + y)] = [4x + 4y] = [4x] +24 [4y]xq, yq � �18.

�24,[4y] = f  (yq )f  (xq ) = [4x] = 
4(x − y) = 4x − 4y.x − y,

x − y.�18.yq = xq
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(For example, in not an element of 
4. Hint: First show that is closed under and and that the 

additive identity is (0, 0). The inverse of is because 

and 

Explain why the remaining axioms hold for 
13. (a) Hint: Let First, show that if m is composite, then m has divisors

of 0. Now suppose m is prime and there are nonzero elements a and b in
such that Apply Euclid’s Lemma to reach a contradiction.

Exercises 7.1

1. (b)
2. (b) 0 and all negative real numbers are lower bounds.
3. (a) supremum: 1; infimum: 0

(c) supremum: does not exist; infimum: 0
(e) supremum: 1; infimum: 
(g) supremum: 5; infimum: 

4. (a) Hint: Show that an upper bound for A is an upper bound for B.
6. Hint: Suppose b is an upper bound for A. Therefore, for all x, if then

This means that for all x, if then Explain why is not
bounded above.

8. (a) Proof. Let x and y be least upper bounds for A. Then x and y are upper
bounds for A. Since y is an upper bound and x is a least upper bound,

Acx � A.x > b,x ≤ b.
x � A

−1

1
3

1
3
, 1, 2, 3

ab = 0.�m

m � �.
� × �.

(a, b) = (−a + a, − b + b) = (0, 0).(−a,−b) ⊕ 
(a, b) ⊕ (−a, −b) = (a + (−a), b + (−b)) = (0, 0),

(−a, −b)(a, b)
⊗⊕� × �

[−1, 1]).3
4
 +  3

4
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Since x is an upper bound and y is a least upper bound, 
Thus 

13. (a) Proof. Let Then B is
bounded below (by elements of A) so exists. Let We
must show 
(i) To show we note that since s is an upper bound

for A. Thus Therefore, 
(ii) To show we will show t is an upper bound for A. If t is not an

upper bound for A, then there exists with Let
Since and there exists such

that But Therefore, a contradiction,
since and 

14. (a) Proof. Suppose and exist. Then is bounded
above by (see Exercise 4(c)). By the com-
pleteness property, exists. We show that 
(i) Since we have Also,

implies that It follows that

(ii) It suffices to show m is an upper bound for Let 
If then If then 
Thus m is an upper bound for Hence 

19. Hint: Let F be an ordered field. Assume that F is complete and let A be a non-
empty subset of F that has a lower bound in F. To show that A has an infimum
in F, begin by defining the set Prove that has a supre-
mum and then find an infimum for A.

21. (a) F. The claim is true but might not be in A.

Exercises 7.2

1. (b)
2. (b) Hint: In the case where 

3. for all there exists such that if 

then .

4. (e)

(i)

5. (b) open
(e) open
(i) closed

⋃
n��

(n + 0.1, n + 0.2)

�

f  (x ) � �(L, ε)

x � �(a, d),d > 0ε > 0 iff lim
x→a  

f  (x ) = L

�( x1, d1) ∩ �( x2, d1) = �a x1 + x2

2
, d1 − | x2 − x1 |

2
b .

|x2 − x1| < 2d1,
d = 0.025x = 3.825,

y = i +  ε
2

A−A− = {−x: x � A}.

sup (A ∪ B) ≤ m.A ∪ B.
x ≤ sup (B) ≤ m.x � B,x ≤ sup (A) ≤ m.x � A,

x � A ∪ B.A ∪ B.
m = max {sup (A), sup (B)} ≤ sup (A ∪ B).

sup (B) ≤ sup (A ∪ B).B 8 A ´ B
sup (A) ≤ sup (A ∪ B).A ⊆ A ∪ B,

sup (A ∪ B) = m.sup (A ∪ B)
m = max {sup (A), sup (B)}

A ∪ Bsup (B )sup (A )
a � A.u � B

u < a,t + ε < a.u < t + ε.
u � Bt < t + ε,t = inf (B)ε =  a − t

2
.

