For thousands of years the spinning
Earth provided a natural standard for our
measurements of time. However, since
1972 we have added more than 20 “leap
seconds” to our clocks to keep them
synchronized to the Earth. Why are such
adjustments needed? What does it take
to be a good standard?  (Don Mason/The
Stock Market and NASA)
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titative measurements. The main objective of physics is to find the limited num-
ber of fundamental laws that govern natural phenomena and to use them to
develop theories that can predict the results of future experiments. The funda-
mental laws used in developing theories are expressed in the language of mathe-
matics, the tool that provides a bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must
be formulated to remove the discrepancy. Many times a theory is satisfactory only
under limited conditions; a more general theory might be satisfactory without
such limitations. For example, the laws of motion discovered by Isaac Newton
(1642-1727) in the 17th century accurately describe the motion of bodies at nor-
mal speeds but do not apply to objects moving at speeds comparable with the
speed of light. In contrast, the special theory of relativity developed by Albert Ein-
stein (1879-1955) in the early 1900s gives the same results as Newton’s laws at low
speeds but also correctly describes motion at speeds approaching the speed of
light. Hence, Einstein’s is a more general theory of motion.

Classical physics, which means all of the physics developed before 1900, in-
cludes the theories, concepts, laws, and experiments in classical mechanics, ther-
modynamics, and electromagnetism.

Important contributions to classical physics were provided by Newton, who de-
veloped classical mechanics as a systematic theory and was one of the originators
of calculus as a mathematical tool. Major developments in mechanics continued in
the 18th century, but the fields of thermodynamics and electricity and magnetism
were not developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too crude or
unavailable.

A new era in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because of the discovery
that many physical phenomena could not be explained by classical physics. The
two most important developments in modern physics were the theories of relativity
and quantum mechanics. Einstein’s theory of relativity revolutionized the tradi-
tional concepts of space, time, and energy; quantum mechanics, which applies to
both the microscopic and macroscopic worlds, was originally formulated by a num-
ber of distinguished scientists to provide descriptions of physical phenomena at
the atomic level.

Scientists constantly work at improving our understanding of phenomena and
fundamental laws, and new discoveries are made every day. In many research
areas, a great deal of overlap exists between physics, chemistry, geology, and
biology, as well as engineering. Some of the most notable developments are
(1) numerous space missions and the landing of astronauts on the Moon,
(2) microcircuitry and high-speed computers, and (3) sophisticated imaging tech-
niques used in scientific research and medicine. The impact such developments
and discoveries have had on our society has indeed been great, and it is very likely
that future discoveries and developments will be just as exciting and challenging
and of great benefit to humanity.

! ike all other sciences, physics is based on experimental observations and quan-

1.1 _~ STANDARDS OF LENGTH, MASS, AND TIME

The laws of physics are expressed in terms of basic quantities that require a clear def-
inition. In mechanics, the three basic quantities are length (L), mass (M), and time
(T). All other quantities in mechanics can be expressed in terms of these three.
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If we are to report the results of a measurement to someone who wishes to re-
produce this measurement, a standard must be defined. It would be meaningless if
a visitor from another planet were to talk to us about a length of 8 “glitches” if we
do not know the meaning of the unit glitch. On the other hand, if someone famil-
iar with our system of measurement reports that a wall is 2 meters high and our
unit of length is defined to be 1 meter, we know that the height of the wall is twice
our basic length unit. Likewise, if we are told that a person has a mass of 75 kilo-
grams and our unit of mass is defined to be 1 kilogram, then that person is 75
times as massive as our basic unit.! Whatever is chosen as a standard must be read-
ily accessible and possess some property that can be measured reliably—measure-
ments taken by different people in different places must yield the same result.

In 1960, an international committee established a set of standards for length,
mass, and other basic quantities. The system established is an adaptation of the
metric system, and it is called the SI system of units. (The abbreviation SI comes
from the system’s French name “Systéme International.”) In this system, the units
of length, mass, and time are the meter, kilogram, and second, respectively. Other
SI standards established by the committee are those for temperature (the kelvin),
electric current (the ampere), luminous intensity (the candela), and the amount of
substance (the mole). In our study of mechanics we shall be concerned only with
the units of length, mass, and time.

Length

In A.D. 1120 the king of England decreed that the standard of length in his coun-
try would be named the yard and would be precisely equal to the distance from the
tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis
XIV. This standard prevailed until 1799, when the legal standard of length in
France became the meter, defined as one ten-millionth the distance from the equa-
tor to the North Pole along one particular longitudinal line that passes through
Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all
countries and in scientific circles everywhere. As recently as 1960, the length of the
meter was defined as the distance between two lines on a specific platinum-—
iridium bar stored under controlled conditions in France. This standard was aban-
doned for several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined does not
meet the current requirements of science and technology. In the 1960s and 1970s,
the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted
from a krypton-86 lamp. However, in October 1983, the meter (m) was redefined
as the distance traveled by light in vacuum during a time of 1/299 792 458
second. In effect, this latest definition establishes that the speed of light in vac-
uum is precisely 299 792 458 m per second.

Table 1.1 lists approximate values of some measured lengths.

! The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are speak-
ing about, and express it in numbers, you should know something about it, but when you cannot ex-
press it in numbers, your knowledge is of a meagre and unsatisfactory kind. It may be the beginning of
knowledge but you have scarcely in your thoughts advanced to the state of science.”
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TABLE 1.1 Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to most remote known quasar 1.4 X 102°
Distance from the Earth to most remote known normal galaxies 9 X 10%®
Distance from the Earth to nearest large galaxy

(M 31, the Andromeda galaxy) 2 X 102
Distance from the Sun to nearest star (Proxima Centauri) 4 x 1016
One lightyear 9.46 X 101
Mean orbit radius of the Earth about the Sun 1.50 X 10"
Mean distance from the Earth to the Moon 3.84 X 108
Distance from the equator to the North Pole 1.00 X 107
Mean radius of the Earth 6.37 X 10°
Typical altitude (above the surface) of a satellite orbiting the Earth 2 X 10°
Length of a football field 9.1 X 10!
Length of a housefly 5% 1073
Size of smallest dust particles ~107%
Size of cells of most living organisms ~107°
Diameter of a hydrogen atom ~10710
Diameter of an atomic nucleus ~10714
Diameter of a proton ~10715

Mass

The basic SI unit of mass, the kilogram (kg), is defined as the mass of a spe-

cific platinum-iridium alloy cylinder kept at the International Bureau of

Weights and Measures at Sévres, France. This mass standard was established in

1887 and has not been changed since that time because platinum-iridium is an

unusually stable alloy (Fig. 1.1a). A duplicate of the Sévres cylinder is kept at the

National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.
Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900.2 The mean solar second was originally defined as (&) (&) (%) of a mean
solar day. The rotation of the Earth is now known to vary slightly with time, how-
ever, and therefore this motion is not a good one to use for defining a standard.

In 1967, consequently, the second was redefined to take advantage of the high
precision obtainable in a device known as an atomic clock (Fig. 1.1b). In this device,
the frequencies associated with certain atomic transitions can be measured to a
precision of one part in 10'2. This is equivalent to an uncertainty of less than one
second every 30 000 years. Thus, in 1967 the SI unit of time, the second, was rede-
fined using the characteristic frequency of a particular kind of cesium atom as the
“reference clock.” The basic SI unit of time, the second (s), is defined as 9 192
631 770 times the period of vibration of radiation from the cesium-133
atom.? To keep these atomic clocks—and therefore all common clocks and

2 One solar day is the time interval between successive appearances of the Sun at the highest point it
reaches in the sky each day.

% Period is defined as the time interval needed for one complete vibration.

web|

Visit the Bureau at www.bipm.fr or the
National Institute of Standards at
www.NIST.gov

TABLE 1.2
Masses of Various Bodies
(Approximate Values)

Body Mass (kg)
Visible ~10°2
Universe
Milky Way 7 X 104
galaxy
Sun 1.99 x 1030
Earth 5.98 X 1024
Moon 7.36 X 1022
Horse ~103
Human ~ 102
Frog ~107!
Mosquito ~107°
Bacterium ~10715
Hydrogen 1.67 X 10727
atom
Electron 9.11 x 10731
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Figure 1.1 (Top) The National Standard Kilogram No.
20, an accurate copy of the International Standard Kilo-
gram kept at Sévres, France, is housed under a double bell
jar in a vault at the National Institute of Standards and
Technology (NIST). (Bottom) The primary frequency stan-
dard (an atomic clock) at the NIST. This device keeps
time with an accuracy of about 3 millionths of a second
per year. (Courtesy of National Institute of Standards and Technology,
U.S. Department of Commerce)

watches that are set to them—synchronized, it has sometimes been necessary to
add leap seconds to our clocks. This is not a new idea. In 46 B.C. Julius Caesar be-
gan the practice of adding extra days to the calendar during leap years so that the
seasons occurred at about the same date each year.

Since Einstein’s discovery of the linkage between space and time, precise mea-
surement of time intervals requires that we know both the state of motion of the
clock used to measure the interval and, in some cases, the location of the clock as
well. Otherwise, for example, global positioning system satellites might be unable
to pinpoint your location with sufficient accuracy, should you need rescuing.

Approximate values of time intervals are presented in Table 1.3.

In addition to SI, another system of units, the British engineering system (some-
times called the conventional system), is still used in the United States despite accep-
tance of SI by the rest of the world. In this system, the units of length, mass, and



1.1 Standards of Length, Mass, and Time

TABLE 1.3 Approximate Values of Some Time Intervals

Interval (s)

Age of the Universe 5 x 107
Age of the Earth 1.3 X 107
Average age of a college student 6.3 X 10®
One year 3.16 X 107
One day (time for one rotation of the Earth about its axis) 8.64 X 10*
Time between normal heartbeats 8 X 107!
Period of audible sound waves ~1073
Period of typical radio waves ~1076
Period of vibration of an atom in a solid ~10713
Period of visible light waves ~10715
Duration of a nuclear collision ~10722
Time for light to cross a proton ~107%

time are the foot (ft), slug, and second, respectively. In this text we shall use SI
units because they are almost universally accepted in science and industry. We
shall make some limited use of British engineering units in the study of classical
mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also
use other units, such as millimeters and nanoseconds, where the prefixes milli- and
nano- denote various powers of ten. Some of the most frequently used prefixes
for the various powers of ten and their abbreviations are listed in Table 1.4. For

TABLE 1.4 Prefixes for Sl Units

Power Prefix Abbreviation
1072 yocto y
1072 zepto z
10718 atto a
10715 femto f
10712 pico p
1079 nano n
1076 micro "
1073 milli m
1072 centi C
107! deci d
10! deka da
10° kilo k
10° mega M
10° giga G
1012 tera T
10'5 peta P
1018 exa E
102! zetta VA
10%4 yotta Y
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example, 1073 m is equivalent to 1 millimeter (mm), and 103 m corresponds
to 1 kilometer (km). Likewise, 1 kg is 103 grams (g), and 1 megavolt (MV) is
105 volts (V).

1.2 _~ THE BUILDING BLOCKS OF MATTER

A 1-kg cube of solid gold has a length of 3.73 cm on a side. Is this cube nothing
but wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces
still retain their chemical identity as solid gold. But what if the pieces are cut again
and again, indefinitely? Will the smaller and smaller pieces always be gold? Ques-
tions such as these can be traced back to early Greek philosophers. Two of them —
Leucippus and his student Democritus—could not accept the idea that such cut-
tings could go on forever. They speculated that the process ultimately must end
when it produces a particle that can no longer be cut. In Greek, atomos means “not
sliceable.” From this comes our English word atom.

Let us review briefly what is known about the structure of matter. All ordinary
matter consists of atoms, and each atom is made up of electrons surrounding a
central nucleus. Following the discovery of the nucleus in 1911, the question
arose: Does it have structure? That is, is the nucleus a single particle or a collection
of particles? The exact composition of the nucleus is not known completely even
today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus are
two basic entities, protons and neutrons. The proton carries a positive charge, and a
specific element is identified by the number of protons in its nucleus. This num-
ber is called the atomic number of the element. For instance, the nucleus of a hy-
drogen atom contains one proton (and so the atomic number of hydrogen is 1),
the nucleus of a helium atom contains two protons (atomic number 2), and the
nucleus of a uranium atom contains 92 protons (atomic number 92). In addition
to atomic number, there is a second number characterizing atoms—mass num-
ber, defined as the number of protons plus neutrons in a nucleus. As we shall see,
the atomic number of an element never varies (i.e., the number of protons does
not vary) but the mass number can vary (i.e., the number of neutrons varies). Two
or more atoms of the same element having different mass numbers are isotopes
of one another.

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” that holds the nucleus together. If neutrons were not
present in the nucleus, the repulsive force between the positively charged particles
would cause the nucleus to come apart.

But is this where the breaking down stops? Protons, neutrons, and a host of
other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange,
charm, bottom, and top. The up, charm, and top quarks have charges of +§ that of
the proton, whereas the down, strange, and bottom quarks have charges of —%
that of the proton. The proton consists of two up quarks and one down quark
(Fig. 1.2), which you can easily show leads to the correct charge for the proton.
Likewise, the neutron consists of two down quarks and one up quark, giving a net
charge of zero.
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1.3 _~ DENSITY

A property of any substance is its density p (Greek letter rho), defined as the
amount of mass contained in a unit volume, which we usually express as mass per
unit volume:

p=— (1.1)
v

For example, aluminum has a density of 2.70 g/cm?®, and lead has a density of

11.3 g/cmg. Therefore, a piece of aluminum of volume 10.0 cm® has a mass of

27.0 g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities

for various substances is given Table 1.5.

The difference in density between aluminum and lead is due, in part, to their
different atomic masses. The atomic mass of an element is the average mass of one
atom in a sample of the element that contains all the element’s isotopes, where the
relative amounts of isotopes are the same as the relative amounts found in nature.
The unit for atomic mass is the atomic mass unit (u), where 1 u = 1.660 540 2 X
10727 kg. The atomic mass of lead is 207 u, and that of aluminum is 27.0 u. How-
ever, the ratio of atomic masses, 207 u/27.0 u = 7.67, does not correspond to the
ratio of densities, (11.3 g/cm?)/(2.70 g/cm?®) = 4.19. The discrepancy is due to
the difference in atomic separations and atomic arrangements in the crystal struc-
ture of these two substances.

The mass of a nucleus is measured relative to the mass of the nucleus of the
carbon-12 isotope, often written as >C. (This isotope of carbon has six protons
and six neutrons. Other carbon isotopes have six protons but different numbers of
neutrons.) Practically all of the mass of an atom is contained within the nucleus.
Because the atomic mass of C is defined to be exactly 12 u, the proton and neu-
tron each have a mass of about 1 u.

One mole (mol) of a substance is that amount of the substance that con-
tains as many particles (atoms, molecules, or other particles) as there are
atoms in 12 g of the carbon-12 isotope. One mole of substance A contains the
same number of particles as there are in 1 mol of any other substance B. For ex-
ample, 1 mol of aluminum contains the same number of atoms as 1 mol of lead.

TABLE 1.5 Densities of Various

Substances

Substance Density p (103 kg/m?3)
Gold 19.3

Uranium 18.7

Lead 11.3

Copper 8.92

Iron 7.86
Aluminum 2.70
Magnesium 1.75

Water 1.00
Air 0.0012

A table of the letters in the Greek
alphabet is provided on the back
endsheet of this textbook.
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mass m of the cube is
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Experiments have shown that this number, known as Avogadro’s number, Ny, is
Ny = 6.022 137 X 1023 particles/mol

Avogadro’s number is defined so that 1 mol of carbon-12 atoms has a mass of
exactly 12 g. In general, the mass in 1 mol of any element is the element’s atomic
mass expressed in grams. For example, 1 mol of iron (atomic mass = 55.85 u) has
a mass of 55.85 g (we say its molar mass is 55.85 g/mol), and 1 mol of lead (atomic
mass = 207 u) has a mass of 207 g (its molar mass is 207 g/mol). Because there
are 6.02 X 10% particles in 1 mol of any element, the mass per atom for a given el-
ement is

molar mass

Matom = NA (1.2)

For example, the mass of an iron atom is

55.85 g/mol
6.02 X 1023 atoms,/mol

Mpe = =9.28 X 1072 g/atom

How Many Atoms in the Cube?

A solid cube of aluminum (density 2.7 g/cm?®) has a volume ~ minum (27 g) contains 6.02 X 10%* atoms:
of 0.20 cm®. How many aluminum atoms are contained in the

Ny N
27g¢  054g
Solution Since density equals mass per unit volume, the 6.02 X 1023 atoms N
27g © 054g
m=pV=(2.7g/cm®(0.20 cm® = 0.54 ¢ (0.54 g) (6.02 X 10% atoms)
N= = 1.2 X 10* atoms

To find the number of atoms N in this mass of aluminum, we 27 ¢
can set up a proportion using the fact that one mole of alu-

1.4 _~ DIMENSIONAL ANALYSIS

The word dimension has a special meaning in physics. It usually denotes the physi-
cal nature of a quantity. Whether a distance is measured in the length unit feet or
the length unit meters, it is still a distance. We say the dimension—the physical
nature —of distance is length.

The symbols we use in this book to specify length, mass, and time are L, M,
and T, respectively. We shall often use brackets [ ] to denote the dimensions of a
physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation the dimensions of speed are written [v] = L/T. As another exam-
ple, the dimensions of area, for which we use the symbol A, are [A] = L2. The di-
mensions of area, volume, speed, and acceleration are listed in Table 1.6.

In solving problems in physics, there is a useful and powerful procedure called
dimensional analysis. This procedure, which should always be used, will help mini-
mize the need for rote memorization of equations. Dimensional analysis makes
use of the fact that dimensions can be treated as algebraic quantities. That is,
quantities can be added or subtracted only if they have the same dimensions. Fur-
thermore, the terms on both sides of an equation must have the same dimensions.
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TABLE 1.6 Dimensions and Common Units of Area, Volume,
Speed, and Acceleration

Area Volume Speed Acceleration
System (195 ®? (L/T) (L/T?)
SI m? m? m/s m/s?
British engineering ft? ft3 ft/s ft/s?

By following these simple rules, you can use dimensional analysis to help deter-
mine whether an expression has the correct form. The relationship can be correct
only if the dimensions are the same on both sides of the equation.

To illustrate this procedure, suppose you wish to derive a formula for the dis-
tance x traveled by a car in a time ¢ if the car starts from rest and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression is
x = %atQ. Let us use dimensional analysis to check the validity of this expression.
The quantity x on the left side has the dimension of length. For the equation to be
dimensionally correct, the quantity on the right side must also have the dimension
of length. We can perform a dimensional check by substituting the dimensions for
acceleration, L/T2, and time, T, into the equation. That is, the dimensional form
of the equation x = %at2 is

L
L=—TF=1L
72
The units of time squared cancel as shown, leaving the unit of length.
A more general procedure using dimensional analysis is to set up an expres-
sion of the form

x o antm

where n and m are exponents that must be determined and the symbol « indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of
the right side must also be length. That is,

[a"t"] = L = LT°

Because the dimensions of acceleration are L/T? and the dimension of time is T,

we have
LV 1
— | T"=L
T

LnTm*Qn — Ll

Because the exponents of L and T must be the same on both sides, the dimen-
sional equation is balanced under the conditions m — 2n =0, n =1, and m = 2.
Returning to our original expression x « a”"t"we conclude that x « at®This result
differs by a factor of 2 from the correct expression, which is x = %atQ. Because the
factor % is dimensionless, there is no way of determining it using dimensional
analysis.

11
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True or False: Dimensional analysis can give you the numerical value of constants of propor-
tionality that may appear in an algebraic expression.

EXAMPLE 1.2  Analysis of an Equation

Show that the expression v = at is dimensionally correct,
where v represents speed, a acceleration, and ¢ a time inter-
val.

Solution For the speed term, we have from Table 1.6

[]_L
YT

The same table gives us L/T? for the dimensions of accelera-
tion, and so the dimensions of at are

_<L>T_£
[al] = T2 ( )_T

Therefore, the expression is dimensionally correct. (If the ex-
pression were given as v = at?, it would be dimensionally in-
correct. Try it and see!)

EXAMPLE 1.3

Suppose we are told that the acceleration a of a particle mov-
ing with uniform speed v in a circle of radius ris proportional
to some power of 7, say r", and some power of v, say v™. How
can we determine the values of » and m?

Analysis of a Power Law

Solution Let us take a to be
a= kr'y™

where % is a dimensionless constant of proportionality. Know-
ing the dimensions of a, 7, and v, we see that the dimensional
equation must be

L/TQ — L"(L/T)m’ — Ln+m/Tm

This dimensional equation is balanced under the conditions

n+m=1 and m= 2

Therefore n = — 1, and we can write the acceleration expres-
sion as
2
v
a=kr 1?2 =Lr—
r
When we discuss uniform circular motion later, we shall see
that £ = 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted @ in m/s2.

(Y

Esti

two large bottles of soda pop. Note
that 1 L of water has a mass of about

1 ki

uickLab

imate the weight (in pounds) of

-~

g. Use the fact that an object

weighing 2.2 1b has a mass of 1 kg.

Find some bathroom scales and

check your estimate.

1.5 _~ CONVERSION OF UNITS

Sometimes it is necessary to convert units from one system to another. Conversion
factors between the SI units and conventional units of length are as follows:

1mi=1609m = 1.609 km
1m = 39.37in. = 3.281 ft

1ft = 0.304 8 m = 30.48 cm
lin. = 0.0254m = 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.

Units can be treated as algebraic quantities that can cancel each other. For ex-
ample, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined
as exactly 2.54 cm, we find that

15.0 in. = (15.0 ir) (2.54 cm/irr) = 38.1 cm

This works because multiplying by (

2.54 cm
1in.

) is the same as multiplying by 1, because

the numerator and denominator describe identical things.
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(Left) This road sign near Raleigh, North Carolina, shows distances in miles and kilometers. How
accurate are the conversions? (Billy E. Barnes/Stock Boston).

(Right) This vehicle’s speedometer gives speed readings in miles per hour and in kilometers per
hour. Try confirming the conversion between the two sets of units for a few readings of the dial.
(Paul Silverman /Fundamental Photographs)

EXAMPLE 1.4 The Density of a Cube

The mass of a solid cube is 856 g, and each edge has a length V=1I3= (535 cm X 10~2 m/cn1)?
of 5.35 cm. Determine the density p of the cube in basic SI N 6.3 4 3

. = (5.35)° X 107°m®> = 1.53 X 10" * m-
units.

] Therefore,
Solution Because 1 g=10"%kg and 1 cm = 1072 m, the
mass m and volume Vin basic SI units are m 0.856 kg 3 3
p=—= = 5.59 X 10° kg/m"

Vo153 x 1074 m?
m =856 ¢ X 10 3kg/g = 0.856 kg

1.6 _~ ESTIMATES AND ORDER-OF-
MAGNITUDE CALCULATIONS

It is often useful to compute an approximate answer to a physical problem even
where little information is available. Such an approximate answer can then be
used to determine whether a more accurate calculation is necessary. Approxima-
tions are usually based on certain assumptions, which must be modified if greater
accuracy is needed. Thus, we shall sometimes refer to the order of magnitude of a
certain quantity as the power of ten of the number that describes that quantity. If,
for example, we say that a quantity increases in value by three orders of magni-
tude, this means that its value is increased by a factor of 10% = 1000. Also, if a
quantity is given as 3 X 10%, we say that the order of magnitude of that quantity is
10° (or in symbolic form, 3 X 10° ~ 10%). Likewise, the quantity 8 X 107 ~ 108,
The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make an
estimate before every calculation, try a simple physical argument . . . before
every derivation, guess the answer to every puzzle. Courage: no one else needs to
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know what the guess is.” 4 Tnaccuracies caused by guessing too low for one number
are often canceled out by other guesses that are too high. You will find that with
practice your guesstimates get better and better. Estimation problems can be fun
to work as you freely drop digits, venture reasonable approximations for unknown
numbers, make simplifying assumptions, and turn the question around into some-
thing you can answer in your head.

