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PREFACE

There is good reason for the tradition that students of science and
engineering start college physics with the study of mechanics:
mechanics is the cornerstone of pure and applied science. The
concept of energy, for example, is essential for the study of the
evolution of the universe, the properties of elementary particles,
and the mechanisms of biochemical reactions. The concept of
energy is also essential to the design of a cardiac pacemaker and
to the analysis of the limits of growth of industrial society. How-
ever, there are difficulties in presenting an introductory course in
mechanics which is both exciting and intellectually rewarding.
Mechanics is a mature science and a satisfying discussion of its
principles is easily lost in a superficial treatment. At the other
extreme, attempts to ‘‘enrich” the subject by emphasizing
advanced topics can produce a false sophistication which empha-
sizes technique rather than understanding.

This text was developed from a first-year course which we taught
for a number of years at the Massachusetts Institute of Technology
and, earlier, at Harvard University. We have tried to present
mechanics in an engaging form which offers a strong base for
future work in pure and applied science. Our approach departs
from tradition more in depth and style than in the choice of topics;
nevertheless, it reflects a view of mechanics held by twentieth-
century physicists.

Our book is written primarily for students who come to the course
knowing some calculus, enough to differentiate and integrate sim-
ple functions.! It has also been used successfully in courses
requiring only concurrent registration in calculus. (For a course
of this nature, Chapter 1 should be treated as a resource chapter,
deferring the detailed discussion of vector kinematics for a time.
Other suggestions are listed in To The Teacher.) Our experi-
ence has been that the principal source of difficulty for most stu-
dentsisinlearning how to apply mathematics to physical problems,
not with mathematical techniques as such. The elements of cal-
culus can be mastered relatively easily, but the development of
problem-solving ability requires careful guidance. We have pro-
vided numerous worked examples throughout the text to help
supply this guidance. Some of the examples, particularly in the
early chapters, are essentially pedagogical. Many examples, how-
ever, illustrate principles and techniques by application to prob-
lems of real physical interest.

The first chapter is a mathematical introduction, chiefly on vec-
tors and kinematics. The concept of rate of change of a vector,

1 The background provided in ““Quick Calculus’ by Daniel Kleppner and Norman
Ramsey, John Wiley & Sons, New York, 1965, is adequate.
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probably the most difficult mathematical concept in the text,
plays an important role throughout mechanics. Consequently,
this topic is developed with care, both analytically and geometrically.
The geometrical approach, in particular, later proves to be invalu-
able for visualizing the dynamics of angular momentum.

Chapter 2 discusses inertial systems, Newton's laws, and some
common forces. Much of the discussion centers on applying New-
ton’s laws, since analyzing even simple problems according to
general principles can be a challenging task at first. Visualizing
a complex system in terms of its essentials, selecting suitable
inertial coordinates, and distinguishing between forces and accel-
erations are all acquired skills. The numerous illustrative exam-
ples in the text have been carefully chosen to help develop these
skills.

Momentum and energy are developed in the following two chap-
ters. Chapter 3, on momentum, applies Newton’s laws to extended
systems. Students frequently become confused when they try to
apply momentum considerations to rockets and other systems
involving flow of mass. Our approach is to apply a differential
method to a system defined so that no mass crosses its boundary
during the chosen time interval. This ensures that no contribution
to the total momentum is overlooked. The chapter concludes with
a discussion of momentum flux. Chapter 4, on energy, develops
the work-energy theorem and its application to conservative and
nonconservative forces. The conservation laws for momentum
and energy are illustrated by a discussion of collision problems.

Chapter 5 deals with some mathematical aspects of conservative
forces and potential energy; this material is not needed elsewhere
in the text, but it will be of interest to students who want a mathe-
matically complete treatment of the subject.

Students usually find it difficult to grasp the properties of angular
momentum and rigid body motion, partly because rotational motion
lies so far from their experience that they cannot rely on intuition.
As a result, introductory texts often slight these topics, despite
their importance. We have found that rotational motion can be
made understandable by emphasizing physical reasoning rather
than mathematical formalism, by appealing to geometric argu-
ments, and by providing numerous worked examples. In Chapter
6 angular momentum is introduced, and the dynamics of fixed
axis rotation is treated. Chapter 7 develops the important features
of rigid body motion by applying vector arguments to systems
dominated by spin angular momentum. An elementary treatment
of general rigid body motion is presented in the last sections of
Chapter 7 to show how Euler's equations can be developed from
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simple physical arguments. This more advanced material is
optional however; we do not usually treat it in our own course.

Chapter 8, on noninertial coordinate systems, completes the
development of the principles of newtonian mechanics. Up to
this point in the text, inertial systems have been used exclusively
in order to avoid confusion between forces and accelerations.
Our discussion of noninertial systems emphasizes their value as
computational tools and their implications for the foundations of
mechanics.

Chapters 9 and 10 treat central force motion and the harmonic
oscillator, respectively. Although no new physical concepts are
involved, these chapters illustrate the application of the principles
of mechanics to topics of general interest and importance in phy-
sics. Much of the algebraic complexity of the harmonic oscillator
is avoided by focusing the discussion on energy, and by using sim-
ple approximations.

Chapters 11 through 14 present a discussion of the principles of
special relativity and some of its applications. We attempt to
emphasize the harmony between relativistic and classical thought,
believing, for example, that it is more valuable to show how the
classical conservation laws are unified in relativity than to dwell
at length on the so-called ‘“‘paradoxes.” Our treatment is con-
cise and minimizes algebraic complexities. Chapter 14 shows how
ideas of symmetry play a fundamental role in the formulation of
relativity. Although we have kept the beginning students in mind,
the concepts here are more subtle than in the previous chapters.
Chapter 14 can be omitted if desired; but by illustrating how sym-
metry bears on the principles of mechanics, it offers an exciting
mode of thought and a powerful new tool.

Physics cannot be learned passively; there is absolutely no sub-
stitute for tackling challenging problems. Here is where students
gain the sense of satisfaction and involvement produced by a
genuine understanding of the principles of physics. The collec-
tion of problems in this book was developed over many years of
classroom use. A few problems are straightforward and intended
for drill; most emphasize basic principles and require serious
thought and effort. We have tried to choose problems which
make this effort worthwhile in the spirit of Piet Hein’s aphorism

Problems worthy

of attack

prove their worth

by hitting back!

1 From Grooks I, by Piet Hein, copyrighted 1966, The M.I.T. Press.
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TO
THE
TEACHER

The first eight chapters form a comprehensive introduction to
classical mechanics and constitute the heart of a one-semester
course. In a 12-week semester, we have generally covered the
first 8 chapters and parts of Chapters 9 or 10. However, Chapter
5 and some of the advanced topics in Chapters 7 and 8 are usually
omitted, although some students pursue them independently.

Chapters 11, 12, and 13 present a complete introduction to special
relativity. Chapter 14, on transformation theory and four-vectors,
provides deeper insight into the subject for interested students.
We have used the chapters on relativity in a three-week short
course and also as part of the second-term course in electricity and
magnetism.

The problems at the end of each chapter are generally graded
in difficulty. They are also cumulative; concepts and techniques
from earlier chapters are repeatedly called upon in later sections
of the book. The hope is that by the end of the course the student
will have developed a good intuition for tackling new problems,
that he will be able to make an intelligent estimate, for instance,
about whether to start from the momentum approach or from the
energy approach, and that he will know how to set off on a new
tack if his first approach is unsuccessful. Many students report
a deep sense of satisfaction from acquiring these skills.

Many of the problems require a symbolic rather than a numerical
solution. This is not meant to minimize the importance of numeri-
cal work but to reinforce the habit of analyzing problems symboli-
cally. Answers are given to some problems; in others, a numerical
“answer clue is provided to allow the student to check his sym-
bolic result. Some of the problems are challenging and require
serious thought and discussion. Since too many such problems
at once can result in frustration, each assignment should have a
mix of easier and harder problems.

Chapter 1 Although we would prefer to start a course in mechan-
ics by discussing physics rather than mathematics, there are real
advantages to devoting the first few lectures to the mathematics
of motion. The concepts of kinematics are straightforward for
the most part, and it is helpful to have them clearly in hand
before tackling the much subtler problems presented by new-
tonian dynamics in Chapter 2. A departure from tradition in this
chapter is the discussion of kinematics using polar coordinates.
Many students find this topic troublesome at first, requiring serious
effort. However, we feel that the effort will be amply rewarded.
In the first place, by being able to use polar coordinates freely,
the kinematics of rotational motion are much easier to understand;



XX

TO THE TEACHER

the mystery of radial acceleration disappears. More important,
this topic gives valuable insights into the nature of a time-varying
vector, insights which not only simplify the dynamics of particle
motion in Chapter 2 but which are invaluable to the discussion of
momentum flux in Chapter 3, angular momentum in Chapters 6
and 7, and the use of noninertial coordinates in Chapter 8. Thus,
the effort put into understanding the nature of time-varying vectors
in Chapter 1 pays important dividends throughout the course.

If the course is intended for students who are concurrently begin-
ning their study of calculus, we recommend that parts of Chapter 1
be deferred. Chapter 2 can be started after having covered only
the first six sections of Chapter 1. Starting with Example 2.5, the
kinematics of rotational motion are needed; at this point the ideas
presented in Section 1.9 should be introduced. Section 1.7, on the
integration of vectors, can be postponed until the class has become
familiar with integrals. Occasional examples and problems involv-
ing integration will have to be omitted until that time. Section 1.8,
on the geometric interpretation of vector differentiation, is essen-
tial preparation for Chapters 6 and 7 but need not be discussed
earlier.

Chapter 2 The material in Chapter 2 often represents the stu-
dent’s first serious attempt to apply abstract principles to con-
crete situations. Newton’s laws of motion are not self-evident;
most people unconsciously follow aristotelian thought. We find
that after an initial period of uncertainty, students become accus-
tomed to analyzing problems according to principles rather than
vague intuition. A common source of difficulty at first is to con-
fuse force and acceleration. We therefore emphasize the use of
inertial systems and recommend strongly that noninertial coor-
dinate systems be reserved until Chapter 8, where their correct
use is discussed. In particular, the use of centrifugal force in
the early chapters can lead to endless confusion between inertial
and noninertial systems and, in any case, it is not adequate for the
analysis of motion in rotating coordinate systems.

Chapters 3 and 4 There are many different ways to derive the
rocket equations. However, rocket problems are not the only
ones in which there is a mass flow, so that it is important to adopt
a method which is easily generalized. Itis also desirable that the
method be in harmony with the laws of conservation of momentum
or, to put it more crudely, that there is no swindle involved. The
differential approach used in Section 3.5 was developed to meet
these requirements. The approach may not be elegant, but it is
straightforward and quite general.
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In Chapter 4, we attempt to emphasize the general nature of
the work-energy theorem and the difference between conserva-
tive and nonconservative forces. Although the line integral is
introduced and explained, only simple line integrals need to be
evaluated, and general computational techniques should not be
given undue attention.

Chapter 5 This chapter completes the discussion of energy and
provides a useful introduction to potential theory and vector cal-
culus. However, it is relatively advanced and will appeal only to
students with an appetite for mathematics. The results are not
needed elsewhere in the text, and we recommend leaving this
chapter for optional use, or as a special topic.

Chapters 6 and 7 Most students find that angular momentum is
the most difficult physical concept in elementary mechanics. The
major conceptual hurdle is visualizing the vector properties of
angular momentum. We therefore emphasize the vector nature
of angular momentum repeatedly throughout these chapters. In
particular, many features of rigid body motion can be understood
intuitively by relying on the understanding of time-varying vectors
developed in earlier chapters. It is more profitable to emphasize
the qualitative features of rigid body motion than formal aspects
such as the tensor of inertia. If desired, these qualitative argu-
ments can be pressed quite far, as in the analysis of gyroscopic
nutation in Note 7.2. The elementary discussion of Euler’'s equa-
tions in Section 7.7 is intended as optional reading only. Although
Chapters 6 and 7 require hard work, many students develop a phy-
sical insight into angular momentum and rigid body motion which
is seldom gained at the introductory level and which is often
obscured by mathematics in advanced courses.

Chapter 8 The subject of noninertial systems offers a natural
springboard to such speculative and interesting topics as trans-
formation theory and the principle of equivalence. From a more
practical point of view, the use of noninertial systems is an impor-
tant technique for solving many physical problems.

Chapters 9 and 10 In these chapters the principles developed
earlier are applied to two important problems, central force motion
and the harmonic oscillator. Although both topics are generally
treated rather formally, we have tried to simplify the mathematical
development. The discussion of central force motion relies heavily
on the conservation laws and on energy diagrams. The treatment
of the harmonic oscillator sidesteps much of the usual algebraic
complexity by focusing on the lightly damped oscillator. Applica-
tions and examples play an important role in both chapters.
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Chapters 11 to 14 Special relativity offers an exciting change of
pace to a course in mechanics. Our approach attempts to empha-
size the connection of relativity with classical thought. We have
used the Michelson-Morley experiment to motivate the discussion.
Although the prominence of this experiment in Einstein’s thought
has been much exaggerated, this approach has the advantage of
grounding the discussion on a real experiment.

We have tried to focus on the ideas of events and their trans-
formations without emphasizing computational aids such as dia-
grammatic methods. This approach allows us to deemphasize
many of the so-called paradoxes.

For many students, the real mystery of relativity lies not in the
postulates or transformation laws but in why transformation prin-
ciples should suddenly become the fundamental concept for gen-
erating new physical laws. This touches on the deepest and most
provocative aspects of Einstein’s thought. Chapter 14, on four-
vectors, provides an introduction to transformation theory which
unifies and summarizes the preceding development. The chapter
is intended to be optional.

Daniel Kleppner
Robert J. Kolenkow
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VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

1.1 Introduction

The goal of this book is to help you acquire a deep understanding
of the principles of mechanics. The subject of mechanics is at
the very heart of physics; its concepts are essential for under-
standing the everyday physical world as wéll as phenomena on the
atomic and cosmic scales. The concepts of mechanics, such as
momentum, angular momentum, and energy, play a vital role in
practically every area of physics.

We shall use mathematics frequently in our discussion of
physical principles, since mathematics lets us express complicated
ideas quickly and transparently, and it often points the way to new
insights. Furthermore, the interplay of theory and experiment in
physics is based on quantitative prediction and measurement.
For these reasons, we shall devote this chapter to developing some
necessary mathematical tools and postpone our discussion of the
principles of mechanics until Chap. 2.

1.2 Vectors

The study of vectors provides a good introduction to the role of
mathematics in physics. By using vector notation, physical laws
can often be written in compact and simple form. (As a matter
of fact, modern vector notation was invented by a physicist,
Willard Gibbs of Yale University, primarily to simplify the appear-
ance of equations.) For example, here is how Newton’s second
law (which we shall discuss in the next chapter) appears in
nineteenth century notation:

F. = ma,
F, = ma,
F. = ma..

In vector notation, one simply writes
F = ma.

Our principal motivation for introducing vectors is to simplify the
form of equations. However, as we shall see in the last chapter
of the book, vectors have a much deeper significance. Vectors
are closely related to the fundamental ideas of symmetry and
their use can lead to valuable insights into the possible forms of
unknown laws.



SEC. 1.2 VECTORS 3

Definition of a Vector

Vectors can be approached from three points of view—geometric,
analytic, and axiomatic. Although all three points of view are use-
ful, we shall need only the geometric and analytic approaches in
our discussion of mechanics.

From the geometric point of view, a vector is a directed line
segment. In writing, we can represent a vector by an arrow and
label it with a letter capped by a symbolic arrow. In print, bold-
faced letters are traditionally used.

In order to describe a vector we must specify both its length and
its direction. Unless indicated otherwise, we shall assume that
parallel translation does not change a vector. Thus the arrows
at left all represent the same vector.

If two vectors have the same length and the same direction
they are equal. The vectors B and C are equal:

B = C.

The length of a vector is called its magnitude. The magnitude
of a vector is indicated by vertical bars or, if no confusion will occur,
by using italics. For example, the magnitude of A is written |A|,
or simply A. If the length of Ais V2, then |A| = 4 = V2.

If the length of a vector is one unit, we call it a unit vector. A
unit vector is labeled by a caret; the vector of unit length parallel
to Ais A. It follows that

~ A
IA]
and conversely

A = |AA.

The Algebra of Vectors

Multiplication of a Vector by a Scalar |f we multiply A by a positive
scalar b, the result is a new vector C = bA. The vector C is
parallel to A, and its length is b times greater. Thus ¢ = A, and
|C| = blA|.

The result of multiplying a vector by —1 is a new vector opposite
in direction (antiparallel) to the original vector.

Multiplication of a vector by a negative scalar evidently can
change both the magnitude and the direction sense.
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Addition of Two Vectors Addition of vectors has the simple geo-
metrical interpretation shown by the drawing.

The rule is: To add B to A, place the tail of B at the head of A.
The sum is a vector from the tail of A to the head of B.

Subtraction of Two Vectors Since A — B = A 4 (—B), in order to
subtract B from A we can simply multiply it by —1 and then add.
The sketches below show how.

A+(-B)=A-B A-B

An equivalent way to construct A — B is to place the head of B
at the head of A. Then A — B extends from the tail of A to the
tail of B, as shown in the right hand drawing above.

It is not difficult to prove the following laws. We give a geo-
metrical proof of the commutative law; try to cook up your own
proofs of the others.

A+B=B+A Commutative law
A+B+C=A+B)+C o
c(dA) = (cd)A Associative law
(c+ d)A =cA+dA o
(A + B) = cA + ¢B Distributive law

Proof of the Commutative law of vector addition

Although there is no great mystery to addition, subtraction,
and multiplication of a vector by a scalar, the result of ‘““multiply-
ing'’ one vector by another is somewhat less apparent. Does
multiplication yield a vector, a scalar, or some other quantity?
The choice.is up to us, and we shall define two types of products
which are useful in our applications to physics.
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Scalar Product (“Dot” Product) The first type of product is called
the scalar product, since it represents a way of combining two
vectors to form a scalar. The scalar product of A and B is denoted
by A - B and is often called the dot product. A: B is defined by

A-B = |A| |B| cos .

Here 6 is the angle between A and B when they are drawn tail to
tail.

Since |B| cos 6 is the projection of B along the direction of A,
A:-B = |A] X (projection of B on A).

Similarly,

A - B = |B| x (projection of A on B).

If A-B =0, then |[A| = 0 or |[B| =0, or A is perpendicular to
B (that is, cos 8 = 0). Scalar multiplication is unusual in that the
dot product of two nonzero vectors can be 0.

Note that A+ A = |A|%

By way of demonstrating the usefulness of the dot product, here
is an almost trivial proof of the law of cosines.

Law of Cosines

C=A-+B
C-C=(A+B)-(A+ B)
] = |AJ? + [B]* + 2/A| [B| cos 6

This result is generally expressed in terms of the angle ¢:
C? = A? + B? — 24 B cos ¢.

(We have used cos § = cos (r — ¢) = —cos ¢.)

Work and the Dot Product

The dot product finds its most important application in the discussion of
work and energy in Chap. 4. As you may already know, the work W done
by a force F on an object is the displacement d of the object times the
component of F along the direction of d. If the force is applied at an
angle 6 to the displacement,

W = (F cos 6)d.
Granting for the time being that force and displacement are vectors,

W =F-d.
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Vector Product (“Cross” Product) The second type of product we
need is the vector product. In this case, two vectors A and B are
combined to form a third vector C. The symbol for vector product
is a cross:

C=AxB.

An alternative name is the cross product.

The vector product is more complicated than the scalar product
because we have to specify both the magnitude and direction of
A x B. The magnitude is defined as follows: if

C=AXxB,
then
|C| = |A] |B] sin 6,

where 6 is the angle between A and B when they are drawn tail to
tail. (To eliminate ambiguity, 6 is always taken as the angle
smaller than #.) Note that the vector product is zero when § = 0
or m, even if |A| and |B| are not zero.

When we draw A and B tail to tail, they determine a plane. We
define the direction of C to be perpendicular to the plane of A
and B. A, B, and C form what is called a right hand triple. Imag-
ine a right hand coordinate system with A and B in the zy plane as
shown in the sketch. A lies on the z axis and B lies toward the
y axis. If A, B, and C form a right hand triple, then C lies on the
z axis. We shall always use right hand coordinate systems such as
the one shown at left. Here is another way to determine the
direction of the cross product. Think of a right hand screw with
the axis perpendicular to A and B. Rotate it in the direction which
swings A into B. C lies in the direction the screw advances.
(Warning: Be sure not to use a left hand screw. Fortunately,
they are rare. Hot water faucets are among the chief offenders;
your honest everyday wood screw is right handed.)

A result of our definition of the cross product is that

BxA=—AxB.

Here we have a case in which the order of multiplication is impor-
tant. The vector product is not commutative. (In fact, since
reversing the order reverses the sign, it is anticommutative.)
We see that

AxXA=0

for any vector A.
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Examples of the Vector Product in Physics

The vector product has a multitude of applications in physics. For
instance, if you have learned about the interaction of a charged particle
with a magnetic field, you know that the force is proportional to the charge
¢, the magnetic field B, and the velocity of the particle v. The force
varies as the sine of the angle between v and B, and is perpendicular to
the plane formed by v and B, in the direction indicated. A simpler way
to give all these rules is

F = qv X B.

Another application is the definition of torque. We shall develop this
idea later. For now we simply mention in passing that the torque « is
defined by

t=rXF,

where r is a vector from the axis about which the torque is evaluated to
the point of application of the force F. This definition is consistent with
the familiar idea that torque is a measure of the ability of an applied force
to produce a twist. Note that a large force directed parallel tor produces
no twist; it merely pulls. Only F sin 0, the component of force perpen-
dicular to r, produces a torque. The torque increases as the lever arm
gets larger. As you will see in Chap. 6, it is extremely useful to associate
a direction with torque. The natural direction is along the axis of rotation
which the torque tends to produce. All these ideas are summarized in a
nutshell by the simple equation ® = r X F.

Area as a Vector

We can use the cross product to describe an area. Usually one thinks
of area in terms of magnitude only. However, many applications in
physics require that we also specify the orientation of the area. For
example, if we wish to calculate the rate at which water in a stream flows
through a wire loop of given area, it obviously makes a difference whether
the plane of the loop is perpendicular or parallel to the flow. (In the latter
case the flow through the loop is zero.) Here is how the vector product
accomplishes this:

Consider the area of a quadrilateral formed by two vectors, € and D.
The area of the parallelogram A is given by

A base X height
CD sin 0

= |c x D|.

I

il

If we think of A as a vector, we have

A =CXD.
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We have already shown that the magnitude of A is the area of the
parallelogram, and the vector product defines the convention for assigning
a direction to the area. The direction is defined to be perpendicular to
the plane of the area; that is, the direction is parallel to a normal to the
surface. The sign of the direction is to some extent arbitrary; we could
just as well have defined the area by A = D X C. However, once the
sign is chosen, it is unique.

1.3 Components of a Vector

The fact that we have discussed vectors without introducing a
particular coordinate system shows why vectors are so useful;
vector operations are defined without reference to coordinate
systems. However, eventually we have to translate our results
from the abstract to the concrete, and at this point we have to
choose a coordinate system in which to work.

For simplicity, let us restrict ourselves to a two-dimensional
system, the familiar zy plane. The diagram shows a vector A in
the zy plane. The projections of A along the two coordinate
axes are called the components of A. The components of A along
the x and y axes are, respectively, A, and A,. The magnitude of
A is |A] = (4.2 + 4,2} and the direction of A is such that it
makes an angle 6 = arctan (4,/A4;) with the z axis.

Since the components of a vector define it, we can specify a
vector entirely by its components. Thus

A = (4,4,
or, more generally, in three dimensions,
A = (4,4,A).

Prove for yourself that |[A| = (4,2 + 4,2 + 4.,2)%. The vector A
has a meaning independent of any coordinate system. However,
the components of A depend on the coordinate system being used.
To illustrate this, here is a vector A drawn in two different coordi-
nate systems. In the first case,

A =(4,00 (zysystem),
while in the second
A = (0,—A) (2',y’ system).

Unless noted otherwise, we shall restrict ourselves to a single
coordinate system, so that if

A = B,
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then
A, =B, A, = B, A, = B..

The single vector equation A = B symbolically represents three
scalar equations.

All vector operations can be written as equations for com-
ponents. For instance, multiplication by a scalar gives

cA = (cA,c4,).
The law for vector addition is
A+ B =(Ax+B=nAy+BwAz+Bz)-

By writing A and B as the sums of vectors along each of the
coordinate axes, you can verify that

A-B = 4,B, + A,B, + A,B,.

We shall defer evaluating the cross product until the next section.

Vector Algebra

Let
A =(@35-7
B = (2,7,1).

Find A + B, A — B, |A|, |B|, A - B, and the cosine of the angle between
A and B.
A+B=@B+25+7 —7+4+1)
= (5,12, —6)
A—B=@B—-25~-7 —-7-1)
= (1,—2,—8)
[A] = (32 + 52 + 73}
= V&
=911
@2 + 72 + 1%}
4
=735
A-B=3X245X7—-7X1
= 34
_A-B _ ®
Al [B]  (9.11)(7.35)

B

Il

cos (A,B) 507
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Construction of a Perpendicular Vector

Find a unit vector in the zy plane which is perpendicular to A = (3,5,1).
We denote the vector by B = (B,,B,,B.). Since B is in the zy plane,
B, = 0. For B to be perpendicular to A, we have A- B = 0.

A-B =3B,+ 5B,
=0
Hence B, = —£B,. However, B is a unit vector, which means that
B.?2 + B,2 = 1. Combining these gives B,? 4+ 2%B,2 =1, or B, =
4% = +0.857 and B, = —2B, = T0.514.

The ambiguity in sign of B, and B, indicates that B can point along a
line perpendicular to A in either of two directions.

1.4 Base Vectors

Base vectors are a set of orthogonal (perpendicular) unit vectors,
one for each dimension. For example, if we are dealing with the
familiar cartesian coordinate system of three dimensions, the base
vectors lie along the z, y, and z axes. The z unit vector is denoted
by i, the y unit vector by j, and the z unit vector by k.

The base vectors have the following properties, as you can
readily verify:

I
=
=

|

iri=j-j .
i-j=j-k=k-i=0
ixj=k

ixk=i

k xi=1i.

We can write any vector in terms of the base vectors.
A=A+ Aj+ Ak

The sketch illustrates these two representations of a vector.
To find the component of a vector in any direction, take the dot
product with a unit vector in that direction. For instance,

A, =A-k

It is easy to evaluate the vector product A x B with the aid of
the base vectors.

AxB = (4. + A,j + A.k) x (B + B,j + B.k)
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Consider the first term:
Al x B = A.B.(i X 1) + A.B,(i x ) + A.Bi x k).

(We have assumed the associative law here.) Since i X i = 0,
ixj=kandixk= —j, we find

Ad x B = A B,k — B.j).
The same argument applied to the ¥ and z components gives

A,j X B = A (B,i — B.k)
Ak x B = A/(B.,j — B,).

A quick way to derive these relations is to work out the first and
then to obtain the others by cyclically permuting z, y, 2, and
i, ), k (thatis, z—>y, y—>z2 2>z, andi—j,j—ok k—1i) A
simple way to remember the result is to use the following device:
write the base vectors and the components of A and B as three
rows of a determinant,! like this

z

SN

i]
AxB =4, A,
B, B,
= i(4,B. — A.B,) — i(A.B, — A,B,) + k(4.B, — A,B,).

z

For instance, if A = i + 3j — k and B = 4i -+ j + 3k, then

1.5 Displacement and the Position Vector

So far we have discussed only abstract vectors. However, the
reason for introducing vectors here is concrete—they are just
right for describing kinematical laws, the laws governing the
geometrical properties of motion, which we need to begin our dis-
cussion of mechanics. Our first application of vectors will be to
the description of position and motion in familiar three dimen-
sional space. Although our first application of vectors is to the
motion of a point in space, don't conclude that this is the only

Lf you are unfamiliar with simple determinants, most of the books listed at the
end of the chapter discuss determinants.
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application, or even an unusually important one. Many physical
quantities besides displacements are vectors. Among these are
velocity, force, momentum, and gravitational and electric fields.

To locate the position of a point in space, we start by setting up
a coordinate system. For convenience we choose a three dimen-
sional cartesian system with axes z, y, and 2, as shown.

In order to measure position, the axes must be marked off in
some convenient unit of length—meters, for instance.

The position of the point of interest is given by listing the values
of its three coordinates, z;, y1, 21. These numbers do not repre-
sent the components of a vector according to our previous dis-
cussion. (They specify a position, not a magnitude and direction.)
However, if we move the point to some new position, z,, Y2, 22
then the displacement defines a vector S with coordinates S, = z;
-z, Sy =y2—y1,Sz=22—21.

S is a vector from the initial position to the final position—it
defines the displacement of a point of interest. Note, however,
that S contains no information about the initial and final positions
separately—only about the relative position of each. Thus,
S. = 2z, — 2, depends on the difference between the final and
initial values of the z coordinates; it does not specify 2z, or z;
separately. S is a true vector; although the values of the coordi-
nates of the initial and final points depend on the coordinate sys-
tem, S does not, as the sketches below indicate.

z (x2.¥2.23)

(x3,¥5.25)

(X1>,V1,Z|)

Oc7.v7.21)

z
One way in which our displacement vector differs from a mathe-
matician’s vector is that his vectors are usually pure quantities,
with components given by absolute numbers, whereas S has the
physical dimension of length associated with it. We will use
the convention that the magnitude of a vector has dimensions
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so that a unit vector is dimensionless. Thus, a displacement of 8
m (8 meters) in the r directionisS = (8 m, 0,0). |S| = 8 m, and
§ =58/|s| =1

Although vectors define displacements rather than positions, it
is in fact possible to describe the position of a point with respect
to the origin of a given coordinate system by a special vector,
known as the position vector, which extends from the origin to the
point of interest. We shall use the symbol r to denote the
position vector. The position of an arbitrary point P at (z,y,2) is
written as

r = (r,y2) = 2] + yi + zk.

Unlike ordinary vectors, r depends on the coordinate system.
The sketch to the left shows position vectors r and r’ indicating
the position of the same point in space but drawn in different
coordinate systems. If R is the vector from the origin of the
unprimed coordinate system to the origin of the primed coordi-
nate system, we have

' =r—R.

In contrast, a true vector, such as a displacement S, is inde-
pendent of coordinate system. As the bottom sketch indicates,

S=r2—r1
=+ R —(r +R)

=r, — 1.

1.6 Velocity and Acceleration
Motion in One Dimension

Before applying vectors to velocity and acceleration in three
dimensions, it may be helpful to review briefly the case of one
dimension, motion along a straight line.

Let x be the value of the coordinate of a particle moving along a
line. r is measured in some convenient unit, such as meters,
and we assume that we have a continuous record of position
versus time.

The average velocity v of the point between two times, {; and .,
is defined by

) — atty)

T ot — 1

(We shall often use a bar to indicate an average of a quantity.)



14

VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

The instantaneous velocity v is the limit of the average velocity as
the time interval approaches zero.
Lot 4 A — x()
= lim ——
At—0 Al
The limit we have introduced in defining » is precisely that
involved in the definition of a derivative. In fact, we have!

dr
Vo= —
dt
In a similar fashion, the instantaneous acceleration is
.ot + A — o)
a = lim ——
At—0 At
_w
Tt

The concept of speed is sometimes useful. Speed s is simply the
magnitude of the velocity: s = |v|.

Motion in Several Dimensions

Our task now is to extend the ideas of velocity and acceleration
to several dimensions. Consider a particle moving in a plane. As
time goes on, the particle traces out a path, and we suppose that
we know the particle’s coordinates as a function of time. The
instantaneous position of the particle at some time ¢, is

r(t) = [x(t2),y(t)] or r = (zn,y1),

1 Physicists generally use the Leibnitz notation dz/dt, since this is a handy form
for using differentials (see Note 1.1). Starting in Sec. 1.9 we shall use Newton’s
notation &, but only to denote derivatives with respect to time.

/Position at time 1,

L)

(x,¥1)
\Position at P

time ¢,
n




Y

y(t+ A

Ay

()

r()

Ar

Ax
A

x(t)

x(t+At)

X
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where z; is the value of z at ¢ = ¢;, and so forth. At time ¢, the
position is
r: = (22,¥2).
The displacement of the particle between times ¢; and ¢, is
r; —ry = (22 — 21, Y2 — Y1)-

We can generalize our example by considering the position at
some time ¢, and at some later time ¢ 4+ At{.f The displacement
of the particle between these times is

Ar = r(t 4+ At) — r(?).

This vector equation is equivalent to the two scalar equations
Az = x(t + At) — 2(f)
Ay = y(t + A) — y(@).

The velocity v of the particle as it moves along the path is defined
to be

. Ar
v = lim —
At—0 At
_ar
Cdt
which is equivalent to the two scalar equations
. Ax  dr
v, = lim — = —
At—0 At di
v, = lim Ay _ il
Y Moo At dt

Extension of the argument to three dimensions is trivial. The
third component of velocity is

2(t + At) — 2(t) dz
v, = lim —— = —:
At—0 At dt

Our definition of velocity as a vector is a straightforward gen-
eralization of the familiar concept of motion in a straight line.
Vector notation allows us to describe motion in three dimensions
with a single equation, a great economy compared with the three
equations we would need otherwise. The equation v = dr/dt
expresses the results we have just found.

T We will often use the quantity A to denote a difference or change, as in the

case here of Ar and Af{. However, this implies nothing about the size of the
quantity, which may be large or small, as we please.
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Alternatively, since r = zi + yj + zk, we obtain by simple
differentiation?

ar dyﬂ
- + + k

as before.

Let the particle undergo a displacement Ar in time At. In the
limit At — 0, Ar becomes tangent to the trajectory, as the sketch
indicates. However, the relation

Ar ﬂ At
dt
= v Af,
which becomes exact in the limit At — 0, shows that v is parallel
to Ar; the instantaneous velocity v of a particle is everywhere
tangent to the trajectory.

Finding v from r
The position of a particle is given by
r = A(e*i -+ e~ %),
where «a is a constant. Find the velocity, and sketch the trajectory.
dr
7

= A(ae*i — ae™*j)

or
v, = Aae*
vy, = —Aae*.

The magnitude of v is

v = (U:c2 + vyz)%
— Aa(ez"“ + e—zat)%_

In sketching the motion of a point, it is usually helpful to look at limiting
cases. Ati{ = 0, we have

r(0) = A@ +1J)
v0) = adl — j).

I Caution: We can neglect the cartesian unit vectors when we differentiate, since
their directions are fixed. Later we shall encounter unit vectors which can change
direction, and then differentiation is more elaborate.
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] v (0)

r0) k\\ Trajectory

As t— o, ¢**— o and ¢ % — 0. In this limit r — Ade*4, which is a
vector along the z axis, and v— aAe*i; the speed increases without
limit.

Similarly, the acceleration a is defined by

We could continue to form new vectors by taking higher deriva-
tives of r, but we shall see in our study of dynamics thatr, v, and a
are of chief interest.

Example 1.8  Uniform Circular Motion

Circular motion plays an important role in physics. Here we look at the

NG . simplest and most important case—uniform circular motion, which is
A N circular motion at constant speed.
x=rcos wt \ Conslider a particle moving in the zy plane according tor = r(cos wti +
————— r___ N\ sin wij), where r and w are constants. Find the trajectory, the velocity,
=/\/y=rsin wt and the acceleration.
wt [
L | x |r| = [r? cos? wt + r? sin? wi]

Using the familiar identity sin? § 4 cos? 0 = 1,

y
P |r] = [r%(cos? wt + sin? wi)]?

s

// NN = r = constant.
\

/
| add \I The trajectory is a circle.
\ /' x The particle moves counterclockwise around the circle, starting from
\ // (r0) at t = 0. It traverses the circle in a time T such that wT = 2.
\\ Vi w is called the angular velocity of the motion and is measured in radians

\\\_r’//
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per second. T, the time required to execute one complete cycle, is
called the period.

dr
vV = —
dt
= rw(—sin wil 4 cos witj)
We can show that v is tangent to the trajectory by calculating v - r:
v.r = r2w(—sin wt cos wt + cos wt sin wt)
= 0.

Since v is perpendicular to r, it is tangent to the circle as we expect.
Incidentally, it is easy to show that |v| = 7w = constant.

_w
Tt

= rw?[—cos wii — sin wtj]

= —w?r

The acceleration is directed radially inward, and is known as the centripetal
acceleration. We shall have more to say about it shortly.

A Word about Dimension and Units

Physicists call the fundamental physical units in which a quantity
is measured the dimension of the quantity. For example, the
dimension of velocity is distance/time and the dimension of
acceleration is velocity/time or (distance/time)/time = distance/
time?. As we shall discuss in Chap. 2, mass, distance, and time
are the fundamental physical units used in mechanics.

To introduce a system of units, we specify the standards of
measurement for mass, distance, and time. Ordinarily we mea-
sure distance in meters and time in seconds. The units of velocity
are then meters per second (m/s) and the units of acceleration
are meters per second? (m/s?).

The natural unit for measuring angle is the radian (rad). The
angle 6 in radians is S/r, where S is the arc subtended by 6 in a
circle of radius r:

o=5
r

2r rad = 360°. We shall always use the radian as the unit of
angle, unless otherwise stated. For example, in sin wi, wi is in
radians. w therefore has the dimensions 1/time and the units



v(t))

v(to)

Av(ry +241)
Av(ty t+ AY)

SEC. 1.7 FORMAL SOLUTION OF KINEMATICAL EQUATIONS 19

radians per second. (The radian is dimensionless, since it is the
ratio of two lengths.)

To avoid gross errors, it is a good idea to check to see that both
sides of an equation have the same dimensions or units. For
example, the equation v = are*t is dimensionally correct; since
exponentials and their arguments are always dimensionless, « has
the units 1/s, and the right hand side has the correct units, meters
per second.

1.7 Formal Solution of Kinematical Equations

Dynamics, which we shall take up in the next chapter, enables us
to find the acceleration of a body directly. Once we know the
acceleration, finding the velocity and position is a simple matter of
integration. Here is the formal integration procedure.

If the acceleration is known as a function of time, the velocity
can be found from the defining equation
av(t)

i a(®

by integration with respect to time. Suppose we want to find v(¢;)
given the initial velocity v({,) and the acceleration a(¢). Dividing
the time interval {; — ¢, into n parts At = (¢, — to)/n,

V(t1) = v(to) + Av(to + Af) + Av(to + 248 + - - - + Av()

= V(o) + a(to + At) At + a(lo + 24t) At + - - - + a(ty) AL,
since Av(f) = a(t) At. Taking the x component,
U;(t]) = Ux(to) + ax(to + At) At + o + a,(tl) At.

The approximation becomes exact in the limit n — « (At — 0),
and the sum becomes an integral:

v(t1) = va(to) + /;t a(t) dt.

The y and z components can be treated similarly. Combining the
results,

001 + 0] + oADK = vlta)i + [ at) dti
+ o0 + [ dti + otk + [ aw dtk
or

V() = (o) + [ aco dt.
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This result is the same as the formal integration of dv = a dt.

ﬂ‘ dv = ﬁ‘ a(t) dt
V() — V(to) = ﬁ ‘ a(t) di

Sometimes we need an expression for the velocity at an arbi-
trary time ¢, in which case we have

V() = vo + [ ‘aqtyar.

The dummy variable of integration has been changed from ¢ to ¢/
to avoid confusion with the upper limit¢. We have designated the
initial velocity v(t,) by v, to make the notation more compact.
When ¢ = {,, v(t) reduces tov,, as we expect.

Finding Velocity from Acceleration

A Ping-Pong ball is released near the surface of the moon with velocity
vo = (0,5,—3) m/s. It accelerates (downward) with acceleration
a = (0,0,—2) m/s% Find its velocity after 5 s.

The equation

v(t) = vo + ﬁ: a(t’) dt’

is equivalent to the three component equations
0 = vos + [ @ty a

vy(t) = voy + ﬂ: a,(t) dt’

v:(8) = vo: + /0 "ty dt.

Taking these equations in turn with the given values of v, and a, we
obtain at{ = 5 s:

v, =0m/s
v, =b5m/s

v, = —3 + /05(—2)dt' - —13m/s.

Position is found by a second integration. Starting with
dr(t)
—= = (1),
dt @

we find, by an argument identical to the above,

e = ro + /0 ‘v dr.
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A particularly important case is that of uniform acceleration. If
we take a = constant and ¢, = 0, we have

v(t) = v, + at
and
t
M) = ro+ [, o+ at)ar
or

r(t) = ro + vot + Fat

Quite likely you are already familiar with this in its one dimen-
sional form. For instance, the x component of this equation is
z = Ty + Voot + 2a.it?

where vy, is the x component of vo. This expression is so familiar
that you may inadvertently apply it to the general case of varying
acceleration. Don't! It only holds for uniform acceleration. In
general, the full procedure described above must be used.

Motion in a Uniform Gravitational Field

Suppose that an object moves freely under the influence of gravity so
that it has a constant downward acceleration g. Choosing the z axis
vertically upward, we have
a = —gk.
If the object is released at { = 0 with initial velocity v, we have
T = Zo + vosl
Yo -+ Vout
20 + Uo,t —_ ‘%gtz

<
Il

Il

Without loss of generality, we can let ro = 0, and assume that vy, = 0.
(The latter assumption simply means that we choose the coordinate
system so that the initial velocity is in the 2z plane.) Then

T = Vg,
z = vot — gt
The path of the object is shown in the sketch. We can eliminate time

from the two equations for x and z to obtain the trajectory.

Voz
z2=—22 — g 5 2
Yoz 2”03:
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\

This is the well-known parabola of free fall projectile motion. How-
ever, as mentioned above, uniform acceleration is not the most general
case.

Nonuniform Acceleration—The Effect of a Radio Wave
on an lonospheric Electron

The ionosphere is a region of electrically neutral gas, composed of posi-
tively charged ions and negatively charged electrons, which surrounds
the earth at a height of approximately 200 km (120 mi). If a radio wave
passes through the ionosphere, its electric field accelerates the charged
particle. Because the electric field oscillates in time, the charged
particles tend to jiggle back and forth. The problem is to find the motion
of an electron of charge —e and mass m which is initially at rest, and
which is suddenly subjected to an electric field E = E; sin wf (w is the
frequency of oscillation in radians per second).

The law of force for the charge in the electric field is F = —¢E, and by
Newton’s second law we have a = F/m = —e¢E/m. (If the reasoning
behind this is a mystery to you, ignore it for now. It will be clear later.
This example is meant to be a mathematical exercise—the physics is an
added dividend.) We have

—eE
m

—eEg

sin wt.
m

E, is a constant vector and we shall choose our coordinate system so
that the z axis lies along it. Since there is no acceleration in the y or
2 directions, we need consider only the £ motion. With this understand-
ing, we can drop subscripts and write a for a..

—eE .
a(t) = % sin wt = ao sin wt
m
where
"‘eEo
aO = ——
m
Then

() = vo + /0 Loty dt
= vy + ﬂ)t ao sin wt’ dt’

Qo 11 Qo
=vo——coswt'0=vo——(coswt——1)
13)

w
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and

P /ot o) dt’
o + ﬁ)t [vo — 2 (cos wt! — 1)] dt

Yw

I

xo+(vo+@>t—@sinwt.
w 2

w

We are given that o = vy = 0, so we have

x=@t—@sinwt.
W w?

The result is interesting: the second term oscillates and corresponds
to the jiggling motion of the electron, which we predicted. The first
term, however, corresponds to motion with uniform velocity, so in addi-
tion to the jiggling motion the electron starts to drift away. Can you see
why?

1.8 More about the Derivative of a Vector

In Sec. 1.6 we demonstrated how to describe velocity and accelera-
tion by vectors. In particular, we showed how to differentiate the
vector r to obtain a new vector v = dr/di. We will want to dif-
ferentiate other vectors with respect to time on occasion, and so
it is worthwhile generalizing our discussion.

Consider some vector A(t) which is a function of time. The
change in A during the interval from ¢t to ¢ 4 At is

AA = A(t + Af) — A(Y).

In complete analogy to the procedure we followed in differentiat-
ing r in Sec. 1.6, we define the time derivative of A by

dA i ACE 4D — AQ)
dt a0 At

It is important to appreciate that dA/dt is a new vector which
can be large or small, and can point in any direction, depending on
the behavior of A.

There is one important respect in which dA/dt differs from the
derivative of a simple scalar function. A can change in both
magnitude and direction—a scalar function can change only in
magnitude. This difference is important. The figure illustrates
the addition of a small increment AA to A. In the first case AA is
parallel to A; this leaves the direction unaltered but changes the
magnitude to |A| 4 |AA|. In the second, AA is perpendicular
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to A. This causes a change of direction but leaves the magni-
tude practically unaltered.