a > t.a � A
s ≤ t

t ≤ s.s � B.
s = sup (A),t ≤ s

s = t.
t = inf (B).inf (B)

B = {u: u is an upper bound for A}.s = sup (A),
x = y.

y ≤ x.x ≤ y.
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13. (a) not compact (not bounded)
(d) not compact (neither closed nor bounded)
(g) not compact (not closed)

15. (a) Hint: First show that a cover for is a cover for A and a cover for B.
19. (c) C. With the addition of O* to the cover we are assured that

there is a finite subcover of {O*} but not necessarily a
subcover of Since O* is useless in a cover for B,
it can be deleted from the subcover.

Exercises 7.3

1. (c) Hint: Use the fact the 

3. (a)

(c)
(g)
(m)

4.
5. Hint: Let Then Show z is an accumulation point of A by using

Theorem 7.1.1.
7. (b) Hint: Use Exercise 6(a).

10. (a) The set has no accumulation points.
(c) The set has at least one accumulation point.

13. (a) F. Hint: Identify the misuse of quantifiers.
(c) F. The claim is false. need not be a subset of 

Exercises 7.4

1. (a) bounded below by 10, not bounded above
(c) bounded; bounded above by bounded below by 0

(e) bounded; bounded above by 10, bounded below by 0
(g) not bounded above, not bounded below
(i) bounded; bounded above by 0.81, bounded below by 

3. Hint: Let y be bounded, and B a number such that for all . Use

the definition of with 

5. (f) Hint: It suffices to show that for 

Exercises 7.5

3. (a) Hint: Consider rational numbers in whose square is less than 
6. (a) Hint: Consider a set A that includes and the sequence

xn = n/(n + 1).
[0, 2]

50.[7, 8]

(n + 1)!

(n + 1)n+1
<

n!

nn.n � �,

ε

B
.xn → 0

n � �|yn | ≤ B
−0.9

1
10

,

(B ′)c.(Bc )′

z > a.a � A.
{0, 1}

�

{0, 2}
�

{
1
2

} lim
n→∞Q1 + 1

nR
n
= e.

= A − B{Oa: a � Δ}.
∪ {Oa: a � Δ},

{Oa: a � Δ}
A ∪ B
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(b) F. The claim is correct but there is little that is correct in this proof. For
instance, the upper bound for A may be negative, in which case
B would have to be defined differently. The most serious error is that
there is no connection between being an accumulation point and being
an upper bound for a set.

a0
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A
Abel, Niels, 285
Abelian groups, 285, 309
Accumulation point, 337–339
Aha! Gotcha: Paradoxes to Puzzle and Delight

(Gardner), 254n
Algebraic proofs, 130
Algebraic structures, 275–280
Algebraic system

definition of, 276
order of, 276
properties of, 277–280

Antecedent, 9
Antisymmetric property of relations, 164–165
Appel, Kenneth, 36
Archimedean Principle, 108–109, 319, 337
Arcs, 138
Arithmetic mean, 347
Associative Laws, 5
Associative property, 277–280
Assumptions

identification of, 60
statement of, 28

Axiomatic set theory, 72
Axiom of Choice, 255, 262, 267–272
Axioms

consistent systems of, 46
definition of, 27
of natural numbers, 100
statement of, 28

B
Banach-Tarski paradox, 270
Bernstein, Felix, 262
Biconditional sentences

definition of, 12
proof of, 43–44

Bijections. See also One-to-one correspondence
construction of, 214
definition of, 212
permutation as, 217

Binary operations, 79, 275–277
Binomial coefficients, 127, 129
Binomial Theorem, 344–345
Bolzano, Bernard, 336n
Bolzano-Weierstrass Theorem, 336–339
Borel, Emile, 331–332
Bound, upper and lower, 168, 318
Bounded Monotone Sequence Theorem, 341–345
Bounded sequences, 342–345, 347
Bounded sets, 336–339

C
Canonical map, 191
Cantor, Georg, 251, 259, 261, 262
Cantor-Schröder-Bernstein Theorem, 262–266
Cantor’s Theorem, 261–262
Cardinality

comparability of cardinal numbers and, 267–272
countable sets and, 251–257
equivalent sets and, 234–236
finite sets and, 236–240
infinite sets and, 236, 242–248
ordering of cardinal numbers and, 259–266
symbol for, 243

Cardinal numbers
comparability of, 267–272
definition of, 259–260
finite, 243
infinite, 242, 243, 247
ordering of, 259–266

Cartesian products
definition of, 85

Cauchy, Augustin Louis, 346n

I N D E X

393

Note: Page numbers followed by n indicate items appearing in footnotes.