EXAMPLE 1.5

Estimate the number of breaths taken during an average life
span.

Breaths in a Lifetime

Solution We shall start by guessing that the typical life
span is about 70 years. The only other estimate we must make
in this example is the average number of breaths that a per-
son takes in 1 min. This number varies, depending on
whether the person is exercising, sleeping, angry, serene, and
so forth. To the nearest order of magnitude, we shall choose
10 breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is

approximately

min
X 25 X 60 = 6 X 10° min

day K

Notice how much simpler it is to multiply 400 X 25 than it
is to work with the more accurate 365 X 24. These approxi-
mate values for the number of days in a year and the number
of hours in a day are close enough for our purposes. Thus, in
70 years there will be (70 yr)(6 X 10° min/yr) = 4 X 107
min. At a rate of 10 breaths/min, an individual would take

1yr X 400

days M
yr

4 X 108 breaths in a lifetime.

EXAMPLE 1.6 It's a Long Way to San Jose

Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated step
size, we can determine the number of steps in 1 mi. Because
this is a rough calculation, we round 5 280 ft/mi to 5 000
ft/mi. (What percentage error does this introduce?) This
conversion factor gives us

5 000 £t/ mi

= 2500 i
2 Ft/step 2 steps/mi

Now we switch to scientific notation so that we can do the
calculation mentally:

(3 X 103 mi) (2.5 X 103 steps/mi) = 7.5 X 106 steps
~ 107 steps

So if we intend to walk across the United States, it will take us
on the order of ten million steps. This estimate is almost cer-
tainly too small because we have not accounted for curving
roads and going up and down hills and mountains. Nonethe-
less, it is probably within an order of magnitude of the cor-
rect answer.

ExXAMPLE 1.7 How Much Gas Do We Use?

Estimate the number of gallons of gasoline used each year by
all the cars in the United States.

Solution There are about 270 million people in the
United States, and so we estimate that the number of cars in
the country is 100 million (guessing that there are between
two and three people per car). We also estimate that the aver-

age distance each car travels per year is 10 000 mi. If we as-
sume a gasoline consumption of 20 mi/gal or 0.05 gal/mi,
then each car uses about 500 gal/yr. Multiplying this by the
total number of cars in the United States gives an estimated

total consumption of 5 X 10'* gal ~ 10! gal.

4 E. Taylor and J. A. Wheeler, Spacetime Physics, San Francisco, W. H. Freeman & Company, Publishers,

1966, p. 60.



1.7 Significant Figures

1.7 _~ SIGNIFICANT FIGURES

When physical quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty can
depend on various factors, such as the quality of the apparatus, the skill of the ex-
perimenter, and the number of measurements performed.

Suppose that we are asked to measure the area of a computer disk label using
a meter stick as a measuring instrument. Let us assume that the accuracy to which
we can measure with this stick is £ 0.1 cm. If the length of the label is measured to
be 5.5 cm, we can claim only that its length lies somewhere between 5.4 cm and
5.6 cm. In this case, we say that the measured value has two significant figures.
Likewise, if the label’s width is measured to be 6.4 cm, the actual value lies be-
tween 6.3 cm and 6.5 cm. Note that the significant figures include the first esti-
mated digit. Thus we could write the measured values as (5.5 = 0.1) cm and
(6.4 £ 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two mea-
sured values. If we were to claim the area is (5.5 cm) (6.4 cm) = 35.2 cm?, our an-
swer would be unjustifiable because it contains three significant figures, which is
greater than the number of significant figures in either of the measured lengths. A
good rule of thumb to use in determining the number of significant figures that
can be claimed is as follows:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the least accurate
of the quantities being multiplied, where “least accurate” means “having the
lowest number of significant figures.” The same rule applies to division.

Applying this rule to the multiplication example above, we see that the answer
for the area can have only two significant figures because our measured lengths
have only two significant figures. Thus, all we can claim is that the area is 35 cm?,
realizing that the value can range between (5.4 cm) (6.3 cm) = 34 cm? and
(5.6 cm) (6.5 cm) = 36 cm?.

Zeros may or may not be significant figures. Those used to position the deci-
mal point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate
the decimal point or whether they represent significant figures in the measure-
ment. To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 1.5 X
103 g if there are two significant figures in the measured value, 1.50 X 103 g if
there are three significant figures, and 1.500 X 10% g if there are four. The same
rule holds when the number is less than 1, so that 2.3 X 104 has two significant
figures (and so could be written 0.000 23) and 2.30 X 10~* has three significant
figures (also written 0.000 230). In general, a significant figure is a reliably
known digit (other than a zero used to locate the decimal point).

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report.
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QuickLab ~

Determine the thickness of a page
from this book. (Note that numbers
that have no measurement errors—
like the count of a number of
pages—do not affect the significant
figures in a calculation.) In terms of
significant figures, why is it better to
measure the thickness of as many
pages as possible and then divide by
the number of sheets?
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When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum.

For example, if we wish to compute 123 + 5.35, the answer given to the correct num-
ber of significant figures is 128 and not 128.35. If we compute the sum 1.000 1 +
0.000 3 = 1.000 4, the result has five significant figures, even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the sub-
traction 1.002 — 0.998 = 0.004, the result has only one significant figure even though
one term has four significant figures and the other has three. In this book, most of
the numerical examples and end-of-chapter problems will yield answers hav-
ing three significant figures. When carrying out estimates we shall typically work
with a single significant figure.

Suppose you measure the position of a chair with a meter stick and record that the center
of the seat is 1.043 860 564 2 m from a wall. What would a reader conclude from this
recorded measurement?

EXAMPLE 1.8  The Area of a Rectangle

U

A rectangular plate has a length of (21.3 = 0.2) cm and a (21.3 X 9.80 + 21.3 X 0.1 + 0.2 X 9.80) cm?
width of (9.80 £ 0.1) cm. Find the area of the plate and the
uncertainty in the calculated area. ~ (209 * 4) cm?

Because the input data were given to only three significant
figures, we cannot claim any more in our result. Do you see
why we did not need to multiply the uncertainties 0.2 cm and

0.1 cm?

Solution
Area = fw = (21.3 = 0.2 cm) X (9.80 = 0.1 cm)

EXAMPLE 1.9  Installing a Carpet

A carpet is to be installed in a room whose length is measured
to be 12.71 m and whose width is measured to be 3.46 m. Find
the area of the room.

Note that in reducing 43.976 6 to three significant figures
for our answer, we used a general rule for rounding off num-
bers that states that the last digit retained (the 9 in this exam-
ple) is increased by 1 if the first digit dropped (here, the 7) is

Solution If you multiply 12.71 m by 3.46 m on your calcu- 5 or greater. (A technique for avoiding error accumulation is

lator, you will get an answer of 43.976 6 m?. How many of
these numbers should you claim? Our rule of thumb for mul-
tiplication tells us that you can claim only the number of sig-
nificant figures in the least accurate of the quantities being
measured. In this example, we have only three significant fig-
ures in our least accurate measurement, so we should express

our final answer as  44.0 m?.

to delay rounding of numbers in a long calculation until you
have the final result. Wait until you are ready to copy the an-
swer from your calculator before rounding to the correct
number of significant figures.)




Problems

SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and
time, which in the SI system have the units meters (m), kilograms (kg), and sec-
onds (s), respectively. Prefixes indicating various powers of ten are used with these
three basic units. The density of a substance is defined as its mass per unit volume.
Different substances have different densities mainly because of differences in their
atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called
Avogadro’s number, N, is 6.02 X 10%.

The method of dimensional analysis is very powerful in solving physics prob-
lems. Dimensions can be treated as algebraic quantities. By making estimates and
making order-of-magnitude calculations, you should be able to approximate the
answer to a problem when there is not enough information available to completely
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specify an exact solution.

When you compute a result from several measured numbers, each of which
has a certain accuracy, you should give the result with the correct number of signif-

icant figures.

QUESTIONS

1. In this chapter we described how the Earth’s daily rotation
on its axis was once used to define the standard unit of
time. What other types of natural phenomena could serve
as alternative time standards?

[2.] Suppose that the three fundamental standards of the met-
ric system were length, density, and time rather than
length, mass, and time. The standard of density in this sys-
tem is to be defined as that of water. What considerations

Table 1.4: (a) 3 X 107*m (b) 5 X 107%s
(c) 72 X 10%g.

Suppose that two quantities A and B have different dimen-

sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A + B (b) A/B
(c) B— A (d) AB.

What level of accuracy is implied in an order-of-magnitude

calculation?
Do an order-of-magnitude calculation for an everyday situ-
ation you might encounter. For example, how far do you

about water would you need to address to make sure that 7.
the standard of density is as accurate as possible?

3. A hand is defined as 4 in.; a foot is defined as 12 in. Why walk or drive each day?
should the hand be any less acceptable as a unit than the 8. Estimate your age in seconds.
foot, which we use all the time? 9

Express the following quantities using the prefixes given in

PROBLEMS

. Estimate the mass of this textbook in kilograms. If a scale is

available, check your estimate.

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
WeB = solution posted at http:/ /www.saunderscollege.com/physics/ E = Computer useful in solving problem "rt-’ = Interactive Physics

[ ] = paired numerical/symbolic problems

Section 1.3 Density

1. The standard kilogram is a platinum-iridium cylinder
39.0 mm in height and 39.0 mm in diameter. What is
the density of the material?

2. The mass of the planet Saturn (Fig. P1.2) is 5.64 X
10% kg, and its radius is 6.00 X 107 m. Calculate its
density.

3. How many grams of copper are required to make a hol-
low spherical shell having an inner radius of 5.70 cm
and an outer radius of 5.75 cm? The density of copper
is 8.92 g/cmS.

4. What mass of a material with density p is required to
make a hollow spherical shell having inner radius r and
outer radius r9?

5. Iron has molar mass 55.8 g/mol. (a) Find the volume
of 1 mol of iron. (b) Use the value found in (a) to de-
termine the volume of one iron atom. (c) Calculate
the cube root of the atomic volume, to have an esti-
mate for the distance between atoms in the solid.

(d) Repeat the calculations for uranium, finding its
molar mass in the periodic table of the elements in
Appendix C.
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THE WIZARD OF ID

YOU MADE AN ERROR ON THE LUNAR
ECLIF5E... A MISTAKE IN CALCULATING
“THE RELATIVE SPFED ... A VALUE T
THE FIFTH POWER, RATHER THAN CUBEL

t.Ups  Jage AL vav

By permission of John Hart and Field Enterprises, Inc.

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)

6. Two spheres are cut from a certain uniform rock. One
has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

weB Calculate the mass of an atom of (a) helium, (b) iron,

and (c) lead. Give your answers in atomic mass units
and in grams. The molar masses are 4.00, 55.9, and
207 g/mol, respectively, for the atoms given.

8. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. As an av-
erage, how many atoms were abraded from the ring
during each second of your marriage? The molar mass
of gold is 197 g/mol.

9. A small cube of iron is observed under a microscope.
The edge of the cube is 5.00 X 107% cm long. Find (a)
the mass of the cube and (b) the number of iron atoms
in the cube. The molar mass of iron is 55.9 g/mol, and
its density is 7.86 g/cm?.

10. A structural I-beam is made of steel. A view of its cross-

section and its dimensions are shown in Figure P1.10.

15.0 cm

—>
1.00 cm

36.0 cm

1.00 cm vy

Figure P1.10

Physics and Measurements

(a) What is the mass of a section 1.50 m long? (b) How
many atoms are there in this section? The density of
steel is 7.56 X 10% kg/m3.

11. A child at the beach digs a hole in the sand and, using a
pail, fills it with water having a mass of 1.20 kg. The mo-
lar mass of water is 18.0 g/mol. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on the Earth is 1.32 X 102! kg and re-
mains constant. How many of the water molecules in
this pail of water were likely to have been in an equal
quantity of water that once filled a particular claw print
left by a dinosaur?

Section 1.4 Dimensional Analysis

12. The radius r of a circle inscribed in any triangle whose
sides are a, b, and cis given by

r=1[(s=a(s=b(s— /s

where s is an abbreviation for (a + b + ¢) /2. Check this
formula for dimensional consistency.
13.| The displacement of a particle moving under uniform
acceleration is some function of the elapsed time and
the acceleration. Suppose we write this displacement
s = ka™t",where kis a dimensionless constant. Show by
dimensional analysis that this expression is satisfied if
m = 1and n = 2. Can this analysis give the value of k?
14. The period T of a simple pendulum is measured in time
units and is described by

4”
T=2m7\—
g

where { is the length of the pendulum and gis the free-
fall acceleration in units of length divided by the square
of time. Show that this equation is dimensionally correct.
15.| Which of the equations below are dimensionally cor-
rect?
(@) v=vy + ax
(b) y = (2m) cos(kx), where k = 2 m~!
16. Newton’s law of universal gravitation is represented by

GM

F=—

r

Here Fis the gravitational force, M and m are masses,
and ris a length. Force has the SI units kg- m/s2. What
are the SI units of the proportionality constant G?

weB The consumption of natural gas by a company satisfies

the empirical equation V= 1.50¢ + 0.008 002, where V
is the volume in millions of cubic feet and ¢ the time in
months. Express this equation in units of cubic feet and
seconds. Put the proper units on the coefficients. As-
sume a month is 30.0 days.

Section 1.5 Conversion of Units

18. Suppose your hair grows at the rate 1/32 in. per day.
Find the rate at which it grows in nanometers per sec-
ond. Since the distance between atoms in a molecule is



on the order of 0.1 nm, your answer suggests how
rapidly layers of atoms are assembled in this protein syn-
thesis.

A rectangular building lot is 100 ft by 150 ft. Determine
the area of this lot in m?.

20. An auditorium measures 40.0 m X 20.0 m X 12.0 m.
The density of air is 1.20 kg/m? What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

21. Assume that it takes 7.00 min to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time, in hours, required to fill a 1-cubic-meter vol-
ume at the same rate. (1 U.S. gal = 231 in.%)

22. A creature moves at a speed of 5.00 furlongs per fort-
night (not a very common unit of speed). Given that
1 furlong = 220 yards and 1 fortnight = 14 days, deter-
mine the speed of the creature in meters per second.
What kind of creature do you think it might be?

23. A section of land has an area of 1 mi? and contains
640 acres. Determine the number of square meters in
1 acre.

24. A quart container of ice cream is to be made in the
form of a cube. What should be the length of each edge
in centimeters? (Use the conversion 1 gal = 3.786 L.)

A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm®. From these data, calculate the density of
lead in SI units (kg/mS).

26. An astronomical unit (AU) is defined as the average dis-
tance between the Earth and the Sun. (a) How many as-
tronomical units are there in one lightyear? (b) Deter-
mine the distance from the Earth to the Andromeda
galaxy in astronomical units.

27. The mass of the Sun is 1.99 X 10% kg, and the mass of
an atom of hydrogen, of which the Sun is mostly com-
posed, is 1.67 X 10727 kg. How many atoms are there in
the Sun?

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal
law mandated that highway speed limits would be
55 mi/h. Use the conversion factor of part (a) to find
this speed in kilometers per hour. (¢) The maximum
highway speed is now 65 mi/h in some places. In kilo-
meters per hour, how much of an increase is this over
the 55-mi/h limit?

At the time of this book’s printing, the U. S. national
debt is about $6 trillion. (a) If payments were made at
the rate of $1 000/s, how many years would it take to pay
off a $6-trillion debt, assuming no interest were charged?
(b) A dollar bill is about 15.5 cm long. If six trillion dol-
lar bills were laid end to end around the Earth’s equator,
how many times would they encircle the Earth? Take the
radius of the Earth at the equator to be 6 378 km.

(Note: Before doing any of these calculations, try to
guess at the answers. You may be very surprised.)

30.

Problems 19

(a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter of 1.00 X
107 m) strikes each square meter of the Moon each
second, how many years will it take to cover the Moon
to a depth of 1.00 m? (Hint: Consider a cubic box on
the Moon 1.00 m on a side, and find how long it will
take to fill the box.)

WeB One gallon of paint (volume = 3.78 X 1073 m3) covers

32.

33.

34.

35.

36.

an area of 25.0 m2. What is the thickness of the paint on
the wall?

A pyramid has a height of 481 ft, and its base covers an
area of 13.0 acres (Fig. P1.32). If the volume of a pyra-
mid is given by the expression V= %Bh, where Bis the
area of the base and 4 is the height, find the volume of
this pyramid in cubic meters. (1 acre = 43 560 ft?)

'.ﬁ;\_"'-'-t i _. =
i3 T A
Figure P1.32 Problems 32 and 33.

The pyramid described in Problem 32 contains approxi-
mately two million stone blocks that average 2.50 tons
each. Find the weight of this pyramid in pounds.
Assuming that 70% of the Earth’s surface is covered
with water at an average depth of 2.3 mi, estimate the
mass of the water on the Earth in kilograms.

The amount of water in reservoirs is often measured in
acre-feet. One acre-foot is a volume that covers an area
of 1 acre to a depth of 1 ft. An acre is an area of

43 560 ft2. Find the volume in SI units of a reservoir
containing 25.0 acre-ft of water.

A hydrogen atom has a diameter of approximately

1.06 X 1071% m, as defined by the diameter of the
spherical electron cloud around the nucleus. The hy-
drogen nucleus has a diameter of approximately

2.40 X 10715 m. (a) For a scale model, represent the di-
ameter of the hydrogen atom by the length of an Amer-
ican football field (100 yards = 300 ft), and determine
the diameter of the nucleus in millimeters. (b) The
atom is how many times larger in volume than its
nucleus?

The diameter of our disk-shaped galaxy, the Milky Way,

is about 1.0 X 10° lightyears. The distance to Messier
31—which is Andromeda, the spiral galaxy nearest to
the Milky Way—is about 2.0 million lightyears. If a scale
model represents the Milky Way and Andromeda galax-
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38.

CHAPTER 1

ies as dinner plates 25 cm in diameter, determine the
distance between the two plates.

The mean radius of the Earth is 6.37 X 10 m, and that
of the Moon is 1.74 X 108 cm. From these data calcu-
late (a) the ratio of the Earth’s surface area to that of
the Moon and (b) the ratio of the Earth’s volume to
that of the Moon. Recall that the surface area of a
sphere is 47r% and that the volume of a sphere is %7773.

WeB m One cubic meter (1.00 m®) of aluminum has a mass of

40.

2.70 X 103 kg, and 1.00 m? of iron has a mass of

7.86 X 103 kg. Find the radius of a solid aluminum
sphere that balances a solid iron sphere of radius 2.00
cm on an equal-arm balance.

Let py) represent the density of aluminum and pg. that
of iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius 7. on an equal-
arm balance.

Section 1.6 Estimates and Order-of-
Magnitude Calculations

wes [41.] Estimate the number of Ping-Pong balls that would fit

42.

43.

44.

45.

46.

47.

48.

into an average-size room (without being crushed). In
your solution state the quantities you measure or esti-
mate and the values you take for them.

McDonald’s sells about 250 million packages of French
fries per year. If these fries were placed end to end, esti-
mate how far they would reach.

An automobile tire is rated to last for 50 000 miles. Esti-
mate the number of revolutions the tire will make in its
lifetime.

Approximately how many raindrops fall on a 1.0-acre
lot during a 1.0-in. rainfall?

Grass grows densely everywhere on a quarter-acre plot
of land. What is the order of magnitude of the number
of blades of grass on this plot of land? Explain your rea-
soning. (1 acre = 43 560 ft2)

Suppose that someone offers to give you $1 billion if
you can finish counting it out using only one-dollar
bills. Should you accept this offer? Assume you can
count one bill every second, and be sure to note that
you need about 8 hours a day for sleeping and eating
and that right now you are probably at least 18 years
old.

Compute the order of magnitude of the mass of a bath-
tub half full of water and of the mass of a bathtub half
full of pennies. In your solution, list the quantities you
take as data and the value you measure or estimate for
each.

Soft drinks are commonly sold in aluminum containers.
Estimate the number of such containers thrown away or
recycled each year by U.S. consumers. Approximately
how many tons of aluminum does this represent?

[49.] To an order of magnitude, how many piano tuners are

there in New York City? The physicist Enrico Fermi was
famous for asking questions like this on oral Ph.D. qual-
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ifying examinations and for his own facility in making
order-of-magnitude calculations.

Section 1.7 Significant Figures

50.

51.

52.

53.

54.

55.

56.

Determine the number of significant figures in the fol-
lowing measured values: (a) 23 cm (b) 3.589 s

(c) 4.67 X 10> m/s (d) 0.003 2 m.

The radius of a circle is measured to be 10.5 £ 0.2 m.
Calculate the (a) area and (b) circumference of the cir-
cle and give the uncertainty in each value.

Carry out the following arithmetic operations: (a) the
sum of the measured values 756, 37.2, 0.83, and 2.5;

(b) the product 0.003 2 X 356.3; (c) the product

5.620 X .

The radius of a solid sphere is measured to be (6.50 *
0.20) cm, and its mass is measured to be (1.85 = 0.02)
kg. Determine the density of the sphere in kilograms
per cubic meter and the uncertainty in the density.
How many significant figures are in the following num-
bers: (a) 78.9 * 0.2, (b) 3.788 X 109, (c) 2.46 X 1075,
and (d) 0.005 3?

A farmer measures the distance around a rectangular
field. The length of the long sides of the rectangle is
found to be 38.44 m, and the length of the short sides is
found to be 19.5 m. What is the total distance around
the field?

A sidewalk is to be constructed around a swimming

pool that measures (10.0 = 0.1) m by (17.0 = 0.1) m.

If the sidewalk is to measure (1.00 = 0.01) m wide by
(9.0 £ 0.1) cm thick, what volume of concrete is needed,
and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

57.

58.

In a situation where data are known to three significant
digits, we write 6.379 m = 6.38 m and 6.374 m =

6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m = 6.38 m. We could equally well write
6.375 m = 6.37 m, “rounding down” instead of “round-
ing up,” since we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which we consider factors
rather than increments. We write 500 m ~ 10® m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1000 by only a factor of 2. We write 437 m ~
10% m and 305 m ~ 10% m. What distance differs from
100 m and from 1000 m by equal factors, so that we
could equally well choose to represent its order of mag-
nitude either as ~ 102 m or as ~ 10® m?

When a droplet of oil spreads out on a smooth water
surface, the resulting “oil slick” is approximately one
molecule thick. An oil droplet of mass 9.00 X 1077 kg
and density 918 kg/m? spreads out into a circle of ra-
dius 41.8 cm on the water surface. What is the diameter
of an oil molecule?



59. The basic function of the carburetor of an automobile
is to “atomize” the gasoline and mix it with air to pro-
mote rapid combustion. As an example, assume that
30.0 cm® of gasoline is atomized into N'spherical
droplets, each with a radius of 2.00 X 1075 m. What is
the total surface area of these Nspherical droplets?