In general, A will change in both magnitude and direction.
Even so, it is useful to visualize both types of change taking place
simultaneously. In the sketch to the left we show a small incre-
ment AA resolved into a component vector AA; parallel to A and a
component vector AA, perpendicular to A. In the limit where we
take the derivative, AA; changes the magnitude of A but not its
direction, while AA; changes the direction of A but not its mag-
nitude.

Students who do not have a clear understanding of the two ways
a vector can change sometimes make an error by neglecting one
of them. For instance, if dA/dt is always perpendicular to A, A
must rotate, since its magnitude cannot change; its time depend-
ence arises solely from change in direction. The illustrations
below show how rotation occurs when AA is always perpendicular
to A. The rotational motion is made more apparent by drawing

Contrast this with the case where AA is always parallel to A.

A’ A" A

A AA A AR A’ AA"

Drawn from a common origin, the vectors look like this:
A’IY

A"
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The following example relates the idea of rotating vectors to cir-
cular motion.

Circular Motion and Rotating Vectors

In Example 1.8 we discussed the motion given by
r = r(cos wil + sin wij).

The velocity is

v = rw(—sin wii 4 cos wij).

Since

re.v = r¥w(—cos wt sin wt + sin wt cos wt)
=0,
we see that dr/dt is perpendicular tor. We conclude that the magnitude

of r is constant, so that the only possible change in r is due to rotation.
Since the trajectory is a circle, this is precisely the case: r rotates about

the origin.
We showed earlier that a = —w?. Since r-v =0, it follows that
a-v= —wir-v=0and dv/dt is perpendicular to v. This means that

the velocity vector has constant magnitude, so that it too must rotate if
it is to change in time.

That v indeed rotates is readily seen from the sketch, which shows v
at various positions along the trajectory. In the second sketch the same

velocity vectors are drawn from a common origin. It is apparent that
each time the particle completes a traversal, the velocity vector has swung
around through a full circle.

Perhaps you can show that the acceleration vector also undergoes
uniform rotation.

Suppose a vector A(f) has constant magnitude A. The only
way A(f) can change in time is by rotating, and we shall now
develop a useful expression for the time derivative dA/dt of such a
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rotating vector. The direction of dA/dt is always perpendicular
to A. The magnitude of dA/dt can be found by the following
geometrical argument.

The change in A in the time interval { to ¢ + At is

AA = A(t + At) — A(®D).
Using the angle A# defined in the sketch,

A0
|AA] = 24 sin >

For A9 < 1, sin A8/2 =~ A6/2, as discussed in Note 1.1. We have

Al
|AA] = 24 )
=4 Af
and
AA Ab
I
Taking the limit At — 0,
dA | db
atr | Tdt

d@/dt is called the angular velocity of A.
For a simple application of this result, let A be the rotating
vector r discussed in Examples 1.8 and 1.12. Then § = wt and

dr

d
7 = rgt(wt) = rw or vV = rw.

Returning now to the general case, a change in A is the result
of a rotation and a change in magnitude.

AA = AA| + AA,.
For A6 sufficiently small,

|AA,| = A Af
|AA)| = AA

and, dividing by At and taking the limit,

dA, de

e G R
dt dt

dA dA

=l-%
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dA,/dt is zero if A does not rotate (d8/dt = 0), and dA;/dt is zero
if A is constant in magnitude.

We conclude this section by stating some formal identities in
vector differentiation. Their proofs are |eft as exercises. Let
the scalar ¢ and the vectors A and B be functions of time. Then

d de dA

ZZ(cA) = — A -z

ah =gty
i(A B)—fl;A BLa.%B
dt dt dt

—O—Z(AxB)—@xB+Axd—B
dt Cdt dt

In the second relation, let A = B. Then

d dA

— (4% =2A - —

a dt’

and we see again that if dA/dt is perpendicular to A, the magnitude
of A is constant.

1.9 Motion in Plane Polar Coordinates

Polar Coordinates

Rectangular, or cartesian, coordinates are well suited to describing
motion in a straight line. For instance, if we orient the coordinate
system so that one axis lies in the direction of motion, then only a
single coordinate changes as the point moves. However, rec-
tangular coordinates are not so useful for describing circular
motion, and since circular motion plays a prominent role in physics,
it is worth introducing a coordinate system more natural to it.

We should mention that although we can use any coordinate
system we like, the proper choice of a coordinate system can
vastly simplify a problem, so that the material in this section is
very much in the spirit of more advanced physics. Quite likely
some of this material will be entirely new to you. Be patient if it
seems strange or even difficult at first. Once you have studied
the examples and worked a few problems, it will seem much more
natural.

Our new coordinate system is based on the cylindrical coordi-
nate system. The z axis of the cylindrical system is identical to
that of the cartesian system. However, position in the zy plane is
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described by distance » from the z axis and the angle 8 that »
makes with the z axis. These coordinates are shown in the
sketch. We see that

r = \/x2 + y?
6 = arctan Y.
x

Since we shall be concerned primarily with motion in a plane,
we neglect the z axis and restrict our discussion to two dimensions.
The coordinates  and 6 are called plane polar coordinates. In the
following sections we shall learn to describe position, velocity, and
acceleration in plane polar coordinates.

The contrast between cartesian and plane polar coordinates is
readily seen by comparing drawings of constant coordinate lines
for the two systems.

Xx = constant

y varies 0= cgnstant

y / y = constant y r/varles
X varies r = constant

._I'._'[_J_l_ _41»_5__1__1}_ N R, /Gvaries
- - T ~ / -~ T~ N Y
:Trjl—' L T |i K 7\/\\,7/\ 2

R A O A < 2 W W
i RN L AT ]
R _ Vv NSNS
”l—i—‘—ql—-—irj;—:— X \wa/\/(v/\

B s A D SR
Cartesian Plane polar

The lines of constant # and of constant y are straight and per-
pendicular to each other. Lines of constant 6 are also straight,
directed radially outward from the origin. In contrast, lines of
constant r are circles concentric to the origin. Note, however,
that the lines of constant 6 and constant r are perpendicular
wherever they intersect.

In Sec. 1.4 we introduced the base vectors i and j which point in
the direction of increasing « and increasing y, respectively. In
a similar fashion we now introduce two new unit vectors, ¥ and §,
which point in the direction of increasing r andincreasing . There
is an important difference between these base vectors and the
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cartesian base vectors: the directions of r and ﬁvary with position,
whereas i and j have fixed directions. The drawing shows this by
illustrating both sets of base vectors at two points in space.
Because r and 8 vary with position, kinematical formulas can look
more complicated in polar coordinates thanin the cartesian system.
(It is not that polar coordinates are complicated, it is simply that
cartesian coordinates are simpler than they have a right to be.
Cartesian coordinates are the only coordinates whose base vectors
have fixed directions.)

Although ¥ and 8 vary with position, note that they depend on 4
only, not on ». We can think of ¥ and § as being functionally
dependent on 4.

The drawing shows the unit vectors i, j and F, 6 at a point in the

zy plane. We see that
¥t =1icosf+jsind
§ = —isin 6+ jcosé.

Before proceeding, convince yourself that these expressions are
reasonable by checking them at a few particularly simple points,
such as 8 = 0, and 7/2. Also verify that ¥ and 8 are orthogonal
(i.e., perpendicular) by showing that ¥ - § = 0.

It is easy to verify that we indeed have the same vector r no
matter whether we describe it by cartesian or polar coordinates.
In cartesian coordinates we have

r = zi + ¥j,

and in pdlar coordinates we have

r = rt.

If we insert the above expression for r, we obtain

i + yj = r(icos 8 + j sin 6).

We can separately equate the coefficients of i and j to obtain
x = rcos § y = rsiné,

as we expect.
The relation

r=rr

is sometimes confusing, because the equation as written seems to
make no reference to the angle . We know that two parameters
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are needed to specify a position in two dimensional space (m
cartesian coordinates they are r and y), but the equatlon r=rr
seems to contain only the quantity ». The answer is that tis not
a fixed vector and we need to know the value of 8 to tell how ¥ is
oriented as well as the value of r to tell how far we are from the
origin. Although 4 does not occur explicitly in r¥, its value must be
known to fix the direction of ¥. This would be apparent if we
wrote r = r#(f) to emphasize the dependence of r on 6. How-
ever, by common convention ¥ is understood to stand for ¥(0).
The orthogonality of ¥ and & plus the fact that they are unit
vectors, |f| = 1, |8] = 1, means that we can continue to evaluate
scalar products in the simple way we are accustomed to. If

A= A1+ Asb and B = B,f + B,
then
A . B = 44,B, + AgBe.

Of course, the ¥'s and the 8's must refer to the same point in
space for this simple rule to hold. ‘

Velocity in Polar Coordinates

Now let us turn our attention to describing velocity with polar
coordinates. Recall that in cartesian coordinates we have

d . R
—@Cn+yn

= & + j.

(Remember that & stands for dx/dt.)
The same vector, v, expressed in polar coordinates is given by

|
_|_
&

The first term on the right is obviously the component of the
velocity directed radially outward. We suspect that the second
term is the component of velocity in the tangential (8) direction.
This is indeed the case. However to prove it we must evaluate
dr/dt. Since this step is slightly tricky, we shall do lt three dif-
ferent ways. Take your pick!
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Evaluating dr/dt

Method 1 We can invoke the ideas of the last section to find
dr/dt. Since f is a unit vector, its magnitude is constant and
dr/dt is perpendicular to F; as 6 increases, F rotates.

|AF| = [r] A9 = A4,

|AF| A6

At At

and, taking the limit, we obtain

dr| de

dt|  dt

As the sketch shows, as 6 increases, ¥ swings in the § direction,
hence

T _ o

dt )

If this method is too casual for your taste, you may find methods
2 or 3 more appealing.

Method 2
¥ =1icosf + jsin 6

We note that i and j are fixed unit vectors, and thus cannot
vary in time. 6, on the other hand, does vary as r changes.
Using

i (cos 6) = <i cos 0) CB
FTA V7 dt
= —sinfé
and
d—(sin ) = (i sin 0) El—?
dt — \de dt
= cos 6§,
we obtain
(Z—F—ié(co 0)+‘ﬂ(sin0)
a @Y Ty

Il

—ising6 4+ jcos b
(—1fsin 8 4 j cos 6) 4.
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However, recall that —isin § +jcos § = 8. We obtain

dr "

— = 68.

dt

Method 3

The drawing shows r at two different times, ¢ and ¢ + At. The
coordinates are, respectively, (r,6) and (r 4+ Ar, § + A6). Note

that the angle between r; and r, is equal to the angle between
8, and 8,; this angle is 8, — 6, = A4.

The change in r during the time At is illustrated by the lower
drawing. We see that

AF = 8;sin A6 — ¥, (1 — cos Af).

Hence
AF . sinA8 _ (1 — cos Af)
—_— = 01 —_— rl =
At At At
P (M — (A0 + - - ) R (%(M)"’ — 57(A0)* + - - )
= —r )
! At ! At

where we have used the series expansions discussed in Note 1.1.
We need to evaluate

dr . AF
— = lim —-
dt at—o At

In the limit At — 0, Af also approaches zero, but AG/At approaches

the limit d6/dt. Therefore

LAY

lim — (A" =0 n > 0.
At

At—0

The term in ¥ entirely vanishes in the limit and we are left with
® _ o
dt '

as before. We also need an expression for dd/dt. You can use
any, or all, of the arguments above to prove for yourself that

B _y
dt '
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Since you should be familiar with both results, let's summarize
them together:

s
dt
@
d'—t = —fr.

And now, we can return to our problem. On page 30 we showed
that
d dr

V=—1rf=74r—
at Tty

Using the above results, we can write this as

v = it + r68.

As we surmised, the second term is indeed in the tangential
(that is, 6) direction. We can get more insight into the meaning

of each term by considering special cases where only one com-
ponent varies at a time.

Case 1 )

Case 2

1. 8 = constant, velocity is radial. If § is a constant, 9 =0, and
v = 7. We have one dimensional motion in a fixed radial
direction.

2. r = constant, velocity is tangential. In this case v = r6d.
Since r is fixed, the motion lies on the arc of a circle. The
speed of the point on the circle is 76, and it follows that v = 768.

For motion in general, both r and 6 change in time.
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The next three examples illustrate the use of polar coordinates
to describe velocity.

Circular Motion and Straight Line Motion in Polar Coordinates

A particle moves in a circle of radius b with angular velocity 6 = af, where
o is a constant. (a has the units radians per second2) Describe
the particle’s velocity in polar coordinates.

Since r = b constant, ¥ is purely tangential and v
sketches show f, §, and v at a time ¢, and at a later time {,.

bath. The

=1y

The particle is located at the position

¢t
r=5 o=00+ﬁ) fdt = 6o + a2,
If the particle is on the x axis at{ = 0, 6§, = 0. The particle’'s position

vector is r = bf, but as the sketches indicate, # must be given to specify
the direction of F.

Consider a particle moving with constant velocity v = ui along the
line y = 2. Describe v in polar coordinates.

v = u,f + vd.
From the sketch,

v, = u cos 6

—u sin 6

4]

v = y cos Of — u sin 60.

As the particle moves to the right, § decreases and ¥ and [} change direc-
tion. Ordinarily, of course, we try to use coordinates that make the
problem as simple as possible; polar coordinates are not well suited here.
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Velocity of a Bead on a Spoke

A bead moves along the spoke of a wheel at constant speed u meters per
second. The wheel rotates with uniform angular velocity § = w radians
per second about an axis fixed in space. At¢ = 0 the spoke is along the
z axis, and the bead is at the origin. Find the velocity at time ¢

a. In polar coordinates

b. In cartesian coordinates.

a. We have r = ut,# = u, 6 = w. Hence
Vv =iF 4 760 = uF + utwd.

To specify the velocity completely, we need to know the direction of
t and 0. This is obtained from r = (r,0) = (ut,wt).

b. In cartesian coordinates, we have

v, = v, cos § — vg sin 6

Vy vy sin 6 + vy cos 6.

Since v, = u, vy = rw = utw, § = wt, we obtain
v = (u cos wt — utw sin widi + (u sin wt + utw cos wt)j.

Note how much simpler the result is in plane polar coordinates.

Off-center Circle

A particle moves with constant speed v around a circle of radius b. Find
its velocity vector in polar coordinates using an origin lying on the circle.
With this origin, v is no longer purely tangential, as the sketch indicates.

v = —vsin 8F + v cos 38
—v sin 6F + v cos 60.
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The last step follows since 8 and @ are the base angles of an isosceles
triangle and are therefore equal. To complete the calculation, we must
find 6 as a function of time. By geometry, 20 = wt or § = wt/2, where
w = v/b.

Acceleration in Polar Coordinates

Our final task is to find the acceleration. We differentiate v
to obtain

d

a=%v

= d% (7t + 768)

- d . A n . d .
= M 00 66 "0 — 0.
rr—{—rdtr-i-r + 760 + 1 7y
If we substitute the results for dr/dt and d8/dt from page 33, we
obtain

a = ir + 768 + 706 + réd — ré%r
= (# — r0)F + (rf + 276)8.

The term #r is a linear acceleration in the radial direction due
to change in radial speed. Similarly, 788 is a linear acceleration
in the tangential direction due to change in the magnitude of the
angular velocity.

The term —rf2% is the centripetal acceleration which we
encountered in Example 1.8. Finally, 2768 is the Coriolis accel-
eration. Perhaps you have heard of the Coriolis force, a ficti-
tious force which appears to act in a rotating coordinate system,
and which we shall study in Chap. 8. The Coriolis acceleration
that we are discussing here is a real acceleration which is present
when 7 and 6 both change with time.

The expression for acceleration in polar coordinates appears
complicated. However, by looking at it from the geometric point
of view, we can obtain a more intuitive picture.

The instantaneous velocity is

v =it + 168 = v,f + v,b.

Let us look at the velocity at two different times, treating the radial
and tangential terms separately.

The sketch at left shows the radial velocity 7t = v,F at two differ-
ent instants. The change Av, has both a radial and a tangential
component. As we can see from the sketch (or from the dis-
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cussion at the end of Sec. 1.8), the radial component of Av, is
Av,t and the tangential component is v, A#8. The radial com-
ponent contributes

. <Avr -> dv, . .
lim r) =—r =7#r
a0 \ At dt

to the acceleration. The tangential component contributes

. ( Al ,,) ad . A
lim {v,.—0) =0v.— 0 = 760,
At—0 dt
which is one-half the Coriolis acceleration. We see that half the
Coriolis acceleration arises from the change of direction of the
radial velocity.

The tangential velocity 768 = v48 can be treated similarly. The
change in direction of 8 gives Av, an inward radial component
—uvs ABY. This contributes

- A6 . . . oa
lim —vg—r) = —vfr = —ro%,
At—0 At

which we recognize as the centripetal acceleration. Finally, the
tangential component of Avy is Ave8. Since vy, = rfd, there are
two ways the tangential speed can change. If § increases by
Ad, vy increases by » A. Second, if r increases by Ar, v, increases
by Arf. Hence Avy, = r A6 + Ar 6, and the contribution to the
acceleration is

. Avg A . Ab Ar \\ .
lim { — = |lm (r— 4+ —06)}6
at—0 \ Af Al—0 At At
= (rf -+ 70)8.
The second term is the remaining half of the Coriolis acceleration;

we see that this part arises from the change in tangential speed
due to the change in radial distance.

Acceleration of a Bead on a Spoke

A bead moves outward with constant speed u along the spoke of a wheel.
It starts from the center at¢{ = 0. The angular position of the spoke is
given by @ = wi, where wis a constant. Find the velocity and acceleration.
v =7F + r66

We are given that + = u» and § = w. The radial position is given by
r ut, and we have

v = uf + ulwb.



38

Example 1.17

VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

The acceleration is
a =G — 2% + (rf + 2-6)d
= —ulw + 2uwd.
The velocity is shown in the sketch for several different positions of the

wheel. Note that the radial velocity is constant. The tangential acceler-
ation is also constant—can you visualize this?

[SIE

S
v, //3
/
v /
/
v, =
g 9%
/gy 7
A -
v, /. vy

L]

Radial Motion without Acceleration

A particle moves with § = w = constant and r = ref, where r, and 8
are constants. We shall show that for certain values of (3, the particle
moves with a, = 0.

a = (i — rf2F + (rd + 276)d
= (B2roeBt — roeflw)F + 2Browesd.

If 8 = *w, the radial part of a vanishes.

It is very surprising at first that when r = r¢ef* the particle moves with
zero radial acceleration. The error is in thinking that # makes the only
contribution to a,; the term —r8? is also part of the radial acceleration,
and cannot be neglected.

The paradox is that even though a, = 0, the radial velocity v, = ¢ =
roweBt is increasing rapidly with time. The answer is that we can be
misled by the special case of cartesian coordinates; in polar coordinates,

v # [a,(t) dt,

because [a.(t) dt does not take into account the fact that the unit vectors
f and 6 are functions of time.
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Mathematical Approximation Methods

Occasionally in the course of solving a problem in physics you may find
that you have become so involved with the mathematics that the physics
is totally obscured. In such cases, itis worth stepping back for a moment
to see if you cannot sidestep the mathematics by using simple approxi-
mate expressions instead of exact but complicated formulas. If you
have not yet acquired the knack of using approximations, you may feel
that there is something essentially wrong with the procedure of substitut-
ing inexact results for exact ones. However, this is not really the case,
as the following example illustrates.

Suppose that a physicist is studying the free fall of bodies in vacuum,
using a tall vertical evacuated tube. The timing apparatus is turned on
when the falling body interrupts a thin horizontal ray of light located a
distance L below the initial position. By measuring how long the body
takes to pass through the light beam, the physicist hopes to determine
the local value of g, the acceleration due to gravity. The falling body in
the experiment has a height .

For a freely falling body starting from rest, the distance s traveled in
time ¢ is

s = 3gt?,

which gives

t=\/§\/§.

The time interval {, — ¢, required for the body to fall from s; = L centi-
meters to s, = (L + ) centimeters is

> — —
o — & = \/— (\/82 - \/81)

g

S _

= \/—(\/L +1-VD.

g
If {, — ¢, is measured experimentally, g is given by
. _2<\/L+l— \/Z>'-’

(2 — 1)

This formula is exact under the stated conditions, but it may not be the
most useful expression for our purposes.
Consider the factor

VL +1-+L.

In practice, L will be large compared with [ (typical values might be L =
100 cm, I = 1 cm). Our factor is the small difference between two large
numbers and is hard to evaluate accurately by using a slide rule or ordi-
nary mathematical tables. Here is a simple approach, known as the
method of power series expansion, which enables us to evaluate the factor
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to any accuracy we please. As we shall discuss formally later in this Note,
the quantity \/1 + z can be written in the series form

Vito=1+4—4a? +de* + - - -

for —1 < z < 1. Furthermore, if we cut off the series at some point, the
error we incur by this approximation is of the order of the first neglected
term. We can put the factor in a form suitable for expansion by first

extracting V/L:
VIFi-VI=+VI (\/11_% - 1).

The dimensionless ratio I/L plays the part of x in our expansion. Expand-
ing \/1 + l/L in the series form gives

V)= [0-6)
SORE
N HCEO RO RS

We see that if /L is much smaller than 1, the successive terms decrease
rapidly. The first term in the bracket, 3(I/L), is the largest term, and
extracting it from the bracket yields

it Va0 )]
R ORORE

Our expansion is now in its final and most useful form. The first

factor, l/(Z\/L), gives the dominant behavior and is a useful first approx-
imation. Furthermore, writing the series as we have, with leading term
1, shows clearly the contributions of the successive powers of [/L. For
example, if /L = 0.01, the term (/L) = 1.2 X 1075 and we make a
fractional error of about 1 part in 105 by retaining only the preceding
terms. In many cases this accuracy is more than enough. For instance,
if the time interval £, — ¢, in the falling body experiment can be measu_red
to only 1 part in 1,000, we gain nothing by evaluating \/L +1 - \/L to
greater accuracy than this. On the other hand, if we require greater
accuracy, we can easily tell how many terms of the series should be
retained.

Practicing physicists make mathematical approximations freely (when
justified) and have no compunctions about discarding negligible terms.
The ability to do this often makes the difference between being stymied
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by impenetrable algebra and arithmetic and successfully solving a
problem.
Furthermore, series approximations often allow us to simplify compli-
cated algebraic expressions to bring out the essential physical behavior.
Here are some helpful methods for making mathematical approxi-
mations.

1 THE BINOMIAL SERIES

nn — 1)(n — 2)
z

3!
nmn—1 -+ m—k—+1)

+...+ k! xlc_,_...

3

Atar =140+ 2022

z? +

This series is valid for —1 < x < 1, and for any value of n. (If n is
an integer, the series terminates, the last term being z».) The series
is exact; the approximation enters when we truncate it. For n = %, as
in our example,

Q+ap=1+3r—t2+&%2s*+ -+ —1<z<Ll
If we need accuracy only to O(x?) (order of x?), we have
A+ 2} =143z — 22 + 0@?),

where the term O(z®) indicates that terms of order z3 and higher are not
being considered. As a rule of thumb, the error is approximately the
size of the first term dropped.

The series can also be applied if [z| > 1 as follows:

1 n
a+ay = xn(l +—)
z
1 — 1) /1\?
T 2! T
Examples:
1 LI a+z)!
14z
=l—-z+a2?—2+ -1<z<1
1
2. =00 —-2)!
=2 ( )
=l4+z+22+23+ - —-1<z<1
3. (1,001)F = (1,000 + 1)* = 1,000%(1 + 0.001)}
= 10[1 4 0.001(3) + - - 1]
=~ 10(1.0003) = 10.003
1 1 ) . . )
4, 2 : for small z, this expression is zero to first

Vits Vi-s
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approximation. However, this approximation may not be adequate.
Using the binomial series, we have

1 1

2 — — .
\/l—f—x \/l—x

=2 —dc+§+ )

—A+dr+dat+ )
= —3$22,
Notice that the terms linear in z also cancel. To obtain a nonvanishing
result we had to go to a high enough order, in this case-to order z2. It
is clear that for a correct result we have to expand all terms to the same
order.

2 TAYLOR'S SERIES!

Analogous to the binomial series, we can try to represent an arbitrary
function f(z) by a power series in x:

f@) = a0+ ax + apxrt - - - = z axzk.
k=0
For x = 0 we must have
f(o) = Qog.
Assuming for the moment that it is permissible to differentiate, we have
af

— =f(x) = a1 + 2ax + - - -
dx

Evaluating at £ = 0 we have
= ’
a; I'(x) L=0-

Continuing this process, we find
a = - 1O@)|
K z=0'

where f®(z) is the kth derivative of f(z). For the sake of a less cum-
bersome notation, we often write f*)(0) to stand for f® (x) o but bear
z=

in mind that f®(0) means that we should differentiate f(z) k times and
then set x equal to 0.

The power series for f(z), known as a Taylor series, can then be
expressed formally as

x? 3
fx) = f(0) + f"©)z + f"<0)E + f~f(o)g 4o

This series, if it converges, allows us to find good approximations to f(x)
for small values of x (that is, for values of x near zero). Generalizing,

2
fa + z) = f@) + '@ + f/f(a)% 4o

1 Taylor's series is discussed in most elementary calculus texts. See the list at
the end of the chapter.
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gives us the behavior of the function in the neighborhood of the point a.
An alternative form for this expression is
¢ — a)*

@) = f@) + f'@@)¢ — a) +f"(a)_2'_ 4o

Our formal manipulations are valid only if the series converges. The
range of convergence of a Taylor series may be — o <12 < « for
some functions (such as e%) but quite limited for other functions. (The
binomial series converges only if —1 < z < 1.) The range of conver-
gence is hard to find without considering functions of a complex vari-
able, and we shall avoid these questions by simply assuming that we are
dealing with simple functions for which the range of convergence is either
infinite or is readily apparent. Here are some examples:

a. The Trigonometric Functions
Let f(z) = sin x, and expand about x = 0.
f0) =sin(0) =0
f(0) =cos(0) =1
f’(0) = —sin(0) =0
f"'(0)y = —cos (0) = —1, etc.
Hence
sinx=x—ix3+—x5—ix7+ tt .
3! 5! n
Similarly
1 1
cosz=1——a2 4 —2¢— -
2! 41
These expansions converge for all values of x but are particularly use-
ful for small values of 2. To O(x?), sinx = x, cosz = 1 — x2/2.
The figure below compares the exact value for sin x with a Taylor
series in which successively higher terms are included. Note how each

4
y /y=x
= // |
T ———— == =x-=x3 1s
7 \\\ R~ yExo et hagx
S e
B \ Rt
\
\
30° 60° 90° 120° \\ 150° 180° (degrees)
o i - | - - |
0.5 1.0 1.5 2.0 2.5 3.0 (radians)
\
— \\ y=sinx
=L 3
1 yEXTIX
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term increases the range over which the series is accurate. If an infinite
number of terms are included, the Taylor series represents the function
accurately everywhere.

b. The Binomial Series
We can derive the binomial series introduced in the last section by letting

f@)y = Q + x)
Then

fo) =1
f'@) = n@ 40y =n
770 = n(n — 1)
B =nmn —1)(n—-2) - (n—k+1

a4+ ay

Il

l—l—nx—l-%n(n—l)x?—l—

+H.n(n—l)"k'l(%—k-i-l)xk_i_,H

c. The Exponential Function
If we let f(z) = e, we have f'(x) = f(z), by the definition of the expo-
nential function. Similarly f® (z) = f(z). Since f(0) = ¢° = 1, we have

1+x+ x2+ x3+

This series converges for all values of z.

A useful result from the theory of the Taylor series is that if the series
converges at all, it represents the function so well that we are allowed to
differentiate or integrate the series any number of times. For example,

C%(sinm) ;x(x—%ﬁ—l——xf’—{— )

1 1
—_ — 2 — 4
! Z!x +4!x +
= COS .

Furthermore, the Taylor series for the product of two functions is the
product of the individual series:

sinxcosx=<x—%x3+51!x5+- ><1—2—1'x2+ _|_>
1 1
=~x—<i+2—!>x ( +EE+ ) L
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4x% 1625
_x__3!~+?+ P

| Zx 2x 5 I
1

2 [sin (22)].

AN

The Taylor series sometimes comes in handy in the evaluation of inte-
grals. To estimate

/’llle_’d

letz =1+ 2. We then have

1.1 e? 0.1 ¢(t+2)
/ —dz = / dx
1 z 0 14z

0.1 e*
= (e)ﬁ) T xdx

B o dta
()/ (1+x)

=~ 0.1e.

The approximation should be better than 1 part in 100 or so, for x always
lies in the interval 0 < z < 0.1. In this range, ¢* =1+ z is a good
approximation to two or three significant figures.

3 DIFFERENTIALS

Consider f(z), a function of the independent variable x. Often we need
to have a simple approximation for the change in f(z) when z is changed
to £ + Az. Let us denote the change by Af = f(x + Az) — f(z). It
is natural to turn to the Taylor series. Expanding the Taylor series for
f(x) about the point z gives

1
Je+ Az) = f@) + @ Azt @ A+

where, for example, f'(z) stands for df/dxz evaluated at the point z.
Omitting terms of order (Az)? and higher yields the simple linear approx-
imation

Af = f(z + Az) — f(z) = ['(z) Az.

This approximation becomes increasingly accurate the smaller the
size of Az. However, for finite values of Ax, the expression

Af = f'(z) Az
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has to be considered to be an approximation. The graph at left shows
a comparison of Af = f(z 4+ Az) — f(z) with the linear extrapolation
f'(x) Az. It is apparent that Af, the actual change in f(z) as z is
changed, is generally not exactly equal to Af for finite Ax. :

As a matter of notation, we use the symbol dz to stand for Az, the
increment in . dz is known as the differential of x; it can be as large or
small as we please. We define df, the differential of f, by

df = f'(z) dx.

This notation is illustrated in the lower drawing. Note that dz and
Az are used interchangeably. On the other hand, df and Af are different
quantities. df is a differential defined by df = f'(x) dx, whereas Af is
the actual change f(z + dx) — f(x). Nevertheless, when the linear
approximation is justified in a problem, we often use df to represent
Af. We can always do this when eventually a limit will be taken. Here
are some examples.

1. d(sin §) = cos 8 d6.

2. d(ze=*) = (e** + 2x%=") dx.

3. Let V be the volume of a sphere of radius 7:
V = §mrs

dV = 4xrtdr.

4. What is the fractional increase in the volume of the earth if its average
radius, 6.4 X 10 m, increases by 1 m?

av 4wt dr
14 s
d
- 3%
”
3
= —— =47 X 107",
6.4 X 108

One common use of differentials is in changing the variable of integra-
tion. For instance, consider the integral

b
/ ze** dz.
a

A useful substitution is £ = z2. The procedure is first to solve for = in
terms of ¢,

z =V,

and then to take differentials:
11

=>4t
24/4

dr
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This result is exact, since we are effectively taking the limit. The original
integral can now be written in terms of ¢:

Lxe’zdx—ﬁh\/t‘<-——dt> ﬁ] et dt

= 3 — o),

where ¢t; = a% and t, = b2

Some References to Calculus Texts

A very popular textbook is G. B. Thomas, Jr., ““Calculus and Analytic
Geometry," 4th ed., Addison-Wesley Publishing Company, Inc., Reading,
Mass.

The following introductory texts in calculus are also widely used:

M. H. Protter and C. B. Morrey, ‘‘Calculus with Analytic Geometry,”
Addison-Wesley Publishing Company, Inc., Reading, Mass.

A. E. Taylor, ‘“Calculus with Analytic Geometry,” Prentice-Hall, Inc.,
Englewood Cliffs, N.J.

R. E. Johnson and E. L. Keokemeister, ‘‘Calculus With Analytic Geometry,"’
Allyn and Bacon, Inc., Boston.

A highly regarded advanced calculus text is R. Courant, ‘‘Differential and
Integral Calculus,” Interscience Publishing, Inc., New York.

If you need to review calculus, yolu may find the following helpful: Daniel
Kleppner and Norman Ramsey, '‘Quick Calculus,” John Wiley & Sons,
Inc., New York.

1.1 Given two vectors, A = (2i — 3j + 7k) and B = (61 +7§ + Zk) find:
(a) A+ B;(b) A—B; (c) A-B; (d) AX B.

Ans. (a) 7i — 2j + 9k; (c) 21
1.2 Find the cosine of the angle between

A=@ +j+k and B = (—2i — 3j — k).
Ans. —0.805

1.3 The direction cosines of a vector are the cosines of the angles it
makes with the coordinate axes. The cosine of the angles between the
vector and the z, y, and z axes are usually called, in turn «, 8, and =.
Prove that o? + 8% 4+ % = 1, using either geometry or vector algebra.

1.4 Show that if |A — B| = |A + B|, then A is perpendicular to B.

1.5 Prove that the diagonals of an equilateral parallelogram are per
pendicular.

1.6 Prove the law of sines using the cross product. It should only take
a couple of lines. (Hint: Consider the area of a triangle formed by A,
B, C, where A+ B +C = 0.)
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1.7 Let 4 and b be unit vectors in the zy plane making angles 6 and
¢ with the z axis, respectively. Show that & = cos 6i + sin 6j, b =
cos ¢f + sin ¢j, and using vector algebra prove that
cos (8 — ¢) = cos O cos ¢ + sin O sin 4.
1.8 Find a unit vector perpendicular to
A=(@G{+j—k  and B = (2i —j + 3Kk).
Ans. i = +(20 — 5] — 3k)//38

1.9 Show that the volume of a parallelepiped with edges A, B, and C is
given by A - (B X C). ’
1.10 Consider two points located at r; and r,, separated by distance
r = |r, — I’gl. Find a vector A from the origin to a point on the line
between r, and r, at distance xr from the point at r;, where z is somg
number.
1.11 Let A be an arbitrary vector and let h be a unit vector in some fixea
direction. Show that A = (A-n)a + (A X A) X n.
1.12 The acceleration of gravity can be measured by projecting a body
upward and measuring the time that it takes to pass two given points
in both directions.

Show that if the time the body takes to pass a horizontal line 4 in both

directions is T4, and the time to go by a second line B in both directions
is T'g, then, assuming that the acceleration is constant, its magnitude is

8h
—_—
TA2 - TB2
where 4 is the height of line B above line A.

g =

1.13 An elevator ascends from the ground with uniform speed. At
time T, a boy drops a marble through the floor. The marble falls with
uniform acceleration g = 9.8 m/s?, and hits the ground T, seconds
later. Find the height of the elevator at time T.

Ans. clue. 1f Ty = Ty = 4s, h = 392 m

1.14 A drum of radius R rolls down a slope without slipping. Its axis
has acceleration a parallel to the slope. What is the drum’s angular
acceleration a?

1.15 By relative velocity we mean velocity with respect to a specified
coordinate system. (The term velocity, alone, is understood to be rela-
tive to the observer’s coordinate system.)

a. A point is observed to have velocity v4 relative to coordinate system
A. Whatis its velocity relative to coordinate system B, which is displaced
from system A by distance R? (R can change in time.)

Ans.Vp = V4 — dR/dt

b. Particles @ and b move in opposite directions around a circle with’
angular speed w, as shown. At ¢ = 0 they are both at the pointr = [j,
where [ is the radius of the circle.

Find the velocity of a relative to b.
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1.16 A sportscar, Fiasco |, can accelerate uniformly to 120 mi/h in 30 s.
Its maximum braking rate cannot exceed 0.7g. What is the minimum
time required to go 4+ mi, assuming it begins and ends at rest? (Hint:
A graph of velocity vs. time can be helpful.)

1.17 A particle moves in a plane with constant radial velocity # = 4 m/s.
The angular velocity is constant and has magnitude § =2 rad/s. When
the particle is 3 m from the origin, find the magnitude of (a) the velocity
and (b) the acceleration.

Ans. (a) v = \/52 m/s
1.18 The rate of change of acceleration is sometimes known as ‘‘jerk."”
Find the direction and magnitude of jerk for a particle moving in a circle
of radius R at angular velocity w. Draw a vector diagram showing the
instantaneous position, velocity, acceleration, and jerk.

1.19 A tire rolls in a straight line without slipping. Its center moves
with constant speed V. A small pebble lodged in the tread of the tire
touches the road at ¢t = 0. Find the pebble's position, velocity, and
acceleration as functions of time.

1.20 A particle moves outward along a spiral. Its trajectory is given
by r = Af, where A is a constant. A = (1/7) m/rad. 6 increases in
time according to 0 = at?/2, where « is a constant.

a. Sketch the motion, and indicate the approximate velocity and accel-
eration at a few points.

b. Show that the radial acceleration is zero when 8 = 1/\/2 rad.

c. At what angles do the radial and tangential accelerations have equal
magnitude?
1.21 A boy stands at the peak of a hill which slopes downward uniformly
at angle ¢. At what angle 6 from the horizontal should he throw a rock

so that it has the greatest range?
Ans. clue. If ¢ = 60°, 6 = 15°
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NEWTON’S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

2.1 Introduction

Our aim in this chapter is to understand Newton’'s laws of motion.
From one point of view this is a modest task: Newton’s laws are
simple to state and involve little mathematical complexity. Their
simplicity is deceptive, however. As we shall see, they combine
definitions, observations from nature, partly intuitive concepts,
and some unexamined assumptions on the properties of space
and time. Newton’s statement of the laws of motion left many
of these points unclear. It was not until two hundred years after
Newton that the foundations of classical mechanics were care-
fully examined, principally by Ernst Mach,! and our treatment is
very much in the spirit of Mach.

Newton’s laws of motion are by no means self-evident. In
Aristotle’s system of mechanics, a force was thought to be needed
to maintain a body in uniform motion. Aristotelian mechanics
was accepted for thousands of years because, superficially, it
seemed intuitively correct. Careful reasoning from observation
and a real effort of thought was needed to break out of the
aristotelian mold. Most of us are still not accustomed to think-
ing in newtonian terms, and it takes both effort and practice to
learn to analyze situations from the newtonian point of view. We
shall spend a good deal of time in this chapter looking at applica-
tions of Newton's laws, for only in this way can we really come to
understand them. However, in addition to deepening our under-
standing of dynamics, there is an immediate reward—we shall be
able to analyze quantitatively physical phenomena which at first
sight may seem incomprehensible.

Although Newton’s laws provide a direct introduction to classical
mechanics, it should be pointed out that there are a number of
other approaches. Among these are the formulations of Lagrange
and Hamilton, which take energy rather than force as the funda-
mental concept. However, these methods are physically equiva-
lent to the newtonian approach, and even though we could use
one of them as our point of departure, a deep understanding of
Newton’s laws is an invaluable asset to understanding any system-
atic treatment of mechanics.

A word about the validity of newtonian mechanics: possibly you
already know something about modern physics—the development
early in this century of relativity and quantum mechanics. If so,

I Mach’s text, *“The Science of Mechanics’ (1883), translated the arguments from
Newton’s ‘“Principia’’ into a more logically satisfying form. His analysis of the
assumptions of newtonian mechanics played a major role in the development ot
Einstein’s special theory of relativity, as we shall see in Chap. 10.
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you know that there are important areas of physics in which new-
tonian mechanics fails, while relativity and quantum mechanics
succeed. Briefly, newtonian mechanics breaks down for systems
moving with a speed comparable to the speed of light, 3 X 108 m/s,
and it also fails for systems of atomic dimensions or smaller where
quantum effects are significant. The failure arises because of
inadequacies in classical concepts of space, time, and the nature
of measurement. A natural impulse might be to throw out class-
ical physics and proceed directly to modern physics. We do not
accept this point of view for several reasons. In the first place,
although the more advanced theories have shown us where class-
ical physics breaks down, they also show us where the simpler
methods of classical physics give accurate results. Rather than
make a blanket statement that classical physics is right or wrong,
we recognize that newtonian mechanics is exceptionally useful in
many areas of physics but of limited applicability in other areas.
For instance, newtonian physics enables us to predict eclipses cen-
turies in advance, but is useless for predicting the: motions of
electrons in atoms. It should also be recognized that because
classical physics explains so many everyday phenomena, it is an
essential tool for all practicing scientists and engineers. Further-
more, most of the important concepts of classical physics are pre-
served in modern physics, albeit in altered form.

2.2 Newton’s Laws

It is important to understand which parts of Newton’s laws are
based on experiment and which parts are matters of definition.
In discussing the laws we must also learn how to apply them, not
only because this is the bread and butter of physics but also
because this is essential for a real understanding of the under-
lying concepts.

We start by appealing directly to experiment. Unfortunately,
experiments in mechanics are among the hardest in physics
because motion in our everyday surroundings is complicated by
forces such as gravity and friction. To see the physical essen-
tials, we would like to eliminate all disturbances and examine very
simple systems. One way to accomplish this would be to enroll
as astronauts, for in the environment of space most of the every-
day disturbances are negligible. However, lacking the resources
to put ourselves in orbit, we settle for second best, a device
known as a linear air track, which approximates ideal conditions,
but only in one dimension. (Although it is not clear that we can
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learn anything about three dimensional motion from studying
motion in one dimension, happily this turns out to be the case.)

Air jets

Compressed air

Leveling screw

Linear air track

The linear air track is a hollow triangular beam perhaps 2 m
long, pierced by many small holes which emit gentle streams of
air. A rider rests on the beam, and when the air is turned on, the
rider floats on a thin cushion of air. Because of the air suspen-
sion, the rider moves with negligible friction. (The reason for this
is that the thin film of air has a viscosity typically 5,000 times less
than a film of oil.) If the track is leveled carefully, and if we elim-
inate stray air currents, the rider behaves as if it were isolated in
its motion along the track. The rider moves along the track free
of gravity, friction, or any other detectable influences.

Now let’'s observe how the rider behaves. (Try these experi-
ments yourself if possible.) Suppose that we place the rider on
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the track and carefully release it from rest. As we might expect,
the rider stays at rest, at least until a draft hits it or somebody
bumps the apparatus. (This isn't too surprising, since we leveled
the track until the rider stayed put when left at rest.) Next, we
give the rider a slight shove and then let it move freely. The
motion seems uncanny, for the rider continues to move along
slowly and evenly, neither gaining nor losing speed. This is con-
trary to our everyday experience that moving bodies stop moving
unless we push them. The reason is that in everyday motion,
friction usually plays an important role. For instance, the air
track rider comes to a grinding halt if we turn off the air and let
sliding friction act. Apparently the friction stops the motion.
But we are getting ahead of ourselves; let us return to the
properly functioning air track and try to generalize from our
experience.

It is possible to make a two dimensional air table analogous to
the one dimensional air track. (A smooth sheet of glass with a
flat piece of dry ice on it does pretty well. The evaporating dry
ice provides the gas cushion.) We find again that the undisturbed
rider moves with uniform velocity. Three dimensional isolated
motion is hard to observe, short of going into space, but let us for
the moment assume that our experience in one and two dimen-
sions also holds in three dimensions. We therefore surmise that
an object moves uniformly in space provided there are no external
influences.

Newton’s First Law

In our discussion of the air track experiments, we glossed over an
important point. Motion has meaning only with respect to a par-
ticular coordinate system, and in describing motion it is essential
to specify the coordinate system we are using. For example, in
describing motion along the air track, we implicitly used a coor-
dinate system fixed to the track. However, we are free to choose
any coordinate system we please, including systems which are
moving with respect to the track. In a coordinate system moving
uniformly with respect to the track, the undisturbed rider moves
with constant velocity. Such a coordinate system is called an
inertial system. Not all coordinate systems are inertial; in a coor-
dinate system accelerating with respect to the track, the undis-
turbed rider does not have constant velocity. However, it is
always possible to find a coordinate system with respect to which
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isolated bodies move uniformly. This is the essence of Newton’s
first law of motion.

Newton’s first law of motion is the assertion that inertial systems
exist.

Newton’s first law is part definition and part experimental fact.
Isolated bodies move uniformly in inertial systems by virtue of the
definition of an inertial system. [n constrast, that inertial systems
exist is a statement about the physical world.

Newton's first law raises a number of questions, such as what
we mean by an “‘isolated body,"” but we will defer these temporarily
and go on.

Newton’s Second Law

We now turn to how the rider on the air track behaves when it is
no longer isolated. Suppose that we pull the rider with a rubber
band. Nothing happens while the rubber band is loose, but as
soon as we pull hard enough to stretch the rubber band, the rider
starts to move. If we move our hand ahead of the rider so that
the rubber band is always stretched to the same standard length,
we find that the rider moves in a wonderfully simple way; its
velocity increases uniformly with time. The rider moves with con-
stant acceleration.

Now suppose that we try the same experiment with a different
rider, perhaps one a good deal larger than the first. Again, the
same rubber band stretched to the standard length produces a
constant acceleration, but the acceleration is different from that
in the first case. Apparently the acceleration depends not only
on what we do to the object, since presumably we do the
same thing in each case, but also on some property of the object,
which we call mass.