62025_09_index_p393-398.qxd  4/28/10  4:21 PM  Page 393

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Cauchy sequences, 346, 349–350
Cayley, Arthur, 277n
Cayley’s Theorem, 303
Cayley tables, 277, 302
Characteristic function, 190
Choice function, 268
Codomain, 186
Cohen, Paul, 272
Combination Rule, 128–131
Combinatorial proofs, 130
Commutative Laws, 5
Commutative property, 277, 279, 285
Commutative ring, 310, 311–312
Compact sets, 330–331
Comparability property, 164
Comparability Theorem, 267–268, 270
Complement 

of digraph, 156
of set, 83

Complete graphs, 176
Complete induction, 114
Completeness 

of an ordered field, 320 
equivalents of, 347–350

Component of a graph, 179
Composition 

of function, 156
of relation, 83

Conditionals, 9–15
Conditional sentences

converse and contrapositive of, 11–12
definition of, 9
direct proof of, 33

Congruence, 151
Congruence modulo, 278
Conjunction

definition of, 2
negation of, 6

Connected graph, 180
Consequent, 9
Consistent axiom systems, 46
Continuum hypothesis, 247, 271–272
Contradiction

definition of, 4
negation of, 4
proof by, 41–43, 46, 50–52, 61, 

263–264
Contraposition, proof by, 40–41, 45
Contrapositive, of sentence, 11
Convergence, of sequence, 225–229, 348
Converse, of sentence, 11
Correspondence

rules of, 191
single-valued, 187

Countable sets, 245–246, 251–257, 269

Counterexamples, 56
Counting, two-way, 128
Counting principles

Combination Rule, 128–131
Generalized Product Rule, 125–127
Generalized Sum Rule, 122–124
Permutation Rule, 127–128
Product Rule, 125
Sum Rule, 122

Cyclic group, 295, 296
Cyclic subgroup, 295, 296

D
Dedekind, Richard, 349n
Dedekind cuts, 349–350
Deductive reasoning, 1
Definitions, 28
Degree of a vertex, 175
DeMorgan, Augustus, 5n
De Morgan’s Laws, 5, 6, 29, 93
Denumerable sets, 251, 252, 255, 256, 269
Denumerable subsets, 271
Derived sets, 338
Descartes, René, 85
Difference, set operations of, 79–81
Digraphs

complement of, 156
definition of, 138

Direct proof
examples of, 33–35, 48
explanation of, 31–33
form of, 49–50
use of, 61

Disjunction, 2
Distributive Laws, 5
Division Algorithm, 62–65, 117–118
Domain

of function, 186
of relation, 137

Double Negation Law, 5

E
Edge, 174
Element-chasing proof, 77
Equivalence relations

algebraic structures based on, 278–279
definition of, 147
partitions and, 157–161, 179

Equivalent sets, 233–236
Equivalents of completeness, 347–350
Euclidean axioms, 28
Euclid of Alexandria, 28n, 42, 46
Euclid’s Lemma, 45, 65
Euler, Leonard, 51
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Exhaustion, proof by, 36
Existence theorems, 51, 52, 54
Existential quantifier, 19

F
Family of sets

definition of, 89
indexed, 92–95

Fibonacci, Leonardo, 115n
Fibonacci numbers, 115, 116
Fields

algebraic properties of, 320–321
complete, 320
discussion of, 311–312, 315
ordered, 316–321, 347, 349, 350