[] 60. In physics it is important to use mathematical approxi-

mations. Demonstrate for yourself that for small angles
(<20°)

tan a = sin o = a = wa'/180°

where « is in radians and «’ is in degrees. Use a calcula-
tor to find the largest angle for which tan « may be ap-
proximated by sin « if the error is to be less than 10.0%.

61.] A high fountain of water is located at the center of a cir-
cular pool as in Figure P1.61. Not wishing to get his feet
wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation of the top of the fountain to be 55.0°.
How high is the fountain?

Figure P1.61

62. Assume that an object covers an area A and has a uni-
form height h. If its cross-sectional area is uniform over
its height, then its volume is given by V= Ah. (a) Show
that V= Ah is dimensionally correct. (b) Show that the
volumes of a cylinder and of a rectangular box can be
written in the form V= Ah, identifying A in each case.
(Note that A, sometimes called the “footprint” of the
object, can have any shape and that the height can be
replaced by average thickness in general.)

63.] A useful fact is that there are about 7 X 107 s in one
year. Find the percentage error in this approximation,
where “percentage error” is defined as

| Assumed value — true value |

X 100
True value %

Problems 21

64. A crystalline solid consists of atoms stacked up in a re-
peating lattice structure. Consider a crystal as shown in
Figure P1.64a. The atoms reside at the corners of cubes
of side L = 0.200 nm. One piece of evidence for the
regular arrangement of atoms comes from the flat sur-
faces along which a crystal separates, or “cleaves,” when
it is broken. Suppose this crystal cleaves along a face di-
agonal, as shown in Figure P1.64b. Calculate the spac-
ing d between two adjacent atomic planes that separate
when the crystal cleaves.

Figure P1.64

65. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section of
the bottle is a circle, but the diameters of the circles all
have different values, so that the bottle is much wider in
some places than in others. You pour in bright green
shampoo with constant volume flow rate 16.5 cm?®/s. At
what rate is its level in the bottle rising (a) at a point
where the diameter of the bottle is 6.30 cm and (b) ata
point where the diameter is 1.35 cm?

66. As a child, the educator and national leader Booker T.
Washington was given a spoonful (about 12.0 cm®) of
molasses as a treat. He pretended that the quantity in-
creased when he spread it out to cover uniformly all of
a tin plate (with a diameter of about 23.0 cm). How
thick a layer did it make?

Assume there are 100 million passenger cars in the
United States and that the average fuel consumption is
20 mi/gal of gasoline. If the average distance traveled
by each car is 10 000 mi/yr, how much gasoline would
be saved per year if average fuel consumption could be
increased to 25 mi/gal?

68. One cubic centimeter of water has a mass of 1.00 X
1073 kg. (a) Determine the mass of 1.00 m?3 of water.
(b) Assuming biological substances are 98% water, esti-
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mate the mass of a cell that has a diameter of 1.0 um, a
human kidney, and a fly. Assume that a kidney is
roughly a sphere with a radius of 4.0 cm and that a

fly is roughly a cylinder 4.0 mm long and 2.0 mm in
diameter.

69. The distance from the Sun to the nearest star is 4 X
10'6 m. The Milky Way galaxy is roughly a disk of diame-
ter ~ 102! m and thickness ~ 10! m. Find the order of
magnitude of the number of stars in the Milky Way. As-
sume the 4 X 10'%m distance between the Sun and the
nearest star is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-

ANSWERS TO QUICK QUIZZES

1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. For example, experiments show that
doubling the radius of a solid sphere increases its mass
8-fold, and tripling the radius increases the mass 27-fold.
Therefore, its mass is proportional to the cube of its ra-
dius. Because m < r?’we can write m = kr>. Dimen-
sional analysis shows that the proportionality constant &
must have units kg/mg, but to determine its numerical
value requires either experimental data or geometrical
reasoning.

THE WIZARD OF ID

minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare
your results for aluminum, copper, and iron with those
given in Table 1.5.

Diameter
Substance Mass (g) (cm) Length (cm)
Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77

1.2 Reporting all these digits implies you have determined
the location of the center of the chair’s seat to the near-
est =0.000 000 000 1 m. This roughly corresponds to
being able to count the atoms in your meter stick be-
cause each of them is about that size! It would probably
be better to record the measurement as 1.044 m: this in-
dicates that you know the position to the nearest mil-
limeter, assuming the meter stick has millimeter mark-
ings on its scale.

By Parker and Hart

YOU MADE AN ERROR ON THE LUNAR IMPOSSIBLE!.IF THAT
ECLIFSE...A MISTAKE IN CALCULATING WERE TRUE, WE WOULD
“THE RELATIVE SPFED... A VALUE > BE IN AL
THE FIFTH PaWER, RATHER THAN CUBED, DARKNESS AT THIS
: VERY MOMEN.we.
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In a moment the arresting cable will be
pulled taut, and the 140-mi/h landing of
this F/A-18 Hornet on the aircraft carrier
USS Nimitz will be brought to a sudden
conclusion. The pilot cuts power to the
engine, and the plane is stopped in less
than 2 s. If the cable had not been suc-
cessfully engaged, the pilot would have
had to take off quickly before reaching
the end of the flight deck. Can the motion
of the plane be described quantitatively
in a way that is useful to ship and aircraft
designers and to pilots learning to land
on a “postage stamp?” (Courtesy of the
USS Nimitz/U.S. Navy)

c h a p t e r

Motion in One Dimension

Chapter Outline

2.1 Displacement, Velocity, and Speed 2.6 Freely Falling Objects

2.2 Instantaneous Velocity and Speed 2.7 (Optional) Kinematic Equations
2.3 Acceleration Derived from Calculus
2.4 Motion Diagrams GOAL Problem-Solving Steps

2.5 One-Dimensional Motion with
Constant Acceleration

23



24

TABLE 2.1

Position of the Car at

Various Times

Position t(s) x(m)
® 0 30
10 52
© 20 38
© 30 0
® 40 —37
® 50 —53

CHAPTER 2 Motionin One Dimension

s a first step in studying classical mechanics, we describe motion in terms of

space and time while ignoring the agents that caused that motion. This por-

tion of classical mechanics is called kinematics. (The word kinematics has the
same root as cinema. Can you see why?) In this chapter we consider only motion in
one dimension. We first define displacement, velocity, and acceleration. Then, us-
ing these concepts, we study the motion of objects traveling in one dimension with
a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we are concerned with three types
of motion: translational, rotational, and vibrational. A car moving down a highway
is an example of translational motion, the Earth’s spin on its axis is an example of
rotational motion, and the back-and-forth movement of a pendulum is an example
of vibrational motion. In this and the next few chapters, we are concerned only
with translational motion. (Later in the book we shall discuss rotational and vibra-
tional motions.)

In our study of translational motion, we describe the moving object as a parti-
cleregardless of its size. In general, a particle is a point-like mass having infini-
tesimal size. For example, if we wish to describe the motion of the Earth around
the Sun, we can treat the Earth as a particle and obtain reasonably accurate data
about its orbit. This approximation is justified because the radius of the Earth’s or-
bit is large compared with the dimensions of the Earth and the Sun. As an exam-
ple on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles.

2.1 _~ DISPLACEMENT, VELOCITY, AND SPEED

The motion of a particle is completely known if the particle’s position in space is
known at all times. Consider a car moving back and forth along the x axis, as shown
in Figure 2.1a. When we begin collecting position data, the car is 30 m to the right
of a road sign. (Let us assume that all data in this example are known to two signifi-
cant figures. To convey this information, we should report the initial position as
3.0 X 10! m. We have written this value in this simpler form to make the discussion
easier to follow.) We start our clock and once every 10 s note the car’s location rela-
tive to the sign. As you can see from Table 2.1, the car is moving to the right (which
we have defined as the positive direction) during the first 10 s of motion, from posi-
tion ® to position ®. The position values now begin to decrease, however, because
the car is backing up from position ® through position ®. In fact, at ®, 30 s after
we start measuring, the car is alongside the sign we are using as our origin of coordi-
nates. It continues moving to the left and is more than 50 m to the left of the sign
when we stop recording information after our sixth data point. A graph of this infor-
mation is presented in Figure 2.1b. Such a plot is called a position—time graph.

If a particle is moving, we can easily determine its change in position. The dis-
placement of a particle is defined as its change in position. As it moves from
an initial position «; to a final position x, its displacement is given by x, — x;. We
use the Greek letter delta (A) to denote the change in a quantity. Therefore, we
write the displacement, or change in position, of the particle as

Ax=x;— x; (2.1)

From this definition we see that Ax is positive if x/is greater than x; and negative if
xris less than x;.
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A very easy mistake to make is not to recognize the difference between dis-
placement and distance traveled (Fig. 2.2). A baseball player hitting a home run
travels a distance of 360 ft in the trip around the bases. However, the player’s dis-
placement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including velocity and acceleration, also are vectors. In general, a vector is a
physical quantity that requires the specification of both direction and mag-
nitude. By contrast, a scalar is a quantity that has magnitude and no direc-
tion. In this chapter, we use plus and minus signs to indicate vector direction. We
can do this because the chapter deals with one-dimensional motion only; this
means that any object we study can be moving only along a straight line. For exam-
ple, for horizontal motion, let us arbitrarily specify to the right as being the posi-
tive direction. It follows that any object always moving to the right undergoes a

25

.;__g'Figure 2.1 (a) A car moves back
and forth along a straight line
taken to be the x axis. Because we
are interested only in the car’s
translational motion, we can treat it
as a particle. (b) Position—time
graph for the motion of the
“particle.”



26

Average velocity

CHAPTER 2 Motionin One Dimension

Figure 2.2 Bird’s-eye view of a baseball
diamond. A batter who hits a home run
travels 360 ft as he rounds the bases, but his
displacement for the round trip is zero.
(Mark C. Burnett/Photo Researchers, Inc.)

positive displacement +Ax, and any object moving to the left undergoes a negative
displacement — Ax. We shall treat vectors in greater detail in Chapter 3.

There is one very important point that has not yet been mentioned. Note that
the graph in Figure 2.1b does not consist of just six data points but is actually a
smooth curve. The graph contains information about the entire 50-s interval during
which we watched the car move. It is much easier to see changes in position from
the graph than from a verbal description or even a table of numbers. For example, it
is clear that the car was covering more ground during the middle of the 50-s interval
than at the end. Between positions © and ©, the car traveled almost 40 m, but dur-
ing the last 10 s, between positions ® and ®, it moved less than half that far. A com-
mon way of comparing these different motions is to divide the displacement Ax that
occurs between two clock readings by the length of that particular time interval At.
This turns out to be a very useful ratio, one that we shall use many times. For conve-
nience, the ratio has been given a special name — average velocity. The average ve-
locity v, of a particle is defined as the particle’s displacement Ax divided by
the time interval At during which that displacement occurred:

Ax

) (2.2)

Ve =

(@’ where the subscript x indicates motion along the x axis. From this definition we
32 see that average velocity has dimensions of length divided by time (L/T)—meters

per second in SI units.

Although the distance traveled for any motion is always positive, the average ve-
locity of a particle moving in one dimension can be positive or negative, depending
on the sign of the displacement. (The time interval A¢is always positive.) If the co-
ordinate of the particle increases in time (that is, if x,> x;), then Axis positive and
v, = Ax/At is positive. This case corresponds to motion in the positive x direction.
If the coordinate decreases in time (that is, if x;< x;), then Ax is negative and
hence v, is negative. This case corresponds to motion in the negative x direction.
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We can interpret average velocity geometrically by drawing a straight line be-
tween any two points on the position—time graph in Figure 2.1b. This line forms
the hypotenuse of a right triangle of height Ax and base At. The slope of this line
is the ratio Ax/At For example, the line between positions @ and ® has a slope
equal to the average velocity of the car between those two times, (52 m — 30 m)/
(I0s — 0) = 2.2m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a
marathon runner who runs more than 40 km, yet ends up at his starting point. His
average velocity is zero! Nonetheless, we need to be able to quantify how fast he
was running. A slightly different ratio accomplishes this for us. The average
speed of a particle, a scalar quantity, is defined as the total distance trav-
eled divided by the total time it takes to travel that distance:

Average speed = total dlsFance
total time

The SI unit of average speed is the same as the unit of average velocity: meters
per second. However, unlike average velocity, average speed has no direction and
hence carries no algebraic sign.

Knowledge of the average speed of a particle tells us nothing about the details
of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car.
The average speed for your trip is 35 km/h. However, you most likely traveled at
various speeds during the trip, and the average speed of 35 km/h could result
from an infinite number of possible speed values.

EXAMPLE 2.1 Calculating the Variables of Motion

Average speed

27

Find the displacement, average velocity, and average speed of
the car in Figure 2.1a between positions ® and ®.

Solution The units of displacement must be meters, and
the numerical result should be of the same order of magni-
tude as the given position data (which means probably not 10
or 100 times bigger or smaller). From the position—-time
graph given in Figure 2.1b, note that x4, = 30 m at {4 = 0's
and that xg = —53 m at ¢ = 50 s. Using these values along
with the definition of displacement, Equation 2.1, we find
that

Ax=xg—xa=—-53m—-30m= —83m

This result means that the car ends up 83 m in the negative
direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of

magnitude as the supplied data. A quick look at Figure 2.1a
indicates that this is the correct answer.

It is difficult to estimate the average velocity without com-
pleting the calculation, but we expect the units to be meters
per second. Because the car ends up to the left of where we
started taking data, we know the average velocity must be
negative. From Equation 2.2,

_ AX xf_xz XE — XA
Vy = = =
At =1 lg — Ip
—53m — 30 m —83m
= = = —1.7
505 —0s 50's m/s

We find the car’s average speed for this trip by adding the
distances traveled and dividing by the total time:
22m + 52m + 53 m

A = = 2
verage speed 505 2.5m/s

2.2 _~ INSTANTANEOUS VELOCITY AND SPEED

Often we need to know the velocity of a particle at a particular instant in time,
rather than over a finite time interval. For example, even though you might want
to calculate your average velocity during a long automobile trip, you would be es-
pecially interested in knowing your velocity at the instant you noticed the police
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of
the upper left-hand corner of the graph shows how the blue line between positions ® and
approaches the green tangent line as point ® gets closer to point ®.

car parked alongside the road in front of you. In other words, you would like to be
able to specify your velocity just as precisely as you can specify your position by not-
ing what is happening at a specific clock reading—that is, at some specific instant.
It may not be immediately obvious how to do this. What does it mean to talk about
how fast something is moving if we “freeze time” and talk only about an individual
instant? This is a subtle point not thoroughly understood until the late 1600s. At
that time, with the invention of calculus, scientists began to understand how to de-
scribe an object’s motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the
average velocity for the interval during which the car moved from position ® to
position ® (given by the slope of the dark blue line) and for the interval during
which it moved from ® to ® (represented by the slope of the light blue line).
Which of these two lines do you think is a closer approximation of the initial veloc-
ity of the car? The car starts out by moving to the right, which we defined to be the
positive direction. Therefore, being positive, the value of the average velocity dur-
ing the ® to ® interval is probably closer to the initial value than is the value of
the average velocity during the ® to ® interval, which we determined to be nega-
tive in Example 2.1. Now imagine that we start with the dark blue line and slide
point ® to the left along the curve, toward point ®, as in Figure 2.3b. The line be-
tween the points becomes steeper and steeper, and as the two points get extremely
close together, the line becomes a tangent line to the curve, indicated by the green
line on the graph. The slope of this tangent line represents the velocity of the car
at the moment we started taking data, at point ®. What we have done is determine
the instantaneous velocity at that moment. In other words, the instantaneous veloc-
ity v, equals the limiting value of the ratio Ax/At as At approaches zero:!

Ax

T A 23

I Note that the displacement Ax also approaches zero as A¢ approaches zero. As Ax and At become
smaller and smaller, the ratio Ax/At approaches a value equal to the slope of the line tangent to the
X-versus-{ curve.
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In calculus notation, this limit is called the derivative of x with respect to ¢, written
dx/dt:

Ax dx
= lim — = — 2.4
Ur = A At dt (2.4)

The instantaneous velocity can be positive, negative, or zero. When the slope
of the position—time graph is positive, such as at any time during the first 10 s in
Figure 2.3, v, is positive. After point ®, v, is negative because the slope is negative.
At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word velocity to designate instantaneous velocity.
When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its
velocity. As with average speed, instantaneous speed has no direction associated
with it and hence carries no algebraic sign. For example, if one particle has a
velocity of +25 m/s along a given line and another particle has a velocity of
— 25 m/s along the same line, both have a speed2 of 25 m/s.

EXAMPLE 2.2  Average and Instantaneous Velocity

A particle moves along the x axis. Its x coordinate varies with

{y= 1g = 1s. Using Equation 2.1, with x = — 4/ + 2%, we ob-
tain for the first displacement

Axpp = Xp— X; = X T XA
[—4(1) +2(1)2] — [—4(0) + 2(0)?]

= —2m

To calculate the displacement during the second time in- gl o™

terval, weset f; = fg = lsand ;= ip = 3 s

Axgp = x;— x; = xp — XB tion—time graph.

2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous speed.

3 Simply to make it easier to read, we write the empirical equation as x = —4¢ + 2¢* rather than as
x= (—4.00m/s)t + (2.00 m/s2) (2%, When an equation summarizes measurements, consider its coef-
ficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to
have the units required for dimensional consistency. When we start our clocks at ¢ = 0 s, we usually do
not mean to limit the precision to a single digit. Consider any zero value in this book to have as many
significant figures as you need.

time according to the expression x = — 4t + 2¢2, where x is in 196(m)
meters and ¢ is in seconds.® The position—time graph for this
motion is shown in Figure 2.4. Note that the particle moves in 8
the negative x direction for the first second of motion, is at rest
at the moment ¢ = 1s, and moves in the positive x direction 6 Slope = 4 m/s
for t> 1s. (a) Determine the displacement of the particle in 4
the time intervals t = 0to¢t=1sandt=1sto (= 3s. Slope = -2 m/s
2
Solution During the first time interval, we have a negative ®
slope and hence a negative velocity. Thus, we know that the 0
displacement between ® and ® must be a negative number 5 \
having units of meters. Similarly, we expect the displacement
between ® and ® to be positive. 4
In the first time interval, we set ¢; =, =0 and 0 1

[—4(8) +2(3)%] — [—4(1) +2(1)*]

29

Figure 2.4 Position—-time graph for a particle having an x coordi-
nate that varies in time according to the expression x = — 4t + 2¢2,

These displacements can also be read directly from the posi-
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(b) Calculate the average velocity during these two time  These values agree with the slopes of the lines joining these
intervals. points in Figure 2.4.

(c) Find the instantaneous velocity of the particle at ¢ =

Solution 1In the first time interval, A¢= = t=tg— 25s.
in = 1 s. Therefore, using Equation 2.2 and the displacement . ) o
calculated in (a), we find that Solution Certainly we can guess that this instantaneous ve-
locity must be of the same order of magnitude as our previ-
_ Axpp —9m ous results, that is, around 4 m/s. Examining the graph, we
Us(a=B) T T AT T T 2m/s see that the slope of the tangent at position © is greater than
the slope of the blue line connecting points ® and ®. Thus,
In the second time interval, At = 2 s; therefore, we expect the answer to be greater than 4 m/s. By measuring
the slope of the position—time graph at ¢ = 2.5 s, we find that
_ Axg—p 8 m
vx(B_)D)=T=?= +4m/s = +6m/s

2.3 _~ ACCELERATION

In the last example, we worked with a situation in which the velocity of a particle
changed while the particle was moving. This is an extremely common occurrence.
(How constant is your velocity as you ride a city bus?) It is easy to quantify changes
in velocity as a function of time in exactly the same way we quantify changes in po-
sition as a function of time. When the velocity of a particle changes with time, the
particle is said to be accelerating. For example, the velocity of a car increases when
you step on the gas and decreases when you apply the brakes. However, we need a
better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity v,; at time ¢; and a ve-
locity Uy at time i, as in Figure 2.5a.

The average acceleration of the particle is defined as the change in velocity Av,
divided by the time interval A¢ during which that change occurred:

_ Av Uyr = Uy
Average acceleration a, = X = /) - (25)

AL ir— 1

As with velocity, when the motion being analyzed is one-dimensional, we can
use positive and negative signs to indicate the direction of the acceleration. Be-
cause the dimensions of velocity are L/T and the dimension of time is T, accelera-

Figure 2.5 (a) A “particle” mov-
ing along the x axis from ® to
has velocity v,; at ¢ = ¢; and velocity
vy at ¢ = tp. (b) Velocity—time

graph for the particle moving in a ®
straight line. The slope of the blue . . X
straight line connecting ® and ! Y
is the average acceleration in the U= Uui U=y

time interval At = =t (a)
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tion has dimensions of length divided by time squared, or L/T2. The SI unit of ac-
celeration is meters per second squared (m/s?). It might be easier to interpret
these units if you think of them as meters per second per second. For example,
suppose an object has an acceleration of 2 m/s? You should form a mental
image of the object having a velocity that is along a straight line and is increasing
by 2 m/s during every 1-s interval. If the object starts from rest, you should be
able to picture it moving at a velocity of + 2 m/s after 1 s, at +4 m/s after 2 s, and
SO on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as At approaches zero. This concept is anal-
ogous to the definition of instantaneous velocity discussed in the previous section.
If we imagine that point ® is brought closer and closer to point ® in Figure 2.5a
and take the limit of Av,/At as At approaches zero, we obtain the instantaneous
acceleration:

(2.6)

- Av,  dv,
&= %0 A dt

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity—time graph
(Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of
the particle’s x-t graph, the acceleration of a particle is the slope of the particle’s
v,-t graph. One can interpret the derivative of the velocity with respect to time as the
time rate of change of velocity. If a, is positive, then the acceleration is in the positive
x direction; if a, is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous accel-
eration. When we mean average acceleration, we shall always use the adjective
average.

Because v, = dx/ dt, the acceleration can also be written

dv, d(dx) _d%x

Ay = ——— = —\—— 5
di dt\ dt dt?

(2.7)

That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Figure 2.6 illustrates how an acceleration—time graph is related to a
velocity—time graph. The acceleration at any time is the slope of the velocity—time
graph at that time. Positive values of acceleration correspond to those points in
Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-

|
|
|
| |
| |
| |
| |
| |
| |
ia 5 g Ia B\

(@) (b)
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Instantaneous acceleration

Figure 2.6 Instantaneous accel-
eration can be obtained from the
v,-t graph. (a) The velocity—time
graph for some motion. (b) The
acceleration—time graph for the
same motion. The acceleration
given by the a,-t graph for any
value of ¢ equals the slope of the
line tangent to the v,-¢ graph at the
same value of .
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ation reaches a maximum at time ¢, when the slope of the velocity—time graph is
a maximum. The acceleration then goes to zero at time /g, when the velocity is a
maximum (that is, when the slope of the v,-¢ graph is zero). The acceleration is
negative when the velocity is decreasing in the positive x direction, and it reaches
its most negative value at time {c.