We can use our rubber band experiment to define what we mean
by mass. We start by arbitrarily saying that the first body has a
mass m;. (m; could be one unit of mass or z units of mass, where
z is any number we choose.) We then define the mass of the
second body to be

a;
Mme = My —
Qs

where a; is the acceleration of the first body in our rubber band
experiment and a, is the acceleration of the second body.
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Continuing this procedure, we can assign masses to other
objects by measuring their accelerations with the standard
stretched rubber band. Thus

a1
ms = my —

a3

ay etc.
my = My —

L2

Although this procedure is straightforward, there is no obvious
reason why the quantity we define this way is particularly impor-
tant. For instance, why not consider instead some other prop-
erty, call it property Z, such that Z, = Z,(a1/as)?? The reason
is that mass is useful, whereas property Z (or most other quan-
tities you try) is not. By making further experiments with the
air track, for instance by using springs or magnets instead of a
rubber band, we find that the ratios of accelerations, hence the
mass ratios, are the same no matter how we produce the uni-
form accelerations, provided that we do the same thing to each
body. Thus, mass so defined turns out to be independent of
the source of acceleration and appears to be an inherent prop-
erty of a body. Of course, the actual mass value of an individual
body depends on our choice of mass unit. The important thing
is that two bodies have a unique mass ratio.

Our definition of mass is an example of an operational definition.
By operational we mean that the definition is dominantly in terms
of experiments we perform and not in terms of abstract concepts,
such as ‘‘mass is a measure of the resistance of bodies to a change
in motion.””  Of course, there can be many abstract concepts hid-
den in apparently simple operations. For instance, when we mea-
sure acceleration, we tacitly assume that we have a clear under-
standing of distance and time. Although our intuitive ideas are
adequate for our purposes here, we shall see when we discuss
relativity that the behavior of measuring rods and clocks is itself
a matter for experiment.

A second troublesome aspect of operational definitions is that
they are limited to situations in which the operations can actually
be performed. In practice this is usually not a problem; physics
proceeds by constructing a chain of theory and experiment which
allows us to employ convenient methods of measurement ulti-
mately based on the operational definitions. For instance, the
most practical way to measure the mass of a mountain is to
observe its gravitational pull on a test body, such as a hanging
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plumb bob. According to the operational definition, we should
apply a standard force and measure the mountain’s acceleration.
Nevertheless, the two methods are directly related conceptually.

We defined mass by experiments on laboratory obiects; we can-
not say a priori whether the results are consistent on a much
larger or smaller scale. In fact, one of the major goals of physics
is to find the limitations of such definitions, for the limitations
normally reveal new physical laws. Nevertheless, if an opera-
tional definition is to be at all useful, it must have very wide appli-
cability. For instance, our definition of mass holds not only for
everyday objects on the earth but also, to a very high degree, for
planetary motion, motion on an enormously larger scale. It
should not surprise us, however, if eventually we find situations
in which the operations are no longer useful.

Now that we have defined mass, let us turn our attention to
force.

We describe the operation of acting on the test mass with a
stretched rubber band as ‘“applying’’ a force. (Note that we have
sidestepped the question of what a force is and have limited our-
selves to describing how to produce it—namely, by stretching a
rubber band by a given amount.) When we apply the force, the
test mass accelerates at some rate, a. If we apply two standard
stretched rubber bands, side by side, we find that the mass accel-
erates at the rate 2a, and if we apply them in opposite directions,
the acceleration is zero. The effects of the rubber bands add
algebraically for the case of motion in a straight line.

We can establish a force scale by defining the unit force as the
force which produces unit acceleration when applied to the unit
mass. It follows from our experiments that F units of force
accelerate the unit mass by F' units of acceleration and, from our
definition of mass, it will produce F X (1/m) units of acceleration
in mass m. Hence, the acceleration produced by force F acting
on mass m is a = F/m or, in a more familiar order, ' = ma. In
the International System of units (SI), the unit of force is the new-
ton (N), the unit of mass is the kilogram (kg), and acceleration is
in meters per second? (m/s?. Units are discussed further in
Sec. 2.3.

So far we have limited our experiments to one dimension.
Since acceleration is a vector, and mass, as far as we know, is a
scalar, we expect that force is also a vector. It is natural to think
of the force as pointing in the direction of the acceleration it pro-
duces when acting alone. This assumption appears trivial, but
it is not—its justification lies in experiment. We find that forces
obey the principle of superposition: The acceleration produced by
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several forces acting on a body is equal to the vector sum of the
accelerations produced by each of the forces acting separately.
Not only does this confirm the vector nature of force, but it also
enables us to analyze problems by considering one force at a
time.

Combining all these observations, we conclude that the total
force F on a body of mass m is F = ZF;, where F; is the 7th applied
force. If ais the net acceleration, and a; the acceleration due to
F. alone, then we have

F = ZF;
= Ema,'
= mZa;
= ma

or

F = ma

This is Newton’s second law of motion. It will underlie much of
our subsequent discussion.

It is important to understand clearly that force is not merely
a matter of definition. For instance, if the air track rider starts
accelerating, it is not sufficient to claim that there is a force acting
defined by F = ma. Forces always arise from interactions between
systems, and if we ever found an acceleration without an inter-
action, we would be in a terrible mess. It is the interaction which
is physically significant and which is responsible for the force.
For this reason, when we isolate a body sufficiently from its sur-
roundings, we expect the body to move uniformly in an inertial
system. Isolation means eliminating interactions. You may
question whether it is always possible to isolate a body. For-
tunately, as far as we know, the answer is yes. All known inter-
actions decrease with distance. (The forces which extend over
the greatest distance are the familiar gravitational and Coulomb
forces. They decrease as 1/r2?, where r is the distance. Most
forces decrease much more rapidly. For example, the force
between separated atoms decreases as 1/r7.) By moving the
test body sufficiently far from everything else, the interactions
can be reduced as much as desired.

Newton’s Third Law

The fact that force is necessarily the result of an interaction
between two systems is made explicit by Newton’s third law. The
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third law states that forces always appear in pairs: if body b exerts
force F, on body a, then there must be a force F, acting on body
b, due to body a, such that F, = —F,. There is no such thing as
a lone force without a partner. As we shall see in the next chap-
ter, the third law leads directly to the powerful law of conservation
of momentum.

We have argued that a body can be isolated by removing it
sufficiently far from other bodies. However, the following prob-
lem arises. Suppose that an isolated body starts to accelerate
in defiance of Newton's second law. What prevents us from
explaining away the difficulty by attributing the acceleration to
carelessness in isolating the system? If this option is open to us,
Newton's second law becomes meaningless. We need an inde-
pendent way of telling whether or not there is a physical interac-
tion on a system. Newton’s third law provides such a test. If
the acceleration of a body is the result of an outside force, then
somewhere in the universe there must be an equal and opposite
force acting on another body. If we find such a force, the
dilemma is resolved; the body was not completely isolated. The
interaction may be new and interesting, but as long as the forces
are equal and opposite, Newton’s laws are satisfied.

If an isolated body accelerates and we cannot find some external
object which suffers an equal and opposite force, then we are in
trouble. As far as we know this has never occurred. Thus New-
ton's third law is not only a vitally important dynamical tool, but
it is also an important logical element in making sense of the first
two laws.

Newton’s second law F = ma holds true only in inertial systems.
The existence of inertial systems seems almost trivial to us, since
the earth provides a reasonably good inertial reference frame for
everyday observations. However, there is nothing trivial about
the concept of an inertial system, as the following example shows.

Astronauts in Space—Inertial Systems and Fictitious Forces

Two spaceships are moving in empty space chasing an unidentified
flying object, possibly a flying saucer. The captains of the two ships,
A and B, must find out if the saucer is flying freely or if it is accelerating.
¢, B, and the saucer are all moving along a straight line.

The captain of A sets to work and measuresthe distance to the saucer
as a function of time. In principle, he sets up a coordinate system along
the line of motion with his ship as origin and notes the position of the
saucer, which he calls z4(¢). (In practice he uses his radar set to mea-
sure the distance to the saucer.) From z4({) he calculates the velocity
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va = &4 and the acceleration a4 = #4. The results are shown in the
sketches. The captain of .1 concludes that the saucer has a positive
acceleration ay4 = 1,000 m/s2. He therefore assumes that its engines
are on and that the force on the saucer is

I"A = aAJ[
1,000.1/ newtons,

Il

where ] is the saucer's mass in kilograms.

The captain of B goes through the same procedure. He finds that the
acceleration is az = 950 m/s? and concludes that the force on the saucer
is
I'g = agll

950.)/ newtons.

Il

I

This presents a serious problem. There is nothing arbitrary about
force; if different observers obtain different values for the force, at
least one of them must be mistaken. The captains of .l and B have
confidence in the laws of mechanics, so they set about resolving the dis-
crepancy. In particular, they recall that Newton’s laws hold only in iner-
tial systems. How can they decide whether or not their systems are
inertial?

«'s captain sets out by checking to see if all his engines are off. Since
they are, he suspects that he is not accelerating and that his spaceship
defines an inertial system. To check that this is the case, he undertakes
a simple but sensitive experiment. He observes that a pencil, carefully
released at rest, floats without motion. He concludes that the pencil's
acceleration is negligible and that he is in an inertial system. The rea-
soning is as follows: as long as he holds the pencil it must have the same
instantaneous velocity and acceleration as the spaceship. However,
there are no forces acting on the pencil after it is released, assuming
that we can neglect gravitational or electrical interactions with the space-
ship, air currents, etc. The pencil, then, can be presumed to represent
an isolated body. If the spaceship is itself accelerating, it will catch up
with the pencil—the pencil will appear to accelerate relative to the cabin.
Otherwise, the spaceship must itself define an inertial system.

The determination of the force on the saucer by the captain of .{
must be correct because .1 is in an inertial system. But what can we
say about the observations made by the captain of B? To answer this
problem, we look at the relation of x4 and 2. From the sketch,

el &
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za(t) = z(t) + X (@),

where X (¢) is the position of B relative to A. Differentiating twice with
respect to time, we have

ia = ip + X. 1
Since system .l is inertial, Newton's second law for the saucer is
Fowe = Miy 2

where F\,. is the true force on the saucer.
What about the observations made by the captain of B? The apparent
force observed by B is

FB.apparent = A[.’L‘B 3
Using the results of (1) and (2), we have

FB.appurent = Mis — A{X
= Fie — MX. s

B will not measure the true force unless X = 0. However, ¥=o0
only when B moves uniformly with respect to A. As we suspect, this is
not the case here. The captain of B has accidently left on a rocket
engine, and he is accelerating away from A at 50 m/s% After shutting
off the engine, he obtains the same value for the force on the saucer
as does A.

Although we considered only motion along a line in Example
2.1, it is easy to generalize the result to three dimensions. If Ris
the vector from the origin of an inertial system to the origin of
another coordinate system, we have

Fapparent = Ftrue - MR-

If R = 0, then Fapparens = Firuer Which means that the second coor-
dinate system is also inertial. In fact, we have merely proven
what we asserted earlier, namely, that any system moving uni-
formly with respect to an inertial system is also inertial.

Sometimes we would like to carry out measurements in non-
inertial systems. What can we do to get the correct equations of
motion? The answer lies in the relation F.pparens = Firue — MR.
We can think of the last term as an additional force, which we
call a fictitious force. (The term fictitious indicates that there is
no real interaction involved.) We then write

Fapparent = Firue + Fiictitiouss
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where Fiiegitions = —MR. Here 1 is the mass of the particle and
R is the acceleration of the noninertial system with respect to any
inertial system.

Fictitious forces are useful in solving certain problems, but they
must be treated with care. They generally cause more confusion
then they are worth at this stage of your studies, and for that rea-
son we shall avoid them for the present and agree to use inertial
systems only. Later on, in Chap. 8, we shall examine fictitious
forces in detail and learn how to deal with them.

Although Newton’s laws can be stated in a reasonably clear
and consistent fashion, it should be realized that there are
fundamental difficulties which cannot be argued away. We shall
return to these in later chapters after we have had a chance to
become better acquainted with the concepts of newtonian physics.
Some points, however, are well to bear in mind now.

1. You have had to take our word that the experiments we used
to define mass and to develop the second law of motion really give
the results claimed. It should come as no surprise (although it
was a considerable shock when it was first discovered) that this
is not always so. For instance, the mass scale we have set up is
no longer consistent when the particles are moving at high speeds.
It turns out that instead of the mass we defined, called the rest
mass m,, a more useful quantity is m = mg/\/l — v2/c?, where
¢ is the speed of light and v is the speed of the particle. For the
case v < ¢, m and m, differ negligibly. The reason that our table-
top experiments did not lead us to the more general expression
for mass is that even for the largest everyday velocities, say the
velocity of a spacecraft going around the earth, v/c = 3 X 1075,
and m and m, differ by only a few parts in 1010,

2. Newton’s laws describe the behavior of point masses. In the
case where the size of the body is small compared with the inter-
action distance, this offers no problem. For instance, the earth
and sun are so small compared with the distance between them
that for many purposes their motion can be adequately described
by considering the motion of point masses located at the center of
each. However, the approximation that we are dealing with point
masses is fortunately not essential, and if we wish to describe the
motion of large bodies, we can readily generalize Newton’s laws,
as we shall do in the next chapter. It turns out to be not much
more difficult to discuss the motion of a rigid body composed of
1024 atoms than the motion of a single point mass.
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3. Newton’s laws deal with particles and are poorly suited for
describing a continuous system such as a fluid. We cannot
directly apply F = ma to a fluid, for both the force and the mass
are continuously distributed. However, newtonian mechanics can
be extended to deal with fluids and provides the underlying prin-
ciples of fluid mechanics.

One system which is particularly troublesome for our present
formulation of newtonian mechanics is the electromagnetic field.
Paradoxes can arise when such a field is present. For instance,
two charged bodies which interact electrically actually interact via
the electric fields they create. The interaction is not instanta-
neously transmitted from one particle to the other but propagates
at the velocity of light. During the propagation time there is an
apparent breakdown of Newton’s third law; the forces on the
particles are not equal and opposite. Similar problems arise in
considering gravitational and other interactions. However, the
problem lies not so much with newtonian mechanics as with its
misapplication. Simply put, fields possess mechanical properties
like momentum and energy which must not be overlooked. From
this point of view there is no such thing as a simple two particle
system. However, for many systems the fields can be taken
into account and the paradoxes can be resolved within the new-
tonian framework.

2.3 Standards and Units

Length, time, and mass play a fundamental role in every branch
of physics. These quantities are defined in terms of certain fun-
damental physical standards which are agreed to by the scientific
community. Since a particular standard generally does not have
a convenient size for every application, a number of systems of
units have come into use. For example, the centimeter, the ang-
strom, and the yard are all units of length, but each is defined in
terms of the standard meter. There are a number of systems of
units in widespread use, the choice being chiefly a matter of cus-
tom and convenience. This section presents a brief description
of the current standards and summarizes the units which we shall
encounter.

The Fundamental Standards

The fundamental standards play two vital roles. In the first
place, the precision with which these standards can be defined
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and reproduced limits the ultimate accuracy of experiments. In
some cases the precision is almost unbelievably high—time, for
instance, can be measured to a few parts in 10!2. In addition,
agreeing to a standard for a physical quantity simultaneously pro-
vides an operational definition for that quantity. For example,
the modern view is that time is what is measured by clocks, and
that the properties of time can be understood only by observing
the properties of clocks. This is not a trivial point; the rates of
all clocks are affected by motion and by gravity (as we shall discuss
in Chaps. 8 and 12), and unless we are willing to accept the fact
that time itself is altered by motion and gravity, we are led into
contradictions.

Once a physical quantity has been defined in terms of a mea-
surement procedure, we must appeal to experiment, not to pre-
conceived notions, to understand its properties. To contrast this
viewpoint with a nonoperational approach, consider, for example,
Newton’s definition of time: ‘‘Absolute, true, and mathematical
time, of itself, and from its own nature, flows equally without rela-
tion to anything external.”” This may be intuitively and philo-
sophically appealing, but it is hard to see how such a definition
can be applied. The idea is metaphysical and not of much use in
physics.

Once we have agreed on the operation underlying a particular
physical quantity, the problem is to construct the most precise
practical standard. Until recently, physical standards were man-
made, in the sense that they consisted of particular objects to
which all other measurements had to be referred. Thus, the
unit length, the meter, was defined to be the distance between two
scratches on a platinum bar. Such man-made standards have a
number of disadvantages. Since the standard must be carefully
preserved, actual measurements are often done with secondary
standards, which causes a loss of accuracy. Furthermore, the
precision of a man-made standard is intrinsically limited. In the
case of the standard meter, precision was found to be limited by
fuzziness in the engraved lines which defined the meter interval.
When more accurate optical techniques for locating position were
developed in the latter part of the nineteenth century, it was rea-
lized that the standard meter bar was no longer adequate.

Length is now defined by a natural, rather than man-made,
standard. The meter is defined to be a given multiple of the
wavelength of a particular spectral line. The advantage of such
a unit is that anyone who has the required optical equipment can
reproduceit. Also, as the instrumentation improves, the accuracy
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of the standard will correspondingly increase. Most of the stan-
dards of physics are now natural.

Here is a brief account of the current status of the standards of
length, time, and mass.

Length The meter was intended to be one ten-millionth of the dis-
tance from the equator to the pole of the earth along the Dunkirk-
Barcelona line. This cannot be measured accurately (in fact it
changes due to distortions of the earth), and in 1889 it was agreed
to define the meter as the separation between two scratches in a
platinum-iridium bar which is preserved at the International
Bureau of Weights and Measures, Sévres, France. In 1960 the
meter was redefined to be 1,650,763.73 wavelengths of the orange-
red line of krypton 86. The accuracy of this standard is a few
parts in 108.

Recent advances in laser techniques provide methods which
should allow the velocity of light to be measured to better than 1
partin 108, It is likely that the velocity of light will replace length
as a fundamental quantity. In this case the unit of length would
be derived from velocity and time.

Time Time has traditionally been measured in terms of rotation of
the earth. Until 1956 the basic unit, the second, was defined as
1/86,400 of the mean solar day. Unfortunately, the period of
rotation of the earth is not very uniform. Variations of up to
one partin 107 per day occur due to atmospheric tides and changes
in the earth’'s core. The motion of the earth around the sun is
not influenced by these perturbations, and until recently the mean
solar year was used to define the second. Here the accuracy was
a few parts in 10°. Fortunately, time can now be measured in
terms of a natural atomic frequency. In 1967 the second was
defined to be the time required to execute 9,192,631,770 cycles of
a hyperfine transition in cesium 133. This transition frequency
can be reliably measured to a few parts in 102, which means
that time is by far the most accurately determined fundamental
quantity.

Mass Of the three fundamental units, only mass is defined in
terms of a mwn-made standard. Originally, the kilogram was
defined to be the mass of 1,000 cubic centimeters of water at a
temperature of 4 degrees Centigrade. The definition is difficult to
apply, and in 1889 the kilogram was defined to be the mass of a
platinum-iridium cylinder which is maintained at the International
Bureau of Weights and Measures. Secondary standards can be
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compared with it to an accuracy of one partin 10°. Perhaps some-
day we will learn how to define the kilogram in terms of a natural
unit, such as the mass of an atom. However, at present nobody
knows how to count reliably the large number of atoms needed
to constitute a useful sample. Perhaps you can discover a
method.

Systems of Units

Although the standards for mass, length, and time are accepted
by the entire scientific community, there are a variety of systems
of units which differ in the scaling factors. The most widely
used system of units is the International System, abbreviated Sl
(for Systéme International d'Unités). It is the legal system in
most countries. The Sl units are meter, kilogram, and second;
S| replaces the former mks system. The related cgs system,
based on the centimeter, gram, and second, is also commonly
used. A third system, the English system of units, is used for non-
scientific measurements in Britain and North America, although
Britain is in the process of switching to the metric system. Itis
essential to know how to work problems in any system of units.
We shall work chiefly with Sl units, with occasional use of the cgs
system and one or two lapses into the English system.

Here is a table listing the names of units in the SI, cgs, and
English systems.

Sl CGS ENGLISH
Length 1 meter (m) 1 centimeter (cm) 1 foot (ft)
Mass 1 kilogram (kg) 1 gram (g) 1 slug
Time 1 second (s) 1 second (s) 1 second (s)
Acceleration 1 m/s? 1cm/s? 1 ft/s?
Force 1 newton (N) 1 dyne 1 pound (Ib)
=1 kg'm/s? =1gcm/s? = 1 slug-ft/s?

Some useful relations between these units systems are:

1m = 100cm lin = & ft = 254 cm
1 kg = 1000 g 1 slug =~ 14.6 kg
1N = 10° dyne 1N ~ 0.224 Ib

The word pound sometimes refers to a unit of mass. In this con-
text it stands for the mass which experiences a gravitational force
of one pound at the surface of the earth, approximately 0.454 kg.
We shall avoid this confusing usage.
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2.4 Some Applications of Newton’s Laws

Newton’s laws are meaningless equations until we know how to
apply them. A number of steps are involved which, once learned,
are so natural that the procedure becomes intuitive. Our aim in
this section is to outline a method of analyzing physical problems
and to illustrate it by examples. A note of reassurance lest you
feel that matters are presented too dogmatically: There are many
ways of attacking most problems, and the procedure we suggest
is certainly not the only one. In fact, no cut-and-dried procedure
can ever substitute for intelligent analytical thinking. However,
the systematic method suggested here will be helpful in getting
started, and we urge you to master it even if you should later
resort to shortcuts or a different approach.
Here are the steps:

1. Mentally divide the system! into smaller systems, each of which
can be treated as a point mass.

2. Draw a force diagram for each mass as follows:
a. Represent the body by a point or simple symbol, and label it.
b. Draw a force vector on the mass for each force acting on it.

Point 2b can be tricky. Draw only forces acting on the body,
not forces exerted by the body. The body may be attached to
strings, pushed by other bodies, etc. We replace all these physi-
cal interactions with other bodies by a system of forces; according
to Newton’s laws, only forces acting on the body influence its
motion.

As an example, here are two blocks at rest on a table top.
The force diagram for A is shown at left. F, is the force exerted
on block 4 by block B, and W 4 is the force of gravity on A, called
the weight.

Similarly, we can draw the force diagram for block B. Wpg is
the force of gravity on B, N is the normal (perpendicular) force
exerted by the table top on B, and F; is the force exerted by 4
on B. There are no other physical interactions that would pro-
duce a force on B.

It is important not to confuse a force with an acceleration; draw
only real forces. Since we are using only inertial systems for the
present, all the forces are associated with physical interactions.
For every force you should be able to answer the question, ‘“What

1 We use ‘‘system’” here to mean a collection of physical objects rather than a
coordinate system. The meaning should be clear from the context.
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exerts this force on the body?”’ (We shall see how to use so-called
fictitious forces in Chap. 8.1)

3. Introduce a coordinate system. The coordinate system must
be inertial—that is, it must be fixed to an inertial frame. With
the force diagram as a guide, write separately the component
equations of motion for each body. By equation of motion we
mean an equation of the form Fy, + Fo, + - - - = Ma,, where
the x component of each force on the body is represented by a
term on the left hand side of the equation. The algebraic sign
of each component must be consistent with the force diagram
and with the choice of coordinate system.

For instance, returning to the force diagram for block A, New-
ton’s second law gives

Fi + W, = muay.

Since F, = Fj, W, = — W], we have
0 =my@s):

and

Fi— W4 = my(ay),

The x equation of motion is trivial and normally we omit it, writing
simply

F1 - WA = MaQ4.
The equation of motion for B is
N—Fz— WB = Mmpag.

4, If two bodies in the same system interact, the forces between
them must be equal and opposite by Newton’s third law. These
relations should be written explicitly.

For example, in the case of the two blocks on the tabletop,
F, = —F,. Hence

F1=F2.

Note that Newton's third law never relates two forces acting on
the same body; forces on two different bodies must be involved.

1 The most notorious fictitious force is the centrifugal force. Long experience has
shown that using this force before one has a really solid grasp of Newton’s laws
invariably causes confusion. Besides, it is only one of several fictitious forces
which play a role in rotating systems. For both these reasons, we shall strictly
avoid centrifugal forces for the present.
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5. In many problems, bodies are constrained to move along cer-
tain paths. A pendulum bob, for instance, moves in a circle, and
a block sliding on a tabletop is constrained to move in a plane.
Each constraint can be described by a kinematical equation known
as a constraint equation. Write each constraint equation.

Sometimes the constraints are implicit in the statement of the
problem. For the two blocks on the tabletop, there is no vertical
acceleration, and the constraint equations are

(@), =0 (ap)y = 0.

6. Keep track of which variables are known and which are
unknown. The force equations and the constraint equations
should provide enough relations to allow every unknown to be
found. If an equation is overlooked, there will be too few equa-
tions for the unknowns.

Completing the problem of the two blocks on the table, we have

Fl"WA = MgQ4
N'—Fz—WB = Mpgap

F,=F, From Newton’s third law

lEquations of motion

l,lA:O

ap = 0 }Constramt equations

All that remains is the mathematical task of solving the equations.
We find

F1=F2=WA
N=WA+WB.

Here are a few examples which illustrate the application of
Newton's laws.

The main point of the first example is to help us distinguish
between the force we apply to an object and the force it exerts on
us. Physiologically, these forces are often confused. If you
push a book across a table, the force you feel is not the force
that makes the book move; it is the force the book exerts on you.
According to Newton’s third law, these two forces are always
equal and opposite. If one force is limited, so is the other.

The Astronauts’ Tug-of-war

Two astronauts, initially at rest in free space, pull on either end of a
rope. Astronaut Alex played football in high school and is stronger than
astronaut Bob, whose hobby was chess. The maximum force with which
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Alex can pull, F4, is larger than the maximum force with which Bob can
pull, Fz. Their masses are M 4 and {5, and the mass of the rope, 1/,,
is negligible. Find their motion if each pulls on the rope as hard as he can.

Here are the force diagrams. For clarity, we show the rope as a line.

M, M, Mp
—— g — 77T 7 —— e
Fy F, Fy Fp
— —_— —_

24 a 4.,

Note that the forces F4 and Fp exerted by the astronauts act on the
rope, not on the astronauts. The forces exerted by the rope on the
astronauts are F.' and F3'. The diagram shows the directions of
the forces and the coordinate system we have adopted; acceleration to
the right is positive.

By Newton’s third law,

Fy =F,4 1
Fp = Fs.

The equation of motion for the rope is

FB —_ FA = Mrar. 2

Only motion along the line of the rope is of interest, and we omit the
equations of motion in the remaining two directions. There are no con-
straints, and we proceed to the solution.

Since the mass of the rope, M, is negligible, we take A, =0 in
Eq. (2). This gives Fg — I'4 = 0 or

Fp=Fy

The total force on the rope is Fz to the right and F'4 to the left. These
forces are equal in magnitude, and the total force on the rope is zero.
In general, the total force on any body of negligible mass must be effec-
tively zero; a finite force acting on zero mass would produce an infinite
acceleration.

Since Fz = Fa4, Eq. (1) gives F)y = F4 = Fp = F'3. Hence

’ ’
FA = FB'

The astronauts each pull with the same force. Physically, there is a
limit to how hard Bob can grip the rope; if Alex tries to pull too hard,
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the rope slips through Bob's fingers. The force Alex can exert is limited
by the strength of Bob's grip. If the rope were tied to Bob, Alex could
exert his maximum pull.

The accelerations of the two astronauts are

Fy
M
_p%
Ms
_F:l
My

ap =

The negative sign means that ap is to the left. In many problems the
directions of some acceleration or force components are initially unknown.
In writing the equations of motion, any choice is valid, provided we are
consistent with the convention assumed in the force diagram. |If the
solution yields a negative sign, the acceleration or force is opposite to
the direction assumed.

The next example shows that in order for a compound system
to accelerate, there must be a net force on each part of the
system.

Freight Train

Three freight cars of mass M are pulled with force I/ by a locomotive.
Friction is negligible. Find the forces on each car.

Before drawing the force diagram, it is worth thinking about the system
as a whole. Since the cars are joined, they are constrained to have the
same acceleration. Since the total mass is 3M, the acceleration is

A force diagram for the last car is shown at the left. W is the
weight and N is the upward force exerted by the track. The vertical
acceleration is zero, so that N = W. F,; is the force exerted by the
next car. We have

Fy = Ma

(L
M
F

3

Il



]
| 1
! |
S J
~—=————"- 1
| |
v | |
Fy L _____ 4

SEC. 2.4 SOME APPLICATIONS OF NEWTON'S LAWS 73

Now let us consider the middle car. The vertical forces are as before,
and we omit them. F7 is the force exerted by the last car, and F is the
force exerted by the first car. The equation of motion is

Fz - F{ = Ma.
By Newton's third law, F; = F';, = F/3. Since a = F /32, we have

F F
m{= =
(5) +3

2F
3

F,

The horizontal forces on the first car are F, to the right, and

2F
Fl=F, ="
2 2 3

to the left. Each car experiences a total force F'/3 to the right.
Here is a slightly more general way to look at the problem. Consider
a string of N cars, each of mass A, pulled by a force I'. The accelera-

tionisa = F/(NM). To find the force F, pulling the last n cars, note
that F, must give the mass nl{ an acceleration F/(NM). Hence

F
Fo o= nM ——
"N

F.

=S

The force is proportional to the number of cars pulled.

In systems composed of several bodies, the accelerations are
often related by constraints. The equations of constraint can
sometimes be found by simple inspection, but the most general
approach is to start with the coordinate geometry, as shown in the
next example.
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Example 2.4 Constraints

a. WEDGE AND BLOCK

A block moves on a wedge which in turns moves on a horizontal table,
as shown in the sketch. The wedge angle is §. How are the accelera-
tions of the block and the wedge related?

As long as the wedge is in contact with the table, we have the trivial
constraint that the vertical acceleration of the wedge is zero. To find
the less obvious constraint, let X be the horizontal coordinate of the end
of the wedge and let  and y be the horizontal and vertical coordinates of
the block, as shown. Let A4 be the height of the wedge.

From the geometry, we see that

"y A’ (x — X)= (h — y)coth.
X Differentiating twice with respect to time, we obtain the equation of
constraint
i — X = —jcoth. 1

A few comments are in order. Note that the coordinates are inertial.
We would have trouble using Newton’s second law if we measured the
position of the block with respect to the wedge; the wedge is accelerating
and cannot specify an inertial system. Second, unimportant parameters,
like the height of the wedge, disappear when we take time derivatives,
but they can be useful in setting up the geometry. Finally, constraint
equations are independent of applied forces. For example, even if fric-
tion between the block and wedge affects their accelerations, Eq. (1) is
valid as long as the bodies are in contact.

44 b. MASSES AND PULLEY
Two masses are connected by a string which passes over a pulley accel-
\ erating upward at rate A, as shown. Find how the accelerations of the
R bodies are related. Assume that there is no horizontal moticn.
We shall use the coordinates shown in the drawing. The length of
the string, [, is constant. Hence, if Yp is measured to the center of the
pulley of radius R,
y l=mR+ (p — y1) + W — y2). 2
13
1 |7 Differentiating twice with respect to time, we find the constraint condition
0 =2, — g1 — Yo
"' 2 Using 4 = §j,, we have
Y1 " "
A = 5@ + 7§
V2
c. PULLEY SYSTEM
The pulley system shown on the opposite page is used to hoist the block.

7 7  How does the acceleration of the end of the rope compare with the
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acceleration of the block? Using the coordinates indicated, the length of
the rope is given by

l=X+7R+ X —h)+ 7R + (@ — h),
where R is the radius of the pulleys. Hence
¥ = —%i.

The block accelerates half as fast as the hand, and in the opposite
direction.

Our examples so far have involved linear motion only. Let us
look at the dynamics of rotational motion.

A particle undergoing circular motion must have a radial accel-
eration. This sometimes causes confusion, since our intuitive
idea of acceleration usually relates to change in speed rather than
to change in direction of motion. For this reason, we start with as
simple an example as possible.

Block on String 1

Mass m whirls with constant speed v at the end of a string of length £.
Find the force on m in the absence of gravity or friction.

The only force on m is the string force T', which acts toward the center,
as shown in the diagram. It is natural to use polar coordinates. Note
that according to the derivation in Sec. 1.9, the radial acceleration is
a. = # — r6?, where 6 is the angular velocity. a, is positive outward.
Since T is directed toward the origin, T = —TF and the radial equation
of motion is

-7 = ma,
= m(# — ré?).

=R =0and § = v/R. Hence a, = —R@/R)* = —v%/R and

0
R

Note that T is directed toward the origin; there is no outward force
on m. If you whirl a pebble at the end of a string, you feel an cutward
force. However, the force you feel does not act on the pebble, it acts
on you. This force is equal in magnitude and opposite in direction to
the force with which you pull the pebble, assuming the string’'s mass to
be negligible.

In the following example both radial and tangential acceleration
play a role in circular motion.



76

Example 2.6
7T TNY
/ m
(/ p 6 \ 19
\\ J
N //

Example 2.7

NEWTON’S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

Block on String 2

Mass m is whirled on the end of a string length E. The motion is in a
vertical plane in the gravitational field of the earth. The forces on m
are the weight IV down, and the string force T toward the center. The
instantaneous speed is v, and the string makes angle 6 with the hori-
zontal. Find T and the tangential acceleration at this instant.

The lower diagram shows the forces and unit vectors ¥ and 8. The
radial force is —T — W sin 6, so the radial equation of motion is

—(T 4+ W sin ) = ma,

= m( — ré?). 1
The tangential force is —W cos §. Hence
— W cos 6 = may
= m(rd -+ 2¢0). 2
Since r = R = constant, a, = —R(6?) = —v?/R, and Eq. (1) gives

2
7=""_rsine.
R

The string can pull but not push, so that T cannot be negative. This
requires that mv2/R > W sin 6. The maximum value of W sin 6 occurs
when the mass is vertically up; in this case mv2/R > W. If this condi-
tion is not satisfied, the mass does not follow a circular path but starts to
fall; 7 is no longer zero.

The tangential acceleration is given by Eq. (2).

ag=R9
_ Wcos 0_
m

Since # = 0 we have

The mass does not move with constant speed; it accelerates tangentially.
On the downswing the tangential speed increases, on the upswing it
decreases.

The next example involves rotational motion, translational
motion, and constraints.

The Whirling Block

A horizontal frictionless table has a small hole in its center. Block 4 on
the table is connected to block B hanging beneath by a string of negligible
mass which passes through the hole.

Initially, B is held stationary and .4 rotates at constant radius ry with
steady angular velocity wo. If B is released at ¢ = 0, what is its accel-
eration immediately afterward?

The force diagrams for A and B after the moment of release are shown
in the sketches.
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The vertical forces acting on A are in balance and we need not consider
them. The only horizontal force acting on A is the string force 7. The
forces on B are the string force T and the weight T}'5.

It is natural to use polar coordinates r, 6 for 4, and a single linear
coordinate z for B, as shown in the force diagrams. As usual, the unit
vector F is radially outward. The equations of motion are

—T = M4G — r6?) Radial 1
0 = Ma¢rd + 2¢6)  Tangential 2
Wpg—T = Mgz Vertical. 3

Since the length of the string, [, is constant, we have
r+z=1 4

Differentiating Eqg. (4) twice with respect to time gives us the constraint
equation

F= —% 5

The negative sign means that if A moves inward, B falls. Combining
Egs. (1), (3), and (5), we find

5 = VVB - AIATG2_
M4+ Mz

It is important to realize that although acceleration can change instan-
taneously, velocity and position cannot. Thus immediately after B is
released, r = ro and § = w,. Hence

WB e ﬂ[AT()Cl)()z'

o
O =y T

2(0) can be positive, negative, or zero depending on the value of the
numerator in Eq. (6); if wy is large enough, block B will begin to rise after
release.

The apparently simple problem in the next example has some
unexpected subtleties.

The Conical Pendulum

Mass M hangs by a massless rod of length [ which rotates at constant angular
frequency w, as shown in the drawing on the next page. The mass moves
with steady speed in acircular path of constant radius. Find «, the angle the
string makes with the vertical.

We start with the force diagram. T is the string force and 1 is the
weight of the bob. (Note that there are no other forces on the bob. If
this is not clear, you are most likely confusing an acceleration with a
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force—a serious error.) The vertical equation of motion is
Tcosa— W =0

because y is constant and ¢ is therefore zero.

a | To find the horizontal equation of motion note that the bob is accel-

| y erating in the F direction at rate a, = —w?. Then
' “Tsina = —Mre. 2

X Since r = [ sin o we have
T sin o = Mlw? sin o 3
w
or

T = Mlw? 4

Combining Egs. (1) and (3) gives
Mlw?cos a = .

As we shall discuss in Sec. 2.5, V" = g, where MM is the mass and ¢
is known as the acceleration due to gravity. We obtain

cos @ = —-
lw?

cos This appears to be the desired solution. For w — o, cos « — 0 and
a— /2. At high speeds the bob flies out until it is almost horizontal.
However, at low speeds the solution does not make sense. As w—0,
our solution predicts cos &« — «, which is nonsense since cos a < 1.
Something has gone wrong. Here is the trouble.

Our solution predicts cosa > 1 for w < \/g/l. When w = \/g/l,

cos @ = 1 and sin « = 0; the bob simply hangs vertically. In going from

Eq. (2) to Eq. (3) we divided both sides of Eq. (2) by sin « and, in this case

w We divided by 0, which is not permissible. However, we see that we have
overlooked a second possible solution, namely, sin @ = 0, T = II", which

is true for all values of w. The solution corresponds to the pendulum

hanging straight down. Here is a plot of the complete solution.
Physically, for w < V' g/l the only acceptable solution is a =0,

cos @ = 1. Forw > V g/l there are two acceptable solutions:

oos & l. cosa =1
\ g
2. = L
\\C})S a=g/(lw?) cos lew?
\
\\ cosa =1 Solution 1 corresponds to the bob rotating rapidly but hanging verti-
! ! Unstable cally. Solution 2 corresponds to the bob flying around at an angle with
| Stable the vertical. For w > V g/l, solution 1 is unstable—if the system is in
|

— that state and is slightly perturbed, it will jump outward. Can you see
w=Vegll why this is so?
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The moral of this example is that you have to be sure that the mathe-
matics makes good physical sense.

2.5 The Everyday Forces of Physics

When a physicist sets out to design an accelerator, he uses the
laws of mechanics and his knowledge of electric and magnetic
forces to determine the paths that the particles will follow. Pre-
dicting motion from known forces is an important part of physics
and underlies most of its applications. Equally important, how-
ever, is the converse process of deducing the physical interaction
by observing the motion; this is how new laws are discovered. A
classic example is Newton’s deduction of the law of gravitation
from Kepler's laws of planetary motion. The current attempt to
understand the interactions between elementary particles from
high energy scattering experiments provides a more contemporary
illustration.

Unscrambling experimental observations to find the force can be
difficult. In a facetious mood, Eddington once said that force is
the mathematical expression we put into the left hand side of
Newton's second law to obtain results that agree with observed
motions. Fortunately, force has a more concrete physical reality.

Much of our effort in the following chapters will be to learn how
systems behave under applied forces. If every pair of particles
in the universe had its own special interaction, the task would be
impossible. Fortunately, nature is kinder than this. As far as
we know, there are only four fundamentally different types of
interactions in the universe: gravity, electromagnetic interactions,
the so-called weak interaction, and the strong interaction.

Gravity and the electromagnetic interactions can act over a
long range because they decrease only as the inverse square of
the distance. However, the gravitational force always attracts,
whereas electrical forces can either attract or repel. In large
systems, electrical attraction and repulsion cancel to a high
degree, and gravity alone is left. For this reason, gravitational
forces dominate the cosmic scale of our universe. In contrast,
the world immediately around us is dominated by the electrical
forces, since they are far stronger than gravity on the atomic
scale. Electrical forces are responsible for the structure of atoms,
molecules, and more complex forms of matter, as well as the
existence of light.

The weak and strong interactions have such short ranges that
they are important only at nuclear distances, typically 1075 m.
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They are negligible even at atomic distances, 1071 m. As its
name implies, the strong interaction is very strong, much stronger
than the electromagnetic force at nuclear distances. It is the
“glue’ that binds the atomic nucleus, but aside from this it has
little effect in the everyday world. The weak interaction plays a
less dramatic role; it mediates in the creation and destruction of
neutrinos—particles of no mass and no charge which are essential
to our understanding of matter but which can be detected only by
the most arduous experiments.

Our object in the remainder of the chapter is to become familiar
with the forces which are important in everyday mechanics. Two
of these, the forces of gravity and electricity, are fundamental and
cannot be explained in simpler terms. The other forces we shall
discuss, friction, the contact force, and the viscous force, can be
understood as the macroscopic manifestation of interatomic
forces.

Gravity, Weight, and the Gravitational Field

Gravity is the most familiar of the fundamental forces. It has
close historical ties to the development of mechanics; Newton
discovered the law of universal gravitation in 1666, the same year
that he formulated his laws of motion. By calculating the motion
of two gravitating particles, he was able to derive Kepler's empiri-
cal laws of planetary motion. (By accomplishing all this by age
26, Newton established a tradition which still maintains—that great
advances are often made by young physicists.)

According to Newton’'s law of gravitation, two particles attract
each other with a force directed along their line of centers. The
magnitude of the force is proportional to the product of the masses
and decreases as the inverse square of the distance between the
particles.

In verbal form the law is bulky and hard to use. However. we
can reduce it to a simple mathematical expression.

Consider two particles, a and b, with masses M, and M5, respec-
tively, separated by distance r. Let F, be the force exerted on
particle b by particle a. Our verbal description of the magnitude
of the force is summarized by

GM.M,

r2

[Fo| =

G is a constant of proportionality called the gravitational constant.
Its value is found by measuring the force between masses in a
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known geometry. The first measurements were performed by
Henry Cavendish in 1771 using a torsion balance. The modern
value of G is 6.67 X 10! N-m?/kg? (@ is the least accurately
known of the fundamental constants. Perhaps you can devise a
new way to measure it more precisely.) Experimentally, G is the
same for all materials—aluminum, lead, neutrons, or what have
you. For this reason, the law is called the universal law of
gravitation.

The gravitational force between two particles is central (along
the line of centers) and attractive. The simplest way to describe
these properties is to use vectors. By convention, we introduce
a vector rq from the particle exerting the force, particle a in this
case, to the particle experiencing the force, particle b. Note that
[fa| = 7. Using the unit vector f,; = ru/r, we have

GMaMb -~
Fb = — —7'2—— Fab.
The negative sign indicates that the force is attractive. The force
on a due to b is

GM M, . GM My .
Fu = — 2 Yoo = — Py Fop = —Fb,
r r
since f,, = —Ft,. The forces are equal and opposite, and New-

ton’s third law is automatically satisfied.

The gravitational force has a unique and mysterious property.
Consider the equation of motion of particle b under the gravita-
tional attraction of particle a.

GM .M, .
Fo = — Fap
7‘2
= Mbab
or
aM, .
ay = — —— lape
7«2

The acceleration of a particle under gravity is independent of its
mass! There is a subtle point connected with our cancelation of
My, however. The “mass’’ (gravitational mass) in the law of gravi-
tation, which measures the strength of gravitational interaction, is
operationally distinct from the ‘*“mass’’ (inertial mass) which char-
acterizes inertia in Newton’s second law. Why gravitational mass
is proportional to inertial mass for all matter is one of the great
mysteries of physics. However, the proportionality has been
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experimentally verified to very high accuracy, approximately 1
part in 10!%; we shall have more to say about this in Chap. 8.

The Gravitational Force of a Sphere The law of gravitation applies
only to particles. How can we find the gravitational force on a
particle due to an extended body like the earth? Fortunately, the
gravitational force obeys the law of superposition: the force due
to a collection of particles is the vector sum of the forces exerted
by the particles individually. This allows us to mentally divide
the body into a collection of small elements which can be treated
as particles. Using integral calculus, we can sum the forces from
all the particles. This method is applied in Note 2.1 to calculate
the force between a particle of mass m and a uniform thin spher-
ical shell of mass M and radius B. The result is

F=—¢Y¥m;
7-2

F=0 r < R,

where r is the distance from the center of the shell to the particle.
If the particle lies outside the shell, the force is the same as if all
the mass of the shell were concentrated at its center.

The reason the gravitational force vanishes inside the spherical
shell can be seen by a simple argument due to Newton. Consider
the two small mass elements marked out by a conical surface
with its apex at m. The amount of mass in each element is pro-
portional to its surface area. The area increases as (distance)2.
However, the strength of the force varies as 1/(distance)?. Thus
the forces of the two mass elements are equal and opposite, and
cancel. The total force on m is zero, because we can pair up all
the elements of the shell this way.

A uniform solid sphere can be regarded as a succession of thin
spherical shells, and it follows that for particles outside it, a sphere
behaves gravitationally as if its mass were concentrated at its
center. This result also holds if the density of the sphere varies
with radius, provided the mass distribution is spherically sym-
metric. For example, although the earth has a dense core, the
mass distribution is nearly spherically symmetric, so that to good
approximation the gravitational force of the earth on a mass m at
distance r is

GM.m .
r

r2

r>R

F=—

r > R,

where M, is the mass of the earth and R, is its radius.
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At the surface of the earth, the gravitational force is

GMm .

F=— R r,

and the acceleration due to gravity is

F
a=—
m

GM, .
R r.