Fifth postulate (Euclid), 46
Finite sets

definition of, 236
Pigeonhole Principle and, 239–240

Four-Color Theorem, 36
Fraenkel, Abraham, 72
Functions

characteristic, 190
choice, 268
codomain of, 186, 188, 205, 206
composite, 198
constructions of, 195–202
decreasing, 201
definition of, 185
greatest integer, 190
identity, 189, 217
image of sets and, 220–223
inclusion, 189
increasing, 201
induced, 223
inverse of, 196
one-to-one, 208–210
one-to-one correspondence and inverse, 213–218
onto, 205–208
piecewise defined, 201
range of, 186
real, 188
as relations, 186–191
sequences and, 225–230
step, 190

Fundamental Theorem of Arithmetic, 118–119

G
Galois, Evariste, 283
Gardner, Martin, 239
Gauss, Carl Friedrich, 151
Generalized Principle of Mathematical Induction, 109
Generalized Product Rule, 125–127
Generalized Sum Rule, 122–124
Generator, 295

Geometric mean, 347
Gödel, Kurt, 272n
Goldbach, Christian, 57n
Goldbach Conjecture, 57n
Graphs

complete, 176
connected, 180
definition of, 174
to describe relations, 136
directed, 138
discussion of, 177–181
of functions, 187, 188, 190, 200–202
isomorphic, 175
null, 176
subgraphs, 177

Graph theory, 174
Greatest common divisor, 62, 63
Greatest integer function, 190
Groups. See also Subgroups

abelian, 285, 308, 309
axiomatic approach to define, 283, 289
commutative, 285
cyclic, 295
definition of, 283–285
homomorphism, 300
Law of Exponents and, 288
permutation, 286–287

H
Haken, Wolfgang, 36
Handshaking Lemma, 176–177
Hasse diagram, 167, 169
Heine, Edward, 331–332
Heine-Borel Theorem, 332–333, 336
Hierarchy of connectives, 6, 15
Hilbert, David, 254
Homomorphic image, 300, 301, 303
Homomorphism

discussion of, 300–303
group, 300
ring, 309, 310

Horizontal Line Test, 206

I
Identity element, 277, 278
Identity function, 189, 217
Identity permutation, 217, 218
Identity subgroup, 293
Images of sets, 220–223
Immediate predecessor, 166
Inclusion function, 189
Index, 92
Indexing set, 92–93
Indirect proofs, 40–41
Induced function, 223
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Induction
complete, 114
Generalized Principle of Mathematical, 109
hypothesis of, 102
Principle of Complete, 114–116
Principle of Mathematical, 100–109, 114
proofs by, 102–103
Well-Ordering Principle, 116–119

Inductive set, 100
Infimum, 168, 318
Infinite Hotel, 254
Infinite order, 295
Infinite sequence, 190
Infinite sets, 236, 242–248
Integral domain, 310, 311
Intermediate Value Theorem, 20
Intersection

over family of sets, 90
set operation of, 80, 81

Inverse element, 277, 278
Inverse functions, 215–218
Inverse permutation, 218
Isomorphic

graphs, 175
groups, 302

Isomorphism, 302

J
Join operation, 144

L
The Last Recreations (Gardner), 239
Law of Cosines, 45
Law of Excluded Middle, 4
Law of Exponents, 288
Leibnitz, G. W., 185
Leonardo of Pisa (Leonardo Fibonacci), 115
Linear combination, 63
Linear order, 169, 170
Loop, 138, 148
Lower bound, 168, 318

M
Mean Value Theorem, 51
Modulus, of congruence, 151, 152
Modus ponens, 29–30
Monotone sequences, 342–345, 347

N
Natural numbers

infinite sets and, 243–248
property of sets of, 100

Negations
of proposition, 2
simplified form of, 23, 24

Neighborhood, 325–326, 338

Normalized form, 246
Null graphs, 176

O
One-to-one correspondence. See also bijections

elements in set and, 233, 234
explanation of, 213–218, 234
infinite sets and, 244