CONCEPTUAL EXAMPLE 2.3  Graphical Relationships Between x, v,, and a,

The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and the
acceleration versus time for the object. x

Solution The velocity at any instant is the slope of the tan-
gent to the x-f graph at that instant. Between ¢= 0 and
t = ta, the slope of the x-¢ graph increases uniformly, and so
the velocity increases linearly, as shown in Figure 2.7b. Be-
tween ¢a and tg, the slope of the x-¢ graph is constant, and so
the velocity remains constant. At ¢p, the slope of the x-{ graph
is zero, so the velocity is zero at that instant. Between #p and
lg, the slope of the x-¢ graph and thus the velocity are nega- \
tive and decrease uniformly in this interval. In the interval g 0
to ¢, the slope of the x-f graph is still negative, and at ¢¢ it
goes to zero. Finally, after ¢¢, the slope of the x-t graph is
zero, meaning that the object is at rest for ¢ > . [
The acceleration at any instant is the slope of the tangent
to the v,-t graph at that instant. The graph of acceleration (b)
versus time for this object is shown in Figure 2.7c. The accel-
eration is constant and positive between 0 and (4, where the 0 P . P y/
slope of the v,-¢ graph is positive. It is zero between {4 and (g A poe [\%F
and for ¢ > tg because the slope of the v,-¢ graph is zero at !
these times. It is negative between ¢g and g because the slope
of the v,-t graph is negative during this interval.

()

Figure 2.7 (a) Position—time graph for an object moving along

the xaxis. (b) The velocity—time graph for the object is obtained by (©)
measuring the slope of the position—time graph at each instant. ¢
(c) The acceleration—time graph for the object is obtained by mea- o in lg g ¢
suring the slope of the velocity—time graph at each instant.

Make a velocity—time graph for the car in Figure 2.1a and use your graph to determine
whether the car ever exceeds the speed limit posted on the road sign (30 km/h).

EXAMPLE 2.4 Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies in ~ Solution Figure 2.8 is a v,-f graph that was created from
time according to the expression v, = (40 — 5¢%) m/s, where  the velocity versus time expression given in the problem state-
tis in seconds. (a) Find the average acceleration in the time  ment. Because the slope of the entire v,-t curve is negative,
interval t=0to ¢t = 2.0s. we expect the acceleration to be negative.
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v (m/s) Z = Unf” Uxi _ UxB T VA _ (20 — 40) m/s
40 x l_}‘_ li lB - [A (20 - 0) S
= - 2
30 10 m/s
20 Slope = 20 m/s* The negative sign is consistent with our expectations—
namely, that the average acceleration, which is represented by
the slope of the line (not shown) joining the initial and final
LY points on the velocity—time graph, is negative.
0 (s) (b) Determine the acceleration at ¢t = 2.0 s.
10 Solution The velocity at any time ¢ is wv, = (40 —
- 5¢%) m/s, and the velocity at any later time ¢ + Atis
_90 vy =40 — 5(1+ A2 = 40 — 512 — 101 At — 5(An)?
Therefore, the change in velocity over the time interval At is
-30

1 2 3 4 Av, = vy — vy = [—10t AL = 5(AH)%] m/s

Dividing this expression by Az and taking the limit of the re-

Figure 2.8 The velocity—time graph for a particle moving along sult as Az approaches zero gives the acceleration at any time &
the x axis according to the expression v, = (40 — 5¢2) m/s. The ac-

celeration at ¢ = 2 s is equal to the slope of the blue tangent line at

_ o Ay B .
that time. a, = lim —Alg)no( 10t — A = —10¢t m/s

A—0 At

Therefore, at t = 2.0 s,

a, = (—10)(2.0) m/s> = —20 m/s>

We find the velocities at ; = ta = 0 and = (g = 2.0 s by
substituting these values of ¢ into the expression for the ve-
locity:

What we have done by comparing the average acceleration
during the interval between ® and (—10 m/s?) with the
instantaneous value at ® (—20 m/s?) is compare the slope of
va = (40 — 52,%) m/s = [40 — 5(0)2] m/s = +40 m/s the line (not shown) joining ® and ® with the slope of the
tangent at ®.

Note that the acceleration is not constant in this example.
Therefore, the average acceleration in the specified time in-  Situations involving constant acceleration are treated in Sec-
terval At = tg — tp = 2.0 sis tion 2.5.

v, = (40 — 515%) m/s = [40 — 5(2.0)?] m/s = +20 m/s

So far we have evaluated the derivatives of a function by starting with the defi-
nition of the function and then taking the limit of a specific ratio. Those of you fa-
miliar with calculus should recognize that there are specific rules for taking deriva-
tives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of ¢,
such as in the expression

x = At"

where A and n are constants. (This is a very common functional form.) The deriva-
tive of x with respect to tis

dx 1
— = nAt"

dt
Applying this rule to Example 2.4, in which v, = 40 — 5¢2, we find that a, =
dv,/dt = — 10t
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2.4 _~ MOTION DIAGRAMS

The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to use motion diagrams
to describe the velocity and acceleration while an object is in motion. In order not
to confuse these two vector quantities, for which both magnitude and direction
are important, we use red for velocity vectors and violet for acceleration vectors, as
shown in Figure 2.9. The vectors are sketched at several instants during the mo-
tion of the object, and the time intervals between adjacent positions are assumed
to be equal. This illustration represents three sets of strobe photographs of a car
moving from left to right along a straight roadway. The time intervals between
flashes are equal in each diagram.

In Figure 2.9a, the images of the car are equally spaced, showing us that the
car moves the same distance in each time interval. Thus, the car moves with con-
stant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this
case, the velocity vector increases in time because the car’s displacement between
adjacent positions increases in time. The car is moving with a positive velocity and a
positive acceleration.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. In this case, the car
moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the ac-
celeration and velocity vectors are not in the same direction. The car is moving
with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially
to the left with a constant positive or negative acceleration.

vV = — —_— —_— —_—
0 p—@g—teo—20 ‘o—"o =

A — —p  — —_— —_—

V  — —_— —_— —_ ->
© lp—=2e. o—2e oo =200

a - D D < -

|;'3Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration).
(b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The
velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a vio-
let arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the
velocity at each instant.
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| Quick Quiz 2.2 g

(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing
down, can its acceleration be positive?

2.5 _~ ONE-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and diffi-
cult to analyze. However, a very common and simple type of one-dimensional mo-
tion is that in which the acceleration is constant. When this is the case, the average
acceleration over any time interval equals the instantaneous acceleration at any in-
stant within the interval, and the velocity changes at the same rate throughout the
motion.

If we replace a, by a, in Equation 2.5 and take ; = 0 and #;to be any later time
t, we find that

_ Uxf = Uxi
dx_f

or
Upf = Uy T ayl (for constant a,) (2.8)

This powerful expression enables us to determine an object’s velocity at any time
¢t if we know the object’s initial velocity and its (constant) acceleration. A
velocity—time graph for this constant-acceleration motion is shown in Figure
2.10a. The graph is a straight line, the (constant) slope of which is the acceleration
a,; this is consistent with the fact that a, = dv,/dt is a constant. Note that the slope
is positive; this indicates a positive acceleration. If the acceleration were negative,
then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10b) is a straight line having a slope of zero.

| Quick Quiz 2.3 4

Describe the meaning of each term in Equation 2.8.

(a) (b)

Figure 2.10 An object moving along the x axis with constant acceleration a,. (a) The
velocity—time graph. (b) The acceleration—time graph. (c) The position—time graph.

(c)

35
Velocity as a function of time
x
| Slope = v,
[
| Slope = v,; }
0 [ !
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Displacement as a function of

velocity and time

Q

(d)

(e)

L

()

Figure 2.11 Parts (a), (b), and
(c) are v,-t graphs of objects in
one-dimensional motion. The pos-
sible accelerations of each object as
a function of time are shown in
scrambled order in (d), (e), and

().

CHAPTER 2 Motionin One Dimension

Because velocity at constant acceleration varies linearly in time according to
Equation 2.8, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity v,; and the final velocity v, :

— Uxi + Uy

U, = Tf (for constant a,) (2.9)
Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any
object as a function of time. Recalling that Ax in Equation 2.2 represents x; — x;,
and now using ¢in place of At (because we take ¢; = 0), we can say

Xp— X = Uyt = %(vm- + vt (for constant a,) (2.10)
We can obtain another useful expression for displacement at constant acceler-
ation by substituting Equation 2.8 into Equation 2.10:

_1
Xp— X = s(vg + vy + ait)t

Xp— x; = Uyt + %axt2 (2.11)

The position—time graph for motion at constant (positive) acceleration shown in
Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The
slope of the tangent line to this curve at ¢ = t; = 0 equals the initial velocity v,;, and
the slope of the tangent line at any later time ¢ equals the velocity at that time, v, .

We can check the validity of Equation 2.11 by moving the x; term to the right-
hand side of the equation and differentiating the equation with respect to time:

U=~ = — | X T vt T+ —ayt?) = vy + ayt
dt dt 2

Finally, we can obtain an expression for the final velocity that does not contain

a time interval by substituting the value of ¢ from Equation 2.8 into Equation 2.10:

2 _ 2
Uy

1 Uxf = Uxi Uxf
XX = (o vx/)< o > —

Ay

vxfz =uy2 + 2a,(x;— x;) (for constant a,) (2.12)

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that

Unf T Uni T U when a, = 0
Xp— X; = Ul

That is, when acceleration is zero, velocity is constant and displacement changes
linearly with time.

In Figure 2.11, match each v,-t graph with the a,-t graph that best describes the motion.

Equations 2.8 through 2.12 are kinematic expressions that may be used to
solve any problem involving one-dimensional motion at constant accelera-
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TABLE 2.2 Kinematic Equations for Motion in a Straight Line
Under Constant Acceleration

Equation Information Given by Equation

Uy = Ui T oAyl Velocity as a function of time

X=X = %(vm- + vt Displacement as a function of velocity and time
X=X = Uyl ant2 Displacement as a function of time

vxf2 = v,° + 2ax(xp — x;) Velocity as a function of displacement

Note: Motion is along the x axis.

tion. Keep in mind that these relationships were derived from the definitions of
velocity and acceleration, together with some simple algebraic manipulations and
the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for con-
venience. The choice of which equation you use in a given situation depends on
what you know beforehand. Sometimes it is necessary to use two of these equations
to solve for two unknowns. For example, suppose initial velocity v,; and accelera-
tion a, are given. You can then find (1) the velocity after an interval ¢ has elapsed,
using v, = vy t a,t, and (2) the displacement after an interval ¢ has elapsed, us-
ing x;— x; = vt + %axtQ. You should recognize that the quantities that vary dur-
ing the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.
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CONCEPTUAL EXAMPLE 2.5  The Velocity of Different Objects

Consider the following one-dimensional motions: (a) A ball
thrown directly upward rises to a highest point and falls back
into the thrower’s hand. (b) A race car starts from rest and
speeds up to 100 m/s. (c) A spacecraft drifts through space at
constant velocity. Are there any points in the motion of these
objects at which the instantaneous velocity is the same as the
average velocity over the entire motion? If so, identify the
point(s).

Solution (a) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its
displacement is zero. (Remember that average velocity is de-

fined as Ax/At) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(b) The car’s average velocity cannot be evaluated unambigu-
ously with the information given, but it must be some value
between 0 and 100 m/s. Because the car will have every in-
stantaneous velocity between 0 and 100 m/s at some time
during the interval, there must be some instant at which the
instantaneous velocity is equal to the average velocity.

(c) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average ve-
locity over any time interval are the same.

EXAMPLE 2.6 Entering the Traffic Flow

(a) Estimate your average acceleration as you drive up the en-
trance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value

of a,, but that value is hard to guess directly. The other three
variables involved in kinematics are position, velocity, and
time. Velocity is probably the easiest one to approximate. Let
us assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by 1 000 to convert kilome-
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ters to meters and then divide by 3 600 to convert hours to
seconds. These two calculations together are roughly equiva-
lent to dividing by 3. In fact, let us just say that the final veloc-
ity is v~ 30 m/s. (Remember, you can get away with this
type of approximation and with dropping digits when per-
forming mental calculations. If you were starting with British
units, you could approximate 1 mi/h as roughly
0.5 m/s and continue from there.)

Now we assume that you started up the ramp at about one-
third your final velocity, so that v,; = 10 m/s. Finally, we as-
sume that it takes about 10 s to get from v,; to vy, basing this
guess on our previous experience in automobiles. We can
then find the acceleration, using Equation 2.8:

Yy~ Ui 30m/s —10m/s

— 2
‘ 10s 2m/s

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and often

Motion in One Dimension

yields results that are not too different from those derived
from careful measurements.

(b) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution We can calculate the distance traveled during
the first 5 s from Equation 2.11:
Xy X = gl t %axl2 ~ (10m/s)(bs) + %(2 m/s2) (5 s)?

75 m

50m + 25 m =

This result indicates that if you had not accelerated, your ini-
tial velocity of 10 m/s would have resulted in a 50-m move-
ment up the ramp during the first 5 s. The additional 25 m is
the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and
doing some fairly drastic number rounding to simplify mental
calculations. Physicists engage in this type of thought analysis
all the time.

EXAMPLE 2.7

A jet lands on an aircraft carrier at 140 mi/h (=63 m/s).
(a) What is its acceleration if it stops in 2.0 s?

Carrier Landing

Solution We define our x axis as the direction of motion
of the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we are
not given the displacement of the jet while it is slowing
down. Equation 2.8 is the only equation in Table 2.2 that does
not involve displacement, and so we use it to find the accelera-
tion:

Uxf = Uxi iy 0 — 63 m/s _

—31 2
t 20s m/s

(b) What is the displacement of the plane while it is stop-
ping?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the displacement. Let us choose
Equation 2.10:

xp— x;= 5(vg + vt = 5(63m/s + 0)(2.0s) = 63m

If the plane travels much farther than this, it might fall into
the ocean. Although the idea of using arresting cables to en-
able planes to land safely on ships originated at about the
time of the First World War, the cables are still a vital part of
the operation of modern aircraft carriers.

EXAMPLE 2.8 ~ Watch Out for the Speed Limit!

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out
from the billboard to catch it, accelerating at a constant
rate of 3.00 m/s?. How long does it take her to overtake the
car?

Solution A careful reading lets us categorize this as a con-
stant-acceleration problem. We know that after the 1-s delay
in starting, it will take the trooper 15 additional seconds to
accelerate up to 45.0 m/s. Of course, she then has to con-
tinue to pick up speed (at a rate of 3.00 m/s per second) to

catch up to the car. While all this is going on, the car contin-
ues to move. We should therefore expect our result to be well
over 15s. A sketch (Fig. 2.12) helps clarify the sequence of
events.

First, we write expressions for the position of each vehicle
as a function of time. It is convenient to choose the position
of the billboard as the origin and to set {g = 0 as the time the
trooper begins moving. At that instant, the car has already
traveled a distance of 45.0 m because it has traveled at a con-
stant speed of v, = 45.0 m/s for 1 s. Thus, the initial position
of the speeding car is xg = 45.0 m.

Because the car moves with constant speed, its accelera-
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Uy car=45.0 m/s The trooper starts from rest at { = 0 and accelerates at
Ay qr=0 9 3.00 m /s> away from the origin. Hence, her position after any
@ wooper = 300 m/s time interval ¢ can be found from Equation 2.11:
ta=—1.00s ty=0 fg=? Xp= X vt + yagt?
® © Xirooper = 0+ 0 + S a2 = 1(3.00 m/s?) 12

The trooper overtakes the car at the instant her position
matches that of the car, which is position ©:

L ¥ J'—a o ¥ |'—a

y T L = IR L 1

i - e e 5(3.00 m/s?)? = 45.0 m + (45.0 m/s)¢
e e L2 SR N L

a& This gives the quadratic equation

1.50¢2 — 45.0¢ — 45.0 = 0

Figure 2.12 A speeding car passes a hidden police officer. The positive solution of this equationis t = 31.0s

(For help in solving quadratic equations, see Appendix B.2.)
Note that in this 31.0-s time interval, the trooper tra-
vels a distance of about 1440 m. [This distance can be calcu-
lated from the car’s constant speed: (45.0 m/s)(31 + 1) s =
Xear = X T Uycart = 45.0 m + (45.0 m/s)¢ 1440 m.]

tion is zero, and applying Equation 2.11 (with a, = 0) gives
for the car’s position at any time

A quick check shows that at ¢ = 0, this expression gives the

car’s correct initial position when the trooper begins to  Exercise This problem can be solved graphically. On the
move: Xq, = Xg = 45.0 m. Looking at limiting cases to see  same graph, plot position versus time for each vehicle, and
whether they yield expected values is a very useful way to  from the intersection of the two curves determine the time at
make sure that you are obtaining reasonable results. which the trooper overtakes the car.

2.6_~ FREELY FALLING OBJECTS

It is now well known that, in the absence of air resistance, all objects dropped
near the Earth’s surface fall toward the Earth with the same constant acceleration
under the influence of the Earth’s gravity. It was not until about 1600 that this
conclusion was accepted. Before that time, the teachings of the great philos-
opher Aristotle (384-322 B.C.) had held that heavier objects fall faster than lighter
ones.

It was the Italian Galileo Galilei (1564—-1642) who originated our present-
day ideas concerning falling objects. There is a legend that he demonstrated the
law of falling objects by observing that two different weights dropped simultane-
ously from the Leaning Tower of Pisa hit the ground at approximately the same
time. Although there is some doubt that he carried out this particular experi-
ment, it is well established that Galileo performed many experiments on objects
moving on inclined planes. In his experiments he rolled balls down a slight in-
cline and measured the distances they covered in successive time intervals. The
purpose of the incline was to reduce the acceleration; with the acceleration re-
duced, Galileo was able to make accurate measurements of the time intervals. By
gradually increasing the slope of the incline, he was finally able to draw conclu- [ = o er simultane-
sions about freely falling objects because a freely falling ball is equivalent to a  ously, and they fell in unison to the
ball moving down a vertical incline. lunar surface. (Courtesy of NASA)

Astronaut David Scott released a
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QuickLab >

Use a pencil to poke a hole in the
bottom of a paper or polystyrene cup.
Cover the hole with your finger and
fill the cup with water. Hold the cup
up in front of you and release it. Does
water come out of the hole while the
cup is falling? Why or why not?

Definition of free fall

Free-fall acceleration
g=9.80m/s?

CONCEPTUAL EXAMPLE 2.9

CHAPTER 2 Motionin One Dimension

You might want to try the following experiment. Simultaneously drop a coin
and a crumpled-up piece of paper from the same height. If the effects of air resis-
tance are negligible, both will have the same motion and will hit the floor at the
same time. In the idealized case, in which air resistance is absent, such motion is
referred to as free fall. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and coin would fall with the same
acceleration even when the paper is not crumpled. On August 2, 1971, such a
demonstration was conducted on the Moon by astronaut David Scott. He simulta-
neously released a hammer and a feather, and in unison they fell to the lunar sur-
face. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest. A freely falling object is any object moving
freely under the influence of gravity alone, regardless of its initial motion.
Objects thrown upward or downward and those released from rest are all
falling freely once they are released. Any freely falling object experiences
an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the fieefall acceleration by the symbol g. The
value of gnear the Earth’s surface decreases with increasing altitude. Furthermore,
slight variations in g occur with changes in latitude. It is common to define “up” as
the + y direction and to use y as the position variable in the kinematic equations.
At the Earth’s surface, the value of g is approximately 9.80 m/s?. Unless stated
otherwise, we shall use this value for g when performing calculations. For making
quick estimates, use g = 10 m/s%

If we neglect air resistance and assume that the free-fall acceleration does not
vary with altitude over short vertical distances, then the motion of a freely falling
object moving vertically is equivalent to motion in one dimension under constant
acceleration. Therefore, the equations developed in Section 2.5 for objects moving
with constant acceleration can be applied. The only modification that we need to
make in these equations for freely falling objects is to note that the motion is in
the vertical direction (the y direction) rather than in the horizontal (x) direction
and that the acceleration is downward and has a magnitude of 9.80 m/ s2. Thus, we
always take ay = —g = —9.80 m/s?, where the minus sign means that the accelera-
tion of a freely falling object is downward. In Chapter 14 we shall study how to deal
with variations in gwith altitude.

The Daring Sky Divers

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along
the same vertical line. Ignore air resistance, so that both sky
divers fall with the same acceleration. Does the difference in
their speeds stay the same throughout the fall? Does the verti-
cal distance between them stay the same throughout the fall?
If the two divers were connected by a long bungee cord,
would the tension in the cord increase, lessen, or stay the
same during the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

At after this instant, however, the two divers increase their
speeds by the same amount because they have the same accel-
eration. Thus, the difference in their speeds remains the
same throughout the fall.

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Thus, the separation dis-
tance between them increases.

Once the distance between the divers reaches the length
of the bungee cord, the tension in the cord begins to in-
crease. As the tension increases, the distance between the
divers becomes greater and greater.




ExAMpPLE 2.10

A ball is tossed straight up at 25 m/s. Estimate its velocity at
1-s intervals.

Solution Let us choose the upward direction to be posi-
tive. Regardless of whether the ball is moving upward or
downward, its vertical velocity changes by approximately
—10 m/s for every second it remains in the air. It starts out at
25 m/s. After 1 s has elapsed, it is still moving upward but at
15 m/s because its acceleration is downward (downward ac-
celeration causes its velocity to decrease). After another sec-
ond, its upward velocity has dropped to 5 m/s. Now comes
the tricky part—after another half second, its velocity is zero.

2.6 Freely Falling Objects 41

Describing the Motion of a Tossed Ball

The ball has gone as high as it will go. After the last half of
this 1-s interval, the ball is moving at —5 m/s. (The minus
sign tells us that the ball is now moving in the negative direc-
tion, that is, downward. Its velocity has changed from +5 m/s
to —5 m/s during that 1-s interval. The change in velocity is
still =5 — [+5] = —10 m/s in that second.) It continues
downward, and after another 1 s has elapsed, it is falling at a
velocity of —15 m/s. Finally, after another 1 s, it has reached
its original starting point and is moving downward at
—25 m/s. If the ball had been tossed vertically off a cliff so
that it could continue downward, its velocity would continue
to change by about —10 m/s every second.

CONCEPTUAL ExAMPLE 2.11

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs of
its position, velocity, and acceleration as functions of time,
with the + y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its ver-
tical motion.)

From Figure 2.13 we see that the ball is in contact with the
floor at points ®, ©®, and ®. Because the velocity of the ball
changes from negative to positive three times during these
bounces, the slope of the position—time graph must change
in the same way. Note that the time interval between bounces
decreases. Why is that?

During the rest of the ball’s motion, the slope of the
velocity—time graph should be —9.80 m/s®. The accelera-
tion—time graph is a horizontal line at these times because
the acceleration does not change when the ball is in free fall.
When the ball is in contact with the floor, the velocity

®
1.5
R o
L O
E O ©
. O
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g O @
0.0E O Q
) ®
(a)
Figure 2.13 (a) A ball is dropped from a height of 1.5 m and

bounces from the floor. (The horizontal motion is not considered
here because it does not affect the vertical motion.) (b) Graphs of
position, velocity, and acceleration versus time.

Follow the Bouncing Ball

changes substantially during a very short time interval, and so
the acceleration must be quite great. This corresponds to the
very steep upward lines on the velocity—time graph and to
the spikes on the acceleration—time graph.

tn tg i3 tp te te
y(m)

vy(m/s) 4

ay(m/SQ) -4

-12
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| Quick Quiz 2.5

Which values represent the ball’s velocity and acceleration at points @, ©, and ® in Figure

2.137

(a) vyZO,ay=0 )
(b) v, =0, a, = 9.80 m/s?
(c) v,=0,a,=—9.80 m/s?