As we expect, the acceleration is independent of m. GM./R.?is
usually called g. Sometimes ¢ is written as a vector directed down.
toward the center of the earth.

GM, .
R: "
Numerically, |g| is approximately 9.8 m/s? = 980 cm/s? = 32 ft/s?
By convention, g usually stands for the downward acceleration
of an object measured with respect to the earth’s surface. This
differs slightly from the true gravitational acceleration because of
the rotation of the earth, a point we shall return to in Chap. 8.
g increases by about five parts per thousand from the equator to
the poles. About half this variation is due to the slight flattening
of the earth about the poles, and the remainder arises from the
earth’s rotation. Local mass concentrations also affect ¢; a varia-
tion in g of ten parts per million is typical.
The acceleration due to gravity decreases with altitude. We
can estimate this effect by taking differentials of the expression

GM,
gr) = —
”
We have
d 2GM,
Ag(r)=—gAr= — @ Ar
dr s
2
= - Ar.
r

The fractional change in g with altitude is

ﬂ 2 Ar

g r
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At the earth’s surface, » = 6 X 10 m, and g decreases by one part
per million for an increase in altitude of 3 m.

Weight We define the weight of a body near the earth to be the
gravitational force exerted on it by the earth. At the surface of
the earth the weight of a mass m is

M.m
R.?

W= -G r

= mg.

The unit of weight is the newton (Sl), dyne (cgs), or pound
(English). Since ¢ = 9.8 m/s? the weight of 1 kg mass is 9.8 N.
An automobile which weighs 3,200 Ib has mass

W 3,200 Ib
g 32ft/s?

= 100 slugs.

Our definition of weight is unambiguous. According to our
definition, the weight of a body is not affected by its motion.
However, weight is often used in another sense. In this sense,
the magnitude of the weight is the magnitude of the force which
must be exerted on a body by its surroundings to keep it at rest;
its direction is the direction of gravitational attraction. The next
example illustrates the difference between these two definitions.

Turtle in an Elevator

An amiable turtle of mass M stands in an elevator accelerating at rate a
Find N, the force exerted on him by the floor of the elevator.

The forces acting on the turtle are N and the weight, the true gravita-
tional force W = IMg. Taking up to be the positive direction, we have

N —-W = Ma
N = Mg + Ma
= M(g + a).

This result illustrates the two senses in which weight is used. In the
sense that weight is the gravitational force, the weight of the turtle, My,
is independent of the motion of the elevator. In contrast, the weight of
the turtle has magnitude N = M (g + a), if the magnitude of the weight
is taken to be the magnitude of the force exerted by the elevator on the
turtle. If the turtle were standing on a scale, the scale would indicate a
weight N. With this definition, the turtle's weight increases when the
elevator accelerates up.

If the elevator accelerates down, a is negative and N is less than Myg.
If the downward acceleration equals ¢, N becomes zero, and the turtle
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‘‘floats’" in the elevator. The turtle is then said to be in a state of
weightlessness.

Although the two definitions of weight are both commonly used
and are both acceptable, we shall generally consider weight to
mean the true gravitational force. This is consistent with our
resolve to refer all motion to inertial systems and helps us to keep
the real forces on a body distinct. If the acceleration due to
gravity is g, the real gravitational force on a body of mass m is
W = my.

Our definition of weight has one minor drawback. As we saw
in the last example, a scale does not read mg in an accelerating
system. As we have already pointed out, systems at rest on the
earth’s surface have a small acceleration due to the earth’s rotation,
so that the reading of a scale is not the true gravitational force on
a mass. However, the effect is small, and we shall treat the sur-
face of the earth as an inertial system for the present.

The Gravitational Field The gravitational force on particle b due to
particle a is

GM, M, .
Fo = — ———ra,

7-2

where F,; is a unit vector which points from a toward b. The ratio
Fy/ M, which is independent of M, is called the gravitational field
due to M,. Denoting the field by G,, we have

Y
a_Mb
M, .
= —( 2|'ab-

r

In general, if the gravitational field at a point in space is G, the
gravitational force on mass M at that point is

F=MG.

The dimension of gravitation field is force/mass = acceleration.
The acceleration of mass M by gravitational field G is given by

F = Ma
= MG

or
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We see that the gravitational field at a point is numerically equal
to the gravitational acceleration experienced by a body located
there. For example, the gravitational field of the earth is g.

For the present we can regard the gravitational field as a mathe-
matical convenience that allows us to focus on the source of the
gravitational attraction. However, the concept of field has a
broader significance in physics. Fields have important physical
properties, such as the ability to store or transmit energy and
momentum. Until recently, the dynamical properties of the
gravitational field were chiefly of theoretical interest, since their
effects were too small to be observed. However, there is now
lively experimental activity in searching for such dynamical fea-
tures as gravitational waves and ‘‘black holes.””

The Electrostatic Force

We mention the electrostatic force only in passing since its full
implications are better left to a more detailed study of electricity
and magnetism. The salient feature of the electrostatic force
between two particles is that the force, like gravity, is an inverse
square central force. The force depends upon a fundamental
property of the particle called its electric charge q. There are two
different kinds of electric charge: like charges repel, unlike
charges attract. ’

For the sake of convenience, we distinguish the two different
kinds of charges by associating an algebraic sign with ¢, and for
this reason we talk about negative and positive charges. The
electrostatic force F, on charge ¢, due to charge ¢, is given by
Coulomb’s law:

-~

Fb e kqa—gbl’ab.
r

k is a constant of proportionality and ¥, is a unit vector which
points from a to b. If ¢, and g, are both negative or both posi-
tive, the force is repulsive, but if the charges are of different sign,
Fy is attractive.

In the Sl system, the unit of charge is the coulomb, abbreviated
C. (The coulomb is defined in terms of electric currents and
magnetic forces.) In this system, k is found by experiment to be

k = 8.99 X 10° N-m2/Cz.
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In analogy with the gravitational field, we can define the elec-
tric field E as the electric force on a body divided by its charge.
The electric field at r due to a charge ¢ at the origin is

E=Fk=F

<
o

3 e

Contact Forces

By contact forces we mean the forces which are transmitted
between bodies by short-range atomic or molecular interactions.
Examples include the pull of a string, the surface force of sliding
friction, and the force of viscosity between a moving body and a
fluid. One of the achievements of twentieth century physics is
that these forces can now be explained in terms of the funda-
mental properties of matter. However, our approach will empha-
size the empirical properties of these forces and the techniques
for dealing with them in physical problems, with only brief men-
tion of their microscopic origins.

Tension—The Force of a String We have been taking the ‘‘string”’
force for granted, having some primitive idea of this kind of force.
The following example is intended to help put these ideas into
sharper focus.

Block and String 3

Consider a block of mass 1/ in free space pulled by a string of mass m.
A force F' is applied to the string, as shown. What is the force that the
string ‘‘transmits’’ to the block?

The sketch shows the force diagrams. [ is the force of the string
on the block, F{ is the force of the block on the string, ax is the accel-
eration of the block, and ags is the acceleration of the string. The equa-
tions of motion are

F1=
F—F=

May
mas.
Assuming that the string is inextensible, it accelerates at the same rate
as the block, giving the constraint equation ag = ayx. Furthermore,
F, = F] by Newton's third law. Solving for the acceleration, we find
that
“ F

= —)

M+ m
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as we expect, and

F1 = F;
_ M
M+ m
The force on the block is less than F'; the string does not transmit the

full applied force. However, if the mass of the string is negligible com-
pared with the block, F'; = F to good approximation.

We can think of a string as composed of short sections inter-
acting by contact forces. Each section pulls the sections to either
side of it, and by Newton’s third law, it is pulled by the adjacent
sections. The magnitude of the force acting between adjacent
sections is called tension. There is no direction associated with
tension. In the sketch, the tension at A is F and the tension at
Bis F'.

Although a string may be under considerable tension (for exam-
ple a string on a guitar), if the tension is uniform, the net string
force on each small section is zero and the section remains at rest
unless external forces act on it. If there are external forces on
the section, or if the string is accelerating, the tension generally
varies along the string, as Examples 2.11 and 2.12 show.

Dangling Rope

A uniform rope of mass M and length L hangs from the limb of a tree.
Find the tension a distance x from the bottom.

The force diagram for the lower section of the rope is shown in the
sketch. The section is pulled up by a force of magnitude T'(x), where
T (x) is the tension at z. The downward force on the rope is its weight
W = Mg(x/L). The total force on the section is zero since it is at rest.
Hence

Mg

4

Tx) = z.
At the bottom of the rope the tension is zero, while at the top the tension
equals the total weight of the rope 1g.

The next example cannot be solved by direct application of
Newton’s second law. However, by treating each small section
of the system as a particle, and taking the limit using calculus, we
can obtain a differential equation which leads to the solution.
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The technique is so useful that it is employed time and again in
physics.

Whirling Rope

A uniform rope of mass }{ and length L is pivoted at one end and whirls
with uniform angular velocity w. What is the tension in the rope at dis-
tance r from the pivot? Neglect gravity.

Consider the small section of rope between r and r + Ar. The length
of the section is Ar and its mass is Am = A Ar/L. Because of its cir-
cular motion, the section has a radial acceleration. Therefore, the forces
pulling either end of the section cannot be equal, and we conclude that
the tension must vary with r.

The inward force on the section is T'(r), the tension at r, and the out-
ward force is T'(r + Ar). Treating the section as a particle, its inward
radial acceleration is rw2. [This point can be confusing; it is just as rea-
sonable to take the acceleration to be (r + Ar)w? However, we shall
shortly take the limit Ar — 0, and in this limit the two expressions give
the same result.]

The equation of motion for the section is

T+ Ary — T(@r) = —(Am)rw?
_ Mro® Ar
]J

The problem is to find T'(r), but we are not yet ready to do this. How-
ever, by dividing the last equation by Ar and taking the limit Ar — 0, we
can find an exact expression for dT/dr.

ﬂ' = im T+ Ary — T()
dr Ar—0 Ar

_ Mrw?

L

To find the tension, we integrate.

T2
ar = = M4,
2
r 2
/T(’) ar = — [T M4
To 0 L

where T, is the tension at » = 0.

Mw? r?
T4y — Ty = — =20
)] 0 7
or
1 w?
Ty = To — 22 1
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To evaluate 7Ty we need one additional piece of information. Since
the end of the rope at r = L is free, the tension there must be zero.
We have

T(L) =0= Ty — $Mw?L.
Hence, Ty = #Mw?L, and the final result can be written

Mw?
T = 2 g2y,
) Y (Lr =%

9

When a pulley is used to change the direction of a rope under
tension, there is a reaction force on the pulley. As every sailor
knows, the force on the pulley depends on the tension and the
angle through which the rope is deflected. Working out this prob-
lem in detail provides another illustration of how calculus can be
applied to a physical problem.

Pulleys

A string with constant tension T is deflected through angle 26, by a
smooth fixed pulley. What is the force on the pulley?

Intuitively, the magnitude of the force is 27 sin 6,. To prove this
result, we shall find the force due to each element of the string and then
add them vectorially.

Consider the section of string between 6 and 8 + Af. The force dia-
gram is drawn below, center. AF is the outward force due to the pulley

T T
AF AF / A6)2
/
Af \\/ A6 /2
T /
T

The tension in the string is constant, but the forces T at either end of
the element are not parallel. Since we shall shortly take the limit A§ — 0,
we can treat the element like a particle. For equilibrium, the total force
is zero. We have

AF — 2T sin %e = 0.
For small A6, sin (A0/2) = A6/2 and

Al = ZT%) = TA6.
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Thus the element exerts an inward radial force of magnitude T' Af on the
pulley.

The element at angle § exerts a force in the x direction of (7' Af) cos 6.
The total force in the x direction is 2T cos 6 Af, where the sum is over
all elements of the string which are touching the pulley. In the limit
Af — 0, the sum becomes an integral. The total force in the z direction
is therefore

0
[_:}0 T cos 8 d8 = 2T sin 6,.

Tension and Atomic Forces The force on each element of a string
in equilibrium is zero. Nevertheless, the string will break if the
tension is too large. We can understand this qualitatively by
looking at strings from the atomic viewpoint. An idealized model
of a string is a single long chain of molecules. Suppose that force
F is applied to molecule 1 at the end of the string. The force
diagrams for molecules 1 and 2 are shown in the sketch below. In
F F' F F" F" _F"

O +-—O—> R e O 2

1 2 3

equilibrium, F = F’ and F' = F'/, sothat F”/ = F. We see that
the string ‘‘transmits’”’ the force F. To understand how this
comes about, we need to look at the nature of intermolecular
forces.

Qualitatively, the force between two molecules depends on the
distance r between them, as shown in the drawing. The inter-
molecular force is repulsive at small distances, is zero at some
separation ry, and is attractive for » > r,. For large values of r
the force falls to zero. There are no scales on our sketch, but 7,
is typically a few angstroms (1 A = 10-10 m).

When there is no applied force, the molecules must be a dis-
tance r, apart; otherwise the intermolecular forces would make
the string contract or expand. As we pull on the string, the mole-
cules move apart slightly, say to » = r,, where the intermolecular
attractive force just balances the applied force so that the total
force on each molecule is zero. If the string were stiff like a
metal rod, we could push as well as pull. A push makes the
molecules move slightly together, say to » = r;, where the inter-
molecular repulsive force balances the applied force. The change
in the length depends on the slope of the interatomic force curve
atro. The steeper the curve, the less the stretch for a given pull.

The attractive intermolecular force has a maximum value Frax,
as shown in the sketch. If the applied pull is greater than Fiax,
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the intermolecular force is too weak to restore balance—the mole-
cules continue to separate and the string breaks.

For a real string or rod, the intermolecular forces act in a three
dimensional lattice work of atoms. The breaking strength of most
materials is considerably less than the limit set by F.x. Breaks
occur at points of weakness, or ‘‘defects,’”” in the lattice, where
the molecular arrangement departs from regularity. Microscopic
metal ‘““whiskers” seem to be nearly free from defects, and they
exhibit breaking strengths close to the theoretical maximum.

The Normal Force The force exerted by a surface on a body in
contact with it can be resolved into two components, one perpen-
dicular to the surface and one tangential to the surface. The
perpendicular component is called the normal force and the tan-
gential component is called friction.

The origin of the normal force is similar to the origin of tension
in a string. When we put a book on a table, the molecules of the
book exert downward forces on the molecules of the table. The
molecules composing the upper layers of the tabletop move down-
ward until the repulsion of the molecules below balances the force
applied by the book. From the atomic point of view, no surface
is perfectly rigid. Although compression always occurs, it is often
too slight to notice, and we shall neglect it and treat surfaces as
rigid.

The normal force on a body, generally denoted by N, has the
following simple property: for a body resting on a surface, N is
equal and opposite to the resultant of all other forces which act
on the body in a direction perpendicular to the surface. For
instance, when you stand still, the normal force exerted by the
ground is equal to your weight. However, when you walk, the
normal force fluctuates as you accelerate up and down.

Friction Friction cannot be described by a simple formula, but
macroscopic mechanics is hard to understand without some idea
of the properties of friction.

Friction arises when the surface of one body moves, or tries to
move, along the surface of a second body. The magnitude of the
force of friction varies in a complicated way with the nature of the
surfaces and their relative velocity. In fact, the only thing we
can always say about friction is that it opposes the motion which
would occur in its absence. For instance, suppose that we try
to push a book across a table. If we push gently, the book
remains at rest; the force of friction assumes a value equal and
opposite to the tangential force we apply. In this case, the force of
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friction assumes whatever value is needed to keep the book at rest.
However, the friction force cannot increase indefinitely. If we
push hard enough, the book starts to slide. For many surfaces
the maximum value of the friction is found to be equal to uN,
where N is the normal force and u is the coefficient of friction.

When a body slides across a surface, the friction force is directed
opposite to the instantaneous velocity and has magnitude uN.
Experimentally, the force of sliding friction decreases slightly when
bodies begin to slide, but for the most part we shall neglect this
effect. For two given surfaces the force of sliding friction is
essentially independent of the area of contact.

It may seem strange that friction is independent of the area of
contact. The reason is that the actual area of contact on an
atomic scale is a minute fraction of the total surface area. Fric-
tion occurs because of the interatomic forces at these minute
regions of atomic contact. The fraction of the geometric area in
atomic contact is proportional to the normal force divided by the
geometric area. If the normal force is doubled, the area of
atomic contact is doubled and the friction force is twice as large.
However, if the geometric area is doubled while the normal force
remains the same, the fraction of area in atomic contact is halved
and the actual area in atomic contact—hence the friction force—
remains constant. (Nonrigid bodies, like automobile tires, are
more complicated. A wide tire is generally better than a narrow
one for good acceleration and braking.)

In summary, we take the force of friction f to behave as follows:

1. For bodies not in relative motion,

0 < f< uN.

f opposes the motion that would occur in its absence.
2. For bodies in relative motion,

Jf = uN.

fis directed opposite to the relative velocity.

Block and Wedge with Friction

A block of mass m rests on a fixed wedge of angle 8. The coefficient of
friction is u. (For wooden blocks, u is of the order of 0.2 to 0.5.) Find
the value of @ at which the block starts to slide.

In the absence of friction, the block would slide down the plane; hence
the friction force f points up the plane. With the coordinates shown, we
have

mi = Wsinf — f
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and
myg = N — Wcos 6
= 0.

When sliding starts, f has its maximum value u/N, and & = 0. The
equations then give

W sin Qpax = ulV

W cos Omax = N.
Hence,
tan Opax = M.

Notice that as the wedge angle is gradually increased from zero, the fric-
tion force grows in magnitude from zero toward its maximum value uN,
since before the block begins to slide we have

f=Wsinf 0 < Omax-

The Spinning Terror

The Spinning Terror is an amusement park ride—a large vertical drum
which spins so fast that everyone inside stays pinned against the wall
when the floor drops away. What is the minimum steady angular velocity
w which allows the floor to be dropped away safely?

Suppose that the radius of the drum is R and the mass of the body is
M. Let u be the coefficient of friction between the drum and A/. The
forces on I are the weight W, the friction force f, and the normal force
exerted by the wall, NV, as shown below.

The radial acceleration is Rw? toward the axis, and the radial equation
of motion is

N = MRw

By the law of static friction,

f < uN = uMRw

Since we require M to be in vertical equilibrium,
[ =My,

and we have

Mg < uMRw?

or

g
w? > —
T uR
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The smallest value of w that will work is

Y
Wnin = Y

uR

For cloth on wood u is at least 0.3, and if the drum has radius 6 ft, then
Wmin = [32/(0.3 X 6))* = 4 rad/s. The drum must make at least w/2r =
0.6 turns per second.

Viscosity

A body moving through a liquid or gas is retarded by the force of
viscosity exerted on it by the fluid. Unlike the friction force
between dry surfaces, the viscous force has a simple velocity
dependence; it is proportional to the velocity. At high speeds
other forces due to turbulence occur and the total drag force can
have a complicated velocity dependence. (Sports car designers
use a force proportional to the square of the speed to account
for the drag forces.) However, in many practical cases viscosity
is the only important drag force.

Viscosity arises because a body moving through a medium
exerts forces which set the nearby fluid into motion. By New-
ton’s third law the fluid exerts a reaction force on the body.

We can write the viscous retarding force in the form

F, = —Cv,

where C is a constant which depends on the fluid and the geom-
etry of the body. F, is always along the line of motion, because it
is proportional to v. The negative sign assures that F, opposes
the motion. For objects of simple shape moving through a gas
at low pressure, C can be calculated from first principles. We
shall treat it as an empirical constant.

When the only force on a body is the viscous retarding force,
the equation of motion is

dv

Cv = mdt
What we have here is a differential equation for v. Since the
force is along the line of motion, only the magnitude of v changes!

1 Formally, this is proved as follows. Since v = oV, dv/dt = dv/dt v + v dv/dt.
The equation of motion is —CvV = m dv/dt V + mv dv/dt. Because V is a unit
vector, dv/dt is perpendicular to v. The other terms of the equation lie in the v
direction, so that dv/dt must be zero. The same conclusion follows more directly
from the simple physical argument that a force directed along the line of motion
can change the speed but cannot change the direction of motion.
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and the vector equation reduces to the scalar equation

dv
—Cy = m—
v =m 7

or
dv
md—t+ Cv = 0.

The task of solving such a differential equation occurs often in
physics. A few differential equations are so simple and occur so
frequently that it is helpful to be thoroughly familiar with them
and their solutions. The equation of the form m dv/dt + Cv = 0
is one of the most common, and the following example should
make you feel at home with it.

Free Motion in a Viscous Medium

A body of mass m released with velocity v, in a viscous fluid is retarded
by a force Cv. Find the motion, supposing that no other forces act.
The equation of motion is

dv
m— + Cv =0,

dt
which we can rewrite in the standard form
dv C
- + —ov =0. 1
at m

If you are familiar with the properties of the exponential function e®®,
then you know that (d/dx)e** = ae®?, or (d/dz)e** — ae?* = 0. This sug-

gests that we use a trial solution v = e%, where a is a constant to be
determined. Then dv/dt = ae®, and substituting this in Eq. (1) gives us

C
ae® + —e* = 0.
m

This holds true at all times if a = —(/m. Hence, a solution is

Y = e—Ct/m.

However, this cannot be the correct solution; v has the dimension of
velocity whereas the exponential function is dimensionless. Let us try

v = A e—Ct/m'

where A is a constant. Substituting this in Eq. (1) gives

- g Ae=Ctim g Ae=Ctim =,
m m
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so that the solution is acceptable. But . can be any constant, whereas

our solution must be quite specific. To evaluate .l we make use of the

given initial condition. An initial condition is a specific piece of informa-

tion about the motion at some particular time. We were given that
=vypati{ =0. Hence

v = 0) = Ae® = v,.
Since ¢° = 1, it follows that :1 = v, and the full solution is
v = poe=Clm,

We solved Eq. (1) by what might be called a common sense approach—
we simply guessed the answer. This particular equation can also be
solved by formal integration after appropriate ‘‘separation of the
variables.”

dv C
— 4+ —v=0
dt m
dv C
—=—2dt
v m
v @ —_ ~ dt Note the correspondence between the limits: v is the
v p - 0 m velocity at time ¢t and vo is the velocity at time 0.
v C
In—= ——1
Vo m
Yo gcmy
Yo
v = voe—Ctlm_

Before leaving this problem, let us look at the solution in a little more
detail. The velocity decreases exponentially in time. If we let + = m/c,
then we have v = vee™/". + is a characteristic time for the system; it is
the time for the velocity to drop to e=! = 0.37 of its original velocity.

The Linear Restoring Force: Hooke’s Law, the Spring,
and Simple Harmonic Motion

In the mid-seventeenth century Robert Hooke discovered that the
extension of a spring is proportional to the applied force, both for
positive and negative displacements. The force Fg exerted by a
stretched spring is given by Hooke’'s law

Fs = —kﬁ,

where k is a constant called the spring constant and z is the dis-
placement of the end of the spring from its equilibrium position.
The magnitude of Fg increases linearly with displacement. The
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negative sign indicates that F is a restoring force; the spring
force is always in the direction that tends to restore the spring to
its equilibrium length. A force obeying Hooke’s law is called a
linear restoring force.

If the spring is stretched by an applied force F,, then z > 0and
Fs is negative, directed toward the origin.

If the spring is compressed by F,, then x < 0 and Fs is positive.

Hooke’s law is essentially empirical and breaks down for large
displacements. Taking a jaundiced view of affairs, we could
rephrase Hooke's law as ‘‘extension is proportional to force, as
long as it is.”” However, this misses the important point. For
sufficiently small displacements Hooke’s law is remarkably accu-
rate, not only for springs but also for practically every system near
equilibrium. Consequently, the motion of a system under a
linear restoring force occurs persistently throughout physics.

By looking at the intermolecular force curve on page 91, we can
see why the linear restoring force is so common. If the force
curve is linear in the neighborhood of the equilibrium point, then
the force is proportional to the displacement from equilibrium.
This is almost always the case; a sufficiently short segment of a
curve is generally linear to good approximation. Only in patho-
logical cases does the force curve have no linear component. It
is also apparent that the linear approximation necessarily breaks
down for large displacements. We shall return to these consider-
ations in Chap. 4.

In the following example we investigate simple harmonic motion
—the motion of a mass under a linear restoring force. We shall
again encounter a differential equation. Like the equation for
viscous drag, the differential equation for simple harmonic motion
occurs frequently and is well worth learning to recognize early in
the game. Fortunately, the solution has a simple form.

Spring and Block—The Equation for Simple Harmonic Motion

A block of mass J{ is attached to one end of a horizontal spring, the other
end of which is fixed. The block rests on a horizontal frictionless surface.
What motion is possible for the block?

Since the spring force is the only horizontal force acting on the block,
the equation of motion is

Mi = —kx
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where x is measured from the equilibrium position. It is convenient to
write

e
M
The equation takes the standard form
i+ w2x = 0.

You should learn to recognize the mathematical form of this equation,
since it arises in many different physical contexts. It is called the equa-
tion of simple harmonic motion (SHM). Without going into the theory of
differential equations, we simply write down the solution

z = A sin wt + B cos wt.

w is known as the angular frequency of the motion. By substitution it is
easy to show that this solution satisfies the original equation for arbitrary
values of 4 and B. The theory of differential equations tells us that
there are no further nontrivial solutions. The main point here, however,
is to become familiar with the mathematical form of the SHM differential
equation and the form of its solution. We shall derive the solution in
Example 4.2, but this purely mathematical process does not concern us
now.

As we show in the following example, the constants A and B
are to be determined from the initial conditions. We shall show
that A and B can be found by knowing the position and velocity
at some particular time.

The Spring Gun—An Example lllustrating Initial Conditions

The piston of a spring gun has mass m and is attached to one end of a
spring with spring constant k. The projectile is a marble of mass /.
The piston and marble are pulled back a distance L from the equilibrium
position and suddenly released. What is the speed of the marble as it
loses contact with the piston? Neglect friction.

Let the z axis be along the direction of motion with the origin at the
unstretched position. The position of the piston is given by

2(t) = A sin wt 4+ B cos wt, 1

where w = \/k/(m + M). This equation holds up to the time the
marble and piston lose contact. The velocity is

v(t) = ()

wA cos wt — wB sin wt. 2

I
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There are two arbitrary constants in the solution, A and B, and to
evaluate them we need two pieces of information. We know that at
t = 0, when the spring is released, the position and velocity are given by

z(0) = —L
v(0) = 0.

Using these values in Eqgs. (1) and (2), we find

—L = 20)
= A sin (0) + B cos (0)
= B,
and
0 = v(0)
= wA cos (0) — wB sin (0)
= wA.
Hence
B = —L
A =0.

Then, from the time of release until the time when the marble leaves the
piston, the motion is described by the equations

z(t) = —L cos wt 3
v(t) = wl sin wt. 4

When do the marble and piston lose contact? The piston can only
push, not pull, on the marble, and when the piston begins to slow down,
contact is lost and the marble moves on at a constant velocity. From
Eq. (4), we see that the time ¢, at which the velocity reaches a maximum
is given by

™
Wl = =+
2

Substituting this in Eq. (3), we find

() — L cos ;—r
= 0.

The marble loses contact as the spring passes its equilibrium point, as
we expect, since the spring force retards the piston for z > 0.
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From Eq. (4), the final speed of the marble is

Umax = V(tm)

= wL sin~
2

l k
=4 /——L
m+ M
For the highest speeds, k and L should be large and m +- M should be
small.

The Gravitational Attraction of a Spherical Shell

In this note we calculate the gravitational force between a uniform thin
spherical shell of mass M and a particle of mass m located a distance r
from its center. We shall show that the magnitude of the force is
GMm/r* if the particle is outside the shell and zero if the particle is
inside.

To attack the problem, we divide the shell into narrow rings and add
their forces by using integral calculus. Let R be the radius of the shell
and ¢ its thickness, t << RB. The ring at angle 6, which subtends angle
df, has circumference 2wR sin 6§, width R df, and thickness . Its
volume is

dV = 2rR% sin 0 df

and its mass is
p dV = 2wrR%p sin 0 d6

= l—?sin 0 de,

where p = M /(4w R?) is the density of the shell.

Each part of the ring is the same distance r’ from m. The force on
m due to a small section of the ring points toward that section. By
symmetry, the transverse force components for the whole ring add vec-
torially to zero. Since the angle o between the force vector and the line
of centers is the same for all sections of the ring, the force components
along the line of centers add to give

_ Gmpch

r'?

ar

0os o

for the whole ring.
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The force due to the entire shell is

F= / aF
_ /Gm;:de

COos «

The problem now is to express all the quantities in the integrand in
terms of one variable, say the polar angle . From the sketch, cos a =

(r — R cos 0)/r',and " = V/r2 + R? — 2rR cos 6. Since
pdV = M sin 6d/2,

we have

P (GMm /11‘ (r — R cosf)sin6df
2 0 (2 4+ Ry, — 2rR cos 9)!

A convenient substitution for evaluating this integral is u = r — R cos 0,
= Rsin §df. Hence

P GMm /‘ r+R u du 1
2R ) Jr-r (R? —r? 4 27'u)z
This integral is listed in standard tables. The result is
2 __ P2 r+R
F:%i(\/}gz Tz_,_gru__r—R*)
2R 2r? VR —r2 4 2ru) |-k
GMm 1 1
= Ry— (@ —R)— (r* — R?
T [(r+ )= —R)—(r )( Y r—R)]
_ GMm r> R
r?

For r > R, the shell acts gravitationally as though all its mass were con-
centrated at its center.
There is one subtlety in our evaluation of the integral. The term

\/r2 + R? — 2rR is inherently positive, and we must take
V't + R* — 2rR = r — R,

since r > R. If the particle is inside the shell, the magnitude of the
force is still given by Eq. (1). However, in this case r < R, and we must

take \/r2 + R? — 2rR = R — r in the evaluation. We find

(__GMm _ N 2 Do 11
r = 1Rt [(R-l—r) R—-r)—(r R)<R+r R—r>]
=0 r < R.

A solid sphere can be thought of as a succession of spherical shells.
It is not hard to extend our results to this case when the density of the
sphere p(r') is a function only of radial distance r’ from the center of
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the sphere. The mass of a spherical shell of radius ' and thickness
dr’is p(r'Yamr’2 dr’. The force it exerts on m is

ar = @:—4 p()Amr'2 dr'.
r

Since the force exerted by every shell is directed toward the center of the
sphere, the total force is

F = G_m [R p(r"Yamr'2 dr’.
rz JO

However, the integral is simply the total mass of the sphere, and we find
that for r > R, the force between m and the sphere is identical to the
force between two particles separated a distance .

2.1 A b5-kg mass moves under the influence of a force F = (4t% — 3tj) N,
where ¢ is the time in seconds (1 N = 1 newton). It starts from the
origin at { = 0. Find: (a) its velocity; (b) its position; and (¢) r X v,
for any later time.

Ans. clue. () Ift = 1s,rX v =67 X 1073k m2/s

2.2 The two blocks shown in the sketch are connected by a string of
negligible mass. [f the system is released from rest, find how far block
MM, slides in time t. Neglect friction.

Ans. clue. If M, = M,, x = gt?/4

2.3 Two blocks are in contact on a horizontal table. A horizontal force
is applied to one of the blocks, as shown in the drawing. If m; = 2 kg,
me = 1 kg, and F = 3 N, find the force of contact between the two blocks.

2.4 Two particles of mass m and J{ undergo uniform circular motion
about each other at a separation R under the influence of an attractive
force F. The angular velocity is w radians per second. Show that

R = (F/w?(1/m + 1/2).

2.5 The Atwood’s machine shown in the drawing has a pulley of negligible
mass. Find the tension in the rope and the acceleration of M.
Ans.clue. 1f M =2m, T = Mg, A = %g

2.6 Inaconcrete mixer, cement, gravel, and water are mixed by tumbling
action in a slowly rotating drum. If the drum spins too fast the ingre-
dients stick to the drum wall instead of mixing.

Assume that the drum of a mixer has radius R and that it is mounted
with its axle horizontal. What is the fastest the drum can rotate without
the ingredients sticking to the wall all the time? Assume g = 32 ft/s%

Ans. clue. If B = 2 ft, wm,x = 4 rad/s = 38 rotations per minute
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2.7 A block of mass M, rests on a block of mass 3, which lies on a
frictionless table. The coefficient of friction between the blocks is u.
What is the maximum horizontal force which can be applied to the blocks
for them to accelerate without slipping on one another if the force is
applied to (a) block 1 and (b) block 2?

2.8 A 4-kg block rests on top of a 5-kg block, which rests on a frictionless
table. The coefficient of friction between the two blocks is such that the
blocks start to slip when the horizontal force I’ applied to the lower block
is 27 N. Suppose that a horizontal force is now applied only to the upper
block. What is its maximum value for the blocks to slide without slipping
relative to each other?

Ans. F =216 N

2.9 A particle of mass m slides without friction on the inside of a cone.
The axis of the cone is vertical, and gravity is directed downward. The
apex half-angle of the cone is 6, as shown.

The path of the particle happens to be a circle in a horizontal plane.
The speed of the particle is vo.

Draw a force diagram and find the radius of the circular path in terms
of vy, g, and 6.

2.10 Find the radius of the orbit of a synchronous satellite which circles
the earth. (A synchronous satellite goes around the earth once every
24 h, so that its position appears stationary with respect to a ground sta-
tion.) The simplest way to find the answer and give your results is by
expressing all distances in terms of the earth’s radius.

Ans. 6.6R,

2,11 A mass m is connected to a vertical revolving axle by two strings of
length [, each making an angle of 45° with the axle, as shown. Both the
axle and mass are revolving with angular velocity w. Gravity is directed
downward.

a. Draw a clear force diagram for m.
b. Find the tension in the upper string, T, and lower string, T',,-
Ans. clue. If lw? = \/Eg, T = V2 mg

2.12 If you have courage and a tight grip, you can yank a tablecloth out.
from under the dishes on a table. What is the longest time in which
the cloth can be pulled out so that a glass 6 in from the edge comes to
rest before falling off the table? Assume that the coefficient of friction
of the glass sliding on the tablecloth or sliding on the tabletop is 0.5.
(For the trick to be effective the cloth should be pulled out so rapidly
that the glass does not move appreciably.)

2.13 Masses M, and M, are connected to a system of strings and pulleys
as shown. The strings are massless and inextensible, and the pulleys
are massless and frictionless. Find the acceleration of A{,.

Ans. clue. I1f M, = M,, & = ¢/5
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2.14 Two masses, A and B, lie on a frictionless table (see below left).
They are attached to either end of a light rope of length [ which passes
around a pulley of negligible mass. The pulley is attached to a rope
connected to a hanging mass, C. Find the acceleration of each mass.
(You can check whether or not your answer is reasonable by considering
special cases—for instance, the cases M4 = 0,0or M4 = Mz = M¢.)

2.15 The system on the right above uses massless pulleys and rope.
The coefficient of friction between the masses and horizontal surfaces
is u. Assume that )/, and A/, are sliding. Gravity is directed downward

a. Draw force diagrams, and show all relevant coordinates.
b. How are the accelerations related?

c. Find the tension in the rope, T.
Ans. T = (u + 1g/[2/3M s + 1/ ) + 1/(2015)]

2.16 A 45° wedge is pushed along a table with constant acceleration 1.
A block of mass m slides without friction on the wedge. Find its acceler-
ation. (Gravity is directed down.)

Ans.clue. If A =3¢, =g¢

2.17 A block rests on a wedge inclined at angle 8. The coefficient of
friction between the block and plane is u.

a. Find the maximum value of 6 for the block to remain motionless on
the wedge when the wedge is fixed in position.
Ans. tan 0 = pu

b. The wedge is given horizontal acceleration @, as shown. Assuming
that tan 6 < u, find the minimum acceleration for the block to remain
on the wedge without sliding.

Ans. clue. If 0 = 7 /8, Qpin = g1 — u)/A + w)

c. Repeat part b, but find the maximum value of the acceleration.
Ans. clue. If 0 = /8, Qpax = g1 + u)/A — w)
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2.18 A painter of mass M stands on a platform of mass m and pulls
himself up by two ropes which hang over pulleys, as shown. He pulls
each rope with force F and accelerates upward with a uniform accelera-
tion a. Find a—neglecting the fact that no one could do this for long.

Ans. clue. If M =mand F = Mg, a =g

2.19 A ‘‘Pedagogical Machine' is illustrated in the sketch above. All
surfaces are frictionless. What force ' must be applied to M, to keep
MM 3 from rising or falling?

Ans. clue. For equal masses, ' = 31[g

2.20 Consider the ‘‘Pedagogical Machine’ of the last problem in the
case where F is zero. Find the acceleration of ;.
Ans. a, = —Jfgilf;{g/(ﬂ'[,ﬂ[g —|— J[ljl[s + 2J[21][3 + J[gz)

2.21 A uniform rope of mass m and length [ is attached to a block of
mass M. The rope is pulled with force I'. Find the tension at distance
x from the end of the rope. Neglect gravity.

2.22 A uniform rope of weight TV hangs between two trees. The ends
of the rope are the same height, and they each make angle 6 with the
trees. Find

a. The tension at either end of the rope

b. The tension in the middle of the rope
Ans. clue. If 0 = 45°, Topa = 17/V2, Triaaie = 1 /2
2.23 A piece of string of length [ and mass .1/ is fastened into a circular
loop and set spinning about the center of a circle with uniform angular
velocity w. Find the tension in the string. Suggestion: Draw a force
diagram for a small piece of the loop subtending a small angle, Af.
Ans. T = M w?l/(2m)?
2.24 A device called a capstan is used aboard ships in order to control
a rope which is under great tension. The rope is wrapped around a
fixed drum, usually for several turns (the drawing shows about three-
fourths turn). The load on the rope pulls it with a force T4, and the
sailor holds it with a much smaller force T'3. Can you show that T =
T .e7+%, where u is the coefficient of friction and 6 is the total angle sub-
tended by the rope on the drum?
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2.25 Find the shortest possible period of revolution of two identical grav-
itating solid spheres which are in circular orbit in free space about a
point midway between them. (You can imagine the spheres fabricated
from any material obtainable by man.)

2.26 The gravitational force on a body located at distance R from the
center of a uniform spherical mass is due solely to the mass lying at
distance r < R, measured from the center of the sphere. This mass
exerts a force as if it were a point mass at the origin.

Use the above result to show that if you drill a hole through the earth
and then fall in, you will execute simple harmonic motion about the
earth’s center. Find the time it takes you to return to your point of
departure and show that this is the time needed for a satellite to circle
the earth in a low orbit with r = R,. In deriving this result, you need
to treat the earth as a uniformly dense sphere, and you must neglect all
friction and any effects due to the earth's rotation.

2.27 As a variation of the last problem, show that you will also execute
simple harmonic motion with the same period even if the straight hole
passes far from the earth’s center.

2.28 An automobile enters a turn whose radiusis B. The road is banked
at angle 6, and the coefficient of friction between wheels and road is u.
Find the maximum and minimum speeds for the car to stay on the road
without skidding sideways.

Ans. clue. If 4w = 1and 6 = w/4, all speeds are possible

2.29 A caris driven on a large revolving platform which rotates with con-
stant angular speed w. At { = 0 a driver leaves the origin and follows
a line painted radially outward on the platform with constant speed v,.
The total weight of the car is W, and the coefficient of friction between
the car and stage is u.

a. Find the acceleration of the car as a function of time using polar
coordinates. Draw a clear vector diagram showing the components of
acceleration at some time ¢ > 0.

b. Find the time at which the car just starts to skid.

c. Find the direction of the friction force with respect to the instan-
taneous position vector r just before the car starts to skid. Show your
result on a clear diagram.

2.30 A disk rotates with constant angular velocity w, as shown. Two
masses, ma and msp, slide without friction in a groove passing through
the center of the disk. They are connected by a light string of length [,
and are initially held in position by a catch, with mass m, at distance r4
from the center. Neglect gravity. At ¢ = 0 the catch is removed and
the masses are free to slide.

Find #4 immediately after the catch is removed in terms of m4, ms, [,
r4, and w.
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2.31 Find the frequency of oscillation of mass m suspended by two
springs having constants k; and k., in each of the configurations shown.

Ans. clue. 1k = ko = k, wa = Vk/2m, w» = V/ 2k/m

2.32 A wheel of radius R rolls along the ground with velocity V. A
pebble is carefully released on top of the wheel so that it is instanta-
neously at rest on the wheel.

a. Show that the pebble will immediately fly off the wheel if V >
V/'Ry.

b. Show that in the case where V < \/ITg, and the coefficient of
friction is u = 1, the pebble starts to slide when it has rotated through

an angle given by 6 = arccos [(I/V/E)(V2/Rg)] — /4.

2.33 A particle of mass m is free to slide on a thin rod. The rod rotates
in a plane about one end at constant angular velocity w. Show that the
motion is given by r = Ae~7* + Be*™!, where <y is a constant which you
must find and A and B are arbitrary constants. Neglect gravity.

Show that for a particular choice of initial conditions [that is, (¢! = 0)
and v(¢ = 0)], it is possible to obtain a solution such that r decreases
continually in time, but that for any other choice r will eventually increase.
(Exclude cases where the bead hits the origin.)

2.34. A mass m whirls around on a string which passes through a ring,
as shown. Neglect gravity. |Initially the mass is distance r, from the
center and is revolving at angular velocity w,. The string is pulled with
constant velocity V starting at ¢ = 0 so that the radial distance to the
mass decreases. Draw a force diagram and obtain a differential equa-
tion for w. This equation is quite simple and can be solved either by
inspection or by formal integration. Find

a. w(t).
Ans. clue. For Vit = r¢/2, w = dwg

b. The force needed to pull the string.

2.35 This problem involves solving a simple differential equation.

A block of mass m slides on a frictionless table. It is constrained to
move inside a ring of radius [ which is fixed to the table. At¢ = 0, the
block is moving along the inside of the ring (i.e., in the tangential direction)
with velocity v. The coefficient of friction between the block and the
ring is u.

a. Find the velocity of the block at later times.
Ans. vo/[1 + (uvot/1)]
b. Find the position of the block at later times.

2.36 This problem involves a simple differential equation. You should
be able to integrate it after a little ‘‘playing around.”

A particle of mass m moving along a straight line is acted on by a
retarding force (one always directed against the motion) F' = be*, where
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b and « are constants and v is the velocity. At ¢ = 0 it is moving with
velocity vg. Find the velocity at later times.

Ans. v(t) = /) In [1/(abt/m + e~av)]
2.37 The Eureka Hovercraft Corporation wanted to hold hovercraft races
as an advertising stunt. The hovercraft supports itself by blowing air
downward, and has a big fixed propeller on the top deck for forward
propulsion. Unfortunately, it has no steering equipment, so that the
pilots found that making high speed turns was very difficult. Thecompany
decided to overcome this problem by designing a bowl shaped track in
which the hovercraft, once up to speed, would coast along in a circular
path with no need to steer. They hired an engineer to design and build
the track, and when he finished, he hastily left the country. When the
company held their first race, they found to their dismay that the craft
took exactly the same time 7T to circle the track, no matter what its speed.
Find the equation for the cross section of the bowl in terms of 7.
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3.1 Introduction

In the last chapter we made a gross simplification by treating
nature as if it were composed of point particles rather than real,
extended bodies. Sometimes this simplification is justified—as in
the study of planetary motion, where the size of the planets is of
little consequence compared with the vast distances which char-
acterize our solar system, or in the case of elementary particles
moving through an accelerator, where the size of the particles,
about 10~1% m, is minute compared with the size of the machine.
However, these cases are unusual. Much of the time we deal
with large bodies which may have elaborate structure. For
instance, consider the landing of a spacecraft on the moon.
Even if we could calculate the gravitational field of such an irreg-
ular and inhomogeneous body as the moon, the spacecraft itself
is certainly not a point particle—it has spiderlike legs, gawky
antennas, and a lumpy body.

Furthermore, the methods of the last chapter fail us when we
try to analyze systems such as rockets in which there is a flow of
mass. Rockets accelerate forward by ejecting mass backward, it
is hard to see how to apply F = Ma to such a system.

In this chapter we shall generalize the laws of motion to over-
come these difficulties. We begin by restating Newton’s second
law in a slightly modified form. In Chap. 2 we wrote the law in
the familiar form

F = Ma. 3.1
This is not quite the way Newton wrote it. He chose to write

d
F = 7 Mv. 3.2
For a particle in newtonian mechanics, M is a constant and
(d/dt)(Mv)y = M(dv/dt) = Ma, as before. The quantity My,
which plays a prominent role in mechanics, is called momentum.
Momentum is the product of a vector vand a scalar /. Denoting
momentum by p, Newton’s second law becomes

dp
F=—- 3.3
dt
This form is preferable to F = Ma because it is readily generalized
to complex systems, as we shall soon see, and because momentum
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turns out to be more fundamental than mass or velocity
separately.