One-to-one functions, 208–210
Open sets, 326–329
Operation preserving (OP), 298
Operation tables, 277
Order

of an algebraic system, 276 
of an element, 295
of a graph, 175

Ordered field properties of real numbers, 316–321
Ordered fields, 316–321, 347, 349, 350
Ordered n-tuples, 84
Ordered pairs

definition of, 84
as relation, 137

Ordering relations, 163–170

P
Pairwise disjoint families, 94, 95
Paradox, 2
Parentheses, 6–7
Partially ordered set (poset), 165–169
Partitions

definition of, 157–159
equivalence relation and, 159–161, 179

Pascal, Blaise, 130n
Pascal’s triangle, 130–131
Path, 177–180
Peano, Giuseppe, 100
Permutation groups, 286–287
Permutation Rule, 127–128
Permutations

composites of, 218
counting number of, 128–129
definition of, 217, 285
identity, 218
inverses of, 217
of sets, 126, 285–286

Piecewise-defined functions, 201
Pigeonhole Principle, 239–240
Poset, 165
Postulates, 27
Power set, 75
Principle of Complete Induction (PCI), 114–116
Principle of Inclusion and Exclusion, 124
Principle of Mathematical Induction (PMI)

discussion and use of, 100–109, 114
generalized, 109

Product Rule, 125
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Products, 275
Proofs

algebraic, 130
basic methods I, 27–36
basic methods II, 40–46
of biconditional sentences, 43–44
combinatorial, 130
by contradiction, 41–43, 46, 50–53, 61
by contraposition, 40–41, 45
direct, 31–35, 48–50
element-chasing, 77
by exhaustion, 36
explanation of, 1, 27
indirect, 40–41
induction, 102–103
involving quantifiers, 48–56
strategies for writing, 29, 60–62

Proper subset, 74
Propositions

ambiguity and, 6–7
antecedent, 9
compound, 3–4
conditionals and biconditionals and, 9–15
consequent, 9
contrapositive and, 11
converse and, 11
definition of, 1–2
denial of, 6
equivalent, 4–6
examples of, 2
formation of, 2
negation of, 2

Pugh, Charles Chapman, 349
Pythagoras, 28n
Pythagorean Theorem, 28

Q
Quantified sentences

explanation of, 22, 23
strategies for dealing with, 61

Quantifiers
existential, 19
explanation of, 18–25
hidden, 20–21
incorrect deductions and, 55–56
proofs involving, 48–56
unique existential, 24
universal, 20

R
Range

of function, 186
of relation, 137

Real functions, 188
Real Mathematical Analysis (Pugh), 349
Reasoning, deductive, 1

Reflexive property of relations, 147–149, 164
Relational databases, 143
Relations

antisymmetric property of, 164–165
construction of, 139–144
definition of, 135
equivalence, 147–153, 159–161, 191
functions as, 185–191
graphs to represent, 174–181
inverse of, 139
n-tuple, 143
ordering, 163–170
reflexivity property of, 147–149, 164
symmetric property of, 147–149
transitive property of, 147–149, 164

Replacement rule, 29
Restrictions, of function, 199
Ring homomorphism, 309, 310
Ring isomorphism, 310
Rings

commutative, 310, 311
definition of, 307
with unity, 310

Rolle’s Theorem, 51
Russell, Bertrand, 2n, 72

S
Sandwich theorem, 229
Schröder, Ernst, 262
Sentences

conditional, 9–15
contrapositive of, 11
converse of, 11
quantified, 22, 23, 61

Sequences
bounded, 342–345, 347
Cauchy, 346, 349–350
convergence of, 225
decreasing, 343
definition of, 190, 225
divergence of, 225
increasing, 343
limit of, 226–229
monotone, 342–345, 347
nth term of, 190, 225
properties of, 225–226

Set operations
discussion of, 79–86
extended, 89–95

Sets
bounded, 318
compact, 330–331
countable, 245–246, 251–257, 269
counting elements in, 233, 234
denumerable, 251, 252, 255, 256, 269
derived, 338
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Sets (continued)
equivalent, 234–236
family of, 89–95
finite, 236–240
images of, 220–223
infinite, 236, 242–248
open, 326–329
partially ordered, 165–169
permutations of, 126, 285–286
supremum of, 318, 319
truth, 18–20
uncountable, 245–246