(d) v,= —9.80m/s,a, =0

ExAMpPLE 2.12 Not a Bad Throw for a Rookie!

A stone thrown from the top of a building is given an initial 904
velocity of 20.0 m/s straight upward. The building is 50.0 m m ;B ~9 4sm
high, and the stone just misses the edge of the roof on its way va -0
down, as shown in Figure 2.14. Using ¢, = 0 as the time the
stone leaves the thrower’s hand at position ®, determine
(a) the time at which the stone reaches its maximum height, b
(b) the maximum height, (c) the time at which the stone re-
turns to the height from which it was thrown, (d) the velocity “
of the stone at this instant, and (e) the velocity and position T id © 1;=4.08s
of the stone at ¢t = 5.00 s. a =_% Jﬁ =0
. __ L “ Vo = -20.0 m/s
Solution (a) As the stone travels from ® to ®), its velocity Yyn = QO'O;E/S
must change by 20 m/s because it stops at ®. Because gravity |
causes vertical velocities to change by about 10 m/s for every Tj@%‘
second of free fall, it should take the stone about 2s to go ™
from ® to ® in our drawing. (In a problem like this, a sketch — ’;j
definitely helps you organize your thoughts.) To calculate the - \:,*Y,
time g at which the stone reaches maximum height, we use — : SS iR
Equation 2.8, v;g = v,p + a,l, noting that v;g = 0 and setting *L\ ‘ L
the start of our clock readings at ¢, = 0: il
|
20.0m/s + (—9.80 m/s?) ¢ =0 — wm
20.0 m /s -
t:t5=7/2= 2.04s e
9.80 m/s — ;f# ® 1,=5.00s
. /A Jp=-225s
Our estimate was pretty close. 50.0 m T . USD =-29.0 m/s
— =l -y
(b) Because the average velocity for this first interval is -
10 m/s (the average of 20 m/s and 0 m/s) and because it - l’_‘:
travels for about 2 s, we expect the stone to travel about 20 m. s ‘_3 E
By substituting our time interval into Equation 2.11, we can -
find the maximum height as measured from the position of o :i
the thrower, where we set y; = yp = 0: ;Ly——r—:,j_
1 . _—
Jmax = YB T YyA L+ §ayt2 l ' | T
. ; -
y8 = (20.0 m/s)(2.04'5) + 5(—9.80 m/s?) (2.04 5)* e
3 =5 =583
= 204 m = Jo==50.0m
v oot I® ve=-311mys

Our free-fall estimates are very accurate.

(c) There is no reason to believe that the stone’s motion Figure 2.14 Position and velocity versus time for a freely falling
from ® to © is anything other than the reverse of its motion  stone thrown initially upward with a velocity v; = 20.0 m/s.
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from @ to ®. Thus, the time needed for it to go from ® to
© should be twice the time needed for it to go from ® to ®.
When the stone is back at the height from which it was
thrown (position ©), the y coordinate is again zero. Using
Equation 2.11, with y,= y¢ = Oand y; = yo = 0, we obtain
Yo~ YA = vyal Tt %ath
0 = 20.0t — 4.90¢2

This is a quadratic equation and so has two solutions for
t = tc. The equation can be factored to give

1(20.0 — 4.907) = 0
One solution is ¢ = 0, corresponding to the time the stone
starts its motion. The other solution is ¢ = 4.08 s, which is

the solution we are after. Notice that it is double the value we
calculated for fg.

(d) Again, we expect everything at © to be the same as it
is at @, except that the velocity is now in the opposite direc-
tion. The value for ¢ found in (c) can be inserted into Equa-
tion 2.8 to give

v = Yya + ayt = 20.0m/s + (—9.80 m/s?) (4.08 s)

—20.0 m/s

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. This indicates that the motion is symmetric.

(e) For this part we consider what happens as the stone
falls from position ®, where it had zero vertical velocity, to

position ©. Because the elapsed time for this part of the
motion is about 3 s, we estimate that the acceleration due
to gravity will have changed the speed by about 30 m/s.
We can calculate this from Equation 2.8, where we take
1= tp— lg:

vyp = vyg + ayt = 0m/s + (—9.80 m/s?)(5.00s — 2.04 s)
= —29.0m/s
We could just as easily have made our calculation between

positions ® and ® by making sure we use the correct time in-
terval, t = tp — ¢, = 5.00 s:

Uyp = Uya T ayt = 20.0 m/s + (—9.80 m/s?) (5.00 s)
—29.0 m/s

To demonstrate the power of our kinematic equations, we
can use Equation 2.11 to find the position of the stone at
tp = 5.00 s by considering the change in position between a
different pair of positions, © and ®. In this case, the time is

tD - tC:

¥o = ¥ + vyl + payt®
0m + (—20.0m/s)(5.00 s — 4.08 s)
+5(—9.80 m/s%) (5.00 s — 4.085)?

—225m

Exercise Find (a) the velocity of the stone just before it hits
the ground at ® and (b) the total time the stone is in the air.

Answer (a) —37.1m/s (Db)5.83s

Optional Section

2.7 _~ KINEMATIC EQUATIONS DERIVED FROM CALCULUS

This is an optional section that assumes the reader is familiar with the techniques
of integral calculus. If you have not yet studied integration in your calculus course,
you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position coordinate with respect to time. It is also possible to find the displace-
ment of a particle if its velocity is known as a function of time. In calculus, the proce-
dure used to perform this task is referred to either as integration or as finding the
antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the v,-t graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval ¢, — ¢; into many small intervals, each of
duration A¢,. From the definition of average velocity we see that the displacement
during any small interval, such as the one shaded in Figure 2.15, is given by
Ax, = v,, At,, where v,, is the average velocity in that interval. Therefore, the dis-
placement during this small interval is simply the area of the shaded rectangle.
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Area = Ty,

A t"l,

li —| | t

At

n

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded
rectangle is equal to the displacement Ax in the time interval At,, while the total area under the
curve is the total displacement of the particle.

The total displacement for the interval ¢; — ¢; is the sum of the areas of all the rec-
tangles:

Ax = T, At,

where the symbol % (upper case Greek sigma) signifies a sum over all terms. In
this case, the sum is taken over all the rectangles from ¢; to . Now, as the intervals
are made smaller and smaller, the number of terms in the sum increases and the
sum approaches a value equal to the area under the velocity—time graph. There-
fore, in the limit n — %, or A¢,, — 0, the displacement is

Ax = lim 3 v, At, (2.13)

At,—0

or
Displacement = area under the v,-t graph

Note that we have replaced the average velocity v,,, with the instantaneous velocity
Uy, in the sum. As you can see from Figure 2.15, this approximation is clearly valid
in the limit of very small intervals. We conclude that if we know the v,-t graph for
motion along a straight line, we can obtain the displacement during any time in-
terval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and
is written

i
lim Y, v,,Al, = f v (1) dt (2.14)
At,—0 n t

where v,(¢) denotes the velocity at any time ¢ If the explicit functional form of

U,(t) is known and the limits are given, then the integral can be evaluated.
Sometimes the v,-t graph for a moving particle has a shape much simpler than

that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-
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x vy = v,; = constant Figure 2.16 The velocity—time curve

for a particle moving with constant veloc-
ity v,;. The displacement of the particle
during the time interval ¢, — ¢; is equal to
the area of the shaded rectangle.

At

—
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£

() P ——

D E—
~
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locity v,;. In this case, the v,-f graph is a horizontal line, as shown in Figure 2.16,
and its displacement during the time interval At is simply the area of the shaded
rectangle:

Ax = v,At (when v, = v,; = constant)

As another example, consider a particle moving with a velocity that is propor-
tional to ¢, as shown in Figure 2.17. Taking v, = a,l, where a, is the constant of pro-
portionality (the acceleration), we find that the displacement of the particle dur-
ing the time interval ¢ = 0 to ¢ = {, is equal to the area of the shaded triangle in

Figure 2.17:

_1 1
Ax = 5(1p) (alp) = gaip’

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.8 and 2.11.
The defining equation for acceleration (Eq. 2.6),

dv,
a, =
dt

may be written as dv, = a,dt or, in terms of an integral (or antiderivative), as

vx=faxdt+ G

Figure 2.17 The velocity—time curve for a
particle moving with a velocity that is propor-
Ia tional to the time.
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where Cj is a constant of integration. For the special case in which the acceleration
is constant, the a, can be removed from the integral to give

Uy = axf dt + C; = a,t + G (2.15)
The value of C; depends on the initial conditions of the motion. If we take v, = v,;
when ¢ = 0 and substitute these values into the last equation, we have
Uyi = ax(o) + Cl
Cl = Uy

Calling v, = v,, the velocity after the time interval ¢ has passed and substituting
this and the value just found for C; into Equation 2.15, we obtain kinematic Equa-
tion 2.8:

Uy = Uy T ayd (for constant a,)
Now let us consider the defining equation for velocity (Eq. 2.4):

v

U7

We can write this as dx = v, dt or in integral form as

xZvadt-i- Co

where Cy is another constant of integration. Because v, = v, = v,; + a,i, this ex-
pression becomes

x = f (v + at)ydt + Co

x=fvm-dt+ axftdt—k Cy

X = vt + %axt2 + Cy
To find Cy, we make use of the initial condition that x = x; when ¢ = 0. This gives
Cy = x;. Therefore, after substituting xffor x, we have
xp= X+ vt + %a,ct2 (for constant a,)

Once we move x; to the left side of the equation, we have kinematic Equation 2.11.
Recall that x; — x; is equal to the displacement of the object, where x; is its initial
position.




Besides what you might expect to learn about physics concepts, a very valuable skill
you should hope to take away from your physics course is the ability to solve compli-
cated problems. The way physicists approach complex situations and break them
down into manageable pieces is extremely useful. We have developed a memory aid to
help you easily recall the steps required for successful problem solving. When working
on problems, the secret is to keep your GOAL in mind!

GOAL PROBLEM-SOLVING STEPS

Gather information

The first thing to do when approaching a problem is to understand the situation.
Carefully read the problem statement, looking for key phrases like “at rest” or
“freely falls.” What information is given? Exactly what is the question asking? Don’t
forget to gather information from your own experiences and common sense. What
should a reasonable answer look like? You wouldn’t expect to calculate the speed
of an automobile to be 5 X 10 m/s. Do you know what units to expect? Are there
any limiting cases you can consider? What happens when an angle approaches 0°
or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully
study any drawings that accompany the problem.

Organize your approach

Once you have a really good idea of what the problem is about, you need to think
about what to do next. Have you seen this type of question before? Being able to
classify a problem can make it much easier to lay out a plan to solve it. You should
almost always make a quick drawing of the situation. Label important events with
circled letters. Indicate any known values, perhaps in a table or directly on your
sketch.

Anal_yze the problem

Because you have already categorized the problem, it should not be too difficult to
select relevant equations that apply to this type of situation. Use algebra (and cal-
culus, if necessary) to solve for the unknown variable in terms of what is given.
Substitute in the appropriate numbers, calculate the result, and round it to the
proper number of significant figures.

Learn from your efforts

This is the most important part. Examine your numerical answer. Does it meet
your expectations from the first step? What about the algebraic form of the re-
sult—before you plugged in numbers? Does it make sense? (Try looking at the
variables in it to see whether the answer would change in a physically meaningful
way if they were drastically increased or decreased or even became zero.) Think
about how this problem compares with others you have done. How was it similar?
In what critical ways did it differ? Why was this problem assigned? You should have
learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subprob-
lems and apply the GOAL process to each. For very simple problems, you probably
don’t need GOAL at all. But when you are looking at a problem and you don’t
know what to do next, remember what the letters in GOAL stand for and use that
as a guide.
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SUMMARY

After a particle moves along the x axis from some initial position x; to some final
position x, its displacement is

Ax=x;— x; (2.1)

The average velocity of a particle during some time interval is the displace-
ment Ax divided by the time interval A¢ during which that displacement occurred:

_ Ax

Vs =, (2.2)

The average speed of a particle is equal to the ratio of the total distance it
travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio
Ax/Atas At approaches zero. By definition, this limit equals the derivative of x with
respect to ¢, or the time rate of change of the position:

Ax dx
v, = lim — = — 2.4
Yooam0 At dt (2.4)
The instantaneous speed of a particle is equal to the magnitude of its velocity.

The average acceleration of a particle is defined as the ratio of the change in

its velocity Av, divided by the time interval A¢ during which that change occurred:
Av, Uxf — Uxi

G,= =— 25
T A =1 (2.5)

The instantaneous acceleration is equal to the limit of the ratio Av,/At as
At approaches 0. By definition, this limit equals the derivative of v, with respect to
¢, or the time rate of change of the velocity:
Av, duy
a,= lim — = —— (2.6)
oA Ag dt
The equations of kinematics for a particle moving along the x axis with uni-
form acceleration a, (constant in magnitude and direction) are

Uy = Uy + ayl (2.8)
Xp— ;= Ut = (v + vt (2.10)
Xp— %= gl + ga,t’ (2.11)

vfo =2+ 2a,(xp— x;) (2.12)

You should be able to use these equations and the definitions in this chapter to an-
alyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth’s gravity experiences a
free-fall acceleration directed toward the center of the Earth. If air resistance is ne-
glected, if the motion occurs near the surface of the Earth, and if the range of the
motion is small compared with the Earth’s radius, then the free-fall acceleration g
is constant over the range of motion, where gis equal to 9.80 m/s?.

Complicated problems are best approached in an organized manner. You
should be able to recall and apply the steps of the GOAL strategy when you need
them.



QUESTIONS

1. Average velocity and instantaneous velocity are generally
different quantities. Can they ever be equal for a specific
type of motion? Explain.

2. If the average velocity is nonzero for some time interval,
does this mean that the instantaneous velocity is never
zero during this interval? Explain.

3. If the average velocity equals zero for some time interval At
and if v,(?) is a continuous function, show that the instan-
taneous velocity must go to zero at some time in this inter-
val. (A sketch of xversus ¢ might be useful in your proof.)

4. Is it possible to have a situation in which the velocity and
acceleration have opposite signs? If so, sketch a
velocity—time graph to prove your point.

5. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

6. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

7. Can an object having constant acceleration ever stop and
stay stopped?

8. Astone is thrown vertically upward from the top of a build-
ing. Does the stone’s displacement depend on the location
of the origin of the coordinate system? Does the stone’s ve-
locity depend on the origin? (Assume that the coordinate
system is stationary with respect to the building.) Explain.

A student at the top of a building of height & throws one
ball upward with an initial speed v); and then throws a
second ball downward with the same initial speed. How
do the final speeds of the balls compare when they reach
the ground?

10. Can the magnitude of the instantaneous velocity of an ob-
ject ever be greater than the magnitude of its average ve-
locity? Can it ever be less?

11. If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

12. A rapidly growing plant doubles in height each week. At
the end of the 25th day, the plant reaches the height of a
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building. At what time was the plant one-fourth the
height of the building?

13.] Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of car A is greater than that of car B? Explain.

14. An apple is dropped from some height above the Earth’s
surface. Neglecting air resistance, how much does the ap-
ple’s speed increase each second during its descent?

Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

Velocity Acceleration
a. Positive Positive

b. Positive Negative

c. Positive Zero

d. Negative Positive

e. Negative Negative

f. Negative Zero

g. Zero Positive

h. Zero Negative

Describe what the particle is doing in each case, and
give a real-life example for an automobile on an east-west
one-dimensional axis, with east considered to be the posi-
tive direction.

16. A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in Figure Q2.16. Estimate the
distance from the rim of the well to the water’s surface.

17. Average velocity is an entirely contrived quantity, and
other combinations of data may prove useful in other
contexts. For example, the ratio At/Ax, called the “slow-
ness” of a moving object, is used by geophysicists when
discussing the motion of continental plates. Explain what
this quantity means.

By John Hart
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|& SECONDS DEER

13,1415, 16,..

Figure 02.16
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PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WEB = solution posted at http://www.saunderscollege.com/physics/ E = Computer useful in solving problem .."?j' = Interactive Physics

[ ] = paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed

1. The position of a pinewood derby car was observed at
various times; the results are summarized in the table
below. Find the average velocity of the car for (a) the
first second, (b) the last 3 s, and (c) the entire period

of observation.
x (m) 0 2.3 9.2 20.7 36.8 57.5
£ (s) 0 1.0 2.0 3.0 4.0 5.0

2. A motorist drives north for 35.0 min at 85.0 km/h and
then stops for 15.0 min. He then continues north, trav-
eling 130 km in 2.00 h. (a) What is his total displace-
ment? (b) What is his average velocity?

The displacement versus time for a certain particle mov-
ing along the x axis is shown in Figure P2.3. Find the av-
erage velocity in the time intervals (a) 0 to 2's, (b) 0 to
4s,(c)2sto4ds, (d)4sto7s, () 0to8s.

x(m)

10

Figure P2.3 Problems 3 and 11.

4. A particle moves according to the equation x = 10¢2,
where xis in meters and ¢is in seconds. (a) Find the av-
erage velocity for the time interval from 2.0 s to 3.0 s.
(b) Find the average velocity for the time interval from
2.0sto2.1s.

A person walks first at a constant speed of 5.00 m/s
along a straight line from point A to point B and then
back along the line from B to A at a constant speed of
3.00 m/s. What are (a) her average speed over the entire
trip and (b) her average velocity over the entire trip?

6. A person first walks at a constant speed v; along a
straight line from A to Band then back along the line
from Bto A at a constant speed vy. What are (a) her av-
erage speed over the entire trip and (b) her average ve-
locity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed

7. Att = 1.00s, a particle moving with constant velocity is
located at x = —3.00 m, and at £ = 6.00 s the particle is
located at x = 5.00 m. (a) From this information, plot
the position as a function of time. (b) Determine the
velocity of the particle from the slope of this graph.

8. The position of a particle moving along the x axis varies
in time according to the expression x = 3¢, where x is
in meters and ¢is in seconds. Evaluate its position (a) at
t = 3.00sand (b) at 3.00 s + At (c) Evaluate the limit
of Ax/Atas At approaches zero to find the velocity at
t=3.00s.

wee [9.] A position—time graph for a particle moving along the

x axis is shown in Figure P2.9. (a) Find the average
velocity in the time interval { = 1.5sto ¢t = 4.0s.

(b) Determine the instantaneous velocity at ¢ = 2.0 s by
measuring the slope of the tangent line shown in the
graph. (c) At what value of tis the velocity zero?

x(m)
12

10

t(s)

Figure P2.9

10. (a) Use the data in Problem 1 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x(t) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this, determine the aver-
age acceleration of the car. (d) What was the initial ve-
locity of the car?



11. Find the instantaneous velocity of the particle described

in Figure P2.3 at the following times: (a) ¢t = 1.0's,
(b) t=3.0s, (c) t=45s,and (d) t = 7.5s.

Section 2.3 Acceleration
12. A particle is moving with a velocity of 60.0 m/s in the

positive x direction at t = 0. Between ¢t = 0 and ¢t =
15.0 s, the velocity decreases uniformly to zero. What
was the acceleration during this 15.0-s interval? What is
the significance of the sign of your answer?

13. A 50.0-g superball traveling at 25.0 m/s bounces off a

brick wall and rebounds at 22.0 m/s. A high-speed cam-
era records this event. If the ball is in contact with the
wall for 3.50 ms, what is the magnitude of the average
acceleration of the ball during this time interval? (Note:
1ms=10"3s.)

14. A particle starts from rest and accelerates as shown in

Figure P2.14. Determine: (a) the particle’s speed at
t =10 s and at ¢ = 20 s, and (b) the distance traveled in
the first 20 s.

a(m/s?)

2.0

t(s)

T T
5.0 10.0 15.0 20.0

Figure P2.14

15. A velocity—time graph for an object moving along the x

axis is shown in Figure P2.15. (a) Plot a graph of the ac-
celeration versus time. (b) Determine the average accel-
eration of the object in the time intervals ¢ = 5.00 s to
t=15.0sand t = 0to ¢t = 20.0 s.

16. A student drives a moped along a straight road as de-

scribed by the velocity—time graph in Figure P2.16.
Sketch this graph in the middle of a sheet of graph pa-
per. (a) Directly above your graph, sketch a graph of
the position versus time, aligning the time coordinates
of the two graphs. (b) Sketch a graph of the accelera-
tion versus time directly below the v,-t graph, again
aligning the time coordinates. On each graph, show the

Problems 51

u(m/s)

N~

t(s)

—4
—6

Figure P2.15

t(s)
1 2 3 45 67\8 910

—————©

Figure P2.16

numerical values of x and «, for all points of inflection.
(c) What is the acceleration at ¢ = 6 s? (d) Find the po-
sition (relative to the starting point) at ¢ = 6 s. (¢) What
is the moped’s final position at ¢ = 9 s?

wes A particle moves along the x axis according to the equa-

18.

19.

tion x = 2.00 + 3.00¢ — 2, where xis in meters and ¢is
in seconds. At ¢t = 3.00 s, find (a) the position of the
particle, (b) its velocity, and (c) its acceleration.

An object moves along the x axis according to the equa-
tion x = (3.00¢2 — 2.00¢ + 3.00) m. Determine

(a) the average speed between ¢ = 2.00 sand ¢ = 3.00 s,
(b) the instantaneous speed at { = 2.00 s and at t =
3.00 s, (c) the average acceleration between ¢ = 2.00 s
and ¢t = 3.00 s, and (d) the instantaneous acceleration
att=2.00 sand ¢t = 3.00 s.

Figure P2.19 shows a graph of v, versus ¢ for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average acceler-
ation for the time interval t = 0 to ¢ = 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (¢) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.
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v,(m/s)

N B~ O

t(s)

=
ro
IS

6 8 10 12

Figure P2.19

Section 2.4 Motion Diagrams

20. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the

right and speeding up at a constant rate, (c) an object

moving to the right and slowing down at a constant

rate, (d) an object moving to the left and speeding up

at a constant rate, and (e) an object moving to the left

and slowing down at a constant rate. (f) How would

your drawings change if the changes in speed were not 27.
uniform; that is, if the speed were not changing at a

constant rate?

Section 2.5 One-Dimensional Motion with

Constant Acceleration 28.

21. Jules Verne in 1865 proposed sending people to the

22.

23.

Moon by firing a space capsule from a 220-m-long can-
non with a final velocity of 10.97 km/s. What would
have been the unrealistically large acceleration experi-
enced by the space travelers during launch? Compare
your answer with the free-fall acceleration, 9.80 m/s2.

A certain automobile manufacturer claims that its super-
deluxe sports car will accelerate from rest to a speed of
42.0 m/s in 8.00 s. Under the (improbable) assumption
that the acceleration is constant, (a) determine the ac-
celeration of the car. (b) Find the distance the car trav-
els in the first 8.00 s. (c) What is the speed of the car
10.0 s after it begins its motion, assuming it continues to
move with the same acceleration?

A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original

speed. (b) Find its acceleration.

29.

30.

24. The minimum distance required to stop a car moving at

35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming
the same rate of acceleration? 32.

wes A body moving with uniform acceleration has a velocity

26.

of 12.0 cm/s in the positive x direction when its x coor-

dinate is 3.00 cm. If its x coordinate 2.00 s later is — 5.00

cm, what is the magnitude of its acceleration?