3.2 Dynamics of a System of Particles

Consider a system of interacting particles. One example of such
a system is the sun and planets, which are so far apart compared
with their diameters that they can be treated as simple particles
to good approximation. All particles in the solar system interact
via gravitational attraction; the chief interaction is with the sun,
although the interaction of the planets with each other also influ-
ences their motion. In addition, the entire solar system is
attracted by far off matter.

At the other extreme, the system could be a billiard ball resting
on a table. Here the particles are atoms (disregarding for now
the fact that atoms are not point particles but are themselves
composed of smaller particles) and the interactions are primarily
interatomic electric forces. The external forces on the billiard
ball include the gravitational force of the earth and the contact
force of the tabletop.

We shall now prove some simple properties of physical systems.
We are free to choose the boundaries of the system as we please,
but once the choice is made, we must be consistent about which
particles are included in the system and which are not. We
suppose that the particles in the system interact with particles
outside the system as well as with each other. To make the argu-
ment general, consider a system of N interacting particles with
masses mi, Mg, M3 . . . , My. The position of the jth particle
is r;, the force on it is f;, and its momentum is p; = m;#;. The
equation of motion for the jth particle is

dp;.

== 3.4

The force on particle j can be split into two terms:
fj - f]_int _|_ f].ext,. 3.5

Here f,/int, the internal force on particle j, is the force due to all
other particles in the system, and fg2xt, the external force on par-
ticle 7, is the force due to sources outside the system. The equa-
tion of motion becomes

ap;
dt

fjint + f],ext = 3.6
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Now let us focus on the system as a whole by the following
stratagem: add all the equations of motion of all the particles in
the system.

. dp
flmt + flext = 7;
. dp;
f int f ext _ 2 37
J + 7 di
) dpw
f int f ext — — .,
et 4+ fy it

The result of adding these equations can be written

) dp;

Zfint - Ifext = ) —. 3.8
7 + J dt

The summations extend over all particles, 7 =1, . . . , N.

The second term, Zfext, is the sum of all external forces acting
on all the particles. It is the total external force acting on the
system, Foy.

Ef],ext = Fex(;-

The first term in Eq. (3.8), Zfi»t, is the sum of all internal forces
acting on all the particles. According to Newton’s third law, the
forces between any two particles are equal and opposite so that
their sum is zero. It follows that the sum of all the forces between
all the particles is also zero; the internal forces cancel in pairs.
Hence

Efjint = 0.
Equation (3.8) then simplifies to

dp;

3.9
dt

Fexy =

The right hand side can be written Z(dp;/dt) = (d/dt)Zp;, since
the derivative of a sum is the sum of the derivatives. Zp, is the
total momentum of the system, which we designate by P.
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With this substitution, Eqg. (3.9) becomes

dP
Foo = —- 3.11
YTt

In words, the total external force applied to a system equals
the rate of change of the system’s momentum. This is true irre-
spective of the details of the interaction; F.y; could be a single
force acting on a single particle, or it could be the resultant of
many tiny interactions involving each particle of the system.

The Bola

The bola is a weapon used by gauchos for entangling animals. It con-
sists of three balls of stone or iron connected by thongs. The gaucho
whirls the bola in the air and hurls it at the animal. What can we say
about its motion?

Consider a bola with masses m;, m,, and ms. The balls are pulled by
the binding thong and by gravity. (We neglect air resistance.) Since
the constraining forces depend on the instantaneous positions of all
three balls, it is a real problem even to write the equation of motion of

one ball. However, the total momentum obeys the simple equation
dP
% = Foy, = f1o%t + fooxt | fgext
= mi9 + M9 + ms9
or
dpP
a = Mg,

where A is the total mass. This equation represents an important first
step in finding the detailed motion. The equation is identical to that
of a single particle of mass J/ with momentum P. This is a familiar fact
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to the gaucho who forgets that he has a complicated system when he
hurls the bola; he instinctively aims it like a single mass.

Center of Mass
According to Eq. (3.11),

dP
F = dt’ 3.12
where we have dropped the subscript ext with the understanding
that F stands for the external force. This result is identical to
the equation of motion of a single particle, although in fact it
refers to a system of particles. Itis tempting to push the analogy
between Eq. (3.12) and single particle motion even further by
writing

F = MR, 3.13

where M is the total mass of the system and R is a vector yet to
be defined. Since P = Zm;t;, Eq. (3.12) and (3.13) give

dP

k=2
M dt

= Em,"l;j,
which is true if

R = %Emﬂ’j. 3.14

R is a vector from the origin to the point called the center of
mass. The system behaves as if all the mass is concentrated at
the center of mass and all the external forces act at that point.

We are often interested in the motion of comparatively rigid
bodies like baseballs or automobiles. Such a body is merely a
system of particles which are fixed relative to each other by strong
internal forces; Eq. (3.13) shows that with respect to external
forces, the body behaves as if it were a point particle. In Chap.
2, we casually treated every body as if it were a particle; we see
now that this is justified provided that we focus attention on the
center of mass.

You may wonder whether this description of center of mass
motion isn't a gross oversimplification—experience tells us that
an extended body like a plank behaves differently from a compact
body like a rock, even if the masses are the same and we apply
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the same force. We are indeed oversimplifying. The relation
F = MR describes only the translation of the body (the motion
of its center of mass); it does not describe the body’s orientation
in space. In Chaps. 6 and 7 we shall investigate the rotation of
extended bodies, and it will turn out that the rotational motion
of a body depends both on its shape and the point where the
forces are applied. Nevertheless, as far as translation of the
center of mass is concerned, F = MR tells the whole story.
This result is true for any system of particles, not just for those
fixed in rigid objects, as long as the forces between the particles
obey Newton’s third law. It is immaterial whether or not the
particles move relative to each other and whether or not there
happens to be any matter at the center of mass.

Drum Major’s Baton

A drum major's baton consists of two masses m; and m, separated by a
thin rod of length I. The baton is thrown into the air. The problem is
to find the baton’s center of mass and the equation of motion for the
center of mass.

Let the position vectors of m; and my be r; and r,. The position vector
of the center of mass, measured from the same origin, is

My + Mok
R= - ""7°% 1

my + me

where we have neglected the mass of the thin rod. The center of mass
lies on the line joining m; and m,. To show this, suppose first that the
tip of R does not lie on the line, and consider the vectors r1, vy from the
tip of R to m;, and m,. From the sketch we see that

!
rp =t —R

!
ro =r;, — R.

Using Eq. (1) gives

' miry Make
ry=1r— —_
my 4+ my  my+ my
me
=——( — 1)
my + my

’ mt Mok
¥y = ro — -

my+ my  my+ me

= (——‘—ml T m2> (ry — ry).
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’ .
r; and r, are proportional to r; — r,, the vector from m, to m,. Hence
! 7. . I
r; and r, lie along the line joining m; and m,, as shown. Furthermore,
’ ms
n=———In—r
my + My
me
=——1
my + me
and
’ my
Ty = ————— |1 — e
my + ma
my
= — Ll
my + me

Assuming that friction is negligible, the external force on the baton is
F = mg + m.g.
The equation of motion of the center of mass is
(1 + ma)R = (my + ma)g
or
R=g.
The center of mass follows the parabolic trajectory of a single mass in a
uniform gravitational field. With the methods developed in Chap. 6, we

shall be able to find the motion of m; and m, about the center of mass,
completing the solution to the problem.

Although it is a simple matter to find the center of mass of a
system of particles, the procedure for locating the center of mass
of an extended body is not so apparent. However, itis a straight-
forward task with the help of calculus. We proceed by dividing
the body into N mass elements. If r; is the position of the jth
element, and m; is its mass, then

R= 13
= —— mqt.

M].=1 7%
The result is not rigorous, since the mass elements are not true
particles. However, in the limit where N approaches infinity, the
size of each element approaches zero and the approximation
becomes exact.

This limiting process defines an integral. Formally

lim i mit; = [ rdm,

N—w j=1
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where dm is a differential mass element. Then

1

R=-—
M

r dm. 3.15

To visualize this integral, think of dm as the mass in an element
of volume dV located at position r. If the mass density at the
elementis p, then dm = pdV and

R=%]rpdV.

This integral is called a volume integral. Although it is important
to know how to find the center of mass of rigid bodies, we shall
only be concerned with a few simple cases here, as illustrated by
the following two examples. Further examples are given in Note
3.1 at the end of the chapter.

Center of Mass of a Nonuniform Rod

A rod of length L has a nonuniform density. )\, the mass per unit length
of the rod, varies as A = A\o(s/L), where \q is a constant and s is the dis-
tance from the end marked 0. Find the center of mass.

It is apparent that R lies on the rod. Let the origin of the coordinate
system coincide with the end of the rod, 0, and let the z axis lie along the
rod so that s = 2. The mass in an element of length dzisdm = A dx =
Moz dz/L. The rod extends from # = 0 to £ = L and the total mass is

M=/dm

I
>
&
]

= %)\()L.

The center of mass is at

R— L / \ dM
i

2 L R . Aoz dx
= 0j + ok) 2222
)\OL/O (@ o+ 05 + 0k) =
2
L23 0

L

o
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Example 3.4 Center of Mass of a Triangular Sheet

y Consider the two dimensional case of a uniform right triangular sheet of
l/! mass M, base b, height 2, and small thickness ¢. If we divide the sheet
/| into small rectangular areas of side Az and Ay, as shown, then the volume
of each element is AV = ¢ Az Ay, and
Ay{____ /. | M
[ Zpit Az Ayr;
r | i A —"
] ! M
1\_J x
Ax .
b where j is the label of one of the volume elements and p; is the density.
Because the sheet is uniform,
M M
p; = constant = — = —»
14 At

where A is the area of the sheet.

We can carry out the sum by summing first over the Az’s and then
over the Ay's, instead of over the single index j. This gives a double
sum which can be converted to a double integral by taking the limit, as

follows:

R = lim My (2 22r; Az Ay
Az—0 At M
Ay—0

i—//rdxdy.

Let r = 2i 4 yj be the position vector of an element dx dy. Then,
writing R = Xi + Yj, we have

R = Xi+ Yj

1 . .
=7 / (@i + yj) dz dy

=:}1_<// xdxdy)i-l—%(/ ydxdy)j.

Hence the coordinates of the center of mass are given by

X=%//xdxdy

1
Y=Z/ y dz dy.
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The double integrals may look strange, but they are easily evaluated.
Consider first the double integral

X=%//xdxdy.

This integral instructs us to take each element, multiply its area by its
z coordinate, and sum the results. We can do this in stages by first
considering the elements in a strip parallel to the y axis. The strip runs
from y =0 to y = zh/b. Each element in the strip has the same z
coordinate, and the contribution of the strip to the double integral is

1 b
—xdx/zh/ dy = —h~x2dx.
A 0 bA

Finally, we sum the contributions of all such strips « = 0to z = b to find

3
x=t [Ppg=t?
b4 Jo b4 3
_
34

Since 4 = 3bh,

X = %b.
Similarly,
1 b zh/b
Ve fo (7 vir)ds
2 2
= h /bx2 dx = h—b
2Ab2J0 6A
= %h.
Hence

R = 3bi + 3hj.
Although the coordinates of R depend on the particular coordinate sys-

tem we choose, the position of the center of mass with respect to the
triangular plate is, of course, independent of the coordinate system.

Often physical arguments are more useful than mathematical
analysis. For instance, to find the center of mass of an irregular
plane object, let it hang from a pivot and draw a plumb line from
the pivot. The center of mass will hang directly below the pivot
(this may be intuitively be obvious, and it can easily be proved
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with the methods of Chap. 6), and it is somewhere on the plumb
line. Repeat the procedure with a different pivot point. The
two lines intersect at the center of mass.

Center of Mass Motion

A rectangular box is held with one corner resting on a frictionless table
and is gently released. It falls in a complex tumbling motion, which we
are not yet prepared to solve because it involves rotation. However,
there is no difficulty in finding the trajectory of the center of mass.

=

The external forces acting on the box are gravity and the normal force
of the table. Neither of these has a horizontal component, and so the
center of mass must accelerate vertically. For a uniform box, the center
of mass is at the geometrical center. If the box is released from rest,
then its center falls straight down.

3.3 Conservation of Momentum

In the last section we found that the total external force F acting
on a system is related to the total momentum P of the system by

__dP

F = —
dt

Consider the implications of this for an isolated system, that is, a
system which does not interact with its surroundings. In this
case F = 0, and dP/dt = 0. The total momentum is constant;
no matter how strong the interactions among an isolated system
of particles, and no matter how complicated the motions, the total
momentum of an isolated system is constant. This is the law of
conservation of momentum. As we shall show, this apparently
simple law can provide powerful insights into complicated systems.
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Spring Gun Recoil

A loaded spring gun, initially at rest on a horizontal frictionless surface,
fires a marble at angle of elevation §. The mass of the gun is M, the
mass of the marble is m, and the muzzle velocity of the marble is v,.
What is the final motion of the gun?

Take the physical system to be the gun and marble. Gravity and the
normal force of the table act on the system. Both these forces are ver-
tical. Since there are no horizontal external forces, the x component
of the vector equation F = dP/dt is

dP,

0= 1
dt

According to Eq. (1), P, is conserved:

Pz,iniﬁal = Pz,final' 2

Let the initial time be prior to firing the gun. Then P, .0 = 0, since
the system is initially at rest. After the marble has left the muzzle, the
gun recoils with some speed V,, and its final horizontal momentum
is MV, to the left. Finding the final velocity of the marble involves a
subtle point, however. Physically, the marble’'s acceleration is due to
the force of the gun, and the gun’s recoil is due to the reaction force of
the marble. The gun stops accelerating once the marble leaves the
barrel, so that at the instant the marble and the gun part company, the
gun has its final speed V. At that same instant the speed of the mar-
ble relative to the gun is vo. Hence, the final horizontal speed of the
marble relative to the table is v cos § — V. By conservation of hori-
zontal momentum, we therefore have

0 =m(ocos —Vy)— MV,

or
muvg cos 6

M+m

By using conservation of momentum we found the final motion of the
system in a few steps. To show the advantage of this method, let us
repeat the problem using Newton’s laws directly.

Let v(¢) be the velocity of marble at time ¢t and let V(¢) be the velocity
of the gun. While the marble is being fired, it is acted on by the spring,
by gravity, and by friction forces with the muzzle wall. Let the net
force on the marble be f(!). The x equation of motion for the marble is

av,
— = f.(0). 3
m— f=(t)



124

MOMENTUM

Formal integration of Eq. (3) gives
¢
muL(t) = mv.(0) + /0 [z dt. 4

The external forces are all vertical, and therefore the horizontal force f,
on the marble is due entirely to the gun. By Newton’s third law, there is
a reaction force —f, on the gun due to the marble. No other horizontal
forces act on the gun, and the horizontal equation of motion for the gun
is therefore

av
M=—= = —f.@)
i f=@®

which can be integrated to give
MV.t) = MV.0) — ﬁ)tf, dt. 5

We can eliminate the integral by combining Egs. (4) and (5):
MV (@) + mv.(t) = MV ,@0) + mv,(0). 6

We have rediscovered that the horizontal component of momentum is
conserved.
What about the motion of the center of mass? Its horizontal velocity
is
MV () + moa(t)
M+ m

R.¢t) =

Using Eq. (6), the numerator can be rewritten to give

MV.0) + mvz0) _

R.¢t) =
@ M +m

0,

since the system is initially at rest. R, is constant, as we expect.
We did not include the small force of air friction. Would the center of
mass remain at rest if we had included it?

The essential step in our derivation of the law of conservation of
momentum was to use Newton’s third law. Thus, conservation of
momentum appears to be a natural consequence of newtonian
mechanics. It has been found, however, that conservation of
momentum holds true even in areas where newtonian mechanics
proves inadequate, including the realms of quantum mechanics
and relativity. In addition, conservation of momentum can be
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generalized to apply to systems like the electromagnetic field,
which possess momentum but not mass. For these reasons,
conservation of momentum is generally regarded as being more
fundamental than newtonian mechanics. From this point of view,
Newton’s third law is a simple consequence of conservation of
momentum for interacting particles. For our present purposes
it is purely a matter of taste whether we wish to regard Newton’s
third law or conservation of momentum as more fundamental.

Earth, Moon, and Sun—a Three Body System

Newton was the first to calculate the motion of two gravitating bodies.
As we shall discuss in Chap. 9, two bodies of mass 4/, and M, bound by
gravity move so that r,, traces out an ellipse. The sketch shows the
motion in a frame in which the center of mass is at rest. (Note that the
center of mass of two particles lies on the line joining them.)

There is no general analytical solution for the motion of three gravi-
tating bodies, however. In spite of this, we can explain many of the
important features of the motion with the help of the concept of center
of mass.

At first glance, the motion of the earth-moon-sun system appears
to be quite complex. In the absence of the sun, the earth and moon
would execute elliptical motion about their center of mass. As we shall
now show, that center of mass orbits the sun like a single planet, to good
approximation. The total motion is the simple result of two simultaneous
elliptical orbits.

Q\ Q. Moon Earth
~
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The center of mass of the earth-moon-sun system lies at

_ MeRe + MmRm + MsRs
M.+ M, + M,

where M,, M,, and M, are the masses of the earth, moon, and sun,
respectively. The sun’s mass is so large compared with the mass of
the earth or the moon that Ry = R;, and to good approximation the cen-
ter of mass of the three body system lies at the center of the sun. Since
external forces are negligible, the sun is effectively at rest in an inertial
frame and it is natural to use a coordinate system with its origin at the
center of the sun so that R = 0.

Let r. and r,, be the positions of the earth and moon with respect to
the sun, and let us focus for the moment on the system composed of
the earth and moon. Their center of mass lies at

M, 4 M,,,rm_

Rem =
M.+ M.

The external force on the earth-moon system is the gravitational pull
of the sun:

F= —Qf, (% g, o+ Mn ;m).
72 T

The equation of motion of the center of mass is
(Me + ]llm)ﬁem =F.

The earth and moon are so close compared with their distance from
the sun that we shall not make a large error if we assume 7, = 7 =~ Rem.
With this approximation,

M.+ Mo = Z2 MF+ M)
_ —GM,(M. + MR
_ =

The center of mass of the earth and moon moves like a planet of mass
M, + M, about the sun. The total motion is the combination of( this
elliptical motion and the elliptical motion of the earth and moon about
their center of mass, as illustrated on the opposite page. (The drawing
is not to scale: the center of mass of the earth-moon system lies within
the earth, and the moon's orbit is always concave toward the sun. Also,
the plane of the moon’'s orbit is inclined by 5° with respect to the earth’s
orbit around the sun.)
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earth-moon system \ /O
- - , _ -
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earth-moon-sun [
system ,
/
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/ center of mass’
/ M
/ @,
// Orbit of earth Orbit of moon
z Center of Mass Coordinates
m
: Often a problem can be simplified by the right choice of coordi-
\\\ nates. The center of mass coordinate system, in which the origin
T AN lies at the center of mass, is particularly useful. The drawing
R NGO illustrates the case of a two particle system with masses m; and
my mq. In the initial coordinate system, z, y, 2, the particles are
r located at r; and r; and their center of mass is at
y
R = mary + mzrz_
my + My
We now set up the center of mass coordinate system, 2/, v/, 2/,
with its origin at the center of mass. The origins of the old and
e z' new system are displaced by R. The center of mass coordinates
l‘ r) of the two particles are
r
2// I y' I‘é =¥ — R
/ R_~/r r, =r, — R
| T T
! y Center of mass coordinates are the natural coordinates for

an isolated two body system. For such a system the motion of
the center of mass is trivial—it moves uniformly. Furthermore,
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mlr{ -+ mzr; = 0 by the definition of center of mass, so that if
the motion of one particle is known, the motion of the other par-
ticle follows directly. Here is an example.

The Push Me-Pull You

Two identical blocks a and b both of mass m slide without friction on a
straight track. They are attached by a spring of length [ and spring
constant k. Initially they are at rest. At ¢ = 0, block a is hit sharply,
giving it an instantaneous velocity vy to the right. Find the velocities for
subsequent times. (Try this yourself if there is a linear air track
available—the motion is quite unexpected.)

Since the system slides freely after the collision, the center of mass
moves uniformly and therefore defines an inertial frame.

Let us transform to center of mass coordinates. The center of mass
lies at

mre + mry
m + m

R =

- (ra +
E a Tb)-

As expected, R is always halfway between a and b. The center of mass
coordinates of @ and b are

re =1, — R

= $(ra — 1)
ry =15 — R

= —%(a — 1)

’
= —7,.

The sketch below shows these coordinates.

ra
| Ta™Th Laboratory
— R coordinates
— 7, _.1
v Ty
[
o

I‘—r},—-l—r,',——: [

Center of mass
coordinates
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The instantaneous length of the springis 7, — ry — 1l = 7l — 7y — I,
where [ is the unstretched length of the spring. The magnitude of the
spring force is k(r; — rg — 0). The equations of motion in the center of
mass system are

mi, = —k(rg — ry — 1)

+hra — 5 — 1),

W
mry

where [ is the unstretched length of the spring. The form of these equa-
tions suggests that we subtract them, obtaining

m@, — #) = =2k — 15 — 1).

It is natural to introduce the departure of the spring from its equi-
librium length as a variable. Letting u = r, — r; — I, we have

mi + 2ku = 0.

This is the equation for simple harmonic motion which we discussed
in Example 2.14. The solution is

u = A sin wt + B cos wt,

where w = \/Zk/m. Since the spring is unstretched at ¢ = 0, u(0) = 0
which requires B = 0. Furthermore, since u = r[, - rg —l=9,—1s—1,
we have at{ =0

u(0) = va(0) — ve(0)

= Aw cos (0)
= Vo,

so that

A = Uo/w

and
u = (Vo/w) sin wt.
. ! ’ . !’ 4
Since v, — v, = u%, and v, = —, we have
’ ’ 1
v, = —Up = 3V COS wi.
The laboratory velocities are

ve =R + v
v;,=R—|—v£.
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Since B is constant, it is always equal to its initial value

R = 4[v.(0) + v,(0)]

= 1
= 3.

Putting these together gives

Ve = ?(1 4+ cos wt)

1
v = = (1 — cos wb).
2
The masses move to the right on the average, but they alternately
come to rest in a push me-pull you fashion.

3.4 Impulse and a Restatement of the Momentum Relation

The relation between force and momentum is

F="a

3.16

As a general ru , any law of physics which can be expressed in
terms of derivatives can also be written in an integral form. The
integral form of the force-momentum relationship is

t
ﬁ) Fdi = P(t) — P(0). 3.17

The change in momentum of a system is given by the integral of
force with respect to time. This form contains essentially the
same physical information as Eq. (3.16), but it gives a new way of
looking at the effect of a force: the change in momentum is the
time integral of the force. To produce a given change in the

momentum in time interval ¢ requires only that /Ot F dt have the

appropriate value; we can use a small force acting for much of
the time or a large force acting for only part of the interval. The

integral /Ot F dt is called the impulse. The word impulse calls to

mind a short, sharp shock, as in Example 3.8, where we talked of
giving a blow to a mass at rest so that its final velocity was v,.
However, the physical definition of impulse can just as well be
applied to a weak force acting for a long time. Change of momen-
tum depends only on [F dt, independent of the detailed time
dependence of the force.

Here are two examples involving impulse.
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Rubber Ball Rebound

A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a speed
of 8 m/s and rebounds with approximately the same speed. High
speed photographs show that the ball is in contact with the floor for 103 s.
What can we say about the force exerted on the ball by the floor?

The momentum of the ball just before it hits the floor is P, = —1.6k
kg'm/s and its momentum 103 s later is P, = 4-1.6k kg'm/s. Since

t:" Fdt = Py — P, ﬁ"’ Fdt = 1.6k — (—1.6K) = 3.2k kg'm/s. Although
the exact variation of F with time is not known, it is easy to find the average
force exerted by the floor on the ball. If the collision time is At = &, — {4,
the average force F,, acting during the collision is

F,. Al = / A gt

Since At = 103 s,

_ 3.2k kg'm/s
10~%¢s

= 3,200k N.

av

The average force is directed upward, as we expect. [n more familiar
units, 3,200 N = 720 Ib—a sizable force. The instantaneous force on the
ball is even larger at the peak, as the sketch shows. If the ball hits a
resilient surface, the collision time is longer and the peak force is less.

Actually, there is a weakness in our treatment of the rubber ball
rebound. In calculating the impulse fF dt, F is the total force. This
includes the gravitational force, which we have neglected. Proceeding
more carefully, we write

F = Fuoor + Ferav
Ffloor - ﬂ[gR'

Il

The impulse equation then becomes

10-3 10-3 - o
ﬁ) Foioor dt — ﬁ) Mgk dt = 3.2k kg'm/s.
The impulse due to the gravitational force is

10-3 - - 10-3 -
- L Mgk di = — Mgk /0 4t = —(0.2)(9.8)(10-9)k
) = —1.96 X 10~%k kg'm/s.

This is less than one-thousandth of the total impulse, and we can neglect
it with little error. Over a long period of time, gravity can produce a
large change in the ball's momentum (the ball gains speed as it falls, for
example). In the short time of contact, however, gravity contributes
little momentum change compared with the tremendous force exerted
by the floor. Contact forces during a short collision are generally so
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huge that we can neglect the impulse due to other forces of moderate
strength, such as gravity or friction.

The last example reveals why a quick collision is more violent
than a slow collision, even when the initial and final velocities are
identical. This is the reason that a hammer can produce a force
far greater than the carpenter could produce on his own; the hard
hammerhead rebounds in a very short time compared with the
time of the hammer swing, and the force driving the hammer is
correspondingly amplified. Many devices to prevent bodily injury
in accidents are based on the same considerations, but applied in
reverse—they essentially prolong the time of the collision. This
is the rationale for the hockey player’s helmet, as well as the auto-
mobile seat belt. The following example shows what can happen
in even a relatively mild collision, as when you jump to the ground.

How to Avoid Broken Ankles

Animals, including humans, instinctively reduce the force of impact with
the ground by flexing while running or jumping. Consider what happens
to someone who hits the ground with his legs rigid.

Suppose a man of mass M jumps to the ground from height 4, and
that his center of mass moves downward a distance s during the time of
collision with the ground. The average force during the collision is

M Vo
= ’
14

F

where ¢ is the time of the collision and v, is the velocity with which he hits
the ground. As a reasonable approximation, we can take his accelera-
tion due to the force of impact to be constant, so that the man comes
uniformly to rest. In this case the collision time is given by vy = 2s/t, or
= 2

Vo

Inserting this in Eq. (1) gives

_ .Z'I 1)02
28

F

For a body in free fall for distance #,
Vo2 = Zgh
Inserting this in Eq. (2) gives

A
S
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If the man hits the ground rigidly in a vertical position, his center of
mass will not move far during the collision. Suppose that his center of
mass moves 1 cm, which roughly means that his height momentarily
decreases by approximately 2 cm. If he jumps from a height of 2 m,
the force is 200 times his weight!

Consider the force on a 90-kg (=200-Ib) man jumping from a height of
2 m. The force is

F =90 kg X 9.8 m/s? X 200

= 1.8 X 105 N.

Where is a bone fracture most likely to occur? The force is a maxi-
mum at the feet, since the mass above a horizontal plane through the
man decreases with height. Thus his ankles will break, not his neck.
If the area of contact of bone at each ankle is 5 cm?, then the force per
unit area is

F 18 X 105N
A 10 cm?
1.8 X 10¢ N/cm?.

I

This is approximately the compressive strength of human bone, and
so there is a good probability that his ankles will snap.

Of course, no one would be so rash as to jump rigidly. We instinc-
tively cushion the impact when jumping by flexing as we hit the ground,
in the extreme case collapsing to the ground. If the man’s center of
mass drops 50 cm, instead of 1 cm, during the collision, the force is only
one-fiftieth as much as we calculated, and there is nc danger of com-
pressive fracture.

3.5 Momentum and the Flow of Mass

Analyzing the forces on a system in which there is a flow of mass
becomes terribly confusing if we try to apply Newton’s laws blindly.
A rocket provides the most dramatic example of such a system,
although there are many other everyday problems where the same
considerations apply—for instance, the problem of calculating the
reaction force on a fire hose, or of calculating the acceleration of
a snowball which grows larger as it rolls downhill.

There is no fundamental difficulty in handling any of these
problems provided that we keep clearly in mind exactly what is
included in the system. Recall that F = dP/d¢ [Eq. (3.12)] was
established for a system composed of a certain set of particles.
When we apply this equation in the integral form,

“Fadt = P(b) — P(ta),
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it is essential to deal with the same set of particles throughout
the time interval ¢, to #,; we must keep track of all the particles
that were originally in the system. Consequently, the mass of
the system cannot change during the time of interest.

Mass Flow and Momentum

A spacecraft moves through space with constant velocity v. The space-
craft encounters a stream of dust particles which embed themselves in
it at rate dm/dt. The dust has velocity u just before it hits. At time ¢
the total mass of the spacecraft is M (¢). The problem is to find the
external force F necessary to keep the spacecraft moving uniformly.
(In practice, F would most likely come from the spacecraft’'s own rocket
engines. For simplicity, we can visualize the source F to be completely
external—an invisible hand, so to speak.)

Let us focus on the short time interval between ¢ and ¢ + Af. The
drawings below show the system at the beginning and end of the interval.

Am to be
added in time At

System boundary;
mass of system =M(t)+ Am

System boundary;
mass of system = M(¢t) +Am

Time ¢
Time ¢ + At

Let Am denote the mass added to the satellite during At. The sys-
tem consists of M (f) and Am. The initial momentum is

Pit) = M@V + (Am)u.
The final momentum is
Pt + At) = M@ + (Am)v.
The change in momentum is

AP

P(t + At) — P()
(v — u) Am.
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The rate of change of momentum is approximately

AP Am

—_— = (v —_— u) —_

At At

In the limit At — 0, we have the exact result

.d_P.=(v_u)d_m.

di dt

Since F = dP/dt, the required external force is

F=-—u)—

dt
Note that F can be either positive or negative, depending on the direction
of the stream of mass. If u = v, the momentum of the system is con-
stant, and F = 0.

The procedure of isolating the system, focusing on differentials,
and taking the limit may appear a trifle formal. However, the
procedure is helpful in avoiding errors in a subject where it is
easy to become confused. For instance, a frequent error is to
argue that F = (d/dt)(mv) = m(dv/dt) + v(dm/dE). In the last
example v is constant, and the result would be F = v(dm/di)
rather than (v — u)(dm/dt). The difficulty arises from the fact
that there are several contributions to the momentum, so that the
expression for the momentum of a single particle, p = myv, is not
appropriate. The limiting procedure illustrated in the last exam-
ple avoids such ambiguities.

Freight Car and Hopper

Sand falls from a stationary hopper onto a freight car which is moving
with uniform velocity v. The sand falls at the rate dm/df. How much
force is needed to keep the freight car moving at the speed ©»?

In this case, the initial speed of the sand is 0, and

dP dm dm
—=0—-uw|—)=v—
dt <dt> di

The required force is F' = v dm/di. We can understand why this force
is needed by considering in detail just what happens to a sand grain as
it lands on the surface of the freight car. What would happen if the
surface of the freight car were slippery?
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Leaky Freight Car

Now consider a related case. The same freight car is leaking sand at
the rate dm/di; what force is needed to keep the freight car moving
uniformly with speed v?

Here the mass is decreasing. However, the velocity of the sand after
leaving the freight car is identical to its initial velocity, and its momentum
does not change. Since dP/dt = 0, no force is required. (The sand
does change its momentum when it hits the ground, and there is a
resulting force on the ground, but that does not affect the motion of the
freight car.)

The concept of momentum is invaluable in understanding the
motion of a rocket. A rocket accelerates by expelling gas at a
high velocity; the reaction force of the gas on the rocket accelerates
the rocket in the opposite direction. The mechanism is illustrated
by the drawings of the cubical chamber containing gas at high
pressure.

The gas presses outward on each wall with the force F,. (We
show only four walls for clarity.) The vector sum of the F,'s is
zero, giving zero net force on the chamber. Similarly each wall
of the chamber exerts a force on the gas F, = —F,; the net force
on the gasis also zero. In the right hand drawings below, one wall

Force on chamber <

|

F,
Force on gas —_— <

Fb
A
Iﬁ
|
|
|
|
l
‘| te,
has been removed. The net force on the chamber is F,, to the

right. The net force on the gas is F, to the left. Hence the gas
accelerates to the left, and the chamber accelerates to the right.
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To analyze the motion of the rocket in detail, we must equate
the external force on the system, F, with the rate of change of
momentum, dP/di. Consider the rocket at time ¢. Between ¢
and t + At a mass of fuel Am is burned and expelled as gas with
velocity u relative to the rocket.. The exhaust velocity u is deter-
mined by the nature of the propellants, the throttling of the
engine, etc., but it is independent of the velocity of the rocket.

The sketches below show the system at time ¢ and at time

—

~N
N
\
\
\
pa
/
/

~_ - NG —" v+ AV

Time ¢ Time ¢ + At

t + At. The system consists of Am plus the remaining mass of
the rocket M. Hence the total mass is M + Am.

The velocity of the rocket at time ¢ is v(¢), and at { + A¢, it is
v 4+ Av. The initial momentum is

P@) = (M + Am)v

and the final momentum is

P(t + At) = M(v + Av) + Am(v + Av + u).
The change in momentum is

AP = P(t + At) — P(®)

= M Av + (Am)u.
Therefore,
dP . AP
— = lim —
dt a—o0 AL
dv am
= — — 3.18
Mot

Note that we have defined u to be positive in the direction of v.
In most rocket applications, u is negative, opposite to v. It is
inconvenient to have both m and M in the equation. dm/dt is
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the rate of increase of the exhaust mass. Since this mass comes
from the rocket,

dm aM

dt dt

Using this in Eq. (3.18), and equating the external force to dP/dt,
we obtain the fundamental rocket equation

F=M——u—r-r-: 3.19

It may be useful to point out two minor subtleties in our develop-
ment. The first is that the velocities have been expressed with
respect to an inertial frame, not a frame attached to the rocket.
The second is that we took the final velocity of the element of
exhaust gas to be v 4+ Av + u rather than v + u. This is correct
(consult Example 3.6 on spring gun recaoil if you need help in seeing
the reason), but actually it makes no difference here, since either
expression yields the same final result when the limit is taken.
Here are two examples on rockets.

Rocket in Free Space

If there is no external force on a rocket, F = 0 and its motion is given by
dv amM

M= =u2=
dt dt

or

dv u aM )

dt M dt

Generally the exhaust velocity u is constant, in which case it is easy to
integrate the equation of motion.

TN [,

toodt T M e Mo at
[
—u./Mo M

or
M

7 vo—unM0
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If vo = 0, then

M
Vy = uan

The final velocity is independent of how the mass is released—the fuel
can be expended rapidly or slowly without affecting v;. The only
important quantities are the exhaust velocity and the ratio of initial to
final mass.

The situation is quite different if a gravitational field is present, as
shown by the next example.

Rocket in a Gravitational Field

If a rocket takes off in a constant gravitational field, Eq. (3.19) becomes

M *'A/Wg! M
Mo =M~

ti

where u and g are directed down and are assumed to be constant.

= =37 9
Integrating with respect to time, we obtain

M
v;—vVvo=uln (j) + gt — to).

0

Let vo = 0, £, = 0, and take velocity positive upward.

vy =uln % — gt
f M, giy.

Now there is a premium attached to burning the fuel rapidly. The
shorter the burn time, the greater the velocity. This is why the takeoff
of a large rocket is so spectacular—it is essential to burn the fuel as
quickly as possible.

3.6 Momentum Transport

Nearly everyone has at one time or another been on the receiving
end of a stream of water from a hose. You feel a push. If the
stream is intense, as in the case of a fire hose, the push can be
dramatic—a jet of high pressure water can be used to break
through the wall of a burning building.
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The push of a water stream arises from the momentum it
transfers to you. Unless another external force gives you equal
momentum in the opposite direction, off you go. How can a
column of water flying through the air exert a force which is every
bit as real as a force transmitted by a rigid steel rod? The reason
is easy to see if we picture the stream of water as a series of small
) uniform droplets of mass m, traveling with velocity »,. Let the
O Q—l’ O O = droplets be distance [ apart and suppose that the stream is

L_,__] directed against your hand. Assume that the drops collide with-
out rebound and simply run down your arm. Consider the force
exerted by your hand on the stream. As each drop hits there is
a large force for a short time. Although we do not know the
instantaneous force, we can find the impulse I4rop1et ON each drop
due to your hand.

Taxopres = /1 coltsion £ &
= m(; — vo)

= —MmVy.
The impulse on your hand is equal and opposite.
Ihand = MUy.

The positive sigh means that the impulse on the hand is in the

Area = impulse same direction as the velocity of the drop. The impulse equals

/~ Peak force the area under one of the peaks shown in the drawing. If there

are many collisions per second, you do not feel the shock of each

drop. Rather, you feel the average force F,, indicated by the

dashed line in the drawing. The area under F,, during one colli-

e Avemeefore | 1 sion period T (the time between collisions) is identical to the
impulse due to one drop.

FavT = F dt

1 collision
Since T' = /vy and [F dt = mu,, the average force is

muvy
Fav =07
T

m
= - 7)02.
l
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Here is another way to find the average force. Consider length
L of the stream just about to hit the surface. The number of
drops in L is L/l, and since each drop has momentum muv,, the
total momentum is

L
Ap = — mv,.
l
All these drops will strike the wall in time
L
At = —-
Vo

The average force is

_4r
AL

m
= — %

l 0

To apply this model to a fluid, consider a stream moving with
speed v. If the mass per unit length is m/l = \, the momentum
per unit length is v and the rate at which the stream transports
momentum to the surface is

FB.V

dp
£ = 3.20
a Y

If the stream comes to rest at the surface, the force on the sur-
face is

F = M2 3.21

Momentum Transport to a Surface

A stream of particles of mass m and separation [ hits a perpendicular
surface with velocity ». The stream rebounds along the original line of
motion with velocity »’. The mass per unit length of the incident stream
is A\ = m/l. What is the force on the surface?

The incident stream transfers momentum to the surface at the rate
Av2.  However, the reflected stream does not carry it away at the rate
Av'%, since the density of the stream must change at the surface. The
number of particles incident on the surface in time At is v At/l and their
total mass is Am = mv At/l. Hence, the rate at which mass arrives at
the surface is
dm _m

Iy .
a 10N
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The rate at which mass is carried away from the surface is \'v’. Since
mass does not accumulate on the surface, these rates must be equal.
Hence Nv' = Av, and the force on the surface is

dp'  dp
o= L% g
o Ty SN

@ + ).

If the stream collides without rebound, then v = 0 and F = \v?, in
agreement with our previous result. |If the particles.undergo perfect
reflection, then v/ = v, and FF = 2\v2. The actual force lies somewhere
between these extremes.

We can generalize the idea of momentum transport to three
dimensions. Consider a stream of fluid which strikes an object
and rebounds in some arbitrary direction. For simplicity we
assume that the incident stream is uniform and that in time At
it transports momentum AP;. The direction of AP, is parallel to
the initial velocity v; and AP; = \»;2 At. During the same interval
At the rebounding stream carries away momentum AP;, where
AP; = \uws? At; the direction of AP, is parallel to the final velocity
v;. The vectors are shown in the sketch.

The net momentum change of the fluid in Af is

APsjuia = AP/ — AP;.

The rate of change of the fluid’s momentum is

(dP) _ (dP) <dP>
dt Jowia  \di 7 dt /.
By Newton's second law, (dP/dt)n.ia €quals the force on the fluid

due to the object. By Newton’s third law, the force on the object
due to the fluid is

dpP
F=— (=
(dt)ﬂuid
().~ (@)
at ). \dt/,

The sketches illustrate this result.

Unless there is some opposing force, the object will begin to
accelerate. If P, = P, the stream transfers no momentum and
F=0.
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The force on a moving airplane or boat can be found by con-
sidering the effect of a multitude of streams hitting the surface,
each with its own velocity. Although the mathematical formalism
for analyzing this would lead us too far afield, the physical principle
is the same: momentum transport.

A Dike at the Bend of a River

The problem is to build a dike at the bend of a river to prevent flooding
when the river rises. Obviously the dike has to be strong enough to
withstand the static pressure of the river pgh, where p is the density of
the water and 4 is the height from the base of the dike to the surface of
the water. However, because of the bend there is an additional pres-
sure, the dynamic pressure due to the rush of water. How does this
compare with the static pressure?

We approximate the bend by a circular curve with radius R, and focus
our attention on a short length of the curve subtending angle Af. We
need only concern ourselves with that section of the river above the base
of the dike, and we consider the volume of the river bounded by the bank
a, the dike b, and two imaginary surfaces ¢ and d. Momentum is trans-
ferred into the volume through surface ¢ and out through surface d at
rate P = \v? = pAv?. Here A is the cross sectional area of the river
lying above the base of the dike, A = Aw. (Note that pA = N = mass
per unit length of the river.)

However, surfaces ¢ and d are not parallel. The rate of change of
the stream’s momentum is

P=P,— P,

As we can see from the vector drawing below, Pis radially inward and has
magnitude

|P| = P A6.

The dynamic force on the dike is radially outward, and has the same
magnitude, P Af. The force is exerted over the area (R Af)h, and the
dynamic pressure is therefore

P Af
R A6k
pAv?
Rh
pwov?
- .

pressure =
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The ratio of dynamic to static pressure is

dynamic pressure  pwp? 1 w v?

static pressure R pg_h h Rg
width centripetal acceleration

depth g

For a river in flood with a speed of 10 mi/h (approximately 14 ft/s), a
radius of 2,000 ft, a flood height of 3 ft, and a width of 200 ft, the ratio is
0.22, so that the dynamic pressure is by no means negligible. The ratio
is even larger near the surface of the river where the static pressure is
small.

Pressure of a Gas

As a further application of the idea of momentum transport, let us find
the pressure exerted by a gas. Although our argument will be somewhat
simpleminded, it exhibits the essential ideas and gives the same result as
more refined arguments.

Assume that there are n atoms per unit volume of the gas, each having
mass m, and that they move randomly. Let us find the force exerted on
an area A in the yz plane due to motion of the atoms in the z direction.
We make the plausible assumption that it is permissible to neglect motion
in the y and z direction, and treat only motion parallel to the z axis.
Suppose that all atoms have the same speed, v,. The rate at which they
hit the surface is #nA4v,, where the factor of 4 is introduced because the
atoms can move in either direction with equal probability. The momen-
tum carried by each atom is mv,. It is unlikely that the atoms come to
rest after the collision; this would correspond to the freezing of the gas
on the walls. On the average, they must leave at the same rate as they
arrive, which means that the average change in momentum is 2muv,.
Hence, the rate at which momentum changes due to collisions with area
Ais

% = (% nAv,) @muv,)

mndv,2.

The force is

dp
dt
mnAv,?

F =

and the pressure P, on the z surface is
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The assumption that v, has a fixed value is actually unnecessary. If
the atoms have many different instantaneous speeds, then it can be

shown that v,2 should be replaced by its average v,2, and P, = nmv—,;2

By an identical argument we have P, = mm;‘;5 and P, = nmv,%. How-
ever, since the pressure of a gas should not depend on direction, we

have P, = P, = P,, which implies that 1? = vy_2 = p,2. The mean
squared velocity is v? = v,2 + v,2 + 0,2 so that v,2 = %v? and the pres-
sure is

P = nmor.
This is a famous result of the kinetic theory of gas, and it is a crucial

point in the argument connecting heat and kinetic energy.

Center of Mass

In this Note we shall find the center of mass of some nonsymmetrical
objects. These examples are trivial if you have had experience evai-
uating two or three dimensional integrals. Otherwise, read on.

1. Find the center of mass of a thin rectangular plate with sides of length

a and b, whose mass per unit area ¢ varies in the following fashion:
o = go(zy/ab), where g, is a constant.

1
R = i /(xi—{—yj)adxdy

We find J, the mass of the plate, as follows:

b a
M=/0 /Oadxdy

_ b a ?Z_/
—ﬁ)/;)aoabdxdy.

We first integrate over z, treating y as a constant.

a
b Y

- [ (o2
@
2
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The x component of R is

X=L//awdxdy
M
=i/b</axaogdx>dy
M Jo 0 ab
=i/b(aiyic_3a>d
M JO \ab 310
1 oo fbyad
Mablo 3
1 gga®b?
T Mab3 2
4 o.a%
ooab 6
2

- Q.
3

I

Similarly, Y = $b.
2. Find the center of mass of a uniform solid hemisphere of radius R
and mass M.

From symmetry it is apparent that the center of mass lies on the z
axis, as illustrated. Its height above the equatorial plane is

Z=%/sz.