Set theory
axiomatic, 72
basic concepts of, 71–77
counting principles and, 122–131
equivalent forms of induction and, 114–119
extended set operations and indexed families of sets and,

89–95
set operations and, 79–86
Zermelo-Fraenkel, 72, 268, 272

Single-valued correspondence, 187
Squeeze theorem, 229
Step function, 190
Subgroups, 292–296. See also Groups
Subsequence, 346
Subsets

of algebraic system, 276
of countable sets, 253
definition of, 72
denumerable, 271
of finite sets, 237
of groups, 294
proper, 74

Sum Rule, 122, 238
Supremum, 168, 318
Surjection, 205, 206, 208, 209
Symmetric closure, 156
Symmetric group on n symbols, 286
Symmetric property of relations, 147–149

T
Tautologies, 4, 29
Tautology rule, 29
Terminal vertex, 177
Ternary operations, 276
Theorems

existence, 51, 52, 54
explanation of, 27

Transitive closure, 156
Transitive property of relations, 147–149, 164
Triangles, Pascal’s, 130–131
Trichotomy property, 267–268
Trigonometric functions, 200, 215, 247
Trivial subgroup, 293
Truth set, 18–20
Truth table, 10–11
Two-way counting, 128

U
Unary operations, 276
Undecidable statements, 46
Undefined terms, 28
Union

of finite numbers, 238
over family of sets, 90
set operation of, 80, 81

Unique existential quantifiers, 24
Universal quantifier, 20
Universe of discourse, 18, 83
Upper bound, 168, 318

V
Venn, John, 75n
Venn diagrams, 75, 80, 81, 91
Vertex

adjacent, 175
definition of, 138, 174
initial, 177
isolated, 175
terminal, 177

Vertical Line Test, 188

W
Walk, 177
Weierstrass, Karl, 336n
Well ordering, 170
Well-Ordering Principle (WOP), 116–117, 170, 253
Well-Ordering Theorem, 170

Z
Zermelo, Ernst, 72
Zermelo-Fraenkel set theory, 72, 268, 272
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L I S T  O F  S Y M B O L S

Preface to the Student:

xiv

xiv

xiv (and 71)

xiv (and 72)

xiv (and 72)

xiv (and 74)

xiv
xvi

xvi (and 186)

xvii (and 189)

xvii (and 137)

Chapter 1:

2

9

P iff Q 12

18

20

22

24

62

68

Chapter 2:

71 (and xiv)

72 (and xiv)

72 (and xiv)

74 (and xiv)

75

78
80

83

84

84

84

88

90

92

92

93

PMI 100

100

122

125

PCI 114

116

122

127

Chapter 3:

135

137

138

139

141

150

150

151

153

168 (and 318)

174

182

180

Chapter 4:

186 (and xvi)

188 (and xvii)

194 (and xvii)

189 (and xvii)

189

190

190

196

196

199

205

209

217 (and 285)

220

223

223

226

Chapter 5:

234

236

236
243

247

260

Chapter 6:

276

279

283

285 (and 217)

286

295

298

306

307

Chapter 7:

318 (and 168)

324

339A ′
�(a,  d)

sup (A), inf (A)

(R, +, ·)
ker(  f   )

OP

(a)

Sn

[a b c]

x−1

a +m  b,  a ·m b

(A, *)

A < BA ≤ B,A = B,

c
ℵ0

A

�k

A ≈ B, A ≈� B

lim
n→∞xn = L, xn → L

f −1: � (B) → � (A)

f : � (A) → � (B)

f  (X), f −1(Y )

[a b c]

f : A−→1−1  B

f : A −→onto  B

f ƒ D

G ◦ F

F−1

xn

int(x)

xA

f  (x)

Rng(  f   )

Dom(  f   )

f : A → B

C (v)

d (u, v)

(V, E)

sup (A), inf (A)

�m

x ≡m  y, x = y (mod m)

xq, [x]

x/R, A/R

S ◦ R

R−1

IA

Dom (R), Rng (R)
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