Figure P2.26 represents part of the performance data 33.
of a car owned by a proud physics student. (a) Calcu-

late from the graph the total distance traveled.

(b) What distance does the car travel between the

times ¢t = 10 s and ¢ = 40 s? (c¢) Draw a graph of its ac-
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Figure P2.26

celeration versus time between ¢ = 0 and ¢ = 50 s.

(d) Write an equation for x as a function of time for
each phase of the motion, represented by (i) Oa, (ii)
ab, (iii) bc. (e) What is the average velocity of the car
between ¢t = 0 and ¢ = 50 s?

A particle moves along the x axis. Its position is given by
the equation x = 2.00 + 3.00¢ — 4.00¢? with x in meters
and ¢in seconds. Determine (a) its position at the in-
stant it changes direction and (b) its velocity when it re-
turns to the position it had at ¢ = 0.

The initial velocity of a body is 5.20 m/s. What is its veloc-
ity after 2.50 s (a) if it accelerates uniformly at 3.00 m/ s2
and (b) if it accelerates uniformly at — 3.00 m/ s2?

A drag racer starts her car from rest and accelerates at
10.0 m/s? for the entire distance of 400 m (i mi). (a) How
long did it take the race car to travel this distance?

(b) What is the speed of the race car at the end of the run?
A car is approaching a hill at 30.0 m/s when its engine
suddenly fails, just at the bottom of the hill. The car
moves with a constant acceleration of — 2.00 m/s? while
coasting up the hill. (a) Write equations for the position
along the slope and for the velocity as functions of time,
taking x = 0 at the bottom of the hill, where v; =

30.0 m/s. (b) Determine the maximum distance the car
travels up the hill.

Ajet plane lands with a speed of 100 m/s and can accel-
erate at a maximum rate of — 5.00 m/s? as it comes to
rest. (a) From the instant the plane touches the runway,
what is the minimum time it needs before it can come
to rest? (b) Can this plane land at a small tropical island
airport where the runway is 0.800 km long?

The driver of a car slams on the brakes when he sees a
tree blocking the road. The car slows uniformly with an
acceleration of —5.60 m/s? for 4.20 s, making straight
skid marks 62.4 m long ending at the tree. With what
speed does the car then strike the tree?

Help! One of our equations is missing! We describe con-
stant-acceleration motion with the variables and para-
MELETS Uy;, Vyf, Gy, L, and xp — x;. Of the equations in
Table 2.2, the first does not involve x; — x;. The second
does not contain a,, the third omits v/, and the last
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Figure P2.37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force)
(Right) Col. Stapp’s face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)

leaves out # So to complete the set there should be an
equation not involving v,;. Derive it from the others.
Use it to solve Problem 32 in one step.

An indestructible bullet 2.00 cm long is fired straight
through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration
of the bullet as it passes through the board? (b) What is
the total time that the bullet is in contact with the
board? (c¢) What thickness of board (calculated to

0.1 cm) would it take to stop the bullet, assuming

the bullet’s acceleration through all parts of the board
is the same?

A truck on a straight road starts from rest, accelerating
at 2.00 m/s? until it reaches a speed of 20.0 m/s. Then
the truck travels for 20.0 s at constant speed until the
brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

A train is traveling down a straight track at 20.0 m/s
when the engineer applies the brakes. This results in an
acceleration of — 1.00 m/s? as long as the train is in mo-
tion. How far does the train move during a 40.0-s time
interval starting at the instant the brakes are applied?

For many years the world’s land speed record was held

38.

39.

by Colonel John P. Stapp, USAF (Fig. P2.37). On March
19, 1954, he rode a rocket-propelled sled that moved
down the track at 632 mi/h. He and the sled were safely
brought to rest in 1.40 s. Determine (a) the negative ac-
celeration he experienced and (b) the distance he trav-
eled during this negative acceleration.

An electron in a cathode-ray tube (CRT) accelerates
uniformly from 2.00 X 104 m/s to 6.00 X 10% m/s over
1.50 cm. (a) How long does the electron take to travel
this 1.50 cm? (b) What is its acceleration?

A ball starts from rest and accelerates at 0.500 m/s?
while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where, after moving 15.0 m, it comes to rest.

40.

(a) What is the speed of the ball at the bottom of the
first plane? (b) How long does it take to roll down

the first plane? (c) What is the acceleration along the
second plane? (d) What is the ball’s speed 8.00 m along
the second plane?

Speedy Sue, driving at 30.0 m/s, enters a one-lane tun-
nel. She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can ac-
celerate only at —2.00 m/s? because the road is wet.
Will there be a collision? If so, determine how far into
the tunnel and at what time the collision occurs. If not,
determine the distance of closest approach between
Sue’s car and the van.

Section 2.6 Freely Falling Objects

Note: In all problems in this section, ignore the effects of air
resistance.

9'41.

42,

A golf ball is released from rest from the top of a very
tall building. Calculate (a) the position and (b) the ve-
locity of the ball after 1.00 s, 2.00 s, and 3.00 s.

Every morning at seven o’clock

There’s twenty terriers drilling on the rock.

The boss comes around and he says, “Keep still

And bear down heavy on the cast-iron drill

And drill, ye terriers, drill.” And drill, ye terriers, drill.

1t’s work all day for sugar in your tea . . .

And drill, ye terriers, drill.

One day a premature blast went off
And a mile in the air went big Jim Goff. And drill . . .

Then when next payday came around
Jim Goff a dollar short was found.

When he asked what for, came this reply:

“You were docked for the time you were up in the sky.” And
drill . . .

—American folksong

What was Goft’s hourly wage? State the assumptions you
make in computing it.
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weB A student throws a set of keys vertically upward to her

P4

(W45.

46.

sorority sister, who is in a window 4.00 m above. The
keys are caught 1.50 s later by the sister’s outstretched
hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just be-
fore they were caught?

A ball is thrown directly downward with an initial speed
of 8.00 m/s from a height of 30.0 m. How many sec-
onds later does the ball strike the ground?

Emily challenges her friend David to catch a dollar bill as
follows: She holds the bill vertically, as in Figure P2.45,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases
it without moving his hand downward. If his reaction
time is 0.2 s, will he succeed? Explain your reasoning.

Figure P2.45 (George Semple)

A ball is dropped from rest from a height h above the
ground. Another ball is thrown vertically upward from
the ground at the instant the first ball is released. Deter-
mine the speed of the second ball if the two balls are to
meet at a height 2/2 above the ground.

A baseball is hit so that it travels straight upward after

48.

being struck by the bat. A fan observes that it takes
3.00 s for the ball to reach its maximum height. Find
(a) its initial velocity and (b) the maximum height it
reaches.

A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered
only minor injuries. Calculate (a) the speed of the
woman just before she collided with the ventilator box,
(b) her average acceleration while in contact with the
box, and (c) the time it took to crush the box.

Motion in One Dimension

wes A daring ranch hand sitting on a tree limb wishes to

50.

51.

52.

drop vertically onto a horse galloping under the tree.
The speed of the horse is 10.0 m/s, and the distance
from the limb to the saddle is 3.00 m. (a) What must be
the horizontal distance between the saddle and limb
when the ranch hand makes his move? (b) How long is
he in the air?

A ball thrown vertically upward is caught by the thrower
after 20.0 s. Find (a) the initial velocity of the ball and
(b) the maximum height it reaches.

A ball is thrown vertically upward from the ground with
an initial speed of 15.0 m/s. (a) How long does it take
the ball to reach its maximum altitude? (b) What is its
maximum altitude? (c) Determine the velocity and ac-
celeration of the ball at ¢ = 2.00 s.

The height of a helicopter above the ground is given by
h = 3.00£3, where % is in meters and ¢is in seconds. Af-
ter 2.00 s, the helicopter releases a small mailbag. How
long after its release does the mailbag reach the
ground?

(Optional)
2.7 Kinematic Equations Derived from Calculus

Automotive engineers refer to the time rate of change

54,

55.

of acceleration as the “jerk.” If an object moves in one
dimension such that its jerk J is constant, (a) determine
expressions for its acceleration a,, velocity v,, and posi-
tion x, given that its initial acceleration, speed, and posi-
tion are a,;, vy;, and x;, respectively. (b) Show that

axQ = axi2 + 2](vx - vxi)'

The speed of a bullet as it travels down the barrel of a ri-
fle toward the opening is given by the expression

v = (=50 X 107)#% + (3.0 X 10%)1, where vis in me-
ters per second and ¢is in seconds. The acceleration of
the bullet just as it leaves the barrel is zero. (a) Deter-
mine the acceleration and position of the bullet as a
function of time when the bullet is in the barrel.

(b) Determine the length of time the bullet is acceler-
ated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

The acceleration of a marble in a certain fluid is pro-
portional to the speed of the marble squared and is
given (in SI units) by @ = — 3.00¢2 for v > 0. If the mar-
ble enters this fluid with a speed of 1.50 m/s, how long
will it take before the marble’s speed is reduced to half
of its initial value?

ADDITIONAL PROBLEMS

56.

A motorist is traveling at 18.0 m/s when he sees a deer
in the road 38.0 m ahead. (a) If the maximum negative
acceleration of the vehicle is — 4.50 m/s?, what is the
maximum reaction time At of the motorist that will al-
low him to avoid hitting the deer? (b) If his reaction
time is actually 0.300 s, how fast will he be traveling
when he hits the deer?
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Another scheme to catch the roadrunner has failed. A
safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile
first notices the safe after it has fallen 15.0 m. How long
does he have to get out of the way?

A dog’s hair has been cut and is now getting longer by
1.04 mm each day. With winter coming on, this rate of
hair growth is steadily increasing by 0.132 mm/day
every week. By how much will the dog’s hair grow dur-
ing five weeks?

A test rocket is fired vertically upward from a well. A cat-
apult gives it an initial velocity of 80.0 m/s at ground
level. Subsequently, its engines fire and it accelerates
upward at 4.00 m/s? until it reaches an altitude of

1000 m. At that point its engines fail, and the rocket
goes into free fall, with an acceleration of —9.80 m/s2.
(a) How long is the rocket in motion above the ground?
(b) What is its maximum altitude? (c¢) What is its veloc-
ity just before it collides with the Earth? (Hint: Consider
the motion while the engine is operating separate from
the free-fall motion.)

A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motorcy-
cle police officer, the officer starts to accelerate at

2.00 m/s? to overtake her. Assuming the officer main-
tains this acceleration, (a) determine the time it takes
the police officer to reach the motorist. Also find

(b) the speed and (c) the total displacement of the
officer as he overtakes the motorist.

In Figure 2.10a, the area under the velocity—time curve
between the vertical axis and time ¢ (vertical dashed
line) represents the displacement. As shown, this area
consists of a rectangle and a triangle. Compute their ar-
eas and compare the sum of the two areas with the ex-
pression on the righthand side of Equation 2.11.

A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, the
train never reaches its maximum possible cruising
speed. The engineer minimizes the time ¢ between the
two stations by accelerating at a rate a; = 0.100 m/s?
for a time ¢; and then by braking with acceleration

as = —0.500 m/s? for a time ¢s. Find the minimum
time of travel ¢and the time ¢ .

63.] In a 100-m race, Maggie and Judy cross the finish line in

64.

a dead heat, both taking 10.2 s. Accelerating uniformly,
Maggie took 2.00 s and Judy 3.00 s to attain maximum
speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter?

(b) What were their respective maximum speeds?

(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

A hard rubber ball, released at chest height, falls to

the pavement and bounces back to nearly the same
height. When it is in contact with the pavement, the
lower side of the ball is temporarily flattened. Suppose
the maximum depth of the dent is on the order of

65.

66.
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1 cm. Compute an order-of-magnitude estimate for

the maximum acceleration of the ball while it is in con-
tact with the pavement. State your assumptions, the
quantities you estimate, and the values you estimate for
them.

A teenager has a car that speeds up at 3.00 m/s? and
slows down at — 4.50 m/s2. On a trip to the store, he ac-
celerates from rest to 12.0 m/s, drives at a constant
speed for 5.00 s, and then comes to a momentary stop
at an intersection. He then accelerates to 18.0 m/s,
drives at a constant speed for 20.0 s, slows down for
2.67 s, continues for 4.00 s at this speed, and then
comes to a stop. (a) How long does the trip take?

(b) How far has he traveled? (c) What is his average
speed for the trip? (d) How long would it take to walk
to the store and back if he walks at 1.50 m/s?

A rock is dropped from rest into a well. (a) If the sound
of the splash is heard 2.40 s later, how far below the top
of the well is the surface of the water? The speed of
sound in air (at the ambient temperature) is 336 m/s.
(b) If the travel time for the sound is neglected, what
percentage error is introduced when the depth of the
well is calculated?

L":f 67.] An inquisitive physics student and mountain climber

68.

climbs a 50.0-m cliff that overhangs a calm pool of wa-
ter. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How
long after release of the first stone do the two stones hit
the water? (b) What was the initial velocity of the sec-
ond stone? (c) What is the velocity of each stone at the
instant the two hit the water?

A car and train move together along parallel paths at
25.0 m/s, with the car adjacent to the rear of the train.
Then, because of a red light, the car undergoes a uni-
form acceleration of — 2.50 m/s? and comes to rest. It
remains at rest for 45.0 s and then accelerates back to a
speed of 25.0 m/s at a rate of 2.50 m /s How far be-
hind the rear of the train is the car when it reaches the
speed of 25.0 m/s, assuming that the speed of the train
has remained 25.0 m/s?

Kathy Kool buys a sports car that can accelerate at the

ido.

rate of 4.90 m/s?. She decides to test the car by racing
with another speedster, Stan Speedy. Both start from
rest, but experienced Stan leaves the starting line 1.00 s
before Kathy. If Stan moves with a constant acceleration
of 3.50 m/s? and Kathy maintains an acceleration of
4.90 m/s2, find (a) the time it takes Kathy to overtake
Stan, (b) the distance she travels before she catches up
with him, and (c) the speeds of both cars at the instant
she overtakes him.

To protect his food from hungry bears, a boy scout
raises his food pack with a rope that is thrown over a
tree limb at height & above his hands. He walks away
from the vertical rope with constant velocity vy,y, hold-
ing the free end of the rope in his hands (Fig. P2.70).
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Figure P2.70

(a) Show that the speed v of the food pack is

x(x? + K2)71/2 Uboy, Where xis the distance he has

walked away from the vertical rope. (b) Show that the

acceleration a of the food pack is K2 (%% + h2)~3/2 vbOYQ.

(c) What values do the acceleration and velocity have

shortly after he leaves the point under the pack

(x = 0)? (d) What values do the pack’s velocity and ac-

celeration approach as the distance x continues to in-

crease?
. In Problem 70, let the height 4 equal 6.00 m and the
speed v, equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed-time
graph. (b) Tabulate and graph the acceleration—time
graph. (Let the range of time be from 0 to 5.00 s and
the time intervals be 0.500 s.)
Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.72. (a) Find the average veloc-
ity of the rock in the time interval between each mea-
surement and the next. (b) Using these average veloci-

ANSWERS TO QUICK QUIZZES

2.1 Your graph should look something like the one in (a).
This vt graph shows that the maximum speed is
about 5.0 m/s, which is 18 km/h (= 11 mi/h), and
so the driver was not speeding. Can you derive the accel-
eration—time graph from the velocity—time graph? It
should look something like the one in (b).

2.2

(a) Yes. This occurs when the car is slowing down, so that

the direction of its acceleration is opposite the direction
of its motion. (b) Yes. If the motion is in the direction

Motion in One Dimension

TABLE P2.72 Height of a Rock versus Time

Time (s) Height (m) Time (s) Height (m)
0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

ties to approximate instantaneous velocities at the mid-
points of the time intervals, make a graph of velocity as
a function of time. Does the rock move with constant
acceleration? If so, plot a straight line of best fit on the
graph and calculate its slope to find the acceleration.

E.i Two objects, A and B, are connected by a rigid rod that

has a length L. The objects slide along perpendicular
guide rails, as shown in Figure P2.73. If A slides to the
left with a constant speed v, find the speed of Bwhen
a = 60.0°.

Figure P2.73

chosen as negative, a positive acceleration causes a de-
crease in speed.

2.3 The left side represents the final velocity of an object.
The first term on the right side is the velocity that the ob-
ject had initially when we started watching it. The second

term is the change in that initial velocity that is caused by
the acceleration. If this second term is positive, then the

initial velocity has increased (v,y > v,;). If this term is neg-
ative, then the initial velocity has decreased (v, < vy;).
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(a)

2.4 Graph (a) has a constant slope, indicating a constant ac-
celeration; this is represented by graph (e).
Graph (b) represents a speed that is increasing con-
stantly but not at a uniform rate. Thus, the acceleration must
be increasing, and the graph that best indicates this is (d).
Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the
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0.60 a_x(m/sg)

0.40 —

0.20 |~

0.00 | | | 1£(s)
-0.20 |-

—0.40 =

-0.60
(b)

velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for
an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball
is instantaneously not moving.






*PUZZLER

When this honeybee gets back to its
hive, it will tell the other bees how to re-
turn to the food it has found. By moving
in a special, very precisely defined pat-
tern, the bee conveys to other workers
the information they need to find a flower
bed. Bees communicate by “speaking in
vectors.” What does the bee have to tell
the other bees in order to specify where
the flower bed is located relative to the
hive? (E. Webber/Visuals Unlimited)

c h a p t e r

Vectors

Chapter Outline

3.1 Coordinate Systems
3.2 Vector and Scalar Quantities
3.3 Some Properties of Vectors

3.4 Components of a Vector and Unit
Vectors



3.1 Coordinate Systems

e often need to work with physical quantities that have both numerical and

directional properties. As noted in Section 2.1, quantities of this nature are

represented by vectors. This chapter is primarily concerned with vector alge-

bra and with some general properties of vector quantities. We discuss the addition

and subtraction of vector quantities, together with some common applications to

physical situations.

Vector quantities are used throughout this text, and it is therefore imperative

that you master both their graphical and their algebraic properties.

3.1 _~ COORDINATE SYSTEMS

Many aspects of physics deal in some form or other with locations in space. In
Chapter 2, for example, we saw that the mathematical description of an object’s
motion requires a method for describing the object’s position at various times.
This description is accomplished with the use of coordinates, and in Chapter 2 we
used the cartesian coordinate system, in which horizontal and vertical axes inter-
sect at a point taken to be the origin (Fig. 3.1). Cartesian coordinates are also
called rectangular coordinates.

0, Sometimes it is more convenient to represent a point in a plane by its plane po-

22 lar coordinates (v, 0), as shown in Figure 3.2a. In this polar coordinate system, ris the
distance from the origin to the point having cartesian coordinates (x, y), and 6 is
the angle between r and a fixed axis. This fixed axis is usually the positive x axis,
and 0 is usually measured counterclockwise from it. From the right triangle in Fig-
ure 3.2b, we find that sin 6 = y/rand that cos 0 = x/r. (A review of trigonometric
functions is given in Appendix B.4.) Therefore, starting with the plane polar coor-
dinates of any point, we can obtain the cartesian coordinates, using the equations

x = rcos 6 (3.1)
y = rsin 0 (3.2)
Furthermore, the definitions of trigonometry tell us that
tan 6 = = (3.3)
x
RN g 3.4)

These four expressions relating the coordinates (x, y) to the coordinates (7, 0)
apply only when 6 is defined, as shown in Figure 3.2a—in other words, when posi-
tive 0 is an angle measured counterclockwise from the positive x axis. (Some scientific
calculators perform conversions between cartesian and polar coordinates based on
these standard conventions.) If the reference axis for the polar angle 6 is chosen
to be one other than the positive x axis or if the sense of increasing 6 is chosen dif-
ferently, then the expressions relating the two sets of coordinates will change.

Would the honeybee at the beginning of the chapter use cartesian or polar coordinates
when specifying the location of the flower? Why? What is the honeybee using as an origin of
coordinates?
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o (x, )

Q

(—3., 4) Po (5, 3)

Figure 3.1 Designation of points
in a cartesian coordinate system.
Every point is labeled with coordi-
nates (x, y).

y
(%, )
,
\ 0
x
o
()
sinf= 2
=
cos O = i; r
y
tan =2
X
6
x
(b)
Figure 3.2 (a) The plane polar

coordinates of a point are repre-
sented by the distance rand the an-
gle 6, where 6 is measured counter-
clockwise from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (7, ).

You may want to read Talking Apes
and Dancing Bees (1997) by Betsy
Wyckoff.
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polar coordinates of this point.

y(m)

CHAPTER 3 Vectors

ExAMPLE 3.1 Polar Coordinates

The cartesian coordinates of a point in the xy plane are Solution
(x, y) = (—3.50, —2.50) m, as shown in Figure 3.3. Find the

r=Vx+ 32 =V(=850m)% + (-250m)2 = 4.30 m

an 6=~ = —230m _ ooy
X —3.50 m

0= 216°
\ x(m)

ﬁ/—\Q>

[
-3.50, -2.50

are given.

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
Thatis, 6 = 216° and not 35.5°.

Figure 3.3 Tinding polar coordinates when cartesian coordinates

3.2 _~ VECTOR AND SCALAR QUANTITIES

(@ As noted in Chapter 2, some physical quantities are scalar quantities whereas oth-

Figure 3.4 As a particle moves
from @ to ® along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn

from ® to ®.

23 ers are vector quantities. When you want to know the temperature outside so that

you will know how to dress, the only information you need is a number and the
unit “degrees C” or “degrees F.” Temperature is therefore an example of a scalar
quantity, which is defined as a quantity that is completely specified by a number
and appropriate units. That is,

A scalar quantity is specified by a single value with an appropriate unit and has
no direction.

Other examples of scalar quantities are volume, mass, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are getting ready to pilot a small plane and need to know the wind ve-
locity, you must know both the speed of the wind and its direction. Because direc-
tion is part of the information it gives, velocity is a vector quantity, which is de-
fined as a physical quantity that is completely specified by a number and
appropriate units plus a direction. That is,

A vector quantity has both magnitude and direction.

Another example of a vector quantity is displacement, as you know from Chap-
ter 2. Suppose a particle moves from some point ® to some point ® along a
straight path, as shown in Figure 3.4. We represent this displacement by drawing
an arrow from ® to ®, with the tip of the arrow pointing away from the starting
point. The direction of the arrowhead represents the direction of the displace-
ment, and the length of the arrow represents the magnitude of the displacement.
If the particle travels along some other path from ® to ®, such as the broken line
in Figure 3.4, its displacement is still the arrow drawn from ® to ®.
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(b)

(a) The number of apples in the basket is one example of a scalar quantity. Can you think of
other examples? (Superstock) (b) Jennifer pointing to the right. A vector quantity is one that must
be specified by both magnitude and direction. (Photo by Ray Serway) (c) An anemometer is a de-
vice meteorologists use in weather forecasting. The cups spin around and reveal the magnitude
of the wind velocity. The pointer indicates the direction. (Courtesy of Peet Bros. Company, 1308 Doris
Avenue, Ocean, NJ 07712)

=

In this text, we use a boldface letter, such as A, to represent a vector quantity.

Another common method for vector notation that you should be aware of is the
—

use of an arrow over a letter, such as A. The magnitude of the vector A is written

either A or |A|. The magnitude of a vector has physical units, such as meters for //'/'

displacement or meters per second for velocity.