The integral is over three dimensions, but the symmetry of the situ-
ation lets us treat it as a one dimensional integral. We mentally sub-
divide the hemisphere into a pile of thin disks. Consider the circular
disk of radius r and thickness dz. Its volume is dV = wr?dz, and its
massisdM = pdV = (M/V)@AV), where V = $rR3." Hence,

gL (M
M 14
= i w2z dz.
VvV Jz=

To evaluate the integral we need to find r in terms of z. Since
r? = R? — 22, we have

Z=%/(;RZ(R2—22)d2

(L L
vV \2 4

R

0
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3.1 The density of a thin rod of length [ varies with the distance z from
one end as p = pox?/l%. Find the position of the center of mass.
Ans. X =3l/4

3.2 Find the center of mass of a thin uniform plate in the shape of an
equilateral triangle with sides a.

3.3 Suppose that a system consists of several bodies, and that the posi-
tion of the center of mass of each body is known. Prove that the center
of mass of the system can be found by treating each body as a particle
concentrated at its center of mass.

3.4 An instrument-carrying projectile accidentally explodes at the top of
its trajectory. The horizontal distance between the launch point and the
point of explosion is L. The projectile breaks into two pieces which fly
apart horizontally. The larger piece has three times the mass of the
smaller piece. To the surprise of the scientist in charge, the smaller
piece returns to earth at the launching station. How far away does the
larger piece land? Neglect air resistance and effects due to the earth’s
curvature.

3.5 A circus acrobat of mass A leaps straight up with initial velocity v,
from a trampoline. As he rises up, he takes a trained monkey of mass
m off a perch at a height 4 above the trampoline.

What is the maximum height attained by the pair?

3.6 A light plane weighing 2,500 Ib makes an emergency landing on a
short runway. With its engine off, it lands on the runway at 120 ft/s.
A hook on the plane snags a cable attached to a 250-Ib sandbag and drags
the sandbag along. |If the coefficient of friction between the sandbag
and the runway is 0.4, and if the plane’s brakes give an additional retard-
ing force of 300 Ib, how far does the plane go before it comes to a stop?

3.7 A system is composed of two blocks of mass m; and m, connected
by a massless spring with spring constant k. The blocks slide on a fric-
tionless plane. The unstretched length of the spring is I. Initially m,
is held so that the spring is compressed to [/2 and m; is forced against
a stop, as shown. m, is released at ¢ = 0.

Find the motion of the center of mass of the system as a function of
time.
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3.8 A 50-kg woman jumps straight into the air, rising 0.8 m from the
ground. What impulse does she receive from the ground to attain this
height?

3.9 A freight car of mass M contains a mass of sand m. Attt =0 a
constant horizontal force F is applied in the direction of rolling and at
the same time a port in the bottom is opened to let the sand flow out at
constant rate dm/dt. Find the speed of the freight car when all the sand
is gone. Assume the freight car is at rest at { = 0.

3.10 An empty freight car of mass M starts from rest under an applied
force F. At the same time, sand begins to run into the car at steady
rate b from a hopper at rest along the track.
Find the speed when a mass of sand, m, has been transferred. (Hint:
There is a way to do this problem in one or two lines.)
Ans. clue. If M = 500 kg, b = 20 kg/s, F = 100 N, then v = 1.4 m/s at
t=10s

3.11 Material is blown into cart A from cart B at a rate b kilograms per
second. The material leaves the chute vertically downward, so that it
has the same horizontal velocity as cart B, u. At the moment of interest,
cart 4 has mass M and velocity v, as shown. Find dv/dt, the instan-
taneous acceleration of A.

3.12 A sand-spraying locomotive sprays sand horizontally into a freight
car as shown in the sketch. The locomotive and freight car are not
attached. The engineer in the locomotive maintains his speed so that
the distance to the freight car is constant. The sand is transferred at
a rate dm/dt = 10 kg/s with a velocity of 5 m/s relative to the locomotive.
The car starts from rest with an initial mass of 2,000 kg. Find its speed
after 100 s.

3.13 A ski tow consists of a long belt of rope around two pulleys, one at
the bottom of a slope and the other at the top. The pulleys are driven
by a husky electric motor so that the rope moves at a steady speed of
1.5 m/s. The pulleys are separated by a distance of 100 m, and the angle
of the slope is 20°.

Skiers take hold of the rope and are pulled up to the top, where they
release the rope and glide off. |If a skier of mass 70 kg takes the tow
every 5 s on the average, what is the average force required to pull the
rope? Neglect friction between the skis and the snow.

3.14 N men, each with mass m, stand on a railway flatcar of mass M.
They jump off one end of the flatcar with velocity u relative to the car.
The car rolls in the opposite direction without friction.

a. What is the final velocity of the flatcar if all the men jump at the
same time?

b. What is the final velocity of the flatcar if they jump off one at a
time? (The answer can be left in the form of a sum of terms.)
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c. Does case a or case b yield the largest final velocity of the flat car?
Can you give a simple physical explanation for your answer?

3.15 A rope of mass I and length [ lies on a frictionless table, with a
short portion, l,, hanging through a hole. Initially the rope is at rest.

a. Find a general equation for x(f), the length of rope through the
hole.
Ans. z = Aev + Be 7, v2 =g/l
b. Evaluate the constants .4 and B so that the initial conditions are
satisfied.

3.16 Water shoots out of a fire hydrant having nozzle diameter D with
nozzle speed V,. What is the reaction force on the hydrant?

3.17 An inverted garbage can of weight I is suspended in air by water
from a geyser. The water shoots up from the ground with a speed v,
at a constant rate dm/dt. The problem is to find the maximum height
at which the garbage can rides. What assumption must be fulfilled for
the maximum height to be reached?

Ans. clue. If vo =20 m/s, W = 10 kg, dm/dt = 0.5 kg/s, then Aim.x = 17 m

3.18 A raindrop of initial mass A, starts falling from rest under the
influence of gravity. Assume that the drop gains mass from the cloud
at a rate proportional to the product of its instantaneous mass and its
instantaneous velocity:

— =kMYV,
dt
where k is a constant.

Show that the speed of the drop eventually becomes effectively con-
stant, and give an expression for the terminal speed. Neglect air
resistance.

3.19 A bowl full of water is sitting out in a pouring rainstorm. Its sur-
face area is 500 cm2. The rain is coming straight down at 5 m/s at a rate
of 1073 g/cm?s. |If the excess water drips out of the bowl with negli-
gible velocity, find the force on the bowl due to the falling rain.

What is the force if the bowl is moving uniformly upward at 2 m/s?

3.20 A rocket ascends from rest in a uniform gravitational field by eject-
ing exhaust with constant speed u. Assume that the rate at which mass
is expelled is given by dm/dt = ym, where m is the instantaneous mass of
the rocket and v is a constant, and that the rocket is retarded by air
resistance with a force mby, where b is a constant. Find the velocity of the
rocket as a function of time.

Ans. clue. The terminal velocity is (yu — g)/b.
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WORK AND ENERGY

4.1 Introduction

In this chapter we make another attack on the fundamental prob-
lem of classical mechanics—predicting the motion of a system
under known interactions. We shall encounter two important
new concepts, work and energy, which first appear to be mere
computational aids, mathematical crutches so to speak, but which
turn out to have very real physical significance.

As first glance there seems to be no problem in finding the
motion of a particle if we know the force; starting with Newton’s
second law, we obtain the acceleration, and by integrating we can
find first the velocity and then the position. It sounds simple,
but there is a problem; in order to carry out these calculations we
must know the force as a function of time, whereas force is usually
known as a function of position as, for example, the spring
force or the gravitational force. The problem is serious because
physicists are generally interested in interactions between systems,
which means knowing how the force varies with position, not how
it varies with time.

The task, then, is to find v(¢) from the equation

dv
m ai F(r), 4.1
where the notation emphasizes that F is a known function of
position. A physicist with a penchant for mathematical forma-
lism might stop at this point and say that what we are dealing
with is a problem in differential equations and that what we ought
to do now is study the schemes available, including numerical
methods, for solving such equations. From the strict calcula-
tional point of view, he is right. However, such an approach
is too narrow and affords too little physical understanding.

Fortunately, the solution to Eq. (4.1) is simple for the import-
ant case of one dimensional motion in a single variable. The
general case is more complex, but we shall see that it is not
too difficult to integrate Eq. (4.1) for three dimensional motion
provided that we are content with less than a complete solution.
By way of compensation we shall obtain a very helpful physical
relation, the work-energy theorem; its generalization, the law of
conservation of energy, is among the most useful conservation
laws in physics.

Let’s consider the one dimensional problem before tackling the
general case.
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4.2 Integrating the Equation of Motion in One Dimension

A large class of important problems involves only a single variable
to describe the motion. The one dimensional harmonic oscillator
provides a good example. For such problems the equation of
motion reduces to

d2x
m%; = F(x)
or

dv

— = F(2). 4.2
mdt (z)

We can solve this equation for » by a mathematical trick. First,
formally integrate m dv/dt = F(z) with respect to x:

z AV

m
Za dt

de = ﬁsz(x) dz.

The integral on the right can be evaluated by standard methods
since F(x) is known. The integral on the left is intractable as it
stands, but it can be integrated by changing the variable from z
to t&. The trick is to use!

dz
de = {—) dt
’ (dt)
= v dt.
Then
xbd?) tbd?)
N %dx =m | Eivdt
tbd 1
— Z{Z,2
m/;a dt<2v>dt
113
“2"™

J— 1
= 3mu? — $Mv,?,

where ¢, = 2(t,), v. = v(l.), etc.
Putting these results together yields

imup? — dmw,? = Lﬂ F(x) dz. 4.3

1 Change of variables using differentials is discussed in Note 1.1.
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Alternatively, we can use indefinite upper limits in Eq. (4.3):
Fmv? — Fmu,? = /: F(x) dz, 4.4

where v is the speed of the particle when it is at position . Equa-
tion (4.4) gives us v as a function of x. Since v = dz/dt, we could
solve Eq. (4.4) for dz/dt and integrate again to find z(t). Rather
than write out the general formula, it is easier to see the method
by studying a few examples.

Mass Thrown Upward in a Uniform Gravitational Field

A mass m is thrown vertically upward with initial speed v,. How high
does it rise, assuming the gravitational force to be constant, and neglect-
ing air friction?

Taking the z axis to be directed vertically upward,
F = —mg.
Equation (4.3) gives

21
%mvﬁ - ‘21‘777,002 = / F dz
2o

z1
—mg /20 dz

= —mgR1 — 2o).

I

At the peak, v; = 0 and we obtain the answer
v 2

21 =20 + =.
2g

It is interesting to note that the solution makes no reference to time
at all. We could have solved the problem by applying Newton’'s second
law, but we would have had to eliminate ¢ to obtain the result.

Here is an example that is not easy to solve by direct application
of Newton’s second law.

Solving the Equation of Simple Harmonic Motion

In Example 2.17 we discussed the equation of simple harmonic motion
and pulled the solution out of a hat without proof. Now we shall derive
the solution using Eq. (4.4).
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Consider a mass M attached to a spring. Using the coordinate z

e measured from the equilibrium point, the spring force is F = —kx.
] VYWY ! I Then Eq. (4.4) becomes
WY » [Fivye
—_—— x
b= M — Mo = —k / zdz
x xo
Equilibrium ” I = —3kx? 4+ 3kx,.
position 1
M I The initial coordinates are labeled by the subscript 0.
F=-dx | __ ] In order to find x and v, we must know their values at some time ¢,.

Physically, this arises because the equation of motion by itself cannot
completely specify the motion; we also need to know a set of initial
conditions, in this case the initial position and velocity.! We are free to
choose any initial conditions we wish. Let us consider the case where at
t = 0 the mass is released from rest, v, = 0, at a distance z, from the
origin. Then

k k
2 — Y e A}
v wE Tt
and
dx
dt

Separating the variables gives

z dx & e
/ e =[5 [y
z0 '\/:I:02 — 2 A Jo
k
= A/t
M
The integral on the left hand side is arcsin (x/x0). (The integral is listed
in standard tables. Consulting a table of integrals is just as respectable

for a physicist as consulting a dictionary is for a writer. Of course, in
both cases one hopes that experience gradually reduces dependence.)

Denoting \/k/M by w, we obtain

. z
arcsin { —
Zo

or

. x R
arcsin | — ] — arcsinl = wt.
Zo

1In the language of differential equations, Newton's second law is a ‘“second
order’” equation in the position; the highest order derivative it involves is the
acceleration, which is the second derivative of the position with respect to time.
The theory of differential equations shows that the complete solution of a dif-
ferential equation of nth order must involve n initial conditions.

x
= wi
xo
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Since arcsin 1 = /2, we obtain

= Zo sin (wt + g)

= xy COS wi.

8]
|

Note that the solution indeed satisfies the given initial conditions: at
t =0 =2y cos 0=z and & = zow sin0 = 0. For these conditions
our result agrees with the general solution given in Example 2.14.

4.3 The Work-energy Theorem in One Dimension

In Sec. 4.2 we demonstrated the formal procedure for integrating
Newton’s second law with respect to position. The result was

fma? — jmog? = [ F(2) da,
which we now wish to interpret in physical terms.
The quantity $mw? is called the kinetic energy K, and the left

hand side can be written K, — K,. The integral /:b F(x)dzx is

called the work W, done by the force F' on the particle as the
particle moves from a to b. Our relation now takes the form

W(,a = Kb - Ka. 45

This result is known as the work-energy theorem or, more pre-
cisely, the work-energy theorem in one dimension. (We shall
shortly see a more general statement.) The unit of work and
energy in the Sl system is the joule (J):

1J =1kgm?/s
The unit of work and energy in the cgs system is the erg:
lerg =1gm-cm?/s?
= 107 J.
The unit work in the English system is the foot-pound:
1 ftlb = 1.336 J.

Vertical Motion in an Inverse Square Field

A mass m is shot vertically upward from the surface of the earth with
initial speed v,. Assuming that the only force is gravity, find its maxi-
mum altitude and the minimum value of v, for the mass to escape the
earth completely.



SEC. 43 THE WORK-ENERGY THEOREM IN ONE DIMENSION 157

The force on m is

_ GM.m

r2

F =

The problem is one dimensional in the variable r, and it is simple to find
the kinetic energy at distance r by the work-energy theorem.
Let the particle start at r = R, with initial velocity v,.

K@)y — K@) = [}; Frydr

= —GMm / rar
Re p2?

GMom (1 - l).
r R,

We can immediately find the maximum height of m. At the highest
point, »(r) = 0 and we have

7)02 = ZG]'[e <i el ! )-
R:  Trax

It is a good idea to introduce known familiar constants whenever possible.
For example, since ¢ = GM./R.?, we can write

1 1
vt = 2gR2 (= — —
’ g (Re Tmax)

= 29R, <1 _ % )
Tmax

or

If

Imo(r)? — Lmoy?

or
R,
Tmax = —2_
1- 2
2gR.

The escape velocity from the earth is the initial velocity needed to
move T, to infinity. The escape velocity is therefore

vescape = \/ZgRe
=12 %98 X 6.4 X 106
= 1.1 X 104 m/s.

The energy needed to eject a 50-kg spacecraft from the surface of the
earth is

w

'QLMvezscape
#(G0)(1.1 X 1042 = 3.0 X 10° J.
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4.4 Integrating the Equation of Motion in Several Dimensions

Returning to the central problem of this chapter, let us try to
integrate the equation of motion of a particle acted on by a force
which depends on position.
dv

F(r) = m 7 4.6
In the case of one dimensional motion we integrated with respect
to position. To generalize this, consider what happens when the
particle moves a short distance Ar.

We assume that Ar is so small that F is effectively constant over
this displacement. If we take the scalar product of Eq. (4.6)
with Ar, we obtain

dv
F.-Ar = m— - Ar. 4.7
dt
The sketch shows the trajectory and the force at some point
along the trajectory. At this point,

F.Ar = F Ar cos 6.

Perhaps you are wondering how we know Ar, since this requires
knowing the trajectory, which is what we are trying to find. Let
us overlook this problem for a few moments and pretend we know
the trajectory.

Now consider the right hand side of Eq. (4.7), m(dv/dt) - Ar.
We can transform this by noting that v and Ar are not independent;
for a sufficiently short length of path, v is approximately constant.
Hence Ar = v At, where At is the time the particle requires to
travel Ar, and therefore

dv

dav
—«Ar = m — - v Al. 4.8
mdt r mdt v At

We can transform Eq. (4.7) with the vector identity!

1The identity A« (dA/dt) = 3(d/dl) (A?) is easily proved:

- = 2———A
Zdt(A) Zdt( A
(820
2
_A—

dt
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Equation (4.7) becomes
m d
F:Ar = —— (v2) AL 4.9
=ra®

The next step is to divide the entire trajectory from the initial
position r, to the final position r, into N short segments of length
Ar;, where j is an index numbering the segments. (It makes no
difference whether all the pieces have the same length.) For each
segment we can write a relation similar to Eq. (4.9):

d
F(r,) - Ar; = %L% (v;?) AL, 4.10

where r; is the location of segment j, v; is the velocity the particle
has there, and At; is the time it spends in traversing it. If we add
together the equations of all the segments, we have

S 3 m d
F(r;) - Ar; = — — (v,;2) At;. 4,11
j; (r,) - A, ]Zl 7 3 ) AL

Next we take the limiting process where the length of each seg-
ment approaches zero, and the number of segments approaches
infinity. We have

“M A ey, 4.12

/r:bF(r)'dr= .7

where ¢, and ¢, are the times corresponding to r, and r,. In con-
verting the sum to an integral, we have dropped the numerical
index j and have indicated the location of the first segment Ar,
by r,, and the location of the last section Ary by r,.

The integral on the right in Eq. (4.12) is

to

m ty d
?ﬁ 7 ) dt = 3me? .

= Fmup? — FMmu..

This represents a simple generalization of the result we found for
one dimension. Here, however, v? = v,%2 4 v, + 0,2, whereas
for the one dimensional case we had v»? = »,2.

Equation (4.12) becomes

n
CUFedr = dmu? — dmvl. 4.13

The integral on the left is called a line integral. We shall see how
to evaluate line integrals in the next two sections, and we shall
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also see how to interpret Eq. (4.13) physically. However, before
proceeding, let's pause for a moment to summarize.

Our starting point was F(r) = m dv/di. All we have done is to
integrate this equation with respect to distance, but because we
described each step carefully, it looks like many operations are
involved. This is not really the case; the whole argument can be
stated in a few lines as follows:

F dv
= m —
dt

LbF-dr=me%-dr

b dv

= amd—t-vdt
bm d

— — (2
. 2dt(v)dt

_ 1 1
= ‘gmvbz - 77)’1/0@2.

4.5 The Work-energy Theorem

We now want to interpret Eg. (4.13) in physical terms. The
quantity 2me? is called the kinetic energy K, and the right hand
side of Eq. (4.13) can be written as K, — K,. The integral
/’rrb F - dr is called the work W3, done by the force F on the particle

as the particle moves from a to b. Equation (4.13) now takes the
form

Wye = Ky — K. 4.14

This result is the general statement of the work-energy theorem
which we met in restricted form in our discussion of one dimen-
sional motion.

The work AW done by a force F in a small displacement Ar is

AW = F . Ar =FC050A1"=F||A7‘,

where F| = F cos 6 is the component of F along the direction of

Ar. The component of F perpendicular to Ar does no work. For

a finite displacement from r, to r,, the work on the particle, -
b

/a F . dr, is the sum of the contributions AW = F; Ar from each

segment of the path, in the limit where the size of each segment
approaches zero.
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In the work-energy theorem, W,, = K, — K., W, is the work
done on the particle by the total force F. If F is the sum of
several forces F = ZF,, we can write

Wba = E (Wi)ba

= Kb - Ka;
where
(Woha = [ Fi-dr

is the work done by the 7th force F;.

Our discussion so far has been restricted to the case of a single
particle. However, we showed in Chap. 3 that the center of mass
of an extended system moves according to the equation of motion

F = MR

dv

dt .
where V = R is the velocity of the center of mass. Integrating
Eqg. (4.15) with respect to position gives

FLdR = MV, — EMV., 4.16

where dR = V dt is the displacement of the center of mass in
time di. Equation (4.16) is the work-energy theorem for the
translational motion of an extended system; in Chaps. 6 and 7 we
shall extend the ideas of work and kinetic energy to include rota-
tional motion. Note, however, that Eq. (4.16) holds regardless of
the rotational motion of the system.

The Conical Pendulum

We discussed the motion of the conical pendulum in Example 2.8. Since
the mass moves with constant angular velocity w in a circle of constant
radius R, the kinetic energy of the mass, 4mRw?, is constant. The work-
energy theorem then tells us that no net work is being done on the mass.

Furthermore, in the conical pendulum the string force and the weight
force separately do no work, since each of these forces is perpendicular
to the path of the particle, making the integrand of the work integral
zero.

It is important to realize that in the work integral fF - dr, the vector
dr is along the path of the particle. Since v = dr/dt, dr = v dt and dr
is always parallel to v.
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Escape Velocity—the General Case

In Example 4.3 we discussed the one dimensional motion ¢f a mass m
projected vertically upward from the earth. We found that if the initial

speed is greater than vy = \/ZgRe, the mass will escape from the earth.
Suppose that we look at the problem once again, but now allow the mass
to be projected at angle a from the vertical.

The force on m, neglecting air resistance, is

GM.m .

r

F=—
T?
2

e -

r
2

I

— mg

where ¢ = GM,./R.? is the acceleration due to gravity at the earth’s sur-
face. We do not know the trajectory of the particle without solving the
problem in detail. However, any element of the path dr can be written

dr =dr#+rdfb.
Hence

2

F-dr = —mgl—g;—f'-(dr?—i—rd@@)
r

—mg Ii;— dr.
r

The work-energy theorem becomes

T dr

1
Fmv? — Fmve? = —ngJ/ —
Re p2

1 1
= —mgR2 (== =)
i <r Re)

The escape velocity is the value of vy for which r = «, v = 0. We
find
Vo = '\/ZgRe

= 1.1 X 10* m/s,

as before. The escape velocity is independent of the launch direction.

We have neglected the earth’s rotation in our analysis. In the
absence of air resistance the projectile should be fired horizontally to
the east, since the rotational speed of the earth's surface is then added
to the launch velocity.

4.6 Applying the Work-energy Theorem
In the last section we derived the work-energy theorem

Wba = Kb - Ka 4,17
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and applied it to a few simple cases. In this section we shall use
it to tackle more complicated problems. However, a few com-
ments on the properties of the theorem are in order first.

To begin, we should emphasize that the work-energy theorem
is a mathematical consequence of Newton’s second law; we have
introduced no new physical ideas. The work-energy theorem is
merely the statement that the change in kinetic energy is equal
to the net work done. This should not be confused with the
general law of conservation of energy, an independent physical
law which we shall discuss in Sec. 4.12.

Possibly you are troubled by the following problem: to apply
the work-energy theorem, we have to evaluate the line integral
for work?

Wra =}[ZF-dr

and the evaluation of this integral depends on knowing what path
the particle actually follows. We seem to need to know every-
thing about the motion even before we use the work-energy
theorem, and it is hard to see what use the theorem would be.

In the most general case, the work integral depends on the path
followed, and since we don’t know the path without completely
solving the problem, the work-energy theorem is useless. There
are, fortunately, two special cases of considerable practical import-
ance. For many forces of interest, the work integral does not
depend on the particular path but only on the end points. Such
forces, which include most of the important forces in physics, are
called conservative forces. As we shall discuss laterin this chapter,
the work-energy theorem can be put in a very simple form when
the forces are conservative.

The work-energy theorem is also useful in cases where the
path is known because the motion is constrained. By constrained
motion, we mean motion in which external constraints act to keep
the particle on a predetermined trajectory. The roller coaster is
a perfect example. Exceptin cases of calamity, the roller coaster
follows the track because it is held on by wheels both below and
above the track. There are many other examples of constrained
motion which come readily to mind—the conical pendulum is one
(here the constraint is that the length of the string is fixed)—but
all have one feature in common—the constraining force does no
work. To see this, note that the effect of the constraint force is

1The C through the integral sign reminds us that the integral is to be evaluated
along some specific curve.
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to assure that the direction of the velocity is always tangential to
the predetermined path. Hence, constraint forces change only
the direction of v and do no work.!

The Inverted Pendulum

A pendulum consists of a light rigid rod of length [, pivoted at one end
and with mass m attached at the other end. The pendulum is released
from rest at angle ¢, as shown. What is the velocity of m when the
rod is at angle ¢?

The work-energy theorem gives

Fmu(¢) — Fmve? = Wy 4,

Since vy = 0, we have

v(e) = (2—W°“"”°>7
m

To evaluate Wy 4, the work done as the bob swings from ¢, to ¢, we
examine the force diagram. dr lies along the circle of radius I. The
forces acting are gravity, directed down, and the force of the rod, N.
Since N lies along the radius, N - dr = 0, and N does no work. The work
done by gravity is

mgl cos <<p - %) de

mgl sin ¢ d¢

mg - dr

where we have used |dr| = I d¢.

W = /q: mgl sin ¢ d¢

Il

. ®
—mgl cos ¢ '¢
0

mgl (cos ¢o — cos ¢).
The speed at ¢ is
v($) = [291 (cos ¢o — cos ¢)I".

The maximum velocity is obtained by letting the pendulum fall from the
top, ¢o = 0, to the bottom, ¢ = m:

Vmex = 2(gD)2.

+
1 We can prove that constraint forces do no work as follows. Suppose that the
constraint force Feonstraing Changes the velocity by an amount Av, in time At.
Av, is perpendicular to the instantaneous velocity v. The work done by Feonstraint
i Feonstraint * A = m(AVe/AL) * (v Al) =mAv,* v =0.
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This is the same speed attained by a mass falling through the same
vertical distance 2l. However, the mass on the pendulum is not travel-
ing vertically at the bottom of its path, it is traveling horizontalily.

If you doubt the utility of the work-energy theorem, try solving
the last example by integrating the equation of motion. However,
the example alsoillustrates one of the shortcomings of the method:
we found a simple solution for the speed of the mass at any point
on the circle—we have no information on when the mass gets
there. For instance, if the pendulum is released at ¢o = 0, in
principle it balances there forever, never reaching the bottom.
Fortunately, in many problems we are not interested in time, and
even when time is important, the work-energy theorem provides
a valuable first step toward obtaining a complete solution.

Next we turn to the general problem of evaluating work done
by a known force over a given path, the problem of evaluating
line integrals. We start by looking at the case of a constant
force.

Work Done by a Uniform Force

The case of a uniform force is particularly simple. Here is how to find
the work done by a force, F = Fyfi, where I/, is a constant and fi is a
unit vector in some direction, as the particle moves from r, to r, along
some arbitrary path. All the steps are put in to make the procedure
clear, but with any practice this problem can be solved by inspection.

ry

Wba = F- dl’
"
no_ .
= f Fol’l - dr
L
. e
= Fol’l . dr
re
N N Tb,Yby2b N Tb,Yb,2b -~ ZTb,Yb,2b
=Fon-(|/ dx + j dy + k dz)
Za,Ya,2a Za,Ya,2a Za,YayRa

= Fofi - [i(@s — o) + §(Ws — ¥a) + k(2o — 2a)]
= Foﬁ . (l‘b - l’a)

= Fycos 0 |r, — r,

For a constant force the work depends only on the net displacement,
r, — r,, not on the path followed. This is not generally the case, but
it holds true for an important group of forces, including central forces,
as the next example shows.
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Work Done by a Central Force

A central force is a radial force which depends only on the distance from
the origin. Let us find the work done by the central force F = f(r)f on
a particle which moves from r, to r,. For simplicity we shall consider
motion in a plane, for which dr = dr # + r d6 8. Then

Wba= fabF'dl’
= }[abf(r)F-(drF+rd06)
=Lbf(r)dr.

The work is given by a simple one dimensional integral over the variable
r. Since 6 has disappeared from the problem, it should be obvious that
the work depends only on the initial and final radial distances [and, of
course, on the particular form of f(r)], not on the particular path.

For some forces, the work is different for different paths
between the initial and final points. One familiar example is
work done by the force of sliding friction. Here the force always
opposes the motion, so that the work done by friction in moving
through distance dS is dW = —fdS, where f is the magnitude
of the friction force. If we assume that f is constant, then the
work done by friction in going from r, to r, along some path is

- /r:bde
= —f8,

where S is the total length of the path. The work is negative
because the force always retards the particle. Wy, is never
smaller in magnitude than fS,, where S, is the distance between
the two points, but by choosing a sufficiently devious route, S can
be made arbitrarily large.

Wba

It

A Path-dependent Line Integral

Here is a second example of a path-dependent line integral. Let
F = A(zyi + y?%), and consider the integral from (0,0) to (0,1), first
along path 1 and then along path 2, as shown in the figure. The force
F has no physical significance, but the example illustrates the properties
of nonconservative forces. Since the segments of each path lie along a
coordinate axis, it is particularly simple to evaluate the integrals. For
path 1 we have

}[IF~dr=LF~dr+ﬁF~dr+/cF-dr.
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Along segment a, dr = dzi, F-dr = F,dx = Azxzydx. Since y =0
along the line of this integration, / F.dr = 0. Similarly, for path b,
a

z=1ly=1
. = 2
ﬁr dr Afx=1,y=o 2 dy
A

= —

3

while for path ¢,

Along path 2 we have

0,1
}[2F'dr=A/0,0 yrdy
A

3

#}‘ F.dr.
1

The work done by the applied force is different for the two paths.

Usually the path of a line integral does not lie conveniently
along the coordinate axes but along some arbitrary curve. The
following method of evaluating a line integral in such a case is
quite general; use it if all else fails.

For simplicity we again consider motion in a plane. Generaliza-
tion to three dimensions is straightforward.

b
The problem is to evaluate fa F - dr along a specified path.

The path can be characterized by an equation of the form
g(x,y) = 0. For example, if the path is a unit circle about the
origin, then all points on the path obey z2 4+ y*> — 1 = 0.

We can characterize every point on the path by a parameter
s which in practical problems could be (for example) distance
along the path, or angle—anything just as long as each point on
the path is associated with a value of s so that we can write
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x = z(s), y = y(s). If we move along the path a short way, so
that s changes by the amount ds, then the change in z is
dx = (dz/ds) ds, and the change in y is dy = (dy/ds) ds. Since
both z and y are determined by s, so are F, and F,. Hence, we
can write F = F,(s)i + F,(s)j, and we have

fabr-dr - [lb(F,dx+Fydy)
=R+ rw]
- / ’ [Fz(s) o + F,(s) o ds.

We have reduced the problem to the more familiar problem of
evaluating a one dimensional definite integral. The calculation is
much simpler in practice than in theory. Here is an example.

Parametric Evaluation of a Line Integral

Evaluate the line integral of F = A (2% + zy?j) from (x =0, y = 0) to
(x =0, y = 2R) along the semicircle shown.

The natural parameter to use here is 0, since as 0 varies from 0 to 7,
the radius vector sweeps out the semicircle. We have
r = Rsinf dx = R cos 6df F, = AR3sin% 0
y = Bl — cos 6) dy = R sin 6d6 7, = AR3 sin 1 — cos 6)?

f Fodr =4 /0” [(R sin 0)°R cos 8 + R3 sin § (1 — cos 0)R sin 0] do
= R4 ﬁ [sin® 8 cos 0 + sin% 6(1 — cos 6)?] d6.

Evaluation of the integral is straightforward. If you are interested in
carrying it through, try substituting u = cos 6.

4.7 Potential Energy

We introduced the idea of a conservative force in the last section.
The work done by a conservative force on a particle as it moves
from one point to another depends only on the end points, not
on the path between them. Hence, for a conservative force,

rrb F - dr = function of (r,) — function of (r,)
or
VFdr = — U + UG, 418

where U(r) is a function, defined by the above expression, known
as the potential energy function. (The reason for the sign con-
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vention will be clear in a moment.) Note that we have not proven
that U(r) exists. However, we have already seen several cases
where the work is indeed path-independent, so that we can
assume that U exists for at least a few forces.

The work-energy theorem W3, = K, — K, now becomes

Wba= _Ub+ Ua
=Ky, — K,

or, rearranging,
K.+ U, =Ky + U 4,19

The left hand side of this equation, K, + U, depends on the
speed of the particle and its potential energy at r,; it makes no
reference to r,. Similarly, the right hand side depends on the
speed and potential energy at r,; it makes no reference to r,.
This can be true only if each side of the equation equals a con-
stant, since r, and r, are arbitrary and not specially chosen points.
Denoting this constant by E, we have

K.+U,=K,+ U, =E. 4,20

E is called the total mechanical energy of the particle, or, some-
what less precisely, the total energy. We have shown that if the
force is conservative, the total energy is independent of the posi-
tion of the particle—it remains constant, or, in the language of
physics, the energy is conserved. Although the conservation of
mechanical energy is a derived law, which means that it has basi-
cally no new physical content, it presents such a different way of
looking at a physical process compared with applying Newton’s
laws that we have what amounts to a completely new tool. Fur-
thermore, although the conservation of mechanical energy follows
directly from Newton’s laws, it is an important key to understanding
the more general law of conservation of energy, which is indepen-
dent of Newton’s laws and which vastly increases our understand-
ing of nature. When we discuss this in greater detail in Sec. 4.12,
we shall see that the conservation law for mechanical energy turns
out to be a special case of the more general law.

A peculiar property of energy is that the value of E is to a cer-
tain extent arbitrary; only changes in E have physical significance.
This comes about because the equation

Uy — U, = ——LbF-dr
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defines only the difference in potential energy between a and b
and not the potential energy itself. We could add a constant to
U, and the same constant to U, and still satisfy the defining
equation. However, since £ = K + U, adding a constant to
U increases E by the same amount.

lllustrations of Potential Energy

We have already seen that for a uniform force or a central force
the work is path-independent. There are many other conserva-
tive forces, but by way of illustrating potential energy, here are
two examples involving these forces.

Potential Energy of a Uniform Force Field

From Example 4.7, the work done by a uniform force is Wy, = Fo« (ry — 12)
For instance, the force on a particle of mass m due to a uniform gravita
tional field is —mgf(, so that if the particle moves from r, to r;, the change
in potential energy is

Up— U, = — /;zb(—mg)dz

mg@, — Za)-

If we adopt the convention U = 0 at ground level where z = 0, then
U(h) = mgh, where h is the height above the ground. However, a
potential energy of the form mgh -+ C, where C is any constant, is just
as suitable.

In Example 4.1 we considered the problem of a mass projected upward
with a given initial velocity in a region of constant gravity. Here is how
to solve the same problem by using conservation of energy.

Suppose that a mass is projected upward with initial velocity vo =
oA -+ vo,f + vo.k. Find the speed at height A. '

Ko+ Uo= Kty + UR)
3mue® + 0 = Fmo(h)? + mgh
or

v(h) = \/voz — 2gh.

Example 4.11 is trivial, since motion in a uniform force field is
easily found from F = ma. However, it does illustrate the ease
with which the energy method handles the problem. For instance,
motion in all three directions is handled at once, whereas Newton’s
law involves one equation for each component of motion.
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Potential Energy of an Inverse Square Force

Frequently we encounter central forces F = f(r)f, where f(r) is some
function of the distance to the origin. For instance, in the case of the
Coulomb electrostatic force, F « (qiqs/r?)f, where ¢; and ¢, are the
charges of two interacting particles. The gravitational force between
two particles provides another example.

The potential energy of a particle in a central force F = f(r)f obeys

Uy — U, = —/rnF-dr

- /;:bf(r) dr.

For an inverse square force, f(r) = A/r? and we have

U= Us=— ["2a
Ta 72
_4_4
Ty Ta

To obtain the general potential energy function, we replace 7, by the
radial variable . Then
A A
ww=—+<m——)
r Ta

4
==+
r

The constant C' has no physical meaning, since only changes in U are
significant. We are free to give C any value we like. A convenient
choice in this case is C = 0, which corresponds to taking U(®) = 0.
With this convention we have

Uwr) = é
r

One of the most important forces in physics is the linear restor-
ing force, the spring force. To show that the spring force is con-
servative, consider a spring of equilibrium length r, with one end
attached at the origin. If the spring is stretched to length r
along direction ¥, it exerts a force

F(r) = —k(r — ror.

Since the force is central, it is conservative. The potential energy
is given by

U@) — Ula)

— [/ =k = royar

2k(r — ro)? ':
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Hence

U(r) = 3k(r — ro)* + C.

Conventionally, we choose the potential energy to be zero at equi-
librium: U(ry) = 0. This gives

U@r) = $k(r — 7o) 4.21

When several conservative forces act on a particle, the potential
energy is the sum of the potential energies for each force. In the
next example, two conservative forces act.

Bead, Hoop, and Spring

A bead of mass m slides without friction on a vertical hoop of radius R.
The bead moves under the combined action of gravity and a spring
attached to the bottom of the hoop. For simplicity, we assume that the
equilibrium length of the spring is zero, so that the force due to the
spring is —kr, where r is the instantaneous length of the spring, as
shown.

The bead is released at the top of the hoop with negligible speed.
How fast is the bead moving at the bottom of the hoop?

At the top of the hoop, the gravitational potential energy of the bead
is mg(2R) and the potential energy due to the spring is 3k(R)? = 2kR>.
Hence the initial potential energy is

U; = 2mgR + 2kR>.
The potential energy at the bottom of the hoop is
U;=0.

Since all the forces are conservative, the mechanical energy is con-
stant and we have

K:+U;=K;+ Uy.

The initial kinetic energy is zero and we obtain
Ky = [}i - Uy

or

Amv? = 2mgR + 2kR2.

Hence

2
vf=2',gR+.k_I_2_.
m
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4.8 What Potential Energy Tells Us about Force

If we are given a conservative force, it is a straightforward matter
to find the potential energy from the defining equation

Uy — U, = —Lbr.dr,

where the integral is over any path from r, to r,. However, in
many cases it is easier to characterize a force by giving its poten-
tial energy function rather than by specifying each of its compo-
nents. In such cases we would like to use our knowledge of the
potential energy to determine what force is acting. The proce-
dure for finding the force turns out to be simple. In this sec-
tion we shall learn how to find the force from the potential energy
in a one dimensional system. The general case of three dimen-
sions can be treated by a straightforward extension of the method
developed here, but since it involves some new notation which is
more readily introduced in the next chapter, let us defer the three
dimensional case until then.

Suppose that we have a one dimensional system, such as a mass
on a spring, in which the force is F(xz) and the potential energy is

Uy — U= — [ F@)da.
Consider the change in potential energy AU as the particle moves
from some point z to z + Ax.
U + az) — U(x) = AU
x4 Az
= — L F(x) da.

For Az sufficiently small, F(z) can be considered constant over
the range of integration and we have

AU = —F(z)(x + Az — x)

= —F(x)Ax
or
AU
F(z) =~ — Z;
In the limit Az — 0 we have
d
F(z) = — d—U- 4.22

The result is quite reasonable: potential energy is the negative
integral of the force, and it follows that force is the negative deriv-
ative of the potential energy.
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Stability

The result F = —dU/dx is useful not only for computing the
force but also for visualizing the stability of a system from a dia-
gram of the potential energy. For instance, in the case of a har-
monic oscillator the potential energy U = kz2/2 is described by a
parabola.

At point a, dU/dxz > 0 and so the force is negative. At point b,
dU/dx < 0 and the force is positive. At ¢, dU/dx = 0 and the
force is zero. The force is directed toward the origin no matter
which way the particle is displaced, and the force vanishes only
when the particle is at the origin. The minimum of the potential
energy curve coincides with the equilibrium position of the system.
Evidently this is a stable equilibrium, since any displacement of
the system produces a force which tends to push the particle
toward its resting point.

Whenever dU/dx = 0, a system is in equilibrium. However,
if this occurs at a maximum of U, the equilibrium is not stable,
since a positive displacement produces a positive force, which
tends to increase the displacement, and a negative displacement
produces a negative force, which again causes the displacement
to become larger. A pendulum of length [ supporting mass m
offers a good illustration of this. If we take the potential energy
to be zero at the bottom of its swing, we see that

U(9) = mgz
= mgl(l — cos 6).

The pendulum is in equilibrium for § = 0 and 6 = v. However,
although the pendulum will quite happily hang downward for
as long as you please, it will not hang vertically up for long.
dU/dx = 0 at § = w, but U has a maximum there and the equi-
librium is not stable.

The sketch of a potential energy function makes the idea of
stability almost intuitively obvious. A minimum of a potential
energy curve is a point of stable equilibrium, and a maximum is
a point of unstable equilibrium. In more descriptive terms, the
system is stable at the bottom of a potential energy *‘valley,” and
unstable at the top of a potential energy ‘“hill.”

Alternatively, we can use a simple mathematical test to deter-
mine whether or not an equilibrium point is stable. Let U(x) be
the potential energy function for a particle. As we have shown,
the force on the particle is F = —dU/dz, and the system is in
equilibrium where dU/dxz = 0. Suppose that this occurs at some
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point zo. To test for stability we must determine whether U has
a minimum or a maximum at x,. To accomplish this we need to
examine d2U/dx? at z,. If the second derivative is positive, the
equilibrium is stable; if it is negative, the system is unstable. If
d2U/dz* = 0, we must look at higher derivatives. If all derivatives
vanish so that U is constant in a region about z,, the system is
said to be in a condition of neutral stability—no force results from
a displacement; the particle is effectively free.

U | U | U |

<_
)
|

X

=

[S)

= -
o

3 p—
)

32U d2u diu

—=>0 — <0 =

dx? dx? dx? 0
stable unstable neutral

Energy and Stability—The Teeter Toy

The teeter toy consists of two identical weights which hang from a peg on
drooping arms, as shown. The arrangement is unexpectedly stable—
the toy can be spun or rocked with little danger of toppling over. We
can see why this is so by looking at its potential energy. For simplicity,
we shall consider only rocking motion in the vertical plane.

Let us evaluate the potential energy when the teeter toy is cocked at
angle 6, as shown in the sketch. If we take the zero of gravitational
potential at the pivot, we have

U(0) = mg[L cos 8 — lcos (a + 6)] + mg[L cos § — [l cos (a — 6)].

Using the identity cos (o + 6) = cos o cos 6 F sin « sin §, we can rewrite

U(@0) as
U(8) = 2mg cos 6(L — [ cos a).
Equilibrium occurs when

U
d6

—2mg sin (L — l cos a)
= 0.

The solution is § = 0, as we expect from symmetry. (We reject the solu-
tion @ = 7 on the grounds that # must be limited to values less than

X
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7/2.) To investigate the stability of the equilibrium position, we must
examine the second derivative of the potential energy. We have

au

T = —2mg cos O(L — lcos a).

At equilibrium,

daxu

—_— = —2mg(L — lcos a).
ag® |g=o

For the second derivative to be positive, we require L — lcos a < 0, or
L <lcos a.

In order for the teeter toy to be stable, the weights must hang below the
pivot.

4.9 Energy Diagrams

We can often find the most interesting features of the motion of
a one dimensional system by using an energy diagram, in which the
total energy F and the potential energy U are plotted as functions
of position. The kinetic energy K = E — U is easily found by
inspection. Since kinetic energy can never be negative, the
motion of the system is constrained to regions where U < E.

Here is the energy diagram for a harmonic oscillator. The
potential energy U = ka?/2 is a parabola centered at the origin.
Since the total energy is constant for a conservative system, F is
represented by a horizontal straight line. Motion is limited to the
shaded region where E > U; the limits of the motion, z; and z.
in the sketch, are sometimes called the turning points.

Here is what the diagram tells us. The kinetic energy,
K = FE — U, is greatest at the origin. As the particle flies past
the origin in either direction, it is slowed by the spring and comes
to a complete rest at one of the turning points z;, ;. The par-
ticle then moves toward the origin with increasing kinetic energy,
and the cycle is repeated.

The harmonic oscillator provides a good example of bounded
motion. As E increases, the turning points move farther and
farther off, but the particle can never move away freely. If E is
decreased, the amplitude of motion decreases, until finally for
E = 0 the particle lies at rest at z = 0.

Quite a different behavior occurs if U does not increase indefi-
nitely with distance. For instance, consider the case of a particle
constrained to a radial line and acted on by a repulsive inverse
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square law force A¥/r%. Here U = A/r, where A is positive.
There is a distance of closest approach, ruin, as shown in the dia-
gram, but the motion is not bounded for large r since U decreases
with distance. If the particle is shot toward the origin, it gradually
loses kinetic energy until it comes momentarily to rest at rumin.
The motion then reverses and the particle moves out toward
infinity. The final and initial speeds at any point are identical;
the collision merely reverses the velocity.

With some potentials, either bounded or unbounded motion can
occur depending upon the energy. For instance, consider the
interaction between two atoms. At large separations, the atoms
attract each other weakly with the van der Waals force, which
varies as 1/77. As the atoms approach, the electron clouds begin
to overlap, producing strong forces. In this intermediate region
the force is either attractive or repulsive depending on the details
of the electron configuration. If the force is attractive, the poten-
tial energy decreases with decreasing r. At very short distances
the atoms always repel each other strongly, so that U increases
rapidly as » becomes small.

The energy diagram for a typical attractive two atom system is
shown in the sketch. For positive energy, £ > 0, the motion is
unbounded, and the atoms are free to fly apart. As the diagram
indicates, the distance of closest approach, ruin, does not change
appreciably as F is increased. The steep slope of the potential
energy curve at small » means that the atoms behave like hard
spheres—rnin is not sensitive to the energy of collision.

The situation is quite differentif £ is negative. Then the motion
is bounded for both small and large separations; the atoms never
approach closer than r, or move farther apart than r,. A bound
system of two atoms is, of course, a molecule, and our sketch rep-
resents a typical diatomic molecule energy diagram. If two atoms
collide with positive energy, they cannot form a molecule unless
some means is available for losing enough energy to make F nega-
tive. In general, a third body is necessary to carry off the excess
energy. Sometimes the third body is a surface, which is the rea-
son surface catalysts are used to speed certain reactions. For
instance, atomic hydrogen is quite stable in the gas phase even
though the hydrogen molecule is tightly bound. However, if a
piece of platinum is inserted in the hydrogen, the atoms imme-
diately join to form molecules. What happens is that hydrogen
atoms tightly adhere to the surface of the platinum, and if a colli-
sion occurs between two atoms on the surface, the excess energy
is released to the surface, and the molecule, which is not strongly



178

Energy

WORK AND ENERGY

attracted to the surface, leaves. The energy delivered to the sur-
face is so large that the platinum glows brightly. A third atom
can also carry off the excess energy, but for this to happen the
two atoms must collide when a third atom is nearby. Thisis a rare
event at low pressures, but it becomes increasingly important at
higher pressures. Another possibility is for the two atoms to lose
energy by the emission of light. However, this occurs so rarely
that it is usually not important.

4,10 Small Oscillations in a Bound System

The interatomic potential we discussed in the last section illus-
trates an important feature of all bound systems; at equilibrium
the potential energy has a minimum. As a result, nearly every
bound system oscillates like a harmonic oscillator if it is slightly
perturbed from its equilibrium position. This is suggested by the
appearance of the energy diagram near the minimum—U has
the parabolic shape of a harmonic oscillator potential. If the total
energy is low enough so that the motion is restricted to the region
where the curve is nearly parabolic, as illustrated in the sketch,
the system must behave like a harmonic oscillator. It is not diffi-
cult to prove this.

As we have discussed in Note 1.1, any ‘““well behaved’’ functlon
f(x) can be expanded in a Taylor's series about a point zo. Thus

f@) = f(@o) + (@ — 2o)f"(xo) + 3(x — 20)’f" (o) + + + - .

Suppose that we expand U(r) about r,, the position of the poten-
tial minimum. Then

+ = (r—m)"’ U

70

au
U@) = Uo) + (r — 7o) o

+ .

However, since U is a minimum at ro, (dU/dr) |,, = 0. Further-
more, for sufficiently small displacements, we can neglect the
terms beyond the third in the power series. In this case,

U@) = Ulre) + ¢ (r — 79)? d(j
r

To

This is the potential energy of a harmonic oscillator,

2
U(x) = constant + k—:—
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We can even identify the effective spring constant:

2
k*dU 4.23

d7l2 To

Molecular Vibrations

Suppose that two atoms of masses m; and m, are bound together in a
molecule with energy so low that their separation is always close to the
equilibrium value 7o. With the parabola approximation, the effective
spring constant is k = (d?U/dr?) |,,, How can we find the vibration
frequency of the molecule?

Consider the two atoms connected by a spring of equilibrium length
ro and spring constant k, as shown below. The equations of motion are

mify = k(r — o)
Moffe = —k(r — ro),

where r = ry — r; is the instantaneous separation of the atoms. We
can find the equation of motion for r by dividing the first equation by m;
and the second by m,, and subtracting. The result is

’i;z—f1=7:=“k<l+i)(T—To)

my ma

= ——(r—r

where u = mimq/ (M1 + my). u has the dimension of mass and is called
the reduced mass.

By analogy with the harmonic oscillator equation & = — (k/m)(x — o)
for which the frequency of oscillation is w = V' k/m, the vibrational fre-
quency of the molecule is

N:
w = —_—
M
_ T

dr2 ro M

This vibrational motion, characteristic of all molecules, can be identified
by the light the molecule radiates. The vibrational frequencies typically
lie in the near infrared (3 X 10!3 Hz), and by measuring the frequency
we can find the value of d2U /dr? at the potential energy minimum. For
the HCI molecule, the effective spring constant turns out to be 5 X 10°
dynes/cm = 500 N/m (roughly 31b/in). For large amplitudes the higher
order terms in the Taylor’'s series start to play a role, and these lead to
slight departures of the oscillator from its ideal behavior. The slight
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‘‘anharmonicities’’ introduced by this give further details on the shape
of the potential energy curve.

Since all bound systems have a potential energy minimum at
equilibrium, we naturally expect that all bound systems behave
like harmonic oscillators for small displacements (unless the mini-
mum is so flat that the second derivative vanishes there also).
The harmonic oscillator approximation therefore has a wide range
of applicability, even down to internal motions in nuclei.

Once we have identified the kinetic and potential energies of a
bound system, we can find the frequency of small oscillations by
inspection. For the elementary case of a mass on a spring we
have

U = 3ka?
K = imz?
and

\/%
w = _
m

In many problems, however, it is more natural to write the ener-
gies in terms of a variable other than linear displacement. For
instance, the energies of a pendulum are

U = mgl(1 — cos 0) =~ $mglo?
K = iml22.
More generally, the energies may have the form

U = $Aq? + constant
K = 3B¢,

4,24

where ¢ represents a variable appropriate to the problem. By
analogy with the mass on a spring, we expect that the frequency
of motion of the oscillator is

A
w = \/-; 4.25

To show explicitly that any system whose energy has the form

of Eq. (4.24) oscillates harmonically with a frequency V 4/B, note
that the total energy of the system is

E=K+U
= 1B¢? + 3Aq? + constant.
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Since the system is conservative, F is constant. Differentiating
the energy equation with respect to time gives

dE

A pii 4+ Aod

il g4 + Aqg
=0

or

.._I_é —0

¢+g59=0

Hence ¢ undergoes harmonic motion with frequency \/A/B.

Small Oscillations

In Example 4.14 we determined the stability criterion for a teeter toy. In
this example we shall find the period of oscillation of the toy when it is
rocking from side to side.

From Example 4.14, the potential energy of the teeter toy is

U@ = —Acos ¥,

where A = 2mg(l cos a« — L). For stability, A > 0. If we expand U (0)
about 8 = 0, we have

02
o= —a(1- 24

sincecos § =1— 602/2+ - - . Thus,
U@ = —A + 4402

To find the kinetic energy, let s be the distance of each mass from the
pivot, as shown in the sketch. If the toy rocks with angular speed §, the
speed of each mass is s, and the total kinetic energy is

K = 3(2m)s*6?
= $B¢?,

where B = 2ms?2.
Hence the frequency of oscillation is

_ Jg cos @ — L). 1
= ___s.z—
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We found in Example 4.14 that for stability [cos @ — L > 0. Equation
(1) shows that as [ cos @ — L approaches zero, w approaches zero, and
the period of oscillation becomes infinite. In the limit{cosa — L =0,
the system is in neutral equilibrium, and if [ cos’a — L < 0, the system
becomes unstable. Thus, a low frequency of oscillation is associated
with the system operating near the threshold of stability. This is a
general property of stable systems, because a low frequency of oscillation
corresponds to a weak restoring force. For instance, a ship rolled by a
wave oscillates about equilibrium. For comfort the period of the roll
should be long. This can be accomplished by designing the hull so that
its center of gravity is as high as possible consistent with stability. Low-
ering the center of gravity makes the system ‘‘stiffer.”” The roll becomes
quicker and less comfortable, but the ship becomes intrinsically more
stable.

4.11 Nonconservative Forces

We have stressed conservative forces and potential energy in this
chapter because they play an important role in physics. However,
in many physical processes nonconservative forces like friction are
present. Let's see how to extend the work-energy theorem to
include nonconservative forces.

Often both conservative and nonconservative forces act on the
same system. For instance, an object falling through the air
experiences the conservative gravitational force and the noncon-
servative force of air friction. We can write the total force F as

F = Fe 4 Feo

where F¢ and Frc are the conservative and the nonconservative
forces respectively. Since the work-energy theorem is true
whether or not the forces are conservative, the total work done
by F as the particle moves from a to b is

b
Wbatotal — %v; F.dr

}ibFC-dr—l— }ibFnc-dr
= — Uy + U, + Wiy

Here U is the potential energy associated with the conservative
force and Wy is the work done by the nonconservative force.
The work-energy theorem, Wy,totel = K, — K,, now has the form

'—Ub+ Ua+ I/Vbanc = Kb - Ka
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or

Ky + Uy — (Ko + Uy) = Where. 4,26

If we define the total mechanical energy by £ = K 4+ U, as
before, then E is no longer a constant but instead depends on
the state of the system. We have

Ey — E, = Wy 4.27

This result is a generalization of the statement of conservation of
mechanical energy which we discussed in Sec. 4.7. If noncon-
servative forces do no work, E, = E,, and mechanical energy is
conserved. However, this is a special case, since nonconserva-
tive forces are often present. Nevertheless, energy methods
continue to be useful; we simply must be careful not to omit the
work done by the nonconservative forces, Wy, Here is an
example.

Block Sliding down Inclined Plane

A block of mass M slides down a plane of angle . The problem is to
find the speed of the block after it has descended through height A,
assuming that it starts from rest and that the coefficient of friction u is
constant.

Initially the block is at rest at height A; finally the block is moving with
speed v at height 0. Hence

U, = Mgh Upy=0
K,=0 K, = 3Mv?
E, = Mgh E, = $M02,

The nonconservative force is f = uN = uMgcos . Hence, the non-
conservative work is

Wba"" = /bf°dl'
a
= —fs,

where sis the distance the block slides. The negative sign arises because
the direction of f is always opposite to the displacement, so that f.dr =
—fdr. Using s = h/sin 0, we have

—uMg cos o
sin @

—u cot 6 Mgh.

Wbanc
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The energy equation E, — E, = Wy becomes
$Mv? — Mgh = —ucot 6 Mgh,

which gives

v =21 — pcot G)gh]%.

Since all the forces acting on the block are constant, the expression
for v could easily be found by applying our results for motion under uni-
form acceleration; the energy method does not represent much of a
shortcut here. The power of the energy method lies in its generality.
For instance, suppose that the coefficient of friction varies along the
surface so that the friction force is f = u(x)Mgcos 6. The work done
by friction is

Wyane = — Mg cos 6 /b#(x) dz,

and the final speed is easily found. In contrast, there is no simple way
to find the speed by integrating the acceleration with respect to time.

4.12 The General Law of Conservation of Energy

As far as we know, the basic forces of nature, such as the force
of gravity and the forces of electric and magnetic interactions, are
conservative. This leads to a puzzle; if fundamental forces are
conservative, how can nonconservative forces arise? The resolu-
tion of this problem lies in the point of view we adopt in describing
a physical system, and in our willingness to brocaden the concept
of energy.

Consider friction, the most familiar nonconservative force.
Mechanical energy is lost by friction when a block slides across a
table, but something else occurs: the block and the table get
warmer. However, there was no reference to temperature in
our development of the concept of mechanical energy; a block of
mass M moving with speed v has kinetic energy $Mv?, whether
the block is hot or cold. The fact that a block sliding across a
table warms up does not affect our conclusion that mechanical
energy is lost. Nevertheless, if we look carefully, we find that the
heating of the system bears a definite relation to the energy dis-
sipated. The British physicist James Prescott Joule was the
first to appreciate that heat itself represents a form of energy.
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By a series of meticulous experiments on the heating of water by
a paddle wheel driven by a falling weight, he showed that the loss
of mechanical energy by friction is accompanied by the appearance
of an equivalent amount of heat. Joule concluded that heat must
be a form of energy and that the sum of the mechanical energy
and the heat energy of a system is conserved.

We now have a more detailed picture of heat energy than was
available to Joule. We know that solids are composed of atoms
held together by strong interatomic forces. Each atom can oscil-
late about its equilibrium position and has mechanical energy in
the form of kinetic and potential energies. As the solid is heated,
the amplitude of oscillation increases and the average energy of
each atom grows larger. The heat energy of a solid is the mechan-
ical energy of the random vibrations of the atoms.

There is a fundamental difference between mechanical energy
on the atomic level and that on the level of everyday events. The
atomic vibrations in a solid are random; at any instant there are
atoms moving in all possible directions, and the center of mass of
the block has no tendency to move on the average. Kinetic energy
of the block represents a collective motion; when the block moves
with velocity v, each atom has, on the average, the same velocity v.

Mechanical energy is turned into heat energy by friction, but
the reverse process is never observed. No one has ever seen a
hot block at rest on a table suddenly cool off and start moving,
although this would not violate conservation of energy. The
reason is that collective motion can easily become randomized.
For instance, when a block hits an obstacle, the collective trans-
lational motion ceases and, under the impact, the atoms start to
jitter more violently. Kinetic energy has been transformed to
heat energy. The reverse process where the random motion of
the atoms suddenly turns to collective motion is so improbable
that for all practical purposes it never occurs. It is for this reason
that we can distinguish between the heat energy and the mechan-
ical energy of a chunk of matter even though on the atomic scale
the distinction vanishes.

We now recognize that in addition to mechanical energy and
heat there are many other forms of energy. These include the
radiant energy of light, the energy of nuclear forces, and, as we
shall discuss in Chap. 13, the energy associated with mass. It is
apparent that the concept of energy is much wider than the simple
idea of kinetic and potential energy of a mechanical system. We
believe that the total energy of a system is conserved if all forms
of energy are taken into account.
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4.13 Power

Power is the time rate of doing work. If a force F acts on a body
which undergoes a displacement dr, the work is dW = F - dr and
the power delivered by the force is

p=W g &
dt dt
=F-v.
The unit of power in the Sl system is the watt (W).
1W=1J/s.

In the cgs system, the unit of power is the erg/s = 10~7 W; it has
no special name. The unit of power in the English system is the
horsepower (hp). The horsepower is most commonly defined as
550 ft-Ib/s, but slightly different definitions are sometimes encoun-
tered. The relation between the horsepower and the watt is

1hp ~ 746 W.

This is a discouraging number for builders of electric cars; the
average power obtainable from an ordinary automobile storage
battery is only about 350 W.

The power rating of an engine is a useful indicator of its per-
formance. Forinstance, a small motor with a system of reduction
gears can raise a large mass M any given height, but the process
will take a long time; the average power delivered is low. The
power required is Mgy, where v is the weight’'s upward speed.
To raise the mass rapidly the power must be large.

A human being in good condition can develop between 4 to 1 hp
for 30 s or so, for example while running upstairs. Over a period
of 8 hours (h), however, a husky man can do work only at the rate
of about 0.2 hp = 150 W. The total work done in 8 h is then
(150)(8)(3,600) = 4.3 X 10%J = 1,000 kcal. The kilocalorie, approx-
imately equal to 4,200 J, is-often used to express the energy avail-
able from food. A normally active person requires 2,000 to 3,000
kcal/d. (In dietetic work the kilocalorie is sometimes called the
‘“large’ calorie, but more often simply the calorie.)

The power production of modern industrialized nations corre-
sponds to several thousand watts per person (United States: 6,000
W per person; India: 300 W per person). The energy comes pri-
marily from the burning of fossil fuels, which are the chief source
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of energy at present. In principle, we could use the sun’s energy
directly. When the sun is overhead, it supplies approximately
1,000 W/m? (= 1 hp/yd?) to the earth’s surface. Unfortunately,
present solar cells are costly and inefficient, and there is no
economical way of storing the energy for later use.

4.14 Conservation Laws and Particle Collisions

Much of our knowledge of atoms, nuclei, and elementary particles
has come from scattering experiments. Perhaps the most dra-
matic of these was the experiment performed in 1911 by Ernest
Rutherford in which alpha particles (doubly ionized helium atoms)
were scattered from atoms of gold in a thin foil. By studying how
the number of scattered alpha particles varied with the deflection
angle, Rutherford was led to the nuclear model of the atom. The
techniques of experimental physics have advanced considerably
since Rutherford’'s time. A high energy particle accelerator sev-
eral miles long may appear to have little in common with Ruther-
ford's tabletop apparatus, butits purpose is the same—to discover
the interaction forces between particles by studying how they
scatter.

Finding the interaction force from a scattering experiment is a
difficult task. Furthermore, the detailed description of collisions
on the atomic scale generally requires the use of quantum
mechanics. Nevertheless, there are constraints on the motion
arising from the conservation laws of momentum and energy
which are so strong that they are solely responsible for many of
the features of scattering. Since the conservation laws can be
applied without knowing the interactions, they play a vital part in
the analysis of collision phanomena.

In this section we shall see how to apply the conservation laws
of momentum and energy to scattering experiments. No new
physical principles are involved; the discussion is intended to
illustrate ideas we have already introduced.

Collisions and Conservation Laws

The drawings below show three stages during the collision of two
particles. In (a), long before the collision, each particle is effec-
tively free, since the interaction forces are generally important
only at very small separations. As the particles approach, (b),
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the momentum and energy of each particle change due to the
interaction forces. Finally, long after the collision, (c), the par-
ticles are again free and move along straight lines with new direc-
tions and velocities. Experimentally, we usually know the initial
velocities v; and v,; often one particle is initially at rest in a target
and is bombarded by particles of known energy. The experiment
might consist of measuring the final velocities v; and v; with suit-
able particle detectors.

®)

Since external forces are usually negligible, the total momentum
is conserved and we have

P; = P,. 4,28
For a two body collision, this becomes
mV1 + movy = m1V; 4 mZV;. 4.29

Equation (4.29) is equivalent to three scalar equations. We have,
however, six unknowns, the components of v; and v,. The energy
equation provides an additional relation between the velocities, as
we now show.

Elastic and Inelastic Collisions

Consider a collision on a linear air track between two riders of
equal mass which interact via good coil springs. Suppose that
initially rider 1 has speed v as shown and rider 2 is at rest. After
the collision, 1 is at rest and 2 moves to’the right with speed v.
It is clear that momentum has been conserved and that the total
kinetic energy of the two bodies, Mv?/2, is the same before and
after the collision. A collision in which the total kinetic energy is
unchanged is called an elastic collision. A collision is elastic if the
interaction forces are conservative, like the spring force in our
example.
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As a second experiment, take the same two riders and replace
the springs by lumps of sticky putty. Let 2 be initially at rest.
After the collision, the riders stick together and move off with
speed v’. By conservation of momentum, Mv = 2Mv’, so that
v = v/2. The initial kinetic energy of the system is Mv?/2, but
the final kinetic energy is (2M)v'?/2 = Mv?*/4. Evidently in this
collision the kinetic energy is only half as much after the collision
as before. The kinetic energy has changed because the inter-
action forces were nonconservative. Part of the energy of the
collective motion was transformed to random heat energy in the
putty during the collision. A collision in which the total kinetic
energy is not conserved is called an inelastic collision.

Although the total energy of the system is always conserved in
collisions, part of the kinetic energy may be converted to some
other form. To take this into account, we write the conservation
of energy equation for collisions as

K, =K;+ @, 4.30

where Q = K, — K, is the amount of kinetic energy converted
to another form. For a two body collision, Eq. (4.30) becomes

19 79
M1 + $mave® = gmu’ + dmywy” + Q. 4.31

In most collisions on the everyday scale, kinetic energy is lost and
Q@ is positive. However, @ can be negative if internal energy of
the system is converted to kinetic energy in the collision. Such
collisions are sometimes called superelastic, and they are important
in atomic and nuclear physics. Superelastic collisions are rarely
encountered in the everyday world, but one example would be the
collision of two cocked mousetraps.

Collisions in One Dimension

If we have a two body collision in which the particles are con-
strained to move along a straight line, the conservation laws, Eqgs.
(4.29) and (4.31), completely determine the final velocities, regard-
less of the nature of the interaction forces. With the velocities
shown in the sketch, the conservation laws give

Momentum:
muws + Moy = myy + myv}. 4.32a
Energy:

/ ’
Fmwi? + Fmav,? = dm® + dmwt + Q. 4.32b
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These equations can be solved for v} and v} in terms of mi, m,,
v1, vy, and Q. The next example illustrates the process.

Elastic Collision of Two Balls

Consider the one dimensional elastic collision of two balls of masses m;
and m,, with my, = 3m,. Suppose that the balls have equal and opposite
velocities v before the collision; the problem is to find the final velocities.
The conservation laws yield

Il

miv — 3m
Fmi? + 3Bm?

m]v; + 3m,v; 1

r2 re
Fmwr” + 5@myv,. 2

We can eliminate v] using Eq. (1):
v] = —2v — 35, 3
Inserting this in Eq. (2) gives
4o = (—2v — 3v3)? + 3v,°
= 4p? + 12005 + 12032

or
0 = 12vv; + 12052 4
Equation (4) has two solutions: v; = —ypand v; = 0. The corresponding

values of v; can be found from Eq. (3).

Solution 1:
!

Uy =0

!

Vg = —0.
Solution 2:
vy = —2
vy = 0.

We recognize that solution 1 simply restates the initial conditions: we
always obtain such a ‘‘solution’” in this type of problem because the initial
velocities evidently satisfy the conservation law equations.

Solution 2 is the interesting one. It shows that after the collision, m,
is moving to the left with twice its original speed and the heavier ball is
at rest.

Collisions and Center of Mass Coordinates

It is almost always simpler to treat three dimensional collision
problems in the center of mass (C) coordinate system than in the
laboratory (L) system.
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Consider two particles of masses m; and m,, and velocities v;
and v,. The center of mass velocity is

_ vy + mave
my + My

v

As shown in the velocity diagram at left, V lies on the line joining
v; and v,.
The velocities in the C system are

V10=V1—v

= (Vi — vy)
my + My '
and
Vo, = Vg — \')
_.ml
= —— (V1 — V2).
my + My

v, and v, lie back to back along the relative velocity vector
V = V; — V.
The momenta in the C system are

Pic = MVy,

- my + My W = va)
= v

P2 = MoV
= ,_ml"j_l";; (Vi — v2)
= —uv.

Here u = mymy/(m; + ms) is the reduced mass of the system.
We encountered the reduced mass for the first time in Example
4.15. As we shall see in Chap. 9, it is the natural unit of mass in
a two particle system. The total momentum in the C system is
zero, as we expect.

The total momentum in the L system is

miVy + maVe = (Mg + me)V
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and since total momentum is conserved in any collision, V is con-
stant. We can use this result to help visualize the velocity vectors
before and after the collision.

Sketch (a) shows the trajectories and velocities of two colliding
particles. In sketch (b) we show the initial velocities in the L and
C systems. All the vectors lie in the same plane. v, and vy,
must be back to back since the total momentum in the C system
is zero. After the collision, sketch (c), the velocities in the C sys-
tem are again back to back. This sketch also shows the final
velocities in the lab system. Note that the plane of sketch ¢ is
not necessarily the plane of sketch a. Evidently the geometrical
relation between initial and final velocities in the L system is quite
complicated. Fortunately, the situation in the C system is much
simpler. The initial and final velocities in the C' system deter-
mine a plane known as the plane of scattering. Each particle is
deflected through the same scattering angle © in this plane. The
interaction force must be known in order to calculate ®, or con-
versely, by measuring the deflection we can learn about the inter-
action force. However, we shall defer these considerations and
simply assume that the interaction has caused some deflection in
the C system.

An important simplification occurs if the collision is elastic.
Conservation of energy applied to the C' system gives, for elastic
collisions,

1 /2 /2
IM1? + Myt = Myl + My,
Since momentum is zero in the C system, we have
My — Mavee = 0
’ ’ .
My, — My, = 0.

Eliminating v,. and v;, from the energy equation gives

my? mi?\ ,
1 — 2
3 (m, +—)ul=3%m +— )
ma My

or
4
Vie = Z)lc.
Similarly,
’/
Voo = Vgee

In an elastic collision, the speed of each particle in the C system is
the same before and after the collision. Thus, the velocity vectors
simply rotate in the scattering plane.
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In many experiments, one of the particles, say m.,, is initially at
rest in the laboratory. In this case

my
my + mq

and

= ——v.
My + My

The sketches show v; and v, before and after the collision in
the C and L systems. 6; and 6, are the laboratory angles of the
trajectories of the two particles after the collision. The velocity
diagrams can be used to relate §; and 6, to the scattering angle
Q.

Limitations on Laboratory Scattering Angle

Consider the elastic scattering of a particle of mass m; and velocity v,
from a second particle of mass m, at rest. The scattering angle @ in
the C system is unrestricted, but the conservation laws impose limitations
on the laboratory angles, as we shall show.

The center of mass velocity has magnitude

mivy
V=— 1
my + me
and is parallel to v;. The initial velocities in the C system are
Mo
Vig = ——V,
my + my
2
my
Voo = — — V1.
my + me

Suppose m, is scattered through angle ® in the C system.
From the velocity diagram we see that the laboratory scattering angle
of the incident particle is given by

vy, sin @
V + v}, cos ©

tan 01 =
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Since the scattering is elastic, v{o = 9;,. Hence

V1, Sin ©
V_-i—ﬁvlc cos ©
_ sin © .
~ (V/v1) + cos ©

tan 6, =

From Egs. (1) and 2), V/vi, = mi/m,. Therefore

sin ©®
tany = —m88 -
(mi1/mz) 4+ cos ®
The scattering angle ® depends on the details of the interaction, butin
general it can assume any value. If m; < m,, it follows from Eq. (3) or
the geometric construction in sketch (a) that 6, is unrestricted. How-
ever, the situation is quite different if m; > m,. In this case 6, is never
greater than a certain angle 0; ,,,. As sketch (b) shows, the maximum
value of 6, occurs when v{ and v;,_. are both perpendicular. In this case
SiN 01, mex = V1e/V = ma/my.  1f my > My, 01 max = Me/my and the maxi-
mum scattering angle approaches zero.

Increasing ©

®) >

(a)

Physically, a light particle at rest cannot appreciably deflect a massive
particle. The incident particle tends to continue in its forward direction
no matter how the light target particle recoils.

Problems 4.1 A small block of mass m starts from rest and slides along a friction-
less loop-the-loop as shown in the left-hand figure on the top of the next
page. What should be the initial height z, so that m pushes against
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the top of the track (at a) with a force equal to its weight?
Ans. z = 3R

RRRLRRRRRRRRM |

4.2 A block of mass I/ slides along a hotizontal table with speed u,.
At z = 0 it hits a spring with spring constant k£ and begins to experience
a friction force (see figure above right). The coefficient of friction is
variable and is given by u = bz, where bis a constant. Find the loss
in mechanical energy when the block has first come momentarily to rest.

4.3 A simple way to measure the speed of a bullet is with a ballistic
pendulum. As illustrated, this consists of a wooden block of mass M
into which the bullet is shot. The block is suspended from cables of
length [, and the impact of the bullet causes it to swing through a maxi-
mum angle ¢, as shown. The initial speed of the bullet is v, and its
mass is m.

a. How fast is the block moving immediately after the bullet comes to
rest? (Assume that this happens quickly.)

b. Show how to find the velocity of the bullet by measuring m, 1/, I,
and ¢.
Ans. (b) v = [(m + M)/m] V29l — cos ¢)

4.4 A small cube of mass m slides down a circular path of radius K cut
into a large block of mass 1{, as shown at left. 1/ rests on a table, and
both blocks move without friction. The blocks are initially at rest, and
m starts from the top of the path.

Find the velocity v of the cube as it'leaves the block.

Ans. clue. If m = M, v = VgR

45 Mass m whirls on a frictionless table, held to circular motion by a
string which passes through a hole in the table. The string is slowly
pulled through the hole so that the radius of the circle changes from [,
to I;. Show that the work done in pulling the string equals the increase
in kinetic energy of the mass.
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4.6 A small block slides from rest from the top of a frictionless sphere
of radius K (see above left). How far below the top x does it lose con-
tact with the sphere? The sphere does not move. Ans. R/3

4.7 A ring of mass M hangs from a thread, and two beads of mass m
slide on it without friction (see above right). The beads are released
simultaneously from the top of the ring and slide down opposite sides.
Show that the ring will start to rise if m > 34{/2, and find the angle at
which this occurs. Ans. clue. f M =0, = arccos %

4.8 The block shown in the drawing is acted on by a spring with spring
constant k and a weak friction force of constant magnitude f. The block
is pulled distance z, from equilibrium and released. It oscillates many
times and eventually comes to rest.

a. Show that the decrease of amplitude is the same for each cycle of
oscillation.

b. Find the number of cycles n the mass oscillates before coming to
rest. Ans. n = F[(kxo/f) — 1] = kxo/Af

49 A simple and very violent chemical reactionis H + H— H, 4+ 5 eV.
(1 eV =1.6 X 107! J, a healthy amount of energy on the atomic scale.)
However, when hydrogen atoms collide in free space they simply bounce
apart! The reason is that it is impossible to satisfy the laws of conserva-
tion of momentum and conservation of energy in a simple two body colli-
sion which releases energy. Can you prove this? You might start by
writing the statements of conservation of momentum and energy. (Be
sure to include the energy of reaction in the energy equation, and get
the sign right.) By eliminating the final momentum of the molecule
from the pair of equations, you should be able to show that the initial
momenta would have to satisfy an impossible condition.

4.10 A block of mass M on a horizontal frictionless table is connected
to a spring (spring constant k), as shown.

The block is set in motion so that it oscillates about its equilibrium
point with a certain amplitude A,. The period of motion is Ty =

2T \/M—/k
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a. A lump of sticky putty of mass m is dropped onto the block. The
putty sticks without bouncing. The putty hits M at the instant when the
velocity of M is zero. Find

(1) The new period
(2) The new amplitude
(3) The change in the mechanical energy of the system

b. Repeat part a, but this time assume that the sticky putty hits M
at the instant when M has its maximum velocity.

411 A chain of mass M and length [ is suspended vertically with its
lowest end touching a scale. The chain is released and falls onto the
scale.
What is the reading of the scale when a length of chain, z, has fallen?
(Neglect the size of individual links.)
Ans. clue. The maximum reading is 3Mg

4.12 During the Second World War the Russians, lacking sufficient para-
chutes for airborne operations, occasionally dropped soldiers inside bales
of hay onto snow. The human body can survive an average pressure on
impact of 30 Ib/in2.

Suppose that the lead plane drops a dummy bale equal in weight to a
loaded one from an altitude of 150 ft, and that the pilot observes that it
sinks about 2 ft into the snow. If the weight of an average soldier is
144 Ib and his effective area is 5 ft?, is it safe to drop the men?

413 A commonly used potential energy function to describe the inter-
action between two atoms is the Lennard-Jones 6,12 potential

o[-}

a. Show that the radius at the potential minimum is 7o, and that the
depth of the potential well is €.

b. Find the frequency of small oscillations about equilibrium for 2
identical atoms of mass m bound to each other by the Lennard-Jones
interaction.

Ans. w = 12 \Ve/ro*m
4,14 A bead of mass m slides without friction on a smooth rod along the
z axis. The rod is equidistant between two spheres of mass M. The
spheres are located at x = 0, y = +a as shown, and attract the bead
gravitationally.

a. Find the potential energy of the bead.

b. The bead is released at x = 3a with velocity v, toward the origin.
Find the speed as it passes the origin.

c. Find the frequency of small oscillations of the bead about the
origin.
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4.15 A particle of mass m moves in one dimension along the positive x
axis. It is acted on by a constant force directed toward the origin with
magnitude B, and an inverse square law repulsive force with magnitude
4 /.

a. Find the potential energy function U (z).

b. Sketch the energy diagram for the system when the maximum
kinetic energy is K, = 3mv,2.

c. Find the equilibrium position, zo.
d. What is the frequency of small oscillations about x4?

416 An 1,800-lb sportscar accelerates to 60 mi/h in 8 s. What is the
average power that the engine delivers to the car's motion during this
period?

417 A snowmobile climbs a hill at 15 mi/hr. The hill has a grade of 1
ft rise for every 40 ft. The resistive force due to the snow is 5 percent of
the vehicle's weight. How fast will the snowmobile move downhill, assum-
ing its engine delivers the same power?

Ans. 45 mi/h

418 A 160-lb man leaps into the air from a crouching position. His
center of gravity rises 1.5 ft before he leaves the ground, and it then rises
3 ft to the top of his leap. What power does he develop assuming that
he pushes the ground with constant force?

Ans. clue. More than 1 hp, less than 10 hp

4.19 The man in the preceding problem again leaps into the air, but this
time the force he applies decreases from a maximum at the beginning
of the leap to zero at the moment he leaves the ground. As a reason-
able approximation, take the force to be F = F, cos wt, where F, is the
peak force, and contact with the ground ends when wt = 7/2. Find the
peak power the man develops during the jump.

4.20 Sand runs from a hopper at constant rate dm/dt onto a horizontal
conveyor belt driven at constant speed V by a motor.

a. Find the power needed to drive the belt.

b. Compare the answer to a with the rate of change of kinetic energy
of the sand. Can you account for the difference?

421 A uniform rope of mass \ per unit length is coiled on a smooth
horizontal table. One end is pulled straight up with constant speed
Vo.

a. Find the force exerted on the end of the rope as a function of
height y.

b. Compare the power delivered to the rope with the rate of change
of the rope’s total mechanical energy.

4.22 A ball drops to the floor and bounces, eventually coming to rest.
Collisions between the ball and floor are inelastic; the speed after each
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collision is e times the speed before the collision where ¢ <1, (e is
called the coefficient of restitution.) If the speed just before the first
bounce is vy, find the time to come to rest.

Ans. clue. If vy =5m/s, e =05 thenT=1s

4.23 A small ball of mass m is placed on top of a *‘superball’’ of mass
M, and the two balls are dropped to the floor from height 4. How high
does the small ball rise after the collision? Assume that collisions with
the superball are elastic, and that m << M. To help visualize the prob-
lem, assume that the balls are slightly separated when the superball hits
the floor. (If you are surprised at the result, try demonstrating the
problem with a marble and a superball.)

4.24 Cars B and C are at rest with their brakes off. Car A plows into
B at high speed, pushing B into C. If the collisions are completely
inelastic, what fraction of the initial energy is dissipated in car C? Ini-
tially the cars are identical.
4.25 A proton makes a head-on collision with an unknown particle at
rest. The proton rebounds straight back with 4 of its initial kinetic
energy.

Find the ratio of the mass of the unknown particle to the mass of the
proton, assuming that the collision is elastic.

4.26 A particle of mass m and initial velocity v, collides elastically with
a particle of unknown mass M coming from the opposite direction as
shown at left below. After the collision m has velocity v,/2 at right angles
to the incident direction, and 1/ moves off in the direction shown in the
sketch. Find the ratio A /m.

4.27 Particle A of mass m has initial velocity v,. After colliding with
particle B of mass 2m initially at rest, the particles follow the paths shown
in the sketch at right below. Find 6.
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4,28 A thin target of lithium is bombarded by helium nuclei of energy
E,. The lithium nuclei are initially at rest in the target but are essen-
tially unbound. When a helium nucleus enters a lithium nucleus, a
nuclear reaction can occur in which the compound nucleus splits apart
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into a boron nucleus and a neutron. The collision is inelastic, and the
final kinetic energy is less than E, by 2.8 MeV. (1 MeV = 106 eV =
1.6 X 10712 J). The relative masses of the particles are: helium, mass
4; lithium, mass 7; boron, mass 10; neutron, mass 1. The reaction can
be symbolized

Li 4+ ‘He — 9B +4 In — 2.8 MeV.

a. What is Eg, reshorar the minimum value of E, for which neutrons
can be produced? What is the energy of the neutrons at this threshold?
Ans. Neutron energy = 0.15 MeV

b. Show that if the incident energy falls in the range Eo, reshora <
Ey < Eo,threshola + 0.27 MeV, the neutrons ejected in the forward direc-
tion do not all have the same energy but must have either one or the
other of two possible energies. (You can understand the origin of the
two groups by looking at the reaction in the center of mass system.)

4.29 A ‘‘superball’” of mass m bounces back and forth between two sur-
faces with speed v,. Gravity is neglected and the collisions are perfectly
elastic.

a. Find the average force F on each wall.
Ans. F = muy?/l
b. If one surface is slowly moved toward the other with speed V v,
the bounce rate will increase due to the shorter distance between colli-
sions, and because the ball's speed increases when it bounces from the
moving surface. Find F in terms of the separation of the surfaces, z.
(Hint: Find the average rate at which the ball's speed increases as the
surface moves.)
Ans. F = (mv?/1)(1/x)3
c. Show that the work needed to push the surface from [ to z equals
the gain in kinetic energy of the ball. (This problem illustrates the
mechanism which causes a gas to heat up as it is compressed.)

4.30 A particle of mass m and velocity v, collides elastically with a par-
ticle of mass M initially at rest and is scattered through angle @ in the
center of mass system.
a. Find the final velocity of m in the laboratory system.
Ans. v; = [vo/(m + M)(m? + M? + 2mM cos O)}
b. Find the fractional loss of kinetic energy of m.
Ans. clue. If m = M, (Ko — K;)/Ko = 1 — cos @)/2
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5.1 Introduction

The last chapter introduced quite a few new physical concepts—
work, potential energy, kinetic energy, the work-energy theorem,
conservative and nonconservative forces, and the conservation of
energy.

In this chapter there are no new physical ideas; this chapter is
on mathematics. We are going to introduce several mathematical
techniques which will help express the ideas of the last chapter
in a more revealing manner. The rationale for this is partly that
mathematical elegance can be a source of pleasure, but chiefly
that the results developed here will be useful in other areas of
physics, particularly in the study of electricity and magnetism.
We shall find how to tell whether or not a force is conservative and
how to relate the potential energy to the force.

A word of reassurance: Don’'t be alarmed if the mathematics
looks formidable at first. Once you have a little practice with the
new techniques, they will seem quite straightforward. In any
case, you will probably see the same techniques presented from
a different point of view in your study of calculus.

In this chapter we must deal with functions of several variables,
such as a potential energy function which depends on z, y, and z.
Our first task is to learn how to take derivatives and find differ-
entials of such functions. If you are already familiar with partial
differentiation the next section can be skipped. Otherwise, read
on.

5.2 Partial Derivatives

We start by reviewing briefly the concept of the differential of a
function f(z) which depends on the single variable z. (Differ-
entials are discussed in greater detail in Note 1.1.)

Consider the value of f(x) at any point x. Let dx be an incre-
ment in z, known as the differential of x, which can be any size
we please. The differential df of f is defined to be

df = (gﬁ) dz.

Note that (df/dz) stands for the derivative

daf . Af
Y~ im 2.
dr A:IcTo Ax
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The actual change in f is Af = f(z + dz) — f(z). Af differs
from df, as the sketch indicates, but if the limit doz — 0 is to be
taken, the difference can be neglected,! and we can use df and
Af interchangeably.

Now let us consider a function f(zx,y) which depends on two
variables x and y. For instance, f could be the area of a rec-
tangle of length z and width y. If we keep the variable y fixed
and let the variable x change by dz, the differential of f in this
case is

if = [ lim f@ + Az,y) — f(x.y)] .

Az—0 Az

The quantity in the bracket looks like a derivative. However, f
depends on two variables and since we are differentiating with
respect to only one variable, the quantity in the bracket is called
a partial derivative. The partial derivative is denoted by df/dx.
(Calculus texts sometimes use f,, but we shall avoid this notation
to prevent confusion with vector components.) df/dx is read
‘‘the partial derivative of f with respect to «’’ or ‘‘the partial of f
with respect to x.”” If we want to indicate that the partial deriva-
tive is to be evaluated at some particular point x,, yo, we can write

f@oye) O
dx dx |z0ye

The procedure for evaluating partial derivatives is straightfor-
ward; in evaluating df/dx, for example, all variables but z are
treated as constants.

Partial Derivatives
Let

f=a%siny.

Then

0,

f .
— = 2xsiny,
oz sy

)

= z%cos y.
dy y

1Specifically, (Af — df) is of order (dx)?, so that AIimO[(Af — df)/Ax] = 0.
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We can generalize the procedure to any number of variables. For
instance, let

f=y+e=

Then

of

—_— = zezz'

oz

of

— = xeaz'
0z

Let us consider what happens to f(z,y) if x and y both vary.
Let z change by dz and y change by dy. The change in fis

Af = f(x + dx, y + dy) — f(x,p).

The right hand side can be written as follows:

f@ + dz, y + dy) — f(x,y) = [f(x + dz, y + dy) — f(z, y + dy)]
+ [f(z, y + dy) — f(z,y)].

The first term on the right is the change in f due to dz; this is given
approximately by

Af(x, y + dy) Az

A ueofcz
(Af)due s Y

The second term on the right is

af(x,y) Ay.

(Af)due toy = 6y

The total change is

@yt dy) | o)
Af ~ 9 dx + 3y dy.

We define the differential of f to be

' af(z,

_ @) dz & f(z.y) . 5.1
ox Yy

If we take the limit do — 0, dy — 0, Af approaches df. In

applications where we are going to take the limit, we can use Af
and df interchangeably. Furthermore, even if we do not take

af
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the limit, the differential gives a good approximation to the actual
value of the change in f if dz and:dy are small, as the following
example illustrates.

'

Applications of the Partial Derivative

A. Suppose that f is the area of a rectangle of length z and width .
Then f = zy. The change in area if & increases by dz and y increases
by dy is
Af = f(z + dz, y + dy) — f(z,y)

= (z + d2)(y + dy) — wzy

= ydr + zdy + (dz)(dy).

The differential of f is

if = a(xy)d + a(xy)
ox
= ydr + z dy.
We see that

Af — df = (dz)(dy).

(dz)(dy) is the area of the small rectangle in the figure. As dz — 0 and
dy — 0, the area (dz)(dy) becomes negligible compared with the area
of the strips xdy and y dz, and we can use the differential df as an
accurate approximation to the actual change, Af.

B. Consider the function

fy) = yle=

At £ =0, y =1 we have f(0,1) = 1. What is the value of f(0.03,1.01)?
Approximating the change in f by df we have

Af = df

of
T

d-f—f

The partial derivatives are easily evaluated.

)

dx 10,1

= q3pz
= €
y 0,1

=1

of
ay loa

Il

202
3y’e 0

=3
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Taking dz = 0.03, dy = 0.01, we find

df = (1)(0.03) + 3(0.01)
= 0.06.

The actual value, to four significant figures, is

Af = 0.0617.

5.3 How To Find the Force if You Know the Potential Energy

Our problem is this—suppose that we know the potential energy
function U(r); how do we find F(r)? For one dimensional motion
we already know the answer from Sec. 4.8: F, = —dU/dx. It
isn’t difficult to generalize this result to three dimensions.

Our starting point is the definition of potential energy:

Up—Us= — ¢ F-dr. 5.2

Let us consider the change in potential energy when a particle
acted on by F undergoes a displacement Ar.

U + A1) — U@) = — f:*“ F(r') - dv’, 5.3

(We have labeled the dummy variable of integration by r’ to avoid
confusion with the end points of the line integral, r and r 4 Ar.)
The left hand side of Eq. (5.3) is the difference in U at the two
ends of the path. Let us call this AU. If Ar is so small that F
does not vary appreciably over the path, the integral on the right
is approximately F - Ar. Therefore

AU = —F - Ar
=—(F,A:I:+FyA?/+F=AZ)~ 5.4

We can obtain an alternative expression for AU by using the
results of the last section. If we approximate AU by the differ-
ential of U, we have from Eq. (5.1)

d oU U
AU%—UAx+—Ay+—Az. 5.5
oz oy 92
Combining Eq. (5.4) and (5.5) yields
oU U oU
— A —A — Az = —F, — F, Ay — F, Az. 5.6
Y x + oy y + % 2 Ax v Ay 2

When we take the limit (Axz,Ay,Az) — 0, the approximation becomes
exact. Since Az, Ay, and Az are independent, Eq. (5.6) remains
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valid even if we choose Ay and Az to be zero. This requires that
the coefficients of Ax on either side of the equation be equal.
We conclude that

U
P
oU
BZ =
oU
5 =

—F, 5.7

—F..

We have the answer to the problem set at the beginning of this
section—how to find the force from the potential energy function.
However, as we shall see in the next section, there is a much neater
way of expressing Eq. (5.7).

5.4 The Gradient Operator

Equation (5.7) is really a vector equation. We can write it expli-
citly in vector form:

F =iF, + jF, + kF,
oU __9U _ .9U

A shorthand way to symbolize this result is
F=-VU, 5.9

where

3 U | .9
VUEi—ég+j—U+k v

- 5.10
oy 0z

Equation (5.10) is a definition, so if the notation looks strange,
it is not because you have missed something. Let's see what
v U means.

VU is a vector called the gradient of U or grad U. The symbol
V (called ‘‘del’’) can be written in vector form as follows:

a (7] .0
V=i—4+j—+k— 5.11
ox t1i Ay + 0z

Obviously V is not really a vector; it is a vector operator. This
means that when V operates on a scalar function (the potential
energy function in our case), it forms a vector.
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The relation F = —VU is a generalization of the one dimen-
sional case. For example, suppose that U depends only on z.
Then

vy = U@,
ox
and
104
F,= — ;x—

However, for a function of a single variable the partial derivative:
is identical to the familiar total derivative. We have

dU
Fo=— "=

Here are a few more examples.

Gravitational Attraction by a Particle

If a particle of mass M is at the origin, the potential energy of mass m
a distance r from the origin is

GMm
r

U(x,y,z) = -

Then
F=—vU

+G@Mmv L
r

Consider the x component of v(1/r). Since r = \/x2 + y? + 2%, we
have
d 1 _ —z
0z (@ +y? + 20 (2% + y? + )
z

r3

By symmetry the y and z terms are —y/r® and —z/r3, respectively.
Hence

F

I
Q
S
R
-
“’Ia
+
|
+
x
K
N—"

Il
X
=
3

—
3| |

K
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We have recovered the familiar expression for the force of gravity
between two particles.

Uniform Gravitational Field

From the last chapter we know that the potential energy of mass m in a
uniform gravitational field directed downward is

Ux,y,2) = mgz,

where z is the height above ground. The corresponding force is

F=—-vU
] ] - 0
= - i—+j— +k—)z
" <. 6x+]6y + 8z>
= —mgk.

Gravitational Attraction by Two Point Masses

The previous examples were trivial, since the forces were obvious by
inspection. Here is a more complicated case in which the energy method
gives a helpful shortcut.

Two particles, each of mass M, lie on the z axisat x = aand z = —a,
respectively. Find the force on a particle of mass m located atr.

We start by considering the potential energy of m due to the particle at
z = a. The distance is \/(x — a)? 4+ y? + 2%, and the potential energy
is —GMm/\/(x —a)? +y?+22 = —GMm/r,. Similarly, the potential
energy due to the massatz = —ais —GMm/\/(x + a)l+ y? + 22 =
— GMm/ry. The total potential energy is the sum of these terms. This
illustrates a major advantage of working with energy rather than force.
Energy is a scalar and is simply additive, whereas forces must be added

vectorially.
We have u = — GMm/r, — GMm/rs, or
1 1
U= —-G@Mm + .
Il(x —a +yr 2 [+ a4yt + zZJ*I

The force components are easily found by differentiation.

oU
Fx(xryvz) = = 5
=—GMm[ (x — a) (x + a) }
[@—ay +y+ 20 (@+ar+y + P

—GMm <x_—3a + 2+ a)

1 748
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Similarly,

U
Fy(xvyvz) = - 7
9y

= —oum (L + L

7.13 7‘23
F.z,y,2) = — 9y
adz

— —GMm <i n f_).
7'13 7'23

If m is far from the other two masses so that |z| > a, we have r; = 7,
re = r. In this case

F,z—ZGMmE
r? r
p, ~ — 2GMmy
rt r
P~ — 2GMm 2
r2 r

At large distances the force on m is like the force (—2GMm/r?)f that
would be exerted by a single mass 2/ located at the origin.

Perhaps these examples suggest something of the convenience
of the energy method. Potential energy is much simpler to
manipulate than force. If force is needed, we can obtain it from
F = —vU. However, only conservative forces have potential
energy functions associated with them. Nonconservative forces
cannot be expressed as the gradient of a scalar function. For-
tunately, most of the important forces of physics are conservative.
In Sec. 5.6 we shall develop a simple means for telling whether a
force is conservative or not.

We next turn to a discussion of the physical meaning of the
gradient.

5.5 The Physical Meaning of the Gradient

Consider a particle moving under conservative forces with potential
energy U(z,y,2). As the particle moves from the point (z,y,2) to
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(z + dz, y + dy, 2 + dz), its potential energy changes by
U(x + dz, y + dy, 2 + dz2) — U(z,y,2).

As explained in the last section, when we intend to take the limit
dx— 0, dy — 0, dz — 0, we can represent the change in U by the
differential

dU—g—qd —l-&d +—Ud

The displacement is dr = dz i + dyj + dz k and we can write
dU =vU-dr 5.12
where VU, the gradient of U, is

0 0 U .
U——.+—U“+—Uk

Equation (5.12) expresses the fundamental property of the gra-
dient. The gradient allows us to find the change in a function
induced by a change in its variables. In fact, Eq. (5.12) is actually
the definition of gradient. Like a vector, the gradient operator
is defined without reference to a particular coordinate system.

To develop physical insight into the meaning of VU, it is helpful
to adopt a pictorial representation of potential energy. So let us
make a brief digression.

Constant Energy Surfaces and Contour Lines

The equation U(z,y,2) = constant = C defines for each value of
C a surface known as a constant energy surface. A particle con-
strained to move on such a surface has constant potential energy.
For example, the gravitational potential energy of a particle m at
distance r = V a2 + y? + 22 from particle M is U = —GMm/r.
The surfaces of constant energy are given by

GMm
r

=C
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or

The constant energy surfaces are spheres centered on M, as
shown in the drawing. (We have taken GMm =1 N-m? for
convenience.)

Constant energy surfaces are usually difficult to draw, and for
this reason it is generally easier to visualize U by considering the
lines of intersection of the constant energy surfaces with a plane.
These lines are sometimes referred to as constant energy lines
or, more simply, contour lines. For spherical energy surfaces the
contour lines are circles. The next example discusses contour
lines for a more complicated situation.

Energy Contours for a Binary Star System

Consider a satellite of mass m in the gravitational field of a binary star
system. The stars have masses M, and M, and are separated by dis-
tance B. The potential energy of the satellite is

GmM, Gmbl,
_——— =

Ta T

U =

where 7, and 7, are its distances from the two stars. Consider the con-
tour lines in a plane through the axis of the stars. Near star a, where
re K 1%, We have

GmM,
Ta

U~ —

Here the contour lines are effectively circles. Near star b, where r, <K 7y,
the contour lines are also effectively circles.

In the intermediate region between the two stars the effects of both
bodies are important. The contour lines in the drawing opposite were
calculated numerically, with GmM;/R = 1, and My/M, = ¥
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To see the relation between VU and contour lines, consider
the change in U due to a displacement dr along a contour. In
general

dU = vU - dr.
However, on a contour line, U is constant and dU = 0. Hence
vU:-dr =0 (dr along contour line).

Since VU and dr are not zero, we see that the vector VU must
be perpendicular to dr. More generally, VU is perpendicular to
any displacement dr on a constant energy surface. Hence, at
every point in space, VU is perpendicular to the constant energy
surface passing through that point.

It is not hard to show that VU points from lower to higher
potential energy. Consider a displacement dr pointing in the
direction of increasing potential energy. For this displacement
dU > 0, and since dU = VU -dr > 0, we see that VU points
from lower to higher potential energy. Hence the direction of
v U is the direction in which U is increasing most rapidly.

Since VU = —F, we conclude that F is everywhere perpen-
dicular to the constant energy surfaces and points from higher to
lower potential energy.
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Given the contour lines, it is easy to sketch the force. For the
gravitational interaction of a particle with a mass located at the
origin, the contour lines are circles. The force points radially
inward from higher to lower potential energy, as we expect.

The drawing below shows the force at various points along the
contour lines of the binary star system of Example 5.6. We can

P e U
/X *\\\

extend the arrows to form a curve everywhere parallel toF. These
lines show the direction of the force everywhere in space and pro-
vide a simple map of the force field. Note that the force lines are
perpendicular to the energy contours everywhere. Point P, where
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two energy contours intersect, presents a problem. How can the
force point in two directions at once? The answer is that point
P is the equilibrium point between the two stars where the force
vanishes.

If two adjacent energy surfaces differ in energy by AU, then
where the separation is AS,

AU
VU| = —
VU = =5
Hence, the closer the surfaces, the larger the gradient. More
physically, the force is large where the potential energy is changing
rapidly.

5.6 How to Find Out if a Force Is Conservative

Although we have seen numerous examples of conservative forces,
we have no general test to tell us whether a given force F(r) is
conservative. Let us now attack this problem.
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Our starting point is the observation that if F(r) is conservative,
the work done on a particle by force F as it moves from a to b and
back to a around a closed path is

b
foFedrd §, Fedr=(=Us+ U+ (—Us+ Up) = 0.

Path 1 Path 2

Thus, the work done by a conservative force around a closed path

must be zero. Symbolically,

FF-dr =0, 5.13

where the integral is a line integral taken around any closed path.
(The symbol & indicates that the path is closed.) Conversely, if
a force F satisfies Eq. (5.13) for all paths (not just for a special
path), the force must be conservative. Hence, Eq. (5.13) is a
necessary and sufficient condition for a force to be conservative.

Although you may think that the problem is now more com-
plicated than when we began, the fact is that we have taken a
big step forward. However, in order to proceed we must further
transform the problem.

Consider ¢'F . dr, where the integral is around loop 1. If we
break the integral into two integrals, via the ‘‘shortcut” cd, we
have

?SF.dr=;’§F-dr+2§F-dr.

This identity follows because the contribution to 95 F - dr from the
2

line segment cd is exactly canceled by the contribution from the

segment dc to 9§F - dr. Traversing the same line in two direc-
3
tions gives zero net contribution to the total work.

We can proceed to chop up the line integral into many small
integrals around tiny loops, as shown in the sketch. When the
work around each tiny loop is added, all the contributions from
the interior paths cancel, and the total work is identical to the
work done in traversing the original perimeter. Hence,

95F-dr=29§r-dr 5.14
J )

where 96 F - dr is the work done in circling the ¢th tiny loop.

If you are wondering where this is leading, the answer is that
by focusing our attention on one of the tiny paths we can convert
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the original problem, which involves an integral over a large area,
into a problem involving quantities at a single point in space. To
do this, we must evaluate the line integral around one of the tiny
loops. Let us consider a rectangular loop lying in the zy plane
with sides of length Az and Ay. The integral around the loop is

9§F~dr={efF-dr+jF-dr+3fr-dr+4fr-dr.

Integrals 1 and 3 both involve paths in the x direction, so let us
consider them together. Integral 1is

z+ Az, y
f F.dr = / Y Faay) da. 5.15

If Az is small,

}[ F-dr = F.(z,y) Az.
1

Similarly, the integral along path 3 is

}[ F.-dr =~ —F,(z, y + Ay) Az.
3

The integrals along paths 1 and 3 almost cancel. However, the
small difference in y between the two paths is important. We
have

fF-dr—i—jF-dr

L

Fo(z,y) Ax — Fo(x, y + Ay) Az

= —[F.(2, y + Ay) — F.(2,y)] Az. 5.16

You may be puzzled by the fact that we are allowing for the fact
that y is different between the two paths but are ignoring the vari-
ation of z along each of the paths. The reason is simply that the
variation in y has an effect in first order, whereas the variation
in  does not, as you can verify for yourself.

We shall eventually take the limit Az — 0, Ay — 0, and from
the discussion of differentials in Sec. 5.2, we have

z

a
Fa:(xr ) + A?/) - Fz(xry) - ay

Ay.
Hence Eq. (5.16) can be written

fr-dr+f|-'-dr= —a;;zAxAy.
1 3
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Applying the same argument to paths 2 and 4 gives
oF

fl-'.dr+ }[F-dr = 2 Az Ay

3 4 ox

The line integral around the tiny rectangular loop in the zy plane
is therefore

aF, OF,
Fedr =(— — Ax Ay. 5.17a
ox Yy

zy plane

Although we shall not stop to prove it, this result holds for a small

loop of any shape if Az Ay is replaced by the actual area AA.
The line integral around a tiny loop in the yz plane can be found

by simply cycling the variables, r— vy, y— 2, 2— x. We find

oF, oF
F.dr = ( — ——4”) Ay Az. 5.17b
Yy 9z

yz plane

Similarly, for a loop in the zz plane,

F.dr = (an — an) Az Az. 5.17¢
dz Jar

xz plane

The line integral around a tiny loop in an arbitrary orientation
can be decomposed into line integrals in the three coordinate
planes, as the sketch suggests.

Accordingly, the line integral around any tiny loop will vanish
provided

a_F_'l, _ oF, 0

dx Yy

OF. _OFy _ 0 5.18
ay 9z

aF, _ oF, -0

9z dr

If Eq. (5.18) is satisfied evervwhere, the line integral around any
tiny loop vanishes and it follows that #§F:dr = 0 for any closed
path. Hence, a force satisfying Eq. (5.18) is conservative.

We have achieved our goal of finding a mathematical test for
whether or not a given force is conservative. However, Eq. (5.18)
is rather cumbersome as it stands. Fortunately, we can sum-
marize it in simple vector notation. |f we use the familiar rules
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of evaluating the cross product (Sec. 1.4) and treat the vector
operator V as if it were a vector, then

VXF=

¥ slan
Plo =

i
9
oz
F.

_[OF, oF,
_( >“<&*a»+

V X F is called the curl of F.

S

(2 -2
or oy

5.19

Example 5.7 The Curl of the Gravitational Force

We know that the gravitational force is conservative since it possesses a
potential energy function. However, for purposes of illustration, let us
prove that the force of gravity is conservative by showing that its curl is

zero.
For the gravitational force between two particles we have
4
F=—r
7-2
r zi j+zk
—ar_u +yi+
rd ré
oF. OF
(VXF), .

y
_ Az d (Ay\.
6y e 0z \ 3
The first term on the right hand side is

Ax(— ) + y? + 2)7H2y)

i Az(xz + yz __|_ zz)—;
dy

= —34%
7-5
Similarly,
A
SAy ¥
dz r3 5

Hence,
2 2
(VxF.=-34Y4+34% ¢
,.5 7-5
By cycling the coordinates, we see that the other components of

v X F are also zero. Hence v X F = 0 and the gravitational force is
conservative.
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A Nonconservative Force

Here is an example of a nonconservative force: consider a river with a
current whose velocity V is maximum at the center and drops to zero
at either bank.

The width of the river is 2a, and the coordinates are shown in the sketch.

Suppose that a barge in the stream is hauled around the path shown,
by winches on the banks. The barge is pulled slowly and we shall assume
that the force exerted on it by the current is

Friver = bV,

where b is a constant. The barge is effectively in equilibrium, so that
the force exerted by the winches is

F = _Friver = —bV

2
bV, (1 - i) j.
0/2

Let us evaluate v X F to determine whether or not the force is con-
servative. We have

It

oF. OF
v XF), = -
¢ ) dy 0z
=0
dF, OF,
vXF), = -
v X Fy 9z dz
=0
oF, OdF,
VXF)=———°
(Vv X F) s 3y
2
dz a?
2bV,
= - .
aZ

Since the curl does not vanish, the force is nonconservative and the
winches must do work to pull the barge around the closed path. The
work done going upstream is F(z = 0)/, and the work done going down-
stream is —F(z = a)l. (In this idealized problem no work is needed
to move the barge cross stream.) Since F(z) = bV,Q — z?/a?), the
total work done by the winches is

a2
W =bVo — bVl <1 - ——>
a2
= bVol.
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A Most Unusual Force Field

The field described in this example has some very surprising properties.
Consider a particle moving in the zy plane under the force

A .
F(r) =—,
r

where A is a constant. The force decreases as 1/r, and is directed tan-
gentially about the origin, as shown.
The work done as the particle travels through dr = dr ¥ + r d0 0 is

dW = F-dr

érdo
r

= A df.

Surprisingly, the work does not depend on r, but only on the angle
subtended.

Offhand, F may seem to be conservative, since the work done in going
from ry to rp in the drawing below, left, appears to be independent of path:

w

Il It
2
~
N
| -
!
IS =)
<

L) r,

82761 r, 92 "

0y

For instance, for the closed path shown above right,

W=f:Ad0+f:Ad9

= A8, — 6,) + A(0: — 0))
= 0'
as we expect for a conservative force.
However, consider the work done along a closed path which encloses

the origin as in the drawing at the left. Since 8; = 0 and 8, = 2m,
the work W = 2wrA. Evidently, F is not conservative.
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Every time the particle makes a complete trip around the origin, the
force does work 2wrA, but for a closed path that does not encircle the
origin, W = 0. The force appears conservative provided that the path
does not enclose the origin.

wW=0

0
U

If you evaluate v X F, you will find that it is zero everywhere except
at the origin, where it has a singularity. It is this singularity which gives
the force such peculiar properties. For the line integral of a force to
vanish around a closed path, the curl must be zero everywhere inside
the path. In this example, v X F is zero everywhere except at the
origin.

If a force is conservative, it is always possible to find a potential
energy function U such that F = —VU. The following example
shows how this is done.

Construction of the Potential Energy Function

In this example we shall find the potential energy function associated
with the force
F = A(x*1 + yJ). 1

The first thing is to ascertain that v X F = 0, for otherwise U does
not exist. Since you can easily verify this for yourself, we proceed to
determine U. U must obey

_9U _p, 2
dz
= Ax?
and
aU
_?3?= ’ 3
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We can integrate Eq. (2) to obtain

A
Uz,y) = — 3 z® + f(y)- 4

Equation (4) needs some explanation. |f U depended only on z, then
integrating Eq. (2) would yield U(z) = (—A4/3)z% + C, where C is a con-
stant. However, U also depends on y. As far as partial differentiation
with respect to z is concerned, f(y) is a constant, since 9f(y)/dz = 0.

Equation (4) is the most general solution of Eq. (2), and we can proceed
to find the solution to Eq. (3). By substituting Eq. (4) into Eq. (3), we
obtain

- i[— é70“4—f(y)] = Ay

dy 3
or
_oy _ _ 4w
dy dy
= Ay.

This can be integrated to give
A
f@) = — —Z“y2 +C,

where C is a constant. [Since f(y) is a function of the single variable y,
the constant of integration cannot involve z.]
The potential energy is

A A
U=—-So—-Zyp 40
;O Fv

Suppose that we try to apply this method to a nonconservative force.
For instance, consider

F = Azyi + y%).

The curl of F is not zero. Nevertheless, we can attempt to solve the
equations

LU _ g
dz
= Axy 5
_U_
dy
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The general solution of Eq. (5) is

A
== Exzy + f)-

If we substitute this into Eq. (6), we have

4 . _ %) _ Ay?

2 dy
or
M) _ A e
dy 2

But f(y) cannot depend on z, so that this equation has no solution.
Hence, it is impossible to construct a potential energy function for this
force.

In closing this section, let’'s take a brief look at the physical
meaning of the curl.

How the Curl Got Its Name

The curl was invented to help describe the properties of moving fluids.
To see how the curl is connected with ‘““curliness’’ or rotation, consider an
idealized whirlpool turning with constant angular velocity w about the z
axis. The velocity of the fluid at r is

vV = 700,

where @ is the unit vector in the tangential direction. In cartesian
coordinates,

v = rw(— sin wt i 4 cos wt j)

m(—gi+§j>
r r

—wyl + wzj.
y

Il

7N




SEC. 5.7 STOKES' THEOREM 225

The curl of v is

i i k
VXV = _a_ i _Q_
dz Jdy Oz
—wy wr 0
.| a 9
= k| — —
[ 72 (wz) + 3 (wy)]
= 2wk.

If a paddle wheel is placed in the liquid, it will start to rotate. The
rotation will be a maximum when the axis of the wheel points along the-
z axis parallel to V X v. In Europe, curl is often called ‘‘rot’ (for rota-
tion). A vector field with zero curl gives no impression of rotation, as
the sketches illustrate.

s e —— —
— —
e — —

curl =0 curl =0 curl #0 curl #0

5.7 Stokes’ Theorem

In Sec. 5.6 we stopped short of proving a remarkable result, known
as Stokes’ theorem, which relates the line integral of a vector field
around a closed path to an integral over an area bounded by the
path. Although Stokes’ theorem is indispensible to the study of
electricity and magnetism, we shall have little further use for it
in our study of mechanics. Nevertheless, we have already devel-
oped most of the ideas involved in its proof, and only a brief addi-
tional discussion is needed.

As we discussed earlier, the line integral of F around a closed
path I can be written as the sum of the line integrals around each
tiny loop.

?SF-dr=§i:¢iF-dr

This result holds whether F is conservative or not; we shall not
assume that F is conservative in this proof. Stokes’ theorem
contains no physics—it is a purely mathematical result.
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Our starting point is Eq. (5.17). For a tiny rectangular loop in
the zy plane,

oF, oF,
9S,F-dr - (—” _ > (Az Ay)..
? ox oy /s

As we have pointed out, the result is independent of the shape of
the loop provided that we replace (Ax Ay); by the loop’s area AA..
We can write the area element as a vector AA; = AA;n, where n
is normal to the plane of the loop. (Example 1.4 discusses the
use of vectors to represent areas.) For a loop in the zy plane.
AA = AA.k and we have

oF, oF.
9§i F.dr= (6—95 - 6y>,~ @)

= [(V x F), AA4.].. 5.20

If the tiny loop is at an arbitrary orientation, it is plausible that

951, F.dr = [(curl F), A4, + (curl F), A4, + (curl F), AA,);
= [curl F - AA]..

he line integral of F around path I is therefore

. F + dr =29§iF-dr

= E (curl F + AA),. 5.21

In words, the line integral is equal to the result of taking the scalar
product of each vector area element with the curl of F at that ele-
ment and summing over all elements bounded by the curve. In
the limit AA;— 0, the number of area elements approaches
infinity and the sum in Eq. (56.21) becomes an integral. We then
have Stokes’ theorem

%F'dr = [curl F: dA. 5.22

Two important remarks should be made about Stokes’ theorem,
| Eq. (5.22). First, the area of integration on the right hand side
o P can be any area bounded by the closed path. Second, there is
fF-drl=fcurl‘F°dA= ' url F.qa @n apparent ambiguity to the direction of dA, since the normal

S ea " rea can be out from either side of the area element. However, Eq.
1 i (5.17) was deduced using a counterclockwise circulation about the
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loop, and in defining the vector associated with the area element,
we automatically set up the convention that the direction of dA
is given by the right hand rule. If the circulation is counterclock-
wise as seen from above, the correct direction of dA is the one that
tends to point “up.”

Using Stokes’ Theorem

In Example 5.8 we discussed a barge being towed against the current.
We found the work done in going around the path in the sketch by evalu-
ating the line integral ¢ F-dr = W. In this example we shall find the

work by using Stokes' theorem

W = (Vv X F)- dA.

It is natural to integrate over the surface in the zy plane, as shown in
the drawing above right. Since the direction of circulation is clockwise,
dA = — dA k, and we have W = — [(V X F), dA.

From Example 5.8, the force is

2
F=bV0< —x—>j
a2
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and
oF, JoF .
VXF),=— — —
( ) ox dy
_ ZbVox
= — 7.

Since the integrand does not involve y, it is convenient to take dA = [ dx.
Then

w

[a ZbVol ¢ de
0 a?

20Vl ﬁ
a? 2

bV,

I

as we found previously by evaluating the line integral.

5.1 Find the forces for the following potential energies.
a. U = Az* + By? + C2?
b. U = A in(? + y* + 2% (In = log,)
c. U= Acos8/r? (plane polar coordinates)

5.2 A particle of mass m moves in a horizontal plane along the parabola
y = 2% Attt = 0itis at the point (1,1) moving in the direction shown with
speed vy. Aside from the force of constraint holding it to the path, it
is acted upon by the following external forces:

A radial force F, = —Ar3Ff
A force given by F, = By — 2%)

I

where A and B are constants.
a. Are the forces conservative?
b. What is the speed v, of the particle when it arrives at the origin?
Ans. v; = (0,2 + A/2m + 3B/5m)*
5.3 Decide whether the following forces are conservative.
a. F = Fysin at, where Fy is a constant vector.

b. F = A6f, A = constant and 0 < § < 2w. (F is limited to the zy
plane.)

c. A force which depends on the velocity of a particle but which is
always perpendicular to the velocity.
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5.4 Determine whether each of the following forces is conservative.
Find the potential energy function if it exists. A, «, B are constants.

a. F = AQBi + 2j + yk)

b. F = Azxye(i +j + k)

c. F, =3Ax2%%, F, = 5Az3%y%>, F, = adadysex

d. F, = A sin (ay) cos (B2), F, = —Aza cos (ay) cos (B2), and F, =
Az sin (ay) sin (B2)
5.5 The potential energy function for a particular two dimensional force
field is given by U = Czxe~v, where C is a constant.

a. Sketch the constant energy lines.

b. Show that if a point is displaced by a short distance dx along a con-
stant energy line, then its total displacement must be dr = dz(i 4+ j/x).

c. Using the result of b, show explicitly that vU is perpendicular to
the constant energy line.

5.6 If A(r) is a vector function of r which everywhere satisfies v X A = 0,
show that A can be expressed by A(r) = Vv ¢(r), where ¢(r) is some scalar
function. (Hint: . The result follows directly from physical arguments.)

5.7 When the flattening of the earth at the poles is taken into account,
it is found that the gravitational potential energy of a mass m a distance
r from the center of the earth is approximately

2
U~ _ GMem [1 — 5.4 X 104 <}i> (3 cos? § — 1)].
T

r

where 6 is measured from the pole.

Show that there is a small tangential gravitational force on m except
above the poles or the equator. Find the ratio of this force to GM .m /r?
for 8 = 45° and r = R..

5.8 How much work is done around the path that is shown by the force
F = A(y? + 2z%), where A is a constant and z and y are in meters?
Find the answer by evaluating the line integral, and also by using Stokes’
theorem.

Ans. W = Ad3
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6.1 Introduction

Our development of the principles of mechanics in the past five
chapters is lacking in one important respect: we have not devel-
oped techniques to handle the rotational motion of solid bodies.
m_ For example, consider the common Yo-Yo running up and down
its string as the spool winds and unwinds. In principle we already
know how to analyze the motion: each particle of the Yo-Yo moves
according to Newton’s laws. Unfortunately, analyzing rotational
problems on a particle-by-particle basis is an impossible task.
What we need is a simple method for treating the rotational motion
of an extended body as a whole. The goal of this chapter is to
develop such a method. In attacking the problem of translational
/ motion, we needed the concepts of force, linear momentum, and
o center of mass; in this chapter we shall develop for rotational
motion the analogous concepts of torque, angular momentum, and

moment of inertia.

Our aim, of course, is more ambitious than merely to under-
stand Yo-Yos; our aim is to find a way of analyzing the general
motion of a rigid body under any combination of applied forces.
Fortunately this problem can be divided into two simpler problems
—finding the center of mass motion, a problem we have already
solved, and finding the rotational motion about the center of
mass, the task at hand. The justification for this is a theorem
of rigid body motion which asserts that any displacement of a
rigid body can be decomposed into two independent motions: a
translation of the center of mass and a rotation about the center

To bring the body from position 4 to some new position B, first translate it so
that the center of mass coincides with the new center of mass, and then rotate
it around the appropriate axis through the center of mass until the body is in
the desired position.
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of mass. A few minutes spent playing with a rigid body such as
a book or a chair should convince you that the theorem is plausible.
Note that the theorem does not say that this is the only way to
represent a general displacement—merely that it is one possible
way of doing so. The general proof of this theorem! is presented
in Note 6.1 at the end of the chapter. However, detailed attention
to a formal proof is not necessary at this point. What is important
is being able to visualize any displacement as the combination of
a single translation and a single rotation.

Leaving aside extended bodies for a time, we start in the best
tradition of physics by considering the simplest possible system—
a particle. Since a particle has no size, its orientation in space
is of no consequence, and we need concern ourselves only with
translational motion. In spite of this, particle motion is useful
for introducing the concepts of angular momentum and torque.
We shall then move to progressively more complex systems, cul-
minating, in Chap. 7, with a treatment of the general motion of a
rigid body.

6.2 Angular Momentum of a Particle

Here is the formal definition of the angular momentum L of a par-
ticle which has momentum p and position vector r with respect
to a given coordinate system.

L=rxp 6.1

The unit of angular momentum is kg-m?/s in the Sl system or
g.cm?/s in cgs. There are no special names for these units.

Angular momentum is our first physical quantity to involve the
cross product. (See Secs. 1.2 and 1.4 if you need to review the
cross product.) Because angular momentum is so different from
anything we have yet encountered, we shall discuss it in great
detail at first.

Possibly the strangest aspect of angular momentum is its direc-
tion. The vectors r and p determine a plane (sometimes known
as the plane of motion), and by the properties of the cross product,
L is perpendicular to this plane. There is nothing particularly
“natural”’ about the definition of angular momentum. However,
L obeys a very simple dynamical equation, as we shall see, and
therein lies its usefulness.

1 Euler proved that the general displacement of a rigid body with one point fixed
is a rotation about some axis; the theorem quoted in the text, called Chasle's
theorem, follows directly from this.
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The diagram at left shows the trajectory and instantaneous
position and momentum of a particle. L = r X pis perpendicular
to the plane of ¥ and p, and points in the direction dictated by the
right hand rule for vector multiplication. Although L has been
drawn through the origin, this location has no significance. Only
the direction and magnitude of L are important.

If ¥ and p lie in the zy plane, then L is in the z direction. Lis
in the positive z direction if the ‘‘sense of rotation’ of the point
about the origin is counterclockwise, and in the negative z direc-
tion if the sense of rotation is clockwise. Note that the sense of
rotation is well defined even if the trajectory is a straight line.
The only exception is when the trajectory aims at the origin, in
which case r and p are along the same line so that L is 0 anyway.

y y
\
[ \e
Sensg of Sense of
rotation -~ _ 7| T~_ rotation
\ \ r
v
\ x || x
|
!
L,>0 L,<0

There are various methods for visualizing and calculating angu-
lar momentum. Here are three ways to calculate the angular
momentum of a particle moving in the zy plane.

Method 1
L=rxp

= rp sin ¢k
or
L, = rp sin ¢.

For motion in the zy plane, L lies in the z direction. Its magni-
tude has a simple geometrical interpretation: the line r, has
length r, = rsin(x — ¢) = rsin ¢. Therefore,

L, =rp,
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where 7, is the perpendicular distance between the origin and the

line of p. This result illustrates that angular momentum is pro-

portional to the distance from the origin to the line of motion.
As the sketches show, an alternative way of writing L, is

L, =rpy,

where p, is the component of p perpendicular to r.

y y
P
P
Py
ry
LS r
X X
2 =TLP L,=m,
Method 2

Resolve r into two vectors r; and r,
r=r.+n,
such that r, is perpendicular to p, and r, is parallel to p. Then
L=rxp=(,+n)xp

= (r, X p) + (rn X p)
=rJ.><py

since ry X p = 0. (Parallel vectors have zero cross product.)
Evaluating the cross product r, x p is trivial because the vectors
are perpendicular by construction. We have

L, = [r.|Ip|

as before. By a similar argument,
L. = |r| [p.].

Method 3
Consider motion in the zy plane, firstin the x direction and then
in the y direction, as in drawings a and b on the next page.



236

ANGULAR MOMENTUM AND FIXED AXIS ROTATION

y y y
Py py? P
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y | :
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X x X
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L, =-yp, L2=Xpy Lz=xpy—ypx

(@)

Example 6.1

\i‘_‘ <

®) ()

The most general case involves both these motions simultan-
eously, as drawings above show.

Hence L, = xp, — yp., as you can verify by inspection or by
evaluating the cross product as follows. Using r = (x,y,0) and
p = (PzDy,0), we have

L=rxp
i k
=z y 0
Pz Dy 0..
= (zpy — Yp=)k

We have limited our illustrations to motion in the xy plane where
the angular momentum lies entirely along the z axis. There is,
however, no difficulty applying any of these methods to the general
case where L has components along all three axes.

Angular Momentum of a Sliding Block

Consider a block of mass m and negligible dimensions sliding freely in
the z direction with velocity v = #i, as shown in the sketch. What is its
angular momentum L4 about origin A and its angular momentum Lp
about the origin B?

As shown in the drawing on the top of page 237, the vector from origin
A to the block is

rqg = 2i.
Since r4 is parallel to v, their cross product is zero and

Ls mrg X v

0.
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Taking origin B, we can resolve the position vector rp into a component
r| parallel to vand a component r; perpendiculartov. SincerjX v =0,
only r, gives a contribution to Ls. We have |r; X v| = lv and

Lg = mrgXv

= mlvk.
Lz lies in the positive z direction because the sense of rotation is counter-
clockwise about the z axis.

To calculate Lg formally we can write rg = i — [lj and evaluaterzg X v
using our determinantal form.

Lg = mrg X Vv

i ] k
=m|x —1l 0
v 0 0
= mlvk
as before.

The following example shows in a striking way how L depends
on our choice of origin.

Angular Momentum of the Conical Pendulum

Let us return to the conical pendulum, which we encountered in Example
2.8, to illustrate some features of angular momentum. Assume that the
pendulum is in steady circular motion with constant angular velocity w.

We begin by evaluating L4, the angular momentum about origin A.
From the sketch we see that L, lies in the positive z direction. It has
magnitude |r | |p| = |r| |p| = rp, where r is the radius of the circular
motion. Since

lp| = My

= Mrow,
we have
LA = ﬂfrzwk.

Note that L, is constant, both in magnitude and direction.
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Now let us evaluate the angular momentum about the origin B located
at the pivot. The magnitude of Lp is

ILs| = ¢ X p|
= |v'[ |p| = {[p|
= Mlrw,

where |¢'| = [, the length of the string. Itis apparent that the magnitude
of L depends on the origin we choose.

Unlike L4, the direction of Lp is not constant. Lp is perpendicular to
both r’ and p, and the sketches below show Lz at different times. Two
sketches are given to emphasize that only the magnitude and direction
of L are important, not the position at which we choose to draw it. The
magnitude of Lp is constant, but its direction is obviously not constant;
as the bob swings around, Lp sweeps out the shaded cone shown in the
sketch at the right. The 2z component of L is constant, but the hori-
zontal component travels around the circle with the bob. We shall see
the dynamical consequences of this in Example 6.6.

- #/’——-
-~
L, W

~

———— —

6.3 Torque

To continue our development of rotational motion we must intro-
duce a new quantity torque =. The torque due to force F which
acts on a particle at position r is defined by

= =1rXF. 6.2

In the last section we discussed several ways of evaluating angular
momentum, ¥ X p. The mathematical methods we developed for
calculating the cross product can also be applied to torque r X F.
For example, we have

o] = [r.] [F|



r

\
Fiy

m

s}

SEC. 6.3 TORQUE 239

or
s = [rl IF.]
or, formally,
i j k
t=lr Yy 2
F, F, F,

We can also associate a ‘‘sense of rotation” usingrand F. Assume
in the sketch that all the vectors are in the 2y plane. The torque
on m; due to F, is along the positive z axis (out of the paper) and
the torque on m. due to F; is along the negative z axis (into the
paper).

It is important to realize that torque and force are entirely
different quantities. For one thing, torque depends on the origin
we choose but force does not. For another, we see from the
definition = = r X F that « and F are always mutually perpen-
dicular. There can be a torque on a system with zero net force,
and there can be force with zero net torque. In general, there
will be both torque and force. These three cases are illustrated
in the sketches below. (The torques are evaluated about the
centers of the disks.)

f ]f
f f[ ‘f
T =2Rf T=0 T=Rf
F=0 F=2f F=f

Torque is important because it is intimately related to the rate
of change of angular momentum:

L d
—'—?d—t(l‘xp)

dt
_(* s
—(dtxp)+<rxdt)
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But (dr/dt) X p = v X mv = 0, since the cross product of two
parallel vectors is zero. Also, dp/dt = F, by Newton's second
law. Hence, the second termis r X F = z, and we have

T =— 6.3

Equation (6.3) shows that if the torque is zero, L = constant and
the angular momentum is conserved. As you may already realize
from our work with linear momentum and energy, conservation
laws are powerful tools. However, because we have considered
only the angular momentum of a single particle, the conservation
law for angular momentum has not been presented in much gen-
erality. In fact, Eq. (6.3) follows directly from Newton's second
law—only when we talk about extended systems does angular
momentum assume its proper role as a new physical concept.
Nevertheless, even in its present context, considerations of angu-
lar momentum lead to some surprising simplifications, as the next
two examples show.

Central Force Motion and the Law of Equal Areas

In 1609 Kepler announced his second law of planetary motion, the law of
equal areas: that is, the area swept out by the radius vector from the
sun to a planet in a given time is the same for any location of the planet
in its orbit. The sketch (not to scale) shows the areas swept out by the
earth during a month at two different seasons. The shorter radius
vector at B is compensated by the greater speed of the earth when it is
nearer the sun. We shall now show that the law of equal areas follows
directly from considerations of angular momentum, and that it holds not
only for motion under the gravitational force but also for motion under
any central force.

Consider a particle moving under a central force, F(r) = f(r)f, where
f(r) has any dependence on r we care to choose. The torque on the
particle about the origin is £ = r X F(r) = r X f(r)f = 0. Hence, the
angular momentum of the particle L = r X p is constant both in mag-
nitude and direction. An immediate consequence is that the motion is
confined to a plane; otherwise the direction of L would change with time.
We shall now prove that the rate at which area is swept out is constant,
a result that leads directly to the law of equal areas.

Consider the position of the particle at { and ¢ + Af, when its polar
coordinates are, respectively, (r,6) and (r 4+ Ar, 0 + Af). The area
swept out is shown shaded in the drawing at left.
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For small values of Af, the area A is approximately equal to the area
of a triangle with base r 4+ Ar and altitude r Af, as shown.

AA = §(@ + Ar)(r AB)
= 4r2 AO + $r Ar AB
The rate at which area is swept out is

dA . AA
— = |lim —
dt at—0 At

1
im <r2 A A6 Ar)

At—0 2 Kt_ At
_ 1,90
2 dt
(The small triangle with sides r A@ and Ar makes no contribution in the
limit.)
In polar coordinates the velocity of the particle is v = #f + rd. Its
angular momentum is

L = (r X mv) = rf X m@F + r68) = mr2ék.

(Note that # X & = k). Hence,

a4 _ 1,
dt 2
L,
T 2m

Since L, is constant for any central force, it follows that dA /dt is constant
also.

Here is another way to prove the law of equal areas. For a central
force, F¢ = 0, so that ay = 0. It follows that ray = 0, but ray =
r@ib + ) = (d/dt)(r0) = 2(d/dt)(dA/dt). Hence, dA/dt = constant.

Capture Cross Section of a Planet

This example concerns the problem of aiming an unpowered spacecraft
to hit a far-off planet. If you have ever looked at a planet through a
telescope, you know that it appears to have the shape of a disk. The
area of the disk is mR?, where R is the planet’s radius. If gravity played
no role, we would have to aim the spacecraft to head for this area in
order to assure a hit. However, the situation is more favorable than this
because of the gravitational attraction of the spacecraft by the planet.
Gravity tends to deflect the spacecraft toward the planet, so that some
trajectories which are aimed outside the planetary disk nevertheless end
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in a hit. Consequently, the effective area for a hit A, is greater than
the geometrical area 4, = wR2 Our problem is to find A4..

We shall neglect effects of the sun and other planets here, although
they would obviously have to be taken into account for a real space
mission.

One approach to the problem would be to work out the full solution
for the orbit of the spacecraft in the gravitational field of the planet.
This involves a lengthy calculation which is not really necessary; by using
conservation of energy and angular momentum, we can find the answer
in a few short steps.

Al T

The sketch shows several possible trajectories of the spacecraft. The
distance between the launch point and the target planet is assumed to
be extremely large compared with B, so that the different trajectories
are effectively parallel before the gravitational force of the planet becomes
important. The line aa is parallel to the initial trajectories and passes
through the center of the planet. The distance b between the initial
trajectory and line aa is called the impact parameter of the trajectory.
The largest value of b for which the trajectory hits the planet is indicated
by b’ in the sketch. The area through which the trajectory must pass
to assure a hit is A, = w(b’")2. (If there were no attraction, the trajec-
tories would be straight lines. [nthiscase, b’ = Rand A, = 7R? = A,.)

To find &', we note that both the energy and angular momentum of the
spacecraft are conserved. (Linear momentum of the spacecraft is not
conserved. Do you see why?)

The kinetic energy is $mv?, and the potential energy is —mMG/r. The
total energy E = K + V' is

E = 1mv2 — mMGl-
2 r

The angular momentum about the center of the planet is

L = —mrvsin ¢.
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Initially, r — «©, v = v, and r sin ¢ = b’. Hence,

L = —mbll)o,

1
E = - moy%
2

The point of collision occurs at the distance of closest approach of the
orbit, r = R; otherwise the trajectory would not *‘just graze' the planet.
At the distance of closest approach, r and v are perpendicular. If o(R)
is the speed at this point,

L = —mRv(R)
1 mM G
E =-myR) — —
2 R

Since L and E are conserved, their values at r = K must be the same as
their values at r = «. Hence

—mb'vy = —mRv(R) 1
mMG

Il

;— mu(R)? —

= mug?
2

Equation (1) gives v(R) = vod’/R, and by substituting this in Eq. (2) we
obtain

@) = R (1 + %)
The effective area is
A, = (')

~ nR? <1 + %%@)

As we expect, the effective area is greater than the geometrical area.
Since mMG/R = — U(R), and mvs2/2 = E, we have

A, = A,(l _ﬂ@)
E
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If we “‘turn off'" gravity, U(R)— 0 and 4, — 4, as we require. Fur-
thermore, as £ — 0, A, — o, which means that it is impossible to miss
the planet, provided that you start from rest. For E = 0, the space-
craft inevitably falls into the planet.

If there is a torque on a system the angular momentum must
change according to = = dL/dt, as the following examples illustrate.

Torque on a Sliding Block

For a simple illustration of the relation = = dL/dt, consider a small block
of mass m sliding in the z direction with velocity v = »i. The angular
momentum of the block about origin B is

Lg = mrgXv 1

li

I

mlvk,

as we discussed in Example 6.1. If the block is sliding freely, v does not
change, and Ljp is therefore constant, as we expect, since there is no
torque acting on the block.

Suppose now that the block slows down because of a friction force
f = —fi. The torque on the block about origin B is

=g =rgXf
= —Ifk. 2

We see from Eq. (1) that as the block slows, Lz remains along the posi-
tive 2z direction but its magnitude decreases. Therefore, the change
ALg in Lp points in the negative z direction, as shown in the lower sketch.
The direction of ALp is the same as the direction of tg. Since = = dL/d¢
in general, the vectors = and AL are always parallel.

From Eq. (1),

ALg = ml Avk, 3

where Av < 0. Dividing Eq. (3) by At and taking the limit At — 0, we
have

dL -
s _ @i 4
dt dt
By Newton’'s second law, m dv/dt = —f and Eq. (4) becomes
dLs -
— = —Ifk
dt /
= 2B,

as we expect.
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It is important to keep in mind that since « and L depend on the choice
of origin, the same origin must be used for both when applying the rela-
tion = = dL/dt, as we were careful to do in this problem.

The angular momentum of the block in this example changed only in
magnitude and not in direction, since = and L happened to be along the
same line. In the next example we return to the conical pendulum to
study a case in which the angular momentum is constant in magnitude
but changes direction due to an applied torque.

Torque on the Conical Pendulum

In Example 6.2, we calculated the angular momentum of a conical pen-
dulum about two different origins. Now we shall complete the analysis
by showing that the relation = = dL/dt is satisfied.

The sketch illustrates the forces on the bob. T is the tension in the
string. For uniform circular motion there is no vertical acceleration, and
consequently

Tcosa — Mg = 0. 1
The total force F on the bob is radially inward: F = —T sin af. The
torque on M about 4 is
T4 = ¥y X F

=0,

since r4 and F are both in the F direction. Hence
dLa
dt

and we have the result
L4 = constant

as we already know from Example 6.2.
The problem looks entirely different if we take the origin at B. The
torque «p is

=g =rgXF.
Hence

|e8] = lcos aF = lcos a T sin «
= Mgl sin a,

where we have used Eq. (1), T cos @« = Mg. The direction of =5 is tan-
gential to the line of motion of M:

<5 = Mgl sin o, 2

where 8 is the unit tangential vector in the plane of motion.
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Our problem is to show that the relation

is satisfied. From Example 6.2, we know that Lp has constant magnitude
Mlrw. As the diagram at left shows, Ly has a vertical component
L, = Mlrw sin a and a horizontal radial component L, = Mirw cos a.
Writing Lp = L, + L,, we see that L, is constant, as we expect, since =p
has no vertical component. L, is not constant; it changes direction as the
bob swings around. However, the magnitude of L, is constant. We
encountered such a situation in Sec. 1.8, where we showed that the only
way a vector A of constant magnitude can change in time is to rotate, and
that if its instantaneous rate of rotation is df/dt, then |dA/dt| = A d8/dt.
We can employ this relation directly to obtain

However, since we shall invoke this result frequently, let us take a moment
to rederive it geometrically.

The vector diagrams show L, at some time ¢ and at { 4+ Af{. During
the interval Atf, the bob swings through angle A8 = w A¢, and L, rotates
through the same angle. The magnitude of the vector difference AL, =
L.(t + At) — L.(?) is given approximately by

|AL,| ~ L, AS.

In the limit At — 0, we have

AL, _, do
dt dt
= Lyw.

Since L, = Mlrw cos a, we have

dL,
dt

= Mlrw? cos a.

Mrw? is the radial force, T sin «, and since T cos a = Mg, we have

drL,
dt

= Mgl 