3.3_- SOME PROPERTIES OF VECTORS - - )
7

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have
the same magnitude and point in the same direction. Thatis, A =B onlyif A = B

. . . . . equal because they have equal
and if A and B point in the same direction along parallel lines. For example, all lengths and point in the same di-
the vectors in Figure 3.5 are equal even though they have different starting points.  rection.
This property allows us to move a vector to a position parallel to itself in a diagram
without affecting the vector.

Figure 3.5 These four vectors are

Adding Vectors

(@ The rules for adding vectors are conveniently described by geometric methods. To
24 add vector B to vector A, first draw vector A, with its magnitude represented by a
convenient scale, on graph paper and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R =

A + B is the vector drawn from the tail of A to the tip of B. This procedure is , )

known as the triangle method of addition. Figure 5.6 When vector Bis
R added to vector A, the resultant R
For example, if you walked 3.0 m toward the east and then 4.0 m toward the i he vector that runs from the tail

north, as shown in Figure 3.7, you would find yourself 5.0 m from where you  ofA to the tip of B.
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Commutative law

Figure 3.9 (a) In this construc-
tion, the resultant R is the diagonal
of a parallelogram having sides A
and B. (b) This construction shows
that A + B = B + A—in other
words, that vector addition is com-
mutative.

CHAPTER 3 Vectors

T40m

S:’Figure 3.7 Vector addition. Walk-

ing first 3.0 m due east and then
4.0 m due north leaves you |R| =
5.0 m from your starting point.

Figure 3.8 Geometric con-
struction for summing four vec-
tors. The resultant vector R is by
definition the one that completes

the polygon.

started, measured at an angle of 53° north of east. Your total displacement is the
vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This
is shown in Figure 3.8 for the case of four vectors. The resultant vector R = A +
B + C + D is the vector that completes the polygon. In other words, R is the
vector drawn from the tail of the first vector to the tip of the last vector.

An alternative graphical procedure for adding two vectors, known as the par-
allelogram rule of addition, is shown in Figure 3.9a. In this construction, the
tails of the two vectors A and B are joined together and the resultant vector R is
the diagonal of a parallelogram formed with A and B as two of its four sides.

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is im-
portant when vectors are multiplied). This can be seen from the geometric con-
struction in Figure 3.9b and is known as the commutative law of addition:

A+B=B+A (3.5)

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule

Commutative Law
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Associative Law

A

for three vectors is given in Figure 3.10. This is called the associative law of addi-
tion:

A+ B+C)=(A+B)+C (3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two
or more vectors are added together, all of them must have the same units. It would
be meaningless to add a velocity vector (for example, 60 km/h to the east) to a dis-
placement vector (for example, 200 km to the north) because they represent dif-
ferent physical quantities. The same rule also applies to scalars. For example, it
would be meaningless to add time intervals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives
zero for the vector sum. That is, A + (—A) = 0. The vectors A and — A have the
same magnitude but point in opposite directions.

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of
avector. We define the operation A — B as vector — B added to vector A:

A-B=A+ (—-B) (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference
A — B between two vectors A and B is what you have to add to the second vector
to obtain the first. In this case, the vector A — B points from the tip of the second
vector to the tip of the first, as Figure 3.11b shows.

Vector Subtraction

(a) (b)
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Figure 3.10 Geometric construc-
tions for verifying the associative
law of addition.

Associative law

Figure 3.11 (a) This construc-
tion shows how to subtract vector B
from vector A. The vector — B is
equal in magnitude to vector B and
points in the opposite direction. To
subtract B from A, apply the rule of
vector addition to the combination
of A and — B: Draw A along some
convenient axis, place the tail of

— B at the tip of A, and C is the dif-
ference A — B. (b) A second way
of looking at vector subtraction.
The difference vector G = A — B is
the vector that we must add to B to
obtain A.
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EXAMPLE 3.2  AVacation Trip

A car travels 20.0 km due north and then 35.0 km in a direc-  ing out a calculation, you should sketch the vectors to check
tion 60.0° west of north, as shown in Figure 3.12. Find the  your results.) The displacement R is the resultant when the
magnitude and direction of the car’s resultant displacement.  two individual displacements A and B are added.

To solve the problem algebraically, we note that the magni-
Solution In this example, we show two ways to find the re-  tude of R can be obtained from the law of cosines as applied
sultant of two vectors. We can solve the problem geometri-  to the triangle (see Appendix B.4). With 6 = 180° — 60° =
cally, using graph paper and a protractor, as shown in Figure ~ 120° and R? = A% + B? — 2AB cos 6, we find that
3.12. (In fact, even when you know you are going to be carry-

R=A%+ B2 — 2ABcosb
N = \/(20.0 km)? + (35.0 km)? — 2(20.0 km) (35.0 km)cos 120°

W%*E = 48.2km

The direction of R measured from the northerly direction

y(km) can be obtained from the law of sines (Appendix B.4):
sinf3 sind
B R
i B—E' O—M' 120° = 0.629
sin g Sin 8.9 km P .
| x(km) B = 389°

The resultant displacement of the car is 48.2 km in a direc-
Figure 3.12 Graphical method for finding the resultant displace- tion 38.9° west of north. This result matches what we found
mentvector R = A + B. graphically.

Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is
a vector that has the same direction as A and magnitude mA. If vector A is
multiplied by a negative scalar quantity — m, then the product — mA is directed op-
posite A. For example, the vector 5A is five times as long as A and points in the
same direction as A; the vector — %A is one-third the length of A and points in the
direction opposite A.

y [ Quick Quiz 3.2 g
If vector B is added to vector A, under what condition does the resultant vector A + B have
magnitude A + B? Under what conditions is the resultant vector equal to zero?

| 3.4 _~ COMPONENTS OF A VECTOR AND UNIT VECTORS

¥ (@) The geometric method of adding vectors is not recommended whenever great ac-

25 curacy is required or in three-dimensional problems. In this section, we describe a

method of adding vectors that makes use of the projections of vectors along coordi-

the xy plane can be represented by nate axes. These projecFions are called the components of the vector. Any vector
a vector A, lying along the  axis can be coimpletely descrlb?d b}/ its components. ' ' .

and by a vector A, lying along the y Consider a vector A lying in the xy plane and making an arbitrary angle 6 with

axis, where A = A, + A,. the positive x axis, as shown in Figure 3.13. This vector can be expressed as the

iggFigure 3.13  Any vector A lying in
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sum of two other vectors A, and A,. From Figure 3.13, we see that the three vec-
tors form a right triangle and that A = A, + A,. (If you cannot see why this equal-
ity holds, go back to Figure 3.9 and review the parallelogram rule.) We shall often
refer to the “components of a vector A,” written A, and Ay (without the boldface
notation). The component A, represents the projection of A along the x axis, and
the component A, represents the projection of A along the y axis. These compo-
nents can be positive or negative. The component A, is positive if A, points in the
positive x direction and is negative if A, points in the negative x direction. The
same is true for the component A,.

From Figure 3.13 and the definition of sine and cosine, we see that cos 0 =
A,/ A and thatsin 0 = Ay/A. Hence, the components of A are

A, = Acosf (3.8)

Ay = Asind (3.9)

These components form two sides of a right triangle with a hypotenuse of length
A. Thus, it follows that the magnitude and direction of A are related to its compo-
nents through the expressions

A=VAZ + A2

A,
6 = tan"! —J>
an <Ax

Note that the signs of the components 4, and 4, depend on the angle 6.
For example, if 6 = 120°, then A, is negative and A, is positive. If 6 = 225°, then
both A, and A, are negative. Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components
Ayand A, or with its magnitude and direction A and 6.

| Quick Quiz 3.3 g

Can the component of a vector ever be greater than the magnitude of the vector?

(3.10)

(3.11)

Suppose you are working a physics problem that requires resolving a vector
into its components. In many applications it is convenient to express the compo-
nents in a coordinate system having axes that are not horizontal and vertical but are
still perpendicular to each other. If you choose reference axes or an angle other
than the axes and angle shown in Figure 3.13, the components must be modified
accordingly. Suppose a vector B makes an angle 6’ with the x’ axis defined in Fig-
ure 3.15. The components of B along the x’ and y' axes are By = B cos #' and
By =B sin @', as specified by Equations 3.8 and 3.9. The magnitude and direction
of B are obtained from expressions equivalent to Equations 3.10 and 3.11. Thus,
we can express the components of a vector in any coordinate system that is conve-
nient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a
dimensionless vector having a magnitude of exactly 1. Unit vectors are used
to specify a given direction and have no other physical significance. They are used
solely as a convenience in describing a direction in space. We shall use the symbols
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Components of the vector A
Magnitude of A
Direction of A
A, negative | A, positive

A, positive Ay positive

X

A, negative | A, positive

Ay negative Ay negative

Figure 3.14 The signs of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.

’
' A
y /// \
\
pd \
Ve A
- \
\
\ X
\
B \
\
\
By' 0
~ B

N

Figure 3.15 The component vec-
tors of B in a coordinate system
that is tilted.
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Position vector

(b)

Figure 3.16 (a) The unit vectors
i,j, and k are directed along the x,
9y, and z axes, respectively. (b) Vec-
tor A = A, + A,jlying in the xy
plane has components A, and 4,.

CHAPTER 3 Vectors

i, j, and k to represent unit vectors pointing in the positive x, y, and z directions,
respectively. The unit vectors i, j, and k form a set of mutually perpendicular vec-
tors in a right-handed coordinate system, as shown in Figure 3.16a. The magnitude
of each unit vector equals 1; that is, |i| = [j| = |k| = 1.

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The prod-
uct of the component A, and the unit vector i is the vector A,i, which lies on the x
axis and has magnitude | A,|. (The vector A,i is an alternative representation of
vector A,.) Likewise, A,j is a vector of magnitude |Ay| lying on the y axis. (Again,
vector A,j is an alternative representation of vector A,.) Thus, the unit—vector no-
tation for the vector A is

A=Ad+ Aj (3.12)

For example, consider a point lying in the xy plane and having cartesian coordi-
nates (x, y), as in Figure 3.17. The point can be specified by the position vector r,
which in unit—-vector form is given by

r = xi+ yj (3.13)

This notation tells us that the components of r are the lengths x and y.

Now let us see how to use components to add vectors when the geometric
method is not sufficiently accurate. Suppose we wish to add vector B to vector A,
where vector B has components B, and B,. All we do is add the x and y compo-
nents separately. The resultant vector R = A + B is therefore

R = (A, + Aj) + (Bd + B,j)
or
R = (4, + B)i + (4, + B)j (3.14)

Because R = R i + Ry j» we see that the components of the resultant vector are

R,=A,+ B,
- (3.15)
Ry = AJ, + By
y
¥ 7*T7""""""77
(%) }
B, R I
) B
R, Jﬁ |
r W***‘***T }
A,
.V AL
e—— A —><« B, >
0 * R N

Figure 3.17 The point whose
cartesian coordinates are (x, y) can
be represented by the position vec-
torr = xi + yj.

Figure 3.18 This geometric construction
for the sum of two vectors shows the rela-
tionship between the components of the re-
sultant R and the components of the indi-
vidual vectors.
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We obtain the magnitude of R and the angle it makes with the x axis from its com-
ponents, using the relationships

R=VRZ2+ R?=(A, + B)? + (4, + B)? (3.16)
R, A, + B,

tan = — =22 (3.17)
R, A, + B,

We can check this addition by components with a geometric construction, as
shown in Figure 3.18. Remember that you must note the signs of the components
when using either the algebraic or the geometric method.

At times, we need to consider situations involving motion in three compo-
nent directions. The extension of our methods to three-dimensional vectors is
straightforward. If A and B both have x, y, and z components, we express them in
the form

A=Adi+ Aj+ Ak (3.18)
B = Bdi + B)j + Bk (3.19)

The sum of A and B is
R = (A, + B)i + (Ay + B)j + (A, + B)k (3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant
vector also has a z component R, = A, + B,.

If one component of a vector is not zero, can the magnitude of the vector be zero? Explain.

| Quick Quiz 3.5

If A + B = 0, what can you say about the components of the two vectors?

Problem-Solving Hints
Adding Vectors
When you need to add two or more vectors, use this step-by-step procedure:

* Select a coordinate system that is convenient. (Try to reduce the number of
components you need to find by choosing axes that line up with as many
vectors as possible.)

® Draw a labeled sketch of the vectors described in the problem.

* Find the x and y components of all vectors and the resultant components
(the algebraic sum of the components) in the x and y directions.

e If necessary, use the Pythagorean theorem to find the magnitude of the re-
sultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.
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QuickLab —

Write an expression for the vector de-
scribing the displacement of a fly that
moves from one corner of the floor
of the room that you are in to the op-
posite corner of the room, near the
ceiling.
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EXAMPLE 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane and
given by

A=(20i+20j) m and B = (2.0i — 4.0j) m

Solution Comparing this expression for A with the gen-
eral expression A = A,i + A, j, we see that A, = 2.0 m and
that A, = 2.0 m. Likewise, B, = 2.0 m and B, = —4.0 m. We
obtain the resultant vector R, using Equation 3.14:
R=A+B=(20+20)im+ (2.0 —4.0)jm
= (4.0i — 2.0j) m
or

R,=4.0m R,=—-20m

The magnitude of R is given by Equation 3.16:
R=VRZ+ R?=V(4.0m)? + (-2.0m)? =20 m

= 45m

We can find the direction of R from Equation 3.17:

Ry —20m
tan 0 = — =

— = —0.50
R, 4.0 m

Your calculator likely gives the answer —27° for 6=
tan~'(— 0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from

the + x axis, and that angle for this vector is § = 333°.

EXAMPLE 3.4  The Resultant Displacement

A particle undergoes three consecutive displacements: d; =
(151 + 30§ + 12k) cm, dy = (23i — 14j — 5.0k) cm, and
d; = (—13i + 15j) cm. Find the components of the resultant
displacement and its magnitude.

Solution Rather than looking at a sketch on flat paper, vi-
sualize the problem as follows: Start with your fingertip at the
front left corner of your horizontal desktop. Move your fin-
gertip 15 cm to the right, then 30 cm toward the far side of
the desk, then 12 cm vertically upward, then 23 cm to the
right, then 14 cm horizontally toward the front edge of the
desk, then 5.0 cm vertically toward the desk, then 13 cm to
the left, and (finally!) 15 cm toward the back of the desk. The

mathematical calculation keeps track of this motion along
the three perpendicular axes:

R=d, +dy +dg
= (15 + 23 — 13)icm + (30 — 14 + 15)j cm
+ (12 = 5.0 + O)kcm
= (251 + 31j + 7.0k) cm

The resultant displacement has components R, = 25 cm,
R, =31 cm, and R, = 7.0 cm. Its magnitude is

R=7\RZ?+ R*+ R?

=(25cm)? + (31 ecm)? + (7.0 cm)2 = 40 cm

EXAMPLE 3.5  Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the sec-
ond day, she walks 40.0 km in a direction 60.0° north of east, at
which point she discovers a forest ranger’s tower. (a) Deter-
mine the components of the hiker’s displacement for each day.

Solution If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Displacement A has a magnitude of 25.0 km and
is directed 45.0° below the positive x axis. From Equations 3.8
and 3.9, its components are

A, = Acos(—45.0°) = (25.0 km)(0.707) = 17.7km

Ay = Asin(—45.0°) = —(25.0 km) (0.707) = —17.7km

y(km) N
\\'@»FA
20 S
Tower
10 R
x(km)
Car'N\ Jy5.0020 /30 40 50
~10 B
A 60.0°
-20 Tent

Figure 3.19 The total displacement of the hiker is the vector
R=A+B.
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The negative value of A, indicates that the hiker walks in the
negative y direction on the first day. The signs of A, and 4,
also are evident from Figure 3.19.

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

B

X

= Bcos 60.0° = (40.0 km) (0.500) = 20.0 km

B, = Bsin 60.0° = (40.0 km) (0.866) =

, 34.6 km

(b) Determine the components of the hiker’s resultant
displacement R for the trip. Find an expression for R in
terms of unit vectors.

Solution The resultant displacement for the trip R = A + B
has components given by Equation 3.15:

R,= A, + B,= 17.7km + 20.0 km = 37.7 km

R,=A + B, =—-177km + 34.6 km =

,= A+ B 16.9 km

In unit—vector form, we can write the total displacement as

R = (37.7i + 16.9j) km

Exercise Determine the magnitude and direction of the to-
tal displacement.

Answer 41.3 km, 24.1° north of east from the car.

EXAMPLE 3.6

A commuter airplane takes the route shown in Figure 3.20.
First, it flies from the origin of the coordinate system shown
to city A, located 175 km in a direction 30.0° north of east.
Next, it flies 153 km 20.0° west of north to city B. Finally, it
flies 195 km due west to city C. Find the location of city C rel-
ative to the origin.

Let's Fly Away!

Solution It is convenient to choose the coordinate system
shown in Figure 3.20, where the x axis points to the east and
the y axis points to the north. Let us denote the three consec-
utive displacements by the vectors a, b, and ¢. Displacement a
has a magnitude of 175 km and the components

a, = acos(30.0°) = (175 km) (0.866) = 152 km

a, = asin(30.0°) = (175 km) (0.500) = 87.5 km

L o)
no
Qt
<=1

30.0°
50 100 150 200

x(km)

Figure 3.20 The airplane starts at the origin, flies first to city A,
then to city B, and finally to city C.

Displacement b, whose magnitude is 153 km, has the compo-
nents

by = bcos(110°) = (153 km) (—0.342) = —52.3 km
by = bsin(110°) = (153 km) (0.940) = 144 km
Finally, displacement ¢, whose magnitude is 195 km, has the
components
¢, = c¢cos(180°) = (195 km)(—1) = —195 km

¢, = ¢sin(180°) = 0

y

Therefore, the components of the position vector R from the
starting point to city C are

R,=a,+ b, + ¢, = 152 km — 52.3 km — 195 km

—95.3 km

=ay+by+cy=87.5km+l44km+0

= 232 km

In unit—vector notation, That

R = (—95.3i + 232j) km.

is, the airplane can reach city C from the starting point by
first traveling 95.3 km due west and then by traveling 232 km
due north.

Exercise Find the magnitude and direction of R.

Answer 251 km, 22.3° west of north.
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y

Figure 3.22 The addition of the
two vectors A, and A, gives vector A.
Note that A, = A,d and A, = A,j,
where A, and A are the components of
vector A.

CHAPTER 3 Vectors

(a) (b)

Figure 3.21 (a) Vector addition by the triangle method. (b) Vector addition by the
parallelogram rule.

SUMMARY

Scalar quantities are those that have only magnitude and no associated direc-
tion. Vector quantities have both magnitude and direction and obey the laws of
vector addition.

We can add two vectors A and B graphically, using either the triangle method
or the parallelogram rule. In the triangle method (Fig. 3.21a), the resultant vector
R = A + B runs from the tail of A to the tip of B. In the parallelogram method
(Fig. 3.21b), R is the diagonal of a parallelogram having A and B as two of its sides.
You should be able to add or subtract vectors, using these graphical methods.

The x component A, of the vector A is equal to the projection of A along the x
axis of a coordinate system, as shown in Figure 3.22, where A, = A cos 6. The y
component Ay of A is the projection of A along the y axis, where A), = Asin 6. Be
sure you can determine which trigonometric functions you should use in all situa-
tions, especially when 6 is defined as something other than the counterclockwise
angle from the positive x axis.

If a vector A has an x component A, and a y component A, the vector can be
expressed in unit—vector form as A = A,i + A;j. In this notation, i is a unit vector
pointing in the positive x direction, and j is a unit vector pointing in the positive y
direction. Because i and j are unit vectors, |i| = [j| = 1.

We can find the resultant of two or more vectors by resolving all vectors into
their x and y components, adding their resultant x and y components, and then
using the Pythagorean theorem to find the magnitude of the resultant vector. We
can find the angle that the resultant vector makes with respect to the x axis by us-
ing a suitable trigonometric function.

QUESTIONS
1. Two vectors have unequal magnitudes. Can their sum be B is zero, what can you conclude about these two vectors?
zero? Explain. 6. Can the magnitude of a vector have a negative value? Ex-
2. Can the magnitude of a particle’s displacement be greater plain.
than the distance traveled? Explain. 7. Which of the following are vectors and which are not:
3. The magnitudes of two vectors A and B are A = 5 units force, temperature, volume, ratings of a television show,
and B = 2 units. Find the largest and smallest values possi- height, velocity, age?
ble for the resultant vector R = A + B. 8. Under what circumstances would a nonzero vector lying in
Vector A lies in the xy plane. For what orientations of vec- the xy plane ever have components that are equal in mag-
tor A will both of its components be negative? For what nitude?
orientations will its components have opposite signs? Is it possible to add a vector quantity to a scalar quantity?

5. If the component of vector A along the direction of vector Explain.
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paired numerical/symbolic problems

Problems 71

Section 3.1 Coordinate Systems

wes |1.] The polar coordinates of a point are r = 5.50 m and

6 = 240°. What are the cartesian coordinates of this
point?

. Two points in the xy plane have cartesian coordinates

(2.00, — 4.00) m and (— 3.00, 3.00) m. Determine
(a) the distance between these points and (b) their po-
lar coordinates.

. If the cartesian coordinates of a point are given by (2, y)

and its polar coordinates are (7, 30°), determine y and r.

. Two points in a plane have polar coordinates (2.50 m,

30.0°) and (3.80 m, 120.0°). Determine (a) the carte-
sian coordinates of these points and (b) the distance
between them.

A fly lands on one wall of a room. The lower left-hand

6.

corner of the wall is selected as the origin of a two-
dimensional cartesian coordinate system. If the fly is lo-
cated at the point having coordinates (2.00, 1.00) m,
(a) how far is it from the corner of the room? (b) what
is its location in polar coordinates?

If the polar coordinates of the point (x, y) are (7, 0),
determine the polar coordinates for the points

(a) (—x,9), (b) (—2x, —2y),and (c) (3x, — 3y).

Section 3.2 \Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors

7.

8.

An airplane flies 200 km due west from city A to city B
and then 300 km in the direction 30.0° north of west
from city B to city C. (a) In straight-line distance, how
far is city C from city A? (b) Relative to city A, in what
direction is city C?

A pedestrian moves 6.00 km east and then 13.0 km
north. Using the graphical method, find the magnitude
and direction of the resultant displacement vector.

A surveyor measures the distance across a straight river

by the following method: Starting directly across from a
tree on the opposite bank, she walks 100 m along the
riverbank to establish a baseline. Then she sights across
to the tree. The angle from her baseline to the tree is
35.0°. How wide is the river?

10. A plane flies from base camp to lake A, a distance of

11.

280 km at a direction 20.0° north of east. After drop-
ping off supplies, it flies to lake B, which is 190 km and
30.0° west of north from lake A. Graphically determine
the distance and direction from lake B to the base
camp.

Vector A has a magnitude of 8.00 units and makes an
angle of 45.0° with the positive x axis. Vector B also has
a magnitude of 8.00 units and is directed along the neg-

ative x axis. Using graphical methods, find (a) the vec-
tor sum A + B and (b) the vector difference A — B.

12. A force F; of magnitude 6.00 units acts at the origin in a

direction 30.0° above the positive x axis. A second force
Fy of magnitude 5.00 units acts at the origin in the di-
rection of the positive y axis. Find graphically the mag-
nitude and direction of the resultant force F; + Fy.

weB A person walks along a circular path of radius 5.00 m. If

14.

the person walks around one half of the circle, find

(a) the magnitude of the displacement vector and

(b) how far the person walked. (c) What is the magni-
tude of the displacement if the person walks all the way
around the circle?

A dog searching for a bone walks 3.50 m south, then
8.20 m at an angle 30.0° north of east, and finally

15.0 m west. Using graphical techniques, find the dog’s
resultant displacement vector.

weB m Each of the displacement vectors A and B shown in Fig-

16.

ure P3.15 has a magnitude of 3.00 m. Find graphically
(a) A+ B,(b)A—B, (c) B— A, (d) A— 2B. Report
all angles counterclockwise from the positive x axis.

3.00 m A
©
Q
9

30.0°

Figure P3.15 Problems 15 and 39.

Arbitrarily define the “instantaneous vector height” of a
person as the displacement vector from the point
halfway between the feet to the top of the head. Make
an order-of-magnitude estimate of the total vector
height of all the people in a city of population 100 000
(a) at 10 a.m. on a Tuesday and (b) at 5 a.m. on a Satur-
day. Explain your reasoning.

17.] A roller coaster moves 200 ft horizontally and then rises

18.

135 ft at an angle of 30.0° above the horizontal. It then
travels 135 ft at an angle of 40.0° downward. What is its
displacement from its starting point? Use graphical
techniques.

The driver of a car drives 3.00 km north, 2.00 km north-
east (45.0° east of north), 4.00 km west, and then
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3.00 km southeast (45.0° east of south). Where does he
end up relative to his starting point? Work out your an-
swer graphically. Check by using components. (The car
is not near the North Pole or the South Pole.)

19. Fox Mulder is trapped in a maze. To find his way out, he
walks 10.0 m, makes a 90.0° right turn, walks 5.00 m,
makes another 90.0° right turn, and walks 7.00 m. What

is his displacement from his initial position? 24.

Section 3.4 Components of a Vector and Unit Vectors

lying in an east—west vertical plane. The robot then
moves the object upward along a second arc that forms
one quarter of a circle having a radius of 3.70 cm and
lying in a north—south vertical plane. Find (a) the mag-
nitude of the total displacement of the object and

(b) the angle the total displacement makes with the
vertical.

Vector B has x, y, and z components of 4.00, 6.00, and
3.00 units, respectively. Calculate the magnitude of B
and the angles that B makes with the coordinate axes.

20. Find the horizontal and vertical components of the 100-m ~ WEB Avector has an x component of —25.0 units and a y

displacement of a superhero who flies from the top of a
tall building following the path shown in Figure P3.20.

26.

Figure P3.20

29.

21. A person walks 25.0° north of east for 3.10 km. How far

would she have to walk due north and due east to arrive

at the same location? 30
22. While exploring a cave, a spelunker starts at the en-

trance and moves the following distances: She goes

75.0 m north, 250 m east, 125 m at an angle 30.0° north

27.

28.

component of 40.0 units. Find the magnitude and di-
rection of this vector.

A map suggests that Atlanta is 730 mi in a direction
5.00° north of east from Dallas. The same map shows
that Chicago is 560 mi in a direction 21.0° west of north
from Atlanta. Assuming that the Earth is flat, use this in-
formation to find the displacement from Dallas to
Chicago.

A displacement vector lying in the xy plane has a magni-
tude of 50.0 m and is directed at an angle of 120° to the
positive x axis. Find the x and y components of this vec-
tor and express the vector in unit—vector notation.

If A = 2.00i + 6.00j and B = 3.00i — 2.00j, (a) sketch
the vector sum C = A + B and the vector difference

D = A — B. (b) Find solutions for C and D, first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the + x axis.
Find the magnitude and direction of the resultant of
three displacements having x and y components (3.00,
2.00) m, (—5.00, 3.00) m, and (6.00, 1.00) m.

. Vector A has x and y components of —8.70 cm and

15.0 cm, respectively; vector B has x and y components
of 13.2 cm and — 6.60 cm, respectively. IfA — B +
3C = 0, what are the components of C?

of east, and 150 m south. Find the resultant displace- Consider two vectors A = 3i — 2jand B = —i — 4j.

ment from the cave entrance.

23. In the assembly operation illustrated in Figure P3.23, a
robot first lifts an object upward along an arc that forms 32
one quarter of a circle having a radius of 4.80 cm and

Figure P3.23

34.

36.

Calculate (a) A + B, (b) A — B, (c) |A + B|,
(d) |A — B|, (e) the directions of A + B and A — B.

. A boy runs 3.00 blocks north, 4.00 blocks northeast, and

5.00 blocks west. Determine the length and direction of
the displacement vector that goes from the starting
point to his final position.

33.] Obtain expressions in component form for the position

vectors having polar coordinates (a) 12.8 m, 150°;

(b) 3.30 cm, 60.0°%; (c) 22.0 in., 215°.

Consider the displacement vectors A = (3i + 3j) m,

B = (i— 4j) m,and C = (—2i + 5j) m. Use the com-
ponent method to determine (a) the magnitude and di-
rection of the vector D = A + B + C and (b) the mag-
nitude and direction of E= —A — B + C.

A particle undergoes the following consecutive displace-

ments: 3.50 m south, 8.20 m northeast, and 15.0 m west.
What is the resultant displacement?

In a game of American football, a quarterback takes the
ball from the line of scrimmage, runs backward for 10.0
yards, and then sideways parallel to the line of scrim-
mage for 15.0 yards. At this point, he throws a forward
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38.

39.

pass 50.0 yards straight downfield perpendicular to the
line of scrimmage. What is the magnitude of the foot-
ball’s resultant displacement?

The helicopter view in Figure P3.37 shows two people
pulling on a stubborn mule. Find (a) the single force
that is equivalent to the two forces shown and (b) the
force that a third person would have to exert on the
mule to make the resultant force equal to zero. The
forces are measured in units of newtons.

Figure P3.37

A novice golfer on the green takes three strokes to sink
the ball. The successive displacements are 4.00 m to the
north, 2.00 m northeast, and 1.00 m 30.0° west of south.
Starting at the same initial point, an expert golfer could
make the hole in what single displacement?

Find the x and y components of the vectors A and B
shown in Figure P3.15; then derive an expression for
the resultant vector A + B in unit—vector notation.

40. You are standing on the ground at the origin of a coor-

41.

dinate system. An airplane flies over you with constant
velocity parallel to the x axis and at a constant height of
7.60 X 10% m. At ¢ = 0, the airplane is directly above
you, so that the vector from you to it is given by P, =
(7.60 X 103 m)j. At ¢t = 30.0 s, the position vector lead-
ing from you to the airplane is P3y = (8.04 X 10® m)i +
(7.60 X 103 m)j. Determine the magnitude and orienta-
tion of the airplane’s position vector at ¢t = 45.0 s.

A particle undergoes two displacements. The first has a
magnitude of 150 cm and makes an angle of 120° with
the positive x axis. The resultant displacement has a mag-
nitude of 140 cm and is directed at an angle of 35.0° to
the positive x axis. Find the magnitude and direction of
the second displacement.

42.

Problems 73

Vectors A and B have equal magnitudes of 5.00. If the
sum of A and B is the vector 6.00 j, determine the angle
between A and B.

The vector A has ¥, y, and z components of 8.00, 12.0,

44.

45.

46.

47.

48.

and — 4.00 units, respectively. (a) Write a vector expres-
sion for A in unit—vector notation. (b) Obtain a
unit—vector expression for a vector B one-fourth the
length of A pointing in the same direction as A. (c) Ob-
tain a unit—vector expression for a vector C three times
the length of A pointing in the direction opposite the
direction of A.

Instructions for finding a buried treasure include the
following: Go 75.0 paces at 240°, turn to 135° and walk
125 paces, then travel 100 paces at 160°. The angles are
measured counterclockwise from an axis pointing to
the east, the + x direction. Determine the resultant dis-
placement from the starting point.

Given the displacement vectors A = (3i — 4j + 4k) m
and B = (2i + 3j — 7k) m, find the magnitudes of the
vectors (a) C = A + Band (b) D = 2A — B, also ex-
pressing each in terms of its x, y, and z components.

A radar station locates a sinking ship at range 17.3 km
and bearing 136° clockwise from north. From the same
station a rescue plane is at horizontal range 19.6 km,
153° clockwise from north, with elevation 2.20 km.

(a) Write the vector displacement from plane to ship,
letting i represent east, j north, and k up. (b) How far
apart are the plane and ship?

As it passes over Grand Bahama Island, the eye of a hur-
ricane is moving in a direction 60.0° north of west with
a speed of 41.0 km/h. Three hours later, the course of
the hurricane suddenly shifts due north and its speed
slows to 25.0 km/h. How far from Grand Bahama is the
eye 4.50 h after it passes over the island?

(a) Vector E has magnitude 17.0 cm and is directed
27.0° counterclockwise from the + x axis. Express it in
unit—vector notation. (b) Vector F has magnitude

17.0 cm and is directed 27.0° counterclockwise from the
+ yaxis. Express it in unit—vector notation. (c) Vector
G has magnitude 17.0 cm and is directed 27.0° clockwise
from the + y axis. Express it in unit—vector notation.

Vector A has a negative x component 3.00 units in

50.

length and a positive y component 2.00 units in length.
(a) Determine an expression for A in unit—vector nota-
tion. (b) Determine the magnitude and direction of A.
(c) What vector B, when added to vector A, gives a re-
sultant vector with no x component and a negative y
component 4.00 units in length?

An airplane starting from airport A flies 300 km east,
then 350 km at 30.0° west of north, and then 150 km
north to arrive finally at airport B. (a) The next day, an-
other plane flies directly from airport A to airport B in a
straight line. In what direction should the pilot travel in
this direct flight? (b) How far will the pilot travel in this
direct flight? Assume there is no wind during these
flights.
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wWeB Three vectors are oriented as shown in Figure P3.51,

52.

where |A| = 20.0 units, |B| = 40.0 units, and

|C| = 30.0 units. Find (a) the xand y components of
the resultant vector (expressed in unit—vector notation)
and (b) the magnitude and direction of the resultant
vector.

b
B
A
\45.0"
L 5 X
o / 45.0°
C
Figure P3.51

IfA = (6.00i — 8.00§) units, B = (—8.00i + 3.00j)
units, and C = (26.0i + 19.0j) units, determine ¢ and b
such that ¢A + B + C = 0.

ADDITIONAL PROBLEMS

53.

54.

55.

56.

Two vectors A and B have precisely equal magnitudes.
For the magnitude of A + B to be 100 times greater
than the magnitude of A — B, what must be the angle
between them?

Two vectors A and B have precisely equal magnitudes.
For the magnitude of A + B to be greater than the
magnitude of A — B by the factor », what must be the
angle between them?

A vector is given by R = 2.00i + 1.00j + 3.00k. Find
(a) the magnitudes of the x, y, and z components,

(b) the magnitude of R, and (c) the angles between R
and the x, y, and z axes.

Find the sum of these four vector forces: 12.0 N to the
right at 35.0° above the horizontal, 31.0 N to the left at
55.0° above the horizontal, 8.40 N to the left at 35.0° be-
low the horizontal, and 24.0 N to the right at 55.0° be-
low the horizontal. (Hini: Make a drawing of this situa-
tion and select the best axes for x and y so that you have
the least number of components. Then add the vectors,
using the component method.)

A person going for a walk follows the path shown in Fig-

58.

ure P3.57. The total trip consists of four straight-line
paths. At the end of the walk, what is the person’s resul-
tant displacement measured from the starting point?
In general, the instantaneous position of an object is
specified by its position vector P leading from a fixed

59.

60.

Start | 100 m

300 m
End

200 m
607

Figure P3.57

3007
150 m

origin to the location of the object. Suppose that for a
certain object the position vector is a function of time,
given by P = 4i + 3j — 2¢j, where Pis in meters and ¢ is
in seconds. Evaluate dP/ dt. What does this derivative
represent about the object?

A jet airliner, moving initially at 300 mi/h to the east,
suddenly enters a region where the wind is blowing at
100 mi/h in a direction 30.0° north of east. What are
the new speed and direction of the aircraft relative to
the ground?

A pirate has buried his treasure on an island with five
trees located at the following points: A(30.0 m,

—20.0 m), B(60.0 m, 80.0 m), C(—10.0 m, —10.0 m),
D(40.0 m, —30.0 m), and E(— 70.0 m, 60.0 m). All
points are measured relative to some origin, as in Fig-
ure P3.60. Instructions on the map tell you to start at A
and move toward B, but to cover only one-half the dis-
tance between A and B. Then, move toward C, covering
one-third the distance between your current location
and C. Next, move toward D, covering one-fourth the
distance between where you are and D. Finally, move to-
ward E, covering one-fifth the distance between you and
E, stop, and dig. (a) What are the coordinates of the
point where the pirate’s treasure is buried? (b) Re-

Figure P3.60



arrange the order of the trees, (for instance, B(30.0 m,
—20.0 m), A(60.0 m, 80.0 m), E(—10.0 m, —10.0 m),
C(40.0 m, — 30.0 m), and D(— 70.0 m, 60.0 m), and re-
peat the calculation to show that the answer does not
depend on the order of the trees.

61. A rectangular parallelepiped has dimensions a, b, and ¢,
as in Figure P3.61. (a) Obtain a vector expression for
the face diagonal vector R;. What is the magnitude of
this vector? (b) Obtain a vector expression for the body
diagonal vector Ry. Note that Ry, ck, and Ry make a
right triangle, and prove that the magnitude of Ry is

Va2 + b2 + ¢2.

Figure P3.61

ANSWERS TO QUICK QUIZZES

3.1 The honeybee needs to communicate to the other honey-
bees how far it is to the flower and in what direction they
must fly. This is exactly the kind of information that polar
coordinates convey, as long as the origin of the coordi-
nates is the beehive.

3.2 The resultant has magnitude A + Bwhen vector A is ori-
ented in the same direction as vector B. The resultant
vector is A + B = 0 when vector A is oriented in the di-
rection opposite vector Band A = B.

3.3 No. In two dimensions, a vector and its components form
aright triangle. The vector is the hypotenuse and must be

Answers to Quick Quizzes 75

62. A pointlying in the xy plane and having coordinates
(%, y) can be described by the position vector given by
r = xi + yj. (a) Show that the displacement vector for a
particle moving from (x;, y1) to (x9, yo) is given by
d = (xg — x1)i + (y2 — y1)j- (b) Plot the position vec-
tors r; and ry and the displacement vector d, and verify
by the graphical method thatd = ry — 1.

63. A point Pis described by the coordinates (x, y) with re-
spect to the normal cartesian coordinate system shown
in Figure P3.63. Show that (x', y), the coordinates of
this point in the rotated coordinate system, are related
to (x, y) and the rotation angle « by the expressions

¥ = xcosa + ysina
y = —xsin o + ycos «
y
e P
¥
\ ,
\\ X
-
\ 7
\\ P
-
o
-7\ N
0
Figure P3.63

longer than either side. Problem 61 extends this concept
to three dimensions.

3.4 No. The magnitude of a vector A is equal to

VA2 + Ay2 + A2 Therefore, if any component is non-
zero, A cannot be zero. This generalization of the Pythag-

orean theorem is left for you to prove in Problem 61.

3.5 The fact that A + B = 0 tells you that A = — B. There-

fore, the components of the two vectors must have oppo-
site signs and equal magnitudes: A, = — By, Ay = — B},
and A, = — B,.



This airplane is used by NASA for astro-
naut training. When it flies along a cer-
tain curved path, anything inside the
plane that is not strapped down begins to
float. What causes this strange effect?
(NASA)

For more information on microgravity in
general and on this airplane, visit
http://microgravity.msfc.nasa.gov/
and http://www.jsc.nasa.gov/coop/
kel35/kel35.html
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4.1 The Displacement, Velocity, and Acceleration Vectors

n this chapter we deal with the kinematics of a particle moving in two dimen-
sions. Knowing the basics of two-dimensional motion will allow us to examine —
in future chapters—a wide variety of motions, ranging from the motion of satel-

lites in orbit to the motion of electrons in a uniform electric field. We begin by
studying in greater detail the vector nature of displacement, velocity, and accelera-
tion. As in the case of one-dimensional motion, we derive the kinematic equations
for two-dimensional motion from the fundamental definitions of these three quan-
tities. We then treat projectile motion and uniform circular motion as special cases
of motion in two dimensions. We also discuss the concept of relative motion,
which shows why observers in different frames of reference may measure different
displacements, velocities, and accelerations for a given particle.

4.1 _~ THE DISPLACEMENT, VELOCITY, AND
ACCELERATION VECTORS

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend
this idea to motion in the xy plane. We begin by describing the position of a parti-
cle by its position vector r, drawn from the origin of some coordinate system to the
particle located in the xy plane, as in Figure 4.1. At time ¢; the particle is at point
®, and at some later time { it is at point ®. The path from ® to ® is not neces-
sarily a straight line. As the particle moves from ® to in the time interval
At = tp— 1, its position vector changes from r; to ry. As we learned in Chapter 2,
displacement is a vector, and the displacement of the particle is the difference be-
tween its final position and its initial position. We now formally define the dis-
placement vector Ar for the particle of Figure 4.1 as being the difference be-
tween its final position vector and its initial position vector:

Ar=r,—r, (4.1)

The direction of Ar is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of Ar is less than the distance traveled along the curved path followed by
the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
ratio of a displacement divided by the time interval during which that displace-
ment occurred. In two-dimensional (or three-dimensional) kinematics, everything
is the same as in one-dimensional kinematics except that we must now use vectors
rather than plus and minus signs to indicate the direction of motion.

We define the average velocity of a particle during the time interval At as the
displacement of the particle divided by that time interval:
Ar
At

(4.2)

v

Multiplying or dividing a vector quantity by a scalar quantity changes only the mag-
nitude of the vector, not its direction. Because displacement is a vector quantity
and the time interval is a scalar quantity, we conclude that the average velocity is a
vector quantity directed along Ar.

Note that the average velocity between points is independent of the path taken.
This is because average velocity is proportional to displacement, which depends

77

! Path of
T particle

X

0

Figure 4.1 A particle moving in
the xy plane is located with the po-
sition vector r drawn from the ori-
gin to the particle. The displace-
ment of the particle as it moves
from ® to ® in the time interval
At = t;— (;is equal to the vector
Ar =1/ — ;.

Displacement vector

Average velocity
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Instantaneous velocity

CHAPTER 4 MotioninTwo Dimensions

Y Direction of v at ® Figure 4.2  As a particle moves be-
tween two points, its average velocity is
in the direction of the displacement vec-
tor Ar. As the end point of the path is
moved from ® to ®’ to ®", the respec-
tive displacements and corresponding
time intervals become smaller and
smaller. In the limit that the end point
approaches ®, At approaches zero, and
the direction of Ar approaches that of
the line tangent to the curve at ®. By
definition, the instantaneous velocity at
® is in the direction of this tangent
line.

only on the initial and final position vectors and not on the path taken. As we did
with one-dimensional motion, we conclude that if a particle starts its motion at
some point and returns to this point via any path, its average velocity is zero for
this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.2. As the time interval over which we observe the motion be-
comes smaller and smaller, the direction of the displacement approaches that of
the line tangent to the path at ®.

The instantaneous velocity v is defined as the limit of the average velocity
Ar/Atas At approaches zero:

Ar dr
= — 4.
0l (4.3)

v= lim —
A—0 At

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line tangent to the path at that point and in the direction
of motion (Fig. 4.3).

The magnitude of the instantaneous velocity vector v = |v| is called the speed,
which, as you should remember, is a scalar quantity.

Figure 4.3 A particle moves
from position @ to position ®.
Its velocity vector changes from
v; to vy. The vector diagrams at
the upper right show two ways
of determining the vector Av
from the initial and final
velocities.




4.2 Two-Dimensional Motion with Constant Acceleration

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from v; at time {; to v, at time #. Knowing the veloc-
ity at these points allows us to determine the average acceleration of the particle:

The average acceleration of a particle as it moves from one position to an-
other is defined as the change in the instantaneous velocity vector Av divided by
the time A¢ during which that change occurred:

V/ -V; _ Av

a

tr—t At

(4.4) Average acceleration

Because it is the ratio of a vector quantity Av and a scalar quantity A¢, we conclude
that average acceleration a is a vector quantity directed along Av. As indicated in
Figure 4.3, the direction of Av is found by adding the vector — v; (the negative of
v;) to the vector vy, because by definition Av = ViV

When the average acceleration of a particle changes during different time in-
tervals, it is useful to define its instantaneous acceleration a:

The instantaneous acceleration a is defined as the limiting value of the ratio
Av/Atas Atapproaches zero:

. Av dv

m —— = (4.5) Instantaneous acceleration
At—0 At

a= —
di

(@ In other words, the instantaneous acceleration equals the derivative of the velocity
35 vector with respect to time.

It is important to recognize that various changes can occur when a particle ac-
celerates. First, the magnitude of the velocity vector (the speed) may change with
time as in straight-line (one-dimensional) motion. Second, the direction of the ve-
locity vector may change with time even if its magnitude (speed) remains constant,
as in curved-path (two-dimensional) motion. Finally, both the magnitude and the
direction of the velocity vector may change simultaneously.

The gas pedal in an automobile is called the accelerator. (a) Are there any other controls in an
automobile that can be considered accelerators? (b) When is the gas pedal not an accelerator?

4.2 _~ TWO-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

Let us consider two-dimensional motion during which the acceleration remains
constant in both magnitude and direction.
The position vector for a particle moving in the xy plane can be written

r = xi+ yj (4.6)

where %, y, and r change with time as the particle moves while i and j remain con-
stant. If the position vector is known, the velocity of the particle can be obtained
from Equations 4.3 and 4.6, which give

v =u,d+ vj (4.7)
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Because a is assumed constant, its components a, and a, also are constants. There-

fore, we can apply the equations of kinematics to the x and y components of the
velocity vector. Substituting v, = v,; + a,t and v = v,; + a,¢ into Equation 4.7 to
determine the final velocity at any time ¢, we obtain

vi= (vt a)i+ (vy; + ayl)j

(ved + vy;§) + (ad + aj)t
Vf: Vv; + at (4.8)

This result states that the velocity of a particle at some time ¢ equals the vector sum
of its initial velocity v; and the additional velocity at acquired in the time ¢ as a re-
sult of constant acceleration.

Similarly, from Equation 2.11 we know that the x and y coordinates of a parti-
cle moving with constant acceleration are

Xp= X + vt + %axt2 V=i + Uyl + %a},t2

Substituting these expressions into Equation 4.6 (and labeling the final position
vector ry) gives
. 1 9\ e 1 9\ »
1= (x; + vyt + antz)l + (i vyt + QaytZ)J
. . . . 1 . .
= (x1 +y,)) T (vl + vJ)t + 5(ad + ay_l)t2
ry=1;+vi+ sar? (4.9)

This equation tells us that the displacement vector Ar = r; — r; is the vector sum
of a displacement v;¢ arising from the initial velocity of the particle and a displace-
ment %at2 resulting from the uniform acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.4.
For simplicity in drawing the figure, we have taken r; = 0 in Figure 4.4a. That is,
we assume the particle is at the origin at ¢ = ¢; = 0. Note from Figure 4.4a that ryis
generally not along the direction of either v; or a because the relationship be-
tween these quantities is a vector expression. For the same reason, from Figure
4.4b we see that v/is generally not along the direction of v; or a. Finally, note that
